CHAPTER 5 APPROXIMATE SOLUTIONS: THE INTEGRAL METHOD 5.1 Introduction • Why approximate solution? • When exact solution is: • Not Available • Complex 1 • Requires numerical integration • Implicit • Approximate solution by integral method: • Advantages: simple, can deal with complicating factors • Used in fluid flow, heat transfer, mass transfer 2 5.2 Differential vs. Integral Formulation Differential Formulation Conservati on laws are applied to an infinitesm al element dx × dy • Result: Solutions are exact 3 Integral Formulation Conservation laws are satisfied in an average sense • Result: Solutions are approximate 4 5.3 Integral Method Approximation: Mathematical Simplification • Number of independent variables are reduced • Reduction in order of differential equation 5.4 Procedure (1) Integral formulation of the basic laws • Conservation of mass • Conservation of momentum • Conservation of energy 5 (2) Assumed velocity and temperature profiles • Satisfy boundary conditions • Several possibilities • Examples: Polynomial, linear, exponential • Assumed profile has an unknown parameter or variable (3) Determination of the unknown parameter or variable • Conservation of momentum gives the unknown variable in the assumed velocity 6 • Conservation of energy gives the unknown variable in the assumed temperature 5.5 Accuracy of the Integral Method • Accuracy depends on assumed profiles • Accuracy is not sensitive to form of profile • Optimum profile: unknown 7 5.6 Integral Formulation of the Basic Laws 5.6.1 Conservation of Mass • Boundary layer flow • Porous curved wall • Conservation of mass for element δ × dx : 8 dme mx δ dm x mx + dx dx dmo Fig. 5.3 dm x m x + dmo + dme = m x + dx dx dm x dme = dx − dmo dx (a) 9 dm e = mass from the external flow dm o = mass through porous wall m x = mass from boundary layer rate entering element at x One-dimensional mass flow rate: m = ρVA (b) Apply (b) to porous side, assume that injected is the same as external fluid dmo= ρ vo Pdx (c) 10 P = porosity ρ = density Applying (b) to dy dm x = ρ udy Integrating δ ( x) mx = ∫ ρ udy (d) 0 (c) and (d) into (a) 11 d dme = dx ρ udy dx − ρ v o Pdx δ ( x) ∫0 (5.1) 5.6.2 Conservation of Momentum Apply momentum theorem to the element δ × dx ∑ Fx = M x (out ) − M x (in) (a) ∑ Fx = External x-forces on element 12 M x (in) = x-momentum of the fluid entering M x (out)= x-momentum of the fluid leaving dp ( p + )dδ 2 pδ δ d pδ + ( pδ )dx dx τ o (1 − P )dx Fig. 5.4 Forces 13 V∞ ( x )dme Mx dM x Mx + dx dx Fig. 5.4 x - Momentum Fig. 4 and (a): dp d pδ + p + dδ − pδ − ( pδ )dx − τ o (1 − p )dx = 2 dx dM x M + dx − M x − V∞ ( x )dme x dx 14 p = pressure V∞ = velocity at the edge of the boundary layer τ o = wall stress δ ( x) ∫ ρ u2dy (b) ∂u( x ,0 ) τo = µ ∂y (c) Mx = 0 and 15 (b) and (c) into (a) ∂ u ( x ,0 ) dp ( ) −δ = − µ 1− P ∂y dx d dx δ (x) δ (x) ∫ ∫ ρ u 2 dy − V ∞ ( x ) d 0 dx ρ udy − V ∞ ( x )ρ P v o 0 • x-momentum of dmo ? • Shear force on slanted surface? • (5.2) applies to laminar and turbulent flow 16 • Curved surface: V∞ ( x ) and p( x ) • (5.2) is the integral formulation of conservation of momentum and mass • (5.2) is a first order O.D.E. with x as the independent variable Special Cases: (i) Case 1: Incompressible fluid dp dp ∞ ≈ dx dx (4.12) For boundary layer flow 17 ∂u ∂u 1 dp∞ ∂ 2u =− u +v +ν 2 ρ ∂x ∂x ∂y ∂y Apply (4.5) at y = δ where u = V∞ dp dp∞ dV∞ = − ρ V∞ ( x ) ≈ dx dx dx (5.3) into (5.2), constant (4.5) (5.3) ρ d V∞ ∂ u( x , 0 ) = − ν (1 − P ) δ V∞ ( x ) dx ∂y d dx δ ( x) δ ( x) ∫ ∫ d u dy − V∞ ( x ) dx 0 2 0 (5.4) udy − V∞ ( x ) Pv o 18 (ii) Case 2: Incompressible fluid and impermeable flat plate Flat plate, (5.3) dV ∞ dp dp ∞ =0 = ≈ dx dx dx (d) Impermeable plate v o = 0, P = 0 (e) (d) and (e) into (5.4) ∂u( x ,0 ) d v = V∞ ∂y dx δ (x) ∫0 d udy − dx δ (x) ∫0 u 2dy (5.5) 19 5.6.3 Conservation of Energy Neglect: (1) Changes in kinetic and potential energy (2) Dissipation (3) Axial conduction 20 Conservation of energy element δ t × dx dEe δt dE x Ex + dx dx Ex dx dEc dEo Fig. 5.6 dE x E x + dEc + dEo + dEe = E x + dx dx 21 Rearranging dE x dEc = dx − dEe − dEo dx Fourier’s law ∂T ( x ,0 ) dEc = − k (1 − P ) dx ∂y (b) Energy with mass dm e dEe = c pT∞ dme 22 Use (5.1) for dme d dEe = c pT∞ dx ρ udy dx − c pT∞ ρ v o Pdx δ ( xt ) ∫0 (c) Energy of injected mass dE o = ρ c pTo v o pdx (d) Energy convected with fluid Ex = δ t ( x) ∫0 ρ c p uT dy (e) 23 (b)-(e) into (a) ∂T ( x ,0 ) d − k (1 − P ) = ∂y dx d c pT∞ dx δ t ( x) ∫ ρ c p uTdy − 0 δ t ( x) ∫ (5.6) ρ udy − ρ c p v o P(To − T∞ ) 0 Note (1) (5.6) is integral formulation of conservation energy (2) (5.6) is a first order O.D.E. with x as the independent variable 24 Special Case: Constant properties and impermeable flat plate Simplify (5.6) −α ∂ T ( x ,0 ) d = ∂y dx δ t ( x) ∫ u(T − T∞ )dy (5.7) 0 25 5.7 Integral Solutions 5.7.1 Flow Field Solution: Uniform Flow over a Semi-Infinite Plate • Integral solution to Blasius problem • Integral formulation of momentum (5.5) 26 ∂u( x ,0 ) d = V∞ v ∂y dx δ (x) ∫0 d udy − dx δ (x) ∫0 u2dy (5.5) • Assumed velocity profile u( x , y ) u( x , y ) = N ∑ an ( x ) y n (5.8) n=0 Example, a third degree polynomial u( x , y ) = a0 ( x ) + a1 ( x ) y + a2 ( x ) y 2 + a3 ( x ) y 3 (a) 27 Boundary conditions give a n (1) u( x ,0 ) = 0 (3) ∂u( x , δ ) ≅ 0 ∂y (2) u( x , δ ) ≅ V∞ 2 ∂ u( x ,0 ) (4) =0 2 ∂y Note: (1) B.C. (2) and (3) are approximate. Why? (2) B.C. (4): set y = 0 in the x-component of the Navier equations, (2.10x) (3) 4 B.C. and (a) give: 28 a 0 = a 2 = 0 , a1 = 3 V∞ 1 V∞ , a3 = 2 δ 2δ 3 u 3 y 1 y = − V∞ 2 δ 2 δ 3 (5.9) Assumed velocity is in terms of a single unknown variable δ ( x ) (5.9) into (5.5), evaluate integrals 3 1 39 2 dδ vV∞ = V∞ 2 δ 280 dx (b) 29 (b) is first order O.D.E. in δ ( x ) 140 v δ dδ = dx 13 U ∞ Integrate, use B.C. δ (0) = 0 140 v x ∫0 δ dδ = ∫0 dx 13 U ∞ δ Evaluate integrals δ 280 / 13 4.64 = = x Re x Re x (5.10) 30 (5.10) into (5.9) gives u( x , y ) Friction coefficient C f :Use (4.36) and (4.37a) ∂u µ ( x ,0 ) 3v τo ∂y Cf = = = 2 2 V∞δ ( x ) ρV∞ / 2 ρV∞ / 2 Use (5.10) to eliminate δ ( x ) Cf = 0.646 Re x (5.11) 31 Accuracy: Compare (5.10) and (5.11) with Blasius solution δ 5.2 = , x Re x Blasius solution (4.46) 0.664 , Cf = Re x Blasius solution (4.48) Note: (1) Both solutions have same form (2) Error in δ ( x ) is 10.8% 32 (3) Error in C f is 2.7% (4) Accuracy of C f is more important than δ ( x ) 5.7.2 Temperature Solution and Nusselt Number: Flow over a Semi-Infinite Plate (i) Temperature Distribution • Flat plate • Insulated section x o 33 • Surface at T s • Laminar, steady, two-dimensional, constant properties boundary layer flow • Determine: δ t , h( x ) , Nu( x ) • Must determine: u( x , y ) and T ( x , y ) (2) Integral formulation of conservation of energy ∂T ( x ,0 ) d −α = ∂y dx δ ( x) ∫ ρ c p u(T − T∞ )dy (5.7) 0 34 • Integral Solution to u( x , y ) and δ ( x ) : u 3 y 1 y = − V∞ 2 δ 2 δ 3 δ 280 / 13 4.64 = = x Re x Re x (5.9) (5.10) Assumed temperature T ( x, y ) = N ∑ bn ( x ) y n (5.12) n=0 35 Let T ( x , y ) = b0 ( x ) + b1 ( x ) y + b2 ( x ) y 2 + b3 ( x ) y 3 (a) Boundary conditions give bn ( x ) (1) T ( x ,0 ) = Ts (2) T ( x , δ t ) ≅ T∞ (3) ∂T ( x , δ t ) ≅ 0 ∂y (4) ∂ 2T ( x ,0 ) =0 2 ∂y 36 Note (1) B.C. (2) and (3) are approximate. Why? (2) B.C. (4): set y = 0 in the x-component of the energy equation (2.19) (3) Four B.C. and (a) give: 3 1 b = 0, b0 = Ts , b1 = (T∞ − Ts ) , 2 δt 2 1 1 b3 = − (T∞ − Ts ) 3 2 δt 37 Therefore 3 y 1 y3 T ( x , y ) = Ts + (T∞ − Ts ) − 3 2 δ t 2 δ t (5.13) (5.9) and (5.13) into (5.7) and evaluating the integral 3 T∞ − Ts d = (T∞ − Ts )V∞δ α 2 δt dx 4 3 δ t 2 3 δ t − 20 δ 280 δ (5.14) • (5.14) is simplified for Pr > 1 δt δ < 1 , for Pr > 1 (5.15) 38 Last two term in (5.14): 3 δ t 280 δ δt 3 << δ 20 2 Simplify (5.14) 2 α d δ t 10 = V∞ δ δt dx δ Use (5.10) for (b) δ 280 ν x δ = 13 V ∞ (c) 39 (c) into (b) 3 2 δt δ t d δ t 13 1 + 4 x = δ δ dx δ 14 Pr δt Solve (d) for . Let δ δt r = δ (d) 3 (e) (e) into (d) 4 dr 13 1 r+ x = 3 dx 14 Pr (f) 40 Separate variables and integrate 3 δt − 3 / 4 13 1 r = = C ( x) + 14 Pr δ (g) C = constant. Use boundary condition on δ t δ t ( xo ) = 0 (h) 13 1 3 / 4 C=− xo 14 Pr (i) Apply (h) to (g) 41 (i) into (h) δ t 13 1 xo = 1 − δ 14 Pr x Use (c) to eliminate δ 3 / 4 1 / 3 (5.16) 280 vx 13 V∞ (5.17a) in (5.16) 13 1 x δt = 1 − o 14 Pr x 1/ 3 3 / 4 or x o 1 − = 1/3 1/2 x Pr Re x x δt 4.528 1/ 3 3/ 4 (5.17b) 42 Re x is the local Reynolds Re x = V∞ x (5.18) ν (ii) Nusselt Number Local Nusselt number: hx Nu x = k (j) ∂T ( x ,0) −k ∂y h= Ts − T∞ (k) h is given by 43 Use temperature solution (5.13) in (k) 3k h( x ) = 2δt (5.19) Use (5.17a) to eliminate δ t in (5.19) 3/4 k xo h( x ) = 0.331 1 − x x −1 / 3 Pr 1/3 Re x 1/2 (5.20) 1/2 (5.21) Substitute into (j) xo Nux = 0.331 1 − x 3 / 4 −1 / 3 Pr 1/3 Re x 44 (iii) Special Case: Plate with no Insulated Section set xo = 0 in above solution 1/ 3 δ t 13 1 = δ 14 Pr δt x = 0.975 Pr 1 / 3 4.528 = Pr 1/3 Re x 1/2 (5.22) (5.23) 45 k 1/3 h( x ) = 0.331 Pr Re x 1/2 x (5.24) Nu = 0.331 Pr 1/3 Re x 1/2 (5.25) x Accuracy of integral solution: (1) for Pr = 1, δ t / δ = 1 . Set Pr = 1 in (5.22) δt = 0.975 δ Error is 2.5% (2) Compare with Pohlhausen’s solution. For Pr > 10 Nu x = 0.339 Pr 1 / 3 Re x , for Pr > 10 Error is 2.4% (4.72c) 46 Example 5.1: Laminar Boundary Layer Flow over a Flat Plate: Uniform Surface Temperature Use a linear profiles. Velocity: u = a0 + a1 y (a) Boundary conditions (1) u( x ,0) = 0 , u = V∞ (2) f u( x , δ ) ≈ V∞ y (b) δ 47 Apply integral formulation of momentum, (5.5). Result: δ x = 12 Re x (5.26) Temperature profile: T = b0 + b1 y (c) Boundary conditions (1) T ( x ,0) = Ts , (2) T ( x , δ t ) ≈ T∞ T = Ts + (T∞ − Ts ) y δt (d) 48 Apply integral formulation of energy, (5.7). Result: Nu x = 0.289 Pr 1/3 [ Re x 1 − ( xo / x ) 3/4 ] − 1/3 (5.27) Special case: x o = 0 Nu x = 0.289 Pr 1/3 Re x Comments (i) Linear profiles give less accurate results than polynomials. (ii) More accurate prediction of Nusselt number than viscous boundary layer thickness. 49 5.7.3 Uniform Surface Flux • Flat plate • Insulated section of length x o • Plate is heated with uniform flux q ′s′ • Determine h( x ) and Nux 50 q′′ = h( x ) [Ts ( x ) − T∞ ] (a) s or h( x ) = qs′′ Ts ( x ) − T∞ Nusselt number: q′′ x Nux = k [Ts ( x ) − T∞ ] (b) s Apply conservation of energy to determine Ts ( x ) ∂T ( x ,0 ) d −α = ∂y dx ∫ δt u(T − T∞ )dy (5.7) 0 51 Integral solution to u( x , y ) : u 3 y 1 y = − V∞ 2 δ 2 δ 3 (5.9) Assume temperature profile: T = b0 + b1 y + b2 y 2 + b3 y 3 (c) Boundary conditions: ∂T ( x ,0 ) = q′s′ (1) − k ∂y (2) T ( x , δ t ) ≅ T∞ ∂T ( x , δ t ) (3) ≅0 ∂y 2 ∂ T ( x ,0 ) (4) =0 2 ∂y 52 2 1 y 3 q′s′ T ( x , y ) = T∞ + δ t − y + 2 3δt k 3 (5.29) set y = 0 to obtain Ts ( x ) 2 q′s′ Ts ( x ) = T ( x ,0) = T∞ + δt 3k (5.30) 5.30 into (b) 3 x Nu x = 2 δ t (x) (5.31) 53 Must determine δ t . Substitute (5.9) and (5.29) into (5.7) δt d α = V∞ dx 0 ∫ 3 y 1 y3 2 1 y 3 − δ t − y + dy 3 2 3δt 2 δ 2 δ 3 (d) Evaluating the integrals 3 d 2 1 δ t 1 δ t = δ t − V∞ dx 10 δ 140 δ α (e) For Pr > 1 , δ t / δ < 1 3 1 δt 1 δt << 140 δ 10 δ (f) 54 (f) into (e) d δ t3 10 = V∞ dx δ α Integrate α δ t3 10 x= +C V∞ δ (g) δ t ( xo ) = 0 (h) Boundary condition: Apply (h) to (g) C = 10 α V∞ (i) xo 55 (i) into (g) α δ t = 10 ( x − xo )δ V∞ 1/ 3 (j) Use(5.10) to eliminate δ in (j) α 280 280 / 13 δ t = 10 ( x − xo ) 13 Re x V∞ x 1/ 3 or 3.594 xo 1− = 1/3 x Pr Re x x δt 1/3 (5.32) Surface temperature: (5.32) into (5.30) q′′ x Ts ( x ) = T∞ + 2.396 s 1 − o k x 1/3 x Pr 1/3 Re1/2 x (5.33) 56 Nusselt number: (5.32) into (5.31) x Nu x = 0.417 1 − o x −1/3 Pr 1/3 Re 1/2 x (5.34) Special case: x o = 0 q′s′ x Ts ( x ) = T∞ + 2.396 k Pr 1/3 Re1/2 x (5.35) Does Ts ( x ) increase or decrease with distance x? Nusselt number: Nu x = 0.417 Pr 1/3 Re1/2 x (5.36) Exact solution: Nu x = 0.453 Pr 1/3 Re1/2 x (5.37) 57 Example 5.2: Laminar Boundary Layer Flow over a Flat Plate: Variable Surface Temperature • Specified surface temperature Ts ( x ) = T∞ + C x 58 • Determine the local Nusselt number (1) Observations • Determine u( x , y ) and T ( x , y ) • Variable Ts ( x ) • Constant properties: T ( x , y ) is independent of u( x , y ) (2) Problem Definition. Determine u( x, y) and T ( x , y ) (3) Solution Plan • Start with the definition of Nux • Apply the integral method to determine T ( x , y ) 59 (4) Plan Execution (i) Assumptions (1) Steady state (2) Constant properties (3) Two-dimensional ×105) (4) Laminar flow (Rex < 5× (5) (6) (7) (8) (9) Viscous boundary layer flow (Rex > 100) Thermal boundary layer (Pe > 100) Uniform upstream velocity and temperature Flat plate (9) Negligible changes in kinetic and potential energy 60 (10) Negligible axial conduction (11) Negligible dissipation (12) No buoyancy (b = 0 or g = 0) (ii) Analysis Nu x = hx k (a) (1.10) gives h ∂T ( x ,0) ∂y h= Ts ( x ) − T∞ −k (1.10) To determine T ( x , y ) use (5.7) 61 ∂T ( x ,0 ) d −α = ∂y dx δ t ( x) ∫ u(T − T∞ )dy (5.7) 0 (5.9) gives u(x,y) u 3 y 1 y = − V∞ 2 δ 2 δ 3 (5.9) where 280 / 13 280 xν x= δ = 13 V∞ Re x (5.10) Assume T ( x , y ) = b0 ( x ) + b1 ( x ) y + b2 ( x ) y 2 + b3 ( x ) y 3 (a) 62 Boundary conditions: (1) T ( x ,0 ) = Ts ( x ) (2) T ( x , δ t ) ≅ T∞ (3) ∂T ( x , δ t ) ≅0 ∂y (4) ∂ 2T ( x ,0 ) =0 2 ∂y 3 y 1 y3 − T ( x, y ) = Ts ( x) + [T∞ − Ts ( x)] 3 2 δ t 2 δ t (b) into (1.10) 3k h( x ) = 2 δt (b) (c) 63 (c) into (a) 3 x Nux = 2δt (d) • Use (5.7) to determine δ t • (5.9) and (b) into (5.7), evaluating the integral 3 Ts ( x ) − T∞ = α 2 δt d [Ts ( x ) − T∞ ]V∞δ dx (e) 4 3 δ t 2 3 δt − 20 δ 280 δ 64 For Pr > 1 δt δ (5.15) for Pr > 1 < 1, Thus 4 3 δt 3 δt << 280 δ 20 δ 2 Simplify (e) d α 10 [Ts ( x ) − T∞ ] = V∞ [Ts ( x ) − T∞ ]δ dx δt 2 δt δ (f) However Ts ( x ) − T∞ = C x (g) 65 (5.10) and (g) into (f) d 13 V∞ 2 α 10 [C x ] = V∞ C x δt dx 280 νx δt Simplify 3/2 280 α [ν / V∞ ] x dx = δ t2 dδ t 5 13 ν Boundary condition on δ t (h) : (i) δ t ( 0) = 0 Integrate (h) using (i) 1/3 δ t = [10 280 / 13 ] ( Pr )−1/3 (ν x / V∞ )1/2 (j) (j) into (d) Nu x = 0.417 Pr 1/3 Re1/2 x (5.38) 66 (3) Checking • Dimensional check • Boundary conditions check (4) Comments (i) (5.38) is identical with (5.36) for uniform flux q′s′ x Ts ( x ) = T∞ + 2.396 k Pr 1/3 Re1/2 x (5.35) Rewrite (5.35) Ts ( x ) = T∞ + C x (ii) Use same procedure for other specified Ts ( x ) 67
© Copyright 2025 Paperzz