CHAPTER 10 CORRELATION EQUATIONS: FORCED AND FREE CONVECTION 10.1 Introduction • Correlation equations: Based on experimental data • Chapter outline: Correlation equations for: (1) External forced convection over: Plates Cylinders Spheres (2) Internal forced convection through channels (3) External free convection over: Plates Cylinders Spheres 1 10.2 Experimental Determination of Heat Transfer Coefficient h Newton's law of cooling defines h: q′s′ h= Ts − T∞ ∆V (10.1) q ′s′ = surface flux Ts = surface temperature T∞ = ambient temperature Example: Electric heating Measure: Electric power, Ts , T∞ Use (10.1) to calculate h q′s′ −• • Ts T∞ • + V∞ Fig. 10.1 • Form of correlation equations: • Dimensionless: Nusselt number Is a dimensionless heat transfer coefficient. 2 1.Example: Forced convection with no dissipation hx Nu x = = f ( x * ; Re, Pr ) k (2.52) Use (2.52) to plan experiments and correlate data 10.3 Limitations and Accuracy of Correlation Equations All correlation equations have limitations ! • Limitations on: (1) Geometry (2) Range of parameters: Reynolds, Prandtl, Grashof, etc. (3) Surface condition: Uniform flux, uniform temperature, etc. • Accuracy: Errors as high as 25% are not uncommon! 10.4 Procedure for Selecting and Applying Correlation Equations (1) Identify the geometry 3 (2) Identify problem classification: Forced convection Free convection External flow Internal flow Entrance region Fully developed region Boiling Condensation Etc. (3) Define objective: Finding local or average heat transfer coefficient (4) Check the Reynolds number: (a) Laminar (b) Turbulent (c) Mixed (5) Identify surface boundary condition: (a) Uniform temperature 4 (b) Uniform flux (6) Note limitations on correlation equation (7) Determine properties at the specified temperature: (a) External flow: at the film temperature T f T f = (Ts + T∞ ) / 2 (10.2) (b) Internal flow: at the mean temperatureTm (c) However, there are exceptions (8) Use a consistent set of units (9) Compare calculated values of h with Table 1.1 10.5 External Forced Convection Correlations 10.5.1 Uniform Flow over a Flat Plate: Transition to Turbulent Flow • Boundary layer flow over a semi-infinite flat plate 5 Three regions: V∞ (1) Laminar (2) Transition (3) Turbulent • T∞ x • t laminar Re x=t Transition or x turbulent transition Fig. 10.2 critical Reynolds number: Re x t depends on: Geometry, surface finish, pressure gradient, etc. For flow over a flat plate: V x Re xt = ∞ t ≈ 5 × 105 ν • Examples of correlation equations for plates: Laminar region, x < xt : 6 Use (4.72a) or (4.72b) for local Nusselt number to obtain local h Turbulent region, x > xt : Local h: hx Nu x = = 0.0296( Re x )4 / 5 ( Pr )1 / 3 k Limitations: flat plate, constant Ts 5 × 105 < Re x < 107 0.6 < Pr < 60 properties at T f (10.4a) (10.4b) Average h x L 1 L 1 t h= h( x )dx = hL ( x )dx + ht ( x )dx 0 0 L L xt ∫ ∫ ∫ (10.5) 7 hL = local laminar heat transfer coefficient ht = local turbulent heat transfer coefficient (4.72b) and (10.4a) into (10.5): 1/ 2 k V∞ h = 0.332 L ν 0 ∫ xt V∞ + 0 . 0296 ν 1/ 2 x dx dx 1/ 3 ( ) Pr x t x1 / 5 4/5 L ∫ (10.6) Integrate h= { [ ) ] } ( Pr )1 / 3 k 0.664 Re xt 1 / 2 + 0.037 ( Re L )4 / 5 − Re x t 4 / 5 L ( ) ( Dimensionless form: NuL = { [ ) ]}( Pr )1 / 3 1/ 2 4/5 4/5 hL = 0.664 Re x t + 0.037 ( Re L ) − Re x t k ( ) (2) Plate at uniform surface temperature with an insulated leading section x0=Length of insulated section ( V∞ T∞ xt 0 • insulation (10.7b) δt • xo x • Ts Fig. 10.3 8 Two cases: • Laminar flow, x t > x o : Use (5.21) for the local Nusselt number to obtain local h •Turbulent flow, x t < x o : The local Nusselt number is hx 0.0296Re 4x / 5 Pr 1 / 3 Nu x = = k 9 / 10 1 / 9 1 − ( xo / x ) [ (10.8) ] (3) Plate with uniform surface flux Two regions: • Laminar flow, 0 < x < xt Use (5.36) or (5.37) for the local Nusselt number to obtain local h V∞ T∞ 0 •Turbulent flow, x > xt : hx Nu x = = 0.030Re 4x / 5 Pr 1 / 3 k xt x • q′s′ Fig. 10.4 (10.9) 9 Properties at T f = (Ts + T∞ ) / 2 and Ts is the average surface temperature 10.5 External Flow Normal to a Cylinder • For uniform surface temperature or uniform surface flux V∞ T∞ θ Fig. 10.5 Nu L = 5/8 0.62 Re1D/ 2 Pr 1 / 3 Re D 1 + 1 / 4 282,000 Pr 2 / 3 hD = 0.3 + k 1 + (4 / Limitations: [ ) ] Flow norm al to cylinder Pe = Re D Pr > 0 . 2 properties at T f 4/5 (10.10a) (10.10b) Pe = Peclet number = ReD Pr 10 For Pe < 0.2, use: hD 1 NuD = = k 0.8237 − 0.5 ln Pe Limitations (10.11a) flow normal to cylinder Pe = Re D Pr < 0.2 properties at T f 10.5.3 External Flow over a Sphere ( ) 1/4 hD 0 .4 µ 1/ 2 2/3 Nu D = = 2 + 0.4 Re D + 0.06 Re D Pr µs k [ Limitations: ] flow over sphere 3.5 < ReD < 7.6 × 104 0.71 < Pr < 380 1< µ (10.12a) (10.12b) < 3.2 µs properties at T∞ , µ s at Ts 11 10.6 Internal Forced Convection Correlations Chapter 7: Analytic solutions to h for fully developed laminar flow Correlation equations for h in the entrance and fully developed regions for laminar and turbulent flows • Transition or critical Reynolds number for smooth tubes: Re Dt = uD ν ≈ 2300 (10.13) 12 10.6.1 Entrance Region: Laminar Flow Through Tubes at Uniform Surface Temperature • Two cases: (1) Fully Developed Velocity, Developing Temperature: Laminar Flow • Solution: Analytic • Correlation of analytic results: Ts T u FDV • developing 0 x δt u temperature insulation Fig. 10.6 hD NuD = = 3.66 + k 0.0668 ( D/L ) Re D Pr 2/3 {1 + 0.04 [( D/L) ReD Pr ] } (10.14a) 13 Limitations: entrance region of tubes uniform surface temperature Ts laminar flow (ReD < 2300) fully developed velocity developing temperature properties at Tm = (Tmi + Tmo ) / 2 (10.14b) (2) Developing Velocity and Temperature: Laminar flow hD 1 / 3 µ [ ] Nu D = = 1.86 ( D/L) Re D Pr µ k s 0.14 (10.15a) 14 Limitations: entrance region of tube uniform surface temperature Ts laminar flow (ReD < 2300) developing velocity and temperature 0.48 < Pr < 16700 0.0044 < µ µ < 9.75 s properties at Tm , µ s at Ts 10.6.2 Fully Developed Velocity and Temperature in Tubes: Turbulent Flow • Entrance region is short: 10-20 diameters • Surface B.C. have minor effect on h for Pr > 1 • Several correlation equations for h: (1) The Colburn Equation: Simple but not very accurate Nu D = Limitations: 4/5 1/3 hD = 0.023Re D Pr k (10.16a) 15 fully developed turbulent flow smooth tubes ReD > 104 0.7 < Pr < 160 L /D > 60 properties at Tm (10.16b) • Accuracy: Errors can be as high as 25% (2) The Gnielinski Equation: Provides best correlation of experimental data Nu D = 2/3 [ ] 1 + ( D / L ) 1/2 2/3 8 ) ( Pr − 1) ] ( f 8 )( Re D − 1000) Pr [1 + 12.7( f (10.17a) • Valid for: developing or fully developed turbulent flow 16 Limitations: 2300 < ReD < 5 × 106 0.5 < Pr < 2000 0 < D/L <1 properties at Tm (10.17b) • The D/L factor in equation accounts for entrance effects • For fully developed flow set D/L = 0 The Darcy friction factor f is defined as ∆p D f = ρ u2 2 L (10.18) For smooth tubes f is approximated by f = (0.79ln Re D − 1.64) − 2 (10.19) 17 10.6.3 Non-circular Channels: Turbulent Flow Use equations for tubes. Set D = De (equivalent diameter) 4Af De = P A f = flow area P = wet perimeter 10.7 Free Convection Correlations x 10.7.1 External Free Convection Correlations (1) Vertical plate: Laminar Flow, Uniform Surface Temperature u Ts • T∞ • Local Nusselt number: g y Fig. 10.7 18 hx 3 Pr Nu x = = k 4 2.435 + 4.884 Pr 1 / 2 + 4.953 Pr 1/ 4 ( Ra x )1 / 4 (10.21a) • Average Nusselt number: hL Pr Nu L = = 1/2 k 2.435 + 4.884Pr + 4.953Pr 1/4 ( Ra L )1/4 (10.21b) (10.21a) and (10.21b) are valid for: Limitations: vertical plate uniform surface temperature Ts laminar, 10 4 < Ra L < 10 9 0 < Pr < ∞ properties at T f (10.21c) 19 (2) Vertical plates: Laminar and Turbulent, Uniform Surface Temperature 1/6 h L 0.387 Ra L Nu L = = 0.825 + 8/27 k 1 + (0.492 /Pr ) 9/16 [ ] 2 (10.22a) Limitations: vertical plate uniform surface temperature Ts laminar, transition, and turbulent 10 −1 < Ra L < 1012 0 < Pr < ∞ properties at T f (10.22b) (3) Vertical Plates: Laminar Flow, Uniform Heat Flux • Local Nusselt number: 20 hx Pr 2 * Nux = = Grx 1/2 k 4 + 9Pr + 10Pr 1/ 5 (10.23) Determine surface temperature: Apply Newton’s law: where Grx* is defined as q′s′ h( x ) = Ts ( x ) − T∞ Grx* = (10.24) β gq ′s′ 4 x kν 2 (10.25) (10.24) and (10.25) into (10.23) and solve for Ts ( x ) − T∞ 4 + 9 Pr 1 / 2 + 10 Pr α ν q′s′ 4 Ts ( x ) − T∞ = ( β g )( k ) Pr x 1/ 5 (10.26a) (10.23) and (10.26a) are valid for: 21 vertical plate laminar, 104 < Grx* Pr < 109 uniform surface flux, q′s′ 0 < Pr < ∞ • Properties in (10.26a) depend on surface temperatureTs (x) which is not known. Solution is by iteration (4) Inclined plates: Constant surface temperature • Use equations for vertical plates θ • Modify Rayleigh number as: β gcosθ (Ts − T∞ ) Ra x = αv Ts > T∞ Ts < T∞ (10.27) (a) g T∞ θ (b) Fig. 10.9 22 Limitations: inclined plate uniform surface temperatur e Ts Laminar, Ra L < 109 (10.28) 0 ≤ θ ≤ 60o (5) Horizontal plates: Uniform surface temperature: (i) Heated upper surface or cooled lower surface Nu L = 0.54( Ra L )1 / 4 , 2 × 104 < Ra L < 8 × 106 Nu L = 0.15( Ra L )1 / 3 , 8 × 106 < Ra L < 1.6 × 109 Limitations: horizontal plate hot surface up or cold surface down all properties , except , β , at T f β at T f for liquids , Ts for gases (10.29b) (10.29c) 23 (ii) Heated lower surface or cooled upper surface Nu L = 0.27( Ra L )1 / 4 , 105 < Ra L < 1010 Limitations: horizontal plate hot surface down or cold surface up all properties, except, β, at Tf β at Tf for liquids, Ts for gases Characteristic length L: L= (10.30b) surface area perimeter (6) Vertical Cylinders. Use vertical plate correlations for: D 35 > for Pr ≥ 1 1 / 4 L (GrL ) (10.32) (7) Horizontal Cylinders: 24 1/ 6 h D 0.387( Ra D ) = 0.60 + Nu D = 8 / 27 k 9 / 16 1 + (0.559/Pr ) [ Limitations: (8) Spheres Limitations: ] 2 (10.33a) horizontal cylinder uniform surface temperature or flux 10 − 5 < Ra D < 1012 properties at T f hD Nu L = = 2+ k 0.589( Ra D )1 / 4 [1 + (0.Pr469 ) ] 9 / 16 4 / 9 (10.34a) sphere uniform surface temperature or flux Ra D < 1011 Pr > 0.7 properties at T f 25 10.7.2 Free Convection in Enclosures Examples: • Double-glazed windows • Solar collectors • Building walls • Concentric cryogenic tubes • Electronic packages Fluid Circulation: • Driving force: Gravity and unequal surface temperatures Heat flux: Newton’s law: q′′ = h(Th − Tc ) (10.35) Heat transfer coefficient h: Nusselt number correlations depend on: 26 • Configuration • Orientation • Aspect ratio • Prandtl number Pr • Rayleigh numberRa δ (1) Vertical Rectangular Enclosures δ Rayleigh number β g ( Th − Tc )δ 3 Raδ = Pr 2 ν Tc Tc (10.36) L g Several equations: Fig. 10.10 27 hδ Pr Nuδ = Raδ = 0.18 k 0.2 + Pr Valid for 0.29 (10.37a) vertical rectagular enclosure L 1< <2 δ 10 − 3 < Pr < 10 5 Pr Ra δ > 10 3 0 . 2 + Pr properties at T = ( T c + T h ) / 2 hδ Pr Nuδ = Raδ = 0.22 k 0.2 + Pr Valid for 0.28 (10.37b) L δ − 0.25 (10.38a) vertical rectagular enclosure L 2 < < 10 δ Pr < 10 5 (10.38b) 10 3 < Raδ < 1010 properties at T = (Tc + Th ) / 2 28 hδ Nuδ = = 0.046 [Raδ ]1 / 3 k Valid for (10.39a) vertical rectagular enclosure L 1 < < 40 δ (10.39b) 1 < Pr < 20 10 6 < Raδ < 10 9 properties at T = (Tc + Th ) / 2 hδ 0.012 Nuδ = [Raδ ] = 0.42 [Pr ] k Valid for 0.25 L δ −0 0..3 (10.40a) vertical rectagular enclosure L 10 < < 40 δ 1 < Pr < 2 × 10 4 (10.40b) 104 < Reδ < 107 properties at T = (Tc + Th ) / 2 29 (2) Horizontal Rectangular Enclosures • Enclosure heated from below • Cellular flow pattern develops at critical Rayleigh number Ra δ c = 1708 • Nusselt number: L hδ δ Nuδ = = 0.069[Raδ ]1 / 3 [Pr ]0.074 k Tc g Th (10.41a) Fig. 10.11 Valid for horizontal rectangular enclosure heated from below 3 × 105 < Raδ < 7 × 10 7 properties at T = (Tc + Th ) / 2 (10.41b) 30 δ (3) Inclined Rectangular Enclosures • Applications: Solar collectors • Nusselt number:correlations depend on: • Inclination angle • Aspect ratio •Prandtl number Pr • Rayleigh numberRa δ Tc g Th L θ For: Fig. 10.12 0 o < θ < 90 o: heated lower surface, cooled upper surface 90 o < θ < 180 o Table 10.1 critical tilt angle : cooled lower surface, heated upper surface • Nusselt number is minimum at L/δ θc 1 3 6 12 > 12 25o 53o 60o 67 o 70o 31 a critical angle θ c : Table 10.1 1708 hδ Nuδ = = 1 + 1.441 − k Raδ cosθ ( Raδ cosθ )1 / 3 − 1 18 * 1708(1.8 sinθ )1.6 1 − + Raδ cosθ * (10.42a) Valid for inclined rectangular enclosure L / δ ≤ 12 0 < θ ≤ θc (10.42b) ∗ set [ ] = 0 when negative properties at T = (Tc + Th ) / 2 32 hδ o Nuδ ( 90 ) 0.25 Nuδ = = Nuδ (0 ) (sinθ c ) o k Nuδ (0 ) o θ /θ c (10.43a) Valid for inclined rectangular enclosure L / δ ≤ 12 0 < θ ≤ θc properties at T = (Tc + Th ) / 2 Nuδ = Valid for hδ = Nuδ (90o ) [sinθ ] 0.25 k (10.43b) (10.44a) inclined rectangular enclosure all L / δ o θ c < θ < 90 properties at T = (Tc + Th ) / 2 (10.44b) 33 [ ] hδ Nuδ = = 1 + Nuδ (90o ) − 1 sinθ k (10.45a) Valid for inclined rectangular enclosure all L / δ (10.45b) 90o < θ < 180 o properties at T = (Tc + Th ) / 2 Do (4) Horizontal Concentric Cylinders 5 • Flow circulation forT i > T o Ti • Flow direction is reversed for T i < T o . • Circulation enhances thermal conductivity q′ = 2π keff ln( Do / Di ) (Ti − To ) To Di (10.46) Fig. 10..13 34 Correlation equation for the effective conductivity keff : Pr * = 0.386 Ra k 0.861 + Pr keff Ra * = [ln( Do / Di )] 4 [ δ 3 ( Di )− 3 / 5 + ( Do )− 3 / 5 δ= Valid for ] 5 1/ 4 (10.47a) Raδ Do − Di 2 (10.47b) (10.47c) concentric cylinders 10 2 < Ra* < 107 (10.47d) properties at T = (Tc + Th ) / 2 35 10.8 Other Correlations The above presentation is highly abridged. There are many other correlation equations for: • Boiling • Condensation • Jet impingement • High speed flow • Dissipation • Liquid metals • Enhancements • Finned geometries • Irregular geometries • Non-Newtonian fluids • Etc. Consult textbooks, handbooks, reports and journals 36
© Copyright 2025 Paperzz