CHAPTER 6 HEAT TRANSFER IN CHANNEL FLOW 6.1 Introduction (1) Laminar vs. turbulent flow Flow through tubes, transition Reynolds number Re D t is Re Dt uD 2300 (6.1) (2) Entrance vs. fully developed region Classification based on velocity and temperature profiles: (i) Entrance region (ii) Fully developed region (3) Surface boundary conditions Two common boundary conditions:: (i) Uniform surface temperature (ii) Uniform surface heat flux (4) Objective. Objective depends on surface thermal boundary condition: (i) Uniform surface temperature. Determine axial variation of: (1) Mean fluid temperature (2) Heat transfer coefficient (3) Surface heat flux (ii) Uniform surface flux. Determine axial variation of: (1) Mean fluid temperature (2) Heat transfer coefficient (3) Surface temperature 6.2 Hydrodynamic and Thermal Regions: General Features Fluid enters with uniform velocity and temperature. (1) Entrance region. Extends from the inlet to the section where the boundary layer thickness reaches the center of channel. (2) Fully developed region. This zone follows the entrance region. 2 6.2.1 Flow Field (1) Entrance Region (Developing Flow, 0 x Lh ). Name: hydrodynamic entrance region. Length: L h (hydrodynamic entrance length). Streamlines are not parallel. Core velocity u c increases with distance Pressure decreases with distance ( dp / dx 0 ). D/ 2. r uc Vi x u u Lh (2) Fully Developed Flow Region. x fully developed Lh Fig. 6.1 Streamlines are parallel ( vr 0). u / x 0 for two-dimensional incompressible fluid. 6.2.2 Temperature Field (1) Entrance Region (Developing Temperature, 0 x Lt ) Name: Thermal entrance region. Length: Lt (thermal entrance length). Core temperature Tc is uniform, Tc Ti . D/2 t (2) Fully Developed Temperature Region. x r Tc Ts Ts T Vi Ti Lt x Ts t Temperature varies radially and axially, T / x 0. fully developed Lt Fig. 6.2 6.3 Hydrodynamic and Thermal Entrance Lengths 6.3.1 Scale Analysis (1) Hydrodynamic Entrance Length Lh . Starting with external flow result (4.16) 1 x Applying (4.16) to a tube at x (4.16) Re x Lh : D and Re Lh Substituting (b) into (4.16) and rearranging Re D Lh D (b) 3 1/ 2 Lh / D Re D (6.2) ~1 (2) Thermal Entrance Length Lt . Starting with external flow result (4.24) t Applying (4.24) at x ~ L Re L1 / 2 Pr 1/ 2 (4.24) Lt : t D and Re Lt Re D Lt D (b) Substituting (b) into (4.24) and rearranging Lt / D Re D Pr 1/ 2 (6.3) ~1 (6.2) and (6.3) give Lt ~ Pr Lh (6.4) 6.3.2 Analytic and Numerical Solutions: Laminar Flow (1) Hydrodynamic Entrance Length L h . Results for L h : Lh De Table 6.1 Entrance length coefficients C h and C t [1] (6.5) C h Re D e Ct Table 6.1 gives C h Compare with scaling: Lh / D Re D geometry uniform surface flux uniform surface temperature 0.056 0.043 0.033 0.09 0.066 0.041 0.085 0.057 0.049 0.075 0.042 0.054 0.011 0.012 0.008 1/ 2 (6.2) ~1 a a b Rewrite (6.5) a/b =1 a 1/ 2 Lh / De Re De Ch Ch 1/ 2 (a) Example: Rectangular channel, aspect ratio 2, Table 6.1 gives C h 0.085. Substituting this value into (a), gives a/b = 2 b a b a/b = 4 4 1/ 2 Lh / De Re D e 0.085 1 / 2 (b) 0.29 Scaling replaces 0.29 by unity. (2) Thermal Entrance Length Lt . Lt depends on surface boundary conditions: Two cases: (i) Uniform surface temperature. (ii) Uniform surface flux. Solution Lt De (6.6) C t PrRe D Table 6.1 gives C t for both cases. Compare with scaling. Rewrite (6.6) Lt / De PrRe D 1/ 2 Ct 1/ 2 (c) Scaling gives 1/ 2 Lt / D Re D Pr (6.3) ~1 Example: Rectangular channel, aspect ratio 2, Table 6.1 gives Ct this value into (c), gives 0.049. Substituting 1/ 2 Lt / De PrRe De 0.049 1 / 2 (d) 0.22 Scaling replaces 0.22 be unity. Turbulent flow: L Lh Lt L D (6.7) 10 6.4 Channels with Uniform Surface Heat Flux q s Inlet mean temperature: Tmi Tm (0) . L Determine: (1) Total heat transfer rate q s . (2) Mean temperature variation Tm (x). (3) Surface temperature variation Ts (x ). Total heat transfer rate Tmi 0 x qs Fig. 6.3 Tm (x) 5 qs q s As (6.8) qs P x As = surface area P = perimeter Mean temperature Tm (x) . Conservation of energy between inlet and section x: qs qs P x mcp [Tm ( x) Tmi ] or Tm ( x) qs P x mc p Tmi (6.9) Surface temperature Ts (x) . Newton’s law of cooling gives qs h( x) Ts ( x) Tm ( x) or Ts ( x) qs h( x ) Tm ( x) Using (6.9) Ts ( x) Tm i qs Px mc p 1 h( x ) (6.10) NOTE: Determining Ts (x) requires knowing h(x). To determine h(x): Must know if: Flow is Laminar or turbulent. Entrance or fully developed region 6.5 Channels with Uniform Surface Temperature Inlet mean temperature: Tmi Tm (0) . Ts Determine: (1) Mean temperature variation Tm (x). (2) Total heat transfer rate q s between x location x. (3) Surface heat flux variation q s (x). Tmi 0 dx dqs Tm Tm Conservation of energy to element m c p dTm m 0 and Mean temperature variation Tm (x). dqs Tm (x) x dx (a) Fig. 6.4 dTm dx dx 6 Newton's law: dqs h( x) Ts Tm ( x) Pdx (b) P h( x)dx m cp (c) Combine (a) and (b) dTm Ts Tm ( x) Integrating (c) x T ( x) Ts ln m Tmi Ts P m cp Definite h (6.11) h( x)dx 0 x h 1 x h( x)dx (6.12) 0 (6.12) into (6.11), solve Tm (x) Tm ( x) (Tmi Ts ) exp[ Ts Ph x] mcp (6.13) NOTE: Determining Tm (x) requires knowing h(x). To determine h(x): Must know if: Flow is laminar or turbulent. Entrance or fully developed region Heat transfer rate. Conservation of energy: qs (6.14) m c p [Tm ( x) Tmi ] Surface heat flux.: Newton’s law: q s ( x) h( x)[Ts Tm ( x)] (6.15) 6.6 Determination of Heat Transfer Coefficient h(x) and Nusselt Number Nu D 6.6.1 Scale Analysis Estimate h(x) and Nu D . Tube: radius ro , surface temperature T s , mean temperature Tm . Fourier’s law and Newton’s law: h Scaling (6.16) T (ro , x) k r Tm Ts r qs ro 0 Tm (6.16) Fig. 6.5 Ts 7 Tm k Ts t h~ Tm Ts or k h~ (6.17) t The Nusselt number hD k Nu D Use (6.17) D Nu D ~ (6.18) t Fully developed region: t (x ) ~ D, equation (6.18) gives Nu D ~ 1 (fully developed) Entrance region: Need to scale t ( t (x ) < (6.19) D). For external flow t ~ x Pr 1/ 2 Re x 1/ 2 (4.24) (4.24) into (6.18) Nu D ~ D 1 / 2 1/2 Pr Re x x (c) Expressing Re x in terms of Re D Re x ux ν uD x ν D Re D x D (d) Substitute (d) into (c) D Nu D ~ x 1/2 Pr 1 / 2Re1/2 D (6.20a) Rewrite Nu D PrRe D x/D 1/ 2 ~1 Scaling estimates (6.19) and (6.20) will be compared with exact solutions. (6.20b) 8 6.6.2 Basic Considerations for the Analytical Determination of Heat Flux, Heat Transfer Coefficient and Nusselt Number r qs Need to determine velocity and temperature distribution. Assume: fully developed velocity Neglect axial conduction Section outline: ro 0 Tm Definitions Governing equations for determining: Ts Fig. 6.5 (i) Surface heat flux (ii) Heat transfer coefficient (iii) Nusselt number (1) Fourier’s law and Newton’s law. Surface heat flux. Fourier’s law gives surface heat flux q s qs k T x, ro r (a) Define dimensionless variables T Ts , Ti Ts x/D , Re D Pr r , ro R vx v k Ts ro Ti vx , u vr vr , u Re D uD ν (6.21) Substitute into (a) qs ( ) 0( ,1) R (6.22) Heat transfer coefficient. Define h h q" s Tm Ts (6.23) Combine (6.22) and (6.23) h( ) where m k (Ts Ti ) ro (Tm Ts ) ( ,1) R k ro 1 m( ) ( ,1) R (6.24) is defined as m Tm Ts Ti Ts (6.25) Nusselt number. Define: Nu ( ) h( ) D k h( )2ro k (6.26) ( ,1) R (6.27) (6.24) into (6.26) Nu ( ) 2 m( ) 9 (2) The Energy Equation. Review assumptions on energy equation (2.24). T r c p vr T z vz k 2 1 T r r r r T (2.24) z2 Replace z by x, use dimensionless variables: vx 2 Re D Pr vr 4 R R R R R 1 ( Re D Pr) 2 2 2 (6.28) where Pe Re D Pr , Peclet number (6.29) Pe (6.30) Neglect conduction for PrRe D 100 Thus, under such conditions, (6.28) becomes vx 2 Re D Pr vr 4 R R R R R (6.31) (3) Mean (Bulk) Temperature Tm . Define: ro mc p Tm c p v x T 2 rdr (a) v x 2 rdr (b) 0 Mass flow rate m is given by ro m 0 (b) into (a), assume constant properties ro v x Trdr Tm 0 (6.32a) ro v x rdr 0 Dimensionless form: 1 v x R dR m Tm Ts Ti Ts 0 1 v x R dR 0 6.7 Heat Transfer Coefficient in the Fully Developed Temperature Region 6.7.1 Definition of Fully Developed Temperature Profile (6.32b) 10 Far away from the entrance ( x / d fully developed. 0.05Re D Pr ), temperature profile becomes To define fully developed temperature, introduce the dimensionless temperature Ts ( x ) T ( r , x ) Ts ( x) Tm ( x) (6.33) Fully developed temperature is defined as a profile in which is independent of x: (r ) (6.34) 0 (6.35) (6.34) gives x (6.33) and (6.35) give Ts ( x) T (r , x) x Ts ( x) Tm ( x) x Expand and use the definition of (6.36a) 0 in (6.33) dTs dx T x (r ) dTs dx dTm dx 0 (6.36b) 6.7.2 Heat Transfer Coefficient and Nusselt Number Examine h and Nu in the fully developed region. Fourier’s and Newton’s law: T (ro , x) r Tm Ts k h (6.16) Use (6.33) to eliminate T (ro , x) / r . (6.16) gives h k d (ro ) = constant dr (6.37) IMPORTANT CONCLUSOIN: THE HEAT TRANSFER COEFFICIENT IN THE FULLY DEVELOPED REGION IS CONSTANT INDEPENDET OF LOCATION. Nusselt number Nu D hD k D d (ro ) dr (6.38) Scaling estimate based on limiting case of entrance region: Nu D ~ 1 (fully developed) Scale estimate based on fully developed region: (6.19) 11 Scale T (ro , x) / r as T (ro , x) Ts Tm ~ r D Substitute into (6.16) h~ k D (6.39) Substitute (6.39) into (6.38) (fully developed) Nu D ~ 1 (6.40) 6.7.3 Fully Developed Region for Tubes at Uniform Surface flux r Determine: qs T (i) Surface temperature Ts (x). (ii) Heat transfer coefficient. u 0 D x qs Fig. 6.6 Newton’s law qs h Ts ( x) Tm ( x) (a) Since q s and h are constant it follows that Ts ( x) Tm ( x) constant (b) Differentiate dTs dx dTm . dx (c) dTs dx (d) (c) into (6.36b) T x (c) and (d) T x dTs dx dTm (for constant q s ) dx (6.41) Unknowns: T (r, x), Tm (x) and Ts (x) Conservation of energy: q s Pdx mc pTm or mc p Tm m dTm dx dx Tm Tm dx qs Fig. 6.7 dTm dx dx 12 dTm dx qs P = constant mc p (6.42) dTs dx dTm q s P = = constant dx mc p (6.43) Substitute (6.42) into (6.41) T x Integrate(6.43) qs P x C1 mc p Tm ( x) (e) Use inlet condition Tm (0) Tmi (f) Solution (e) becomes Tm ( x) qs P x mc p Tmi (6.44) Need to determine T (r, x) and Ts (x). This requires solving the differential form of the energy equation. Set vr 0 in energy equation (2.24) T x c p vx k T r r r r (6.45) Fully developed flow axial velocity vx r2 2u 1 ro2 (6.46) (6.43) and (6.46) into (6.45) c p 2u 1 However, m ro2 u and P r2 2 ro qs P m c p k T r r r r (g) 2 ro , equation (g) becomes 4q s r2 1 2 ro ro k T r r r r (6.47) Boundary conditions are: T (0, x) 0 r T (ro , x) k qs r Integrate (6.47) (6.48a) (6.48b) 13 4 r2 qs ro 2 r4 T r kr 2 4ro Boundary condition (6.48a) gives f (x) (h) f x 0. Equation (h) becomes 4q s kro T r r3 r 2 4ro2 Integrate again r2 4 4q s kro T (r , x) r4 (6.49) g ( x) 16ro2 The integration “constant” is g (x) . Use Tm (x) to determine g (x). Substitute (6.46) and (6.49) into (6.32a) 7 ro q s (6.50) Tm ( x) g ( x) 24 k Equate (6.44) and (6.50) gives g (x) g ( x) Tmi 7 ro q s 24 k Pq s x mc p r4 16ro 7 ro q s 24 k 11 ro q s 24 k Pq s x mc p (6.51) (6.51) into (6.49) T (r , x) Tmi Set r 4q s kro r2 4 2 Pq s x mc p (6.52) ro in (6.52) to obtain Ts (x) Ts ( x) Tmi (6.53) (6.44), (6.52) and (6.53) into (6.33) gives (r ) 24 1 2 (r ) 1 r 11 ro2 r4 24 Pq s 7 x x 11 mc p 11 2 4ro (6.54) Differentiate (6.54) and substitute into (6.38) gives Nu D 48 11 4.364 (6.55) NOTE: (6.55) applies to laminar fully developed velocity and temperature in tubes with uniform surface heat flux. The Nusselt number is independent of Reynolds and Prandtl numbers. Scaling gives Nusselt as Nu D ~ 1 (6.40) 14 This compares favorable with (6.55). 6.7.4 Fully Developed Region for Tubes at Uniform Surface Temperature Determine: Nusselt number Solve the energy equation for the fully developed region Neglect axial conduction and dissipation. Energy equation: set vr 0 in (2.24) c p vx T x k T r r r r (6.45) Boundary conditions T (0, x) 0 r T (ro , x) Ts (6.56a) (6.56b) Axial velocity for fully developed flow is vx 2u 1 r2 (6.46) ro2 Use (6.36a) to Eliminate T / x in (6.45) Ts ( x) T (r , x) x Ts ( x) Tm ( x) x For uniform Ts ( x) 0 (6.36a) Ts , above gives T x Ts T (r , x) dTm Ts Tm ( x) dx (6.57) (6.46) and (6.57) into (6.45) 2 cpu 1 r 2 Ts T (r , x) dTm ro2 Ts Tm ( x) dx k T r r r r (6.58) Solution: (6.58) was solved using an infinite power series. Solution gives the Nusselt number as Nu D 3.657 (6.59) 6.7.5 Nusselt Number for Laminar Fully Developed Velocity and Temperature in Channels of Various Cross-Sections Table 6.2 lists Nusselt numbers for channels of various cross-sections. Two cases: (1) uniform surface heat flux and (2) uniform surface temperature. Nusselt number of Non-circular channels is based on the equivalent diameter. Scaling estimate: Table 6.2 Nu D ~ 1 (fully developed) (6.40) Nusselt number for laminar fully developed conditions in channels of various cross-sections [3] Nusselt number Nu D Table 6.2: Nusselt number ranges from 2.46 to 8.235. a b Channel geometry Uniform surface flux Uniform surface temperature 4.364 3.657 1 3.608 2.976 2 4.123 3.391 4 5.331 4.439 8 6.49 5.597 8.235 7.541 3.102 2.46 6.8 Thermal Entrance Region: Laminar Flow through Tubes a 6.8.1 Uniform Surface Temperature: Graetz Solution b a Laminar flow. b Fully developed inlet velocity. b a Neglect axial conduction (Pe > 100). a Uniform surface temperature Ts . b Fully developed flow: vr 0 15 (3.1) Axial velocity vz 1 dp 2 2 (r ro ) 4 dz (3.12) r Ts (3.12) expressed in dimensionless form vx vx u 2 2(1 R ) T Ti (6.61) u 0 x t (3.1) and (6.61) into energy equation (6.31) 1 1 R2 2 1 R R R R Fig. 6.8 (6.62) Boundary conditions ( ,0) R 0 (6.63a) ( ,1) 0 (6.63b) (0, R) 1 (6.63c) Analytic and numerical solutions to this problem have been obtained. Review analytic solution leading to: 16 (i) Mean temperature, m( ) Gn 8 m 2 2 exp( 2 (6.66) ) n n n 0 (ii) Local Nusselt number, Nu ( ) G n exp( 2 2 n ) n 0 Nu (66.7) Gn 2 2 n 0 exp( 2 2 n ) n (iii) Average Nusselt number, Nu ( ) h ( )D k (f) and G n for 0 n 10. Table 6.4 gives Nu ( ) and Nu ( ) RESULTS Table 6.3 lists values of n Nu ( ) at selected values of the axial distance . Fig. 6.9 gives the variation of Nu ( ) and Nu ( ) along a tube. Table 6.4 Table 6.3 Uniform surface temperature [4] n 0 1 2 3 4 5 6 7 8 9 10 n 2.70436 6.67903 10.67338 14.67108 18.66987 22.66914 26.66866 30.66832 34.66807 38.66788 42.66773 Gn 0.74877 0.54383 0.46286 0.41542 0.38292 0.35869 0.33962 0.32406 0.31101 0.29984 0.29012 Local and average Nusselt number for tube at uniform surface temperature [5] = x/D Re D Pr 0 0.0005 0.002 0.005 0.02 0.04 0.05 0.1 Nu ( ) Nu ( ) 12.8 8.03 6.00 4.17 3.77 3.71 3.66 3.66 19.29 12.09 8.92 5.81 4.86 4.64 4.15 3.66 17 Average Nu Nusselt number Local Nu Fig. 6.9 x/D ReD Pr Local and average Nusselt number for tube at uniform surface temepratu re [4] NOTE: (1) The average Nusselt number is greater than the local Nusselt number. (2) Asymptotic value of Nusselt number of 3.657 is reached at 0.05 . Thus (6.69) Nu( ) 3.657 (3) Evaluate fluid properties at the mean temperatures Tm , defined as Tm Tmi Tmo 6.8.2 Uniform Surface Heat Flux Repeat Graetz entrance problem replacing the uniform surface temperature with uniform heat flux. (6.70) 2 r qs T Ti u 0 D x t qs Inlet velocity is fully developed. Fig. 6.10 Energy equation is 1 1 R2 2 1 R R R R (6.62) 18 Boundary conditions ( ,0) ) R (6.71a) 0 q s ro k (Ti Ts ) ( ,1) R (6.71b) (6.71c) (0, R) 1 Solution. Local Nusselt number: 1 Nu ( ) hx k 11 48 1 2 An exp( 2 2 Table 6.5 (6.72] ) n n 1 n The average Nusselt number is given by Nu ( ) hx k 11 48 1 2 The eigenvalues in Table 6.5 Limiting case: An n 1 2 n 1 exp( 2 2 2 n 1 ) 2 n (6.73] and the constant An are listed (fully developed) Nu ( ) Uniform surface flux [4] 48 4.364 11 1 2 3 4 5 6 7 8 9 10 2 n 25.6796 83.8618 174.1667 296.5363 450.9472 637.3874 855.8495 1106.3290 1388.8226 1703.3279 (6.74) Average Nu Nusselt number Local Nu x/D ReD Pr Fig. 6.11 Local and average Nusselt number for tube at uniform surface heat flux [4] An 0.198722 0.069257 0.036521 0.023014 0.016030 0.011906 0.009249 0.007427 0.006117 0.005141
© Copyright 2025 Paperzz