. +,-) * ) %& '("#$ !"#$
11th International CSI Computer Conference (CSICC’2006), School of Computer Science, IPM, Jan. 24-26, 2006, Tehran, Iran.
ﮐﺸﻒ ﻗﻮﺍﻋﺪ ﺣﺎﮐﻢ ﺑﻴﻦ ﺩﺍﺩﻩﻫﺎ ﺩﺭ ﭘﺎﻳﮕﺎﻩﺩﺍﺩﻩ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺭﻭﻳﮑﺮﺩ ﻣﻨﻄﻖ
ﺍﺳﺘﻘﺮﺍﺋﻲ
ﭼﮑﻴﺪﻩ
ﺑﺮﻧﺎﻣﻪﻧﻮﻳﺴﻲ ﻣﻨﻄﻘﻲ ﺍﺳﺘﻘﺮﺍﺋﻲ ﺑﻪ ﻋﻨﻮﺍﻥ ﻧﻘﻄﻪ ﻣﺸﺘﺮﮎ ﺑﺮﻧﺎﻣﻪﻧﻮﻳﺴﻲ ﻣﻨﻄﻘﻲ ﻭ ﻳﺎﺩﮔﻴﺮﻱ ﻣﺎﺷﻴﻦ ﺍﺳﺘﻘﺮﺍﺋﻲ ﺩﺭ ﺳﺎﻝﻫﺎﻱ ﺍﺧﻴﺮ ﺭﺷﺪ ﻭ
ﺗﻮﺳﻌﻪ ﭼﺸﻤﮕﻴﺮﻱ ﭘﻴﺪﺍ ﮐﺮﺩﻩ ﺍﺳﺖ ﻭ ﺩﺭ ﺣﻞ ﻣﺴﺎﺋﻞ ﻣﺨﺘﻠﻔﻲ ﺑﻪ ﮐﺎﺭ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺍﺳﺖ .ﺍﺯ ﻃﺮﻑ ﺩﻳﮕﺮ ﭘﻴﺪﺍ ﮐﺮﺩﻥ ﺭﻭﺵﻫﺎﻱ ﮐﺎﺭﺁﻣﺪ
ﻭ ﻣﻨﺎﺳﺐ ﺑﺮﺍﻱ ﺣﻞ ﻣﺴﺎﺋﻠﻲ ﺩﺭ ﺣﻮﺯﻩﻫﺎﻳﻲ ﻧﻈﻴﺮ ﺍﺳﺘﺨﺮﺍﺝ ﺩﺍﻧﺶ ﺍﺯ ﺑﺎﻧﮏﻫﺎﻱ ﺍﻃﻼﻋﺎﺗﻲ ،ﺩﺍﺩﻩﮐﺎﻭﻱ ﻭ ﻭﺏﮐﺎﻭﻱ ﻳﮑﻲ ﺍﺯ ﻧﻴﺎﺯﻫﺎﻱ
ﺍﺳﺎﺳﻲ ﺗﺤﻘﻴﻘﺎﺗﻲ ﺩﺭ ﺳﺎﻟﻬﺎﻱ ﺍﺧﻴﺮ ﺑﻪ ﺷﻤﺎﺭ ﻣﻲﺁﻳﺪ .ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺳﻌﻲ ﺷﺪﻩ ﺍﺳﺖ ﺑﻪ ﮐﻤﮏ ILP١ﺭﻭﺷﻲ ﺑﺮﺍﻱ ﮐﺸﻒ ﻗﻮﺍﻋﺪ ﺣﺎﮐﻢ
ﺩﺭ ﺑﺎﻧﮏﻫﺎﻱ ﺍﻃﻼﻋﺎﺗﻲ ﺍﺭﺍﺋﻪ ﺷﻮﺩ .ﺩﺭ ﺍﻳﻦ ﺭﻭﺵ ﺍﻃﻼﻋﺎﺕ ﻣﻮﺟﻮﺩ ﺩﺭ ﺑﺎﻧﮏ ﺍﻃﻼﻋﺎﺗﻲ ﺑﻪ ﻣﺜﺎﻝﻫﺎﻱ ﻣﺜﺒﺖ ﻭ ﻣﻨﻔﻲ ﮐﻪ ﻭﺭﻭﺩﻱﻫﺎﻱ
ﺍﺻﻠﻲ ILPﺭﺍ ﺗﺸﮑﻴﻞ ﻣﻲﺩﻫﻨﺪ ،ﺗﺒﺪﻳﻞ ﻣﻲﺷﻮﺩ ﻭ ﺑﻪ ﮐﻤﮏ ﺍﺑﺰﺍﺭﻫﺎﻱ ILPﺭﺍﺑﻄﻪ ﺑﻴﻦ ﺍﻃﻼﻋﺎﺕ ﺑﻪ ﺻﻮﺭﺕ ﻗﻮﺍﻋﺪ ﻣﻨﻄﻘﻲ ﺑﻪ ﺩﺳﺖ
ﻣﻲﺁﻳﺪ .ﺍﻳﻦ ﺭﻭﺵ ﺭﻭﻱ ﻳﮏ ﭘﺎﻳﮕﺎﻩﺩﺍﺩﻩ ﻧﻤﻮﻧﻪ ﺁﺯﻣﺎﻳﺶ ﺷﺪﻩ ﺍﺳﺖ.
ﮐﻠﻤﺎﺕ ﮐﻠﻴﺪﻱ :ﺑﺮﻧﺎﻣﻪﻧﻮﻳﺴﻲ ﻣﻨﻄﻘﻲ ﺍﺳﺘﻘﺮﺍﺋﻲ ،ﺍﺳﺘﺨﺮﺍﺝ ﺩﺍﻧﺶ ﺍﺯ ﭘﺎﻳﮕﺎﻩﺩﺍﺩﻩ ،ﺩﺍﺩﻩﮐﺎﻭﻱ
-۱ﻣﻘﺪﻣﻪ
ﺭﻭﺵ ﺑﺮﻧﺎﻣﻪﻧﻮﻳﺴﻲ ﻣﻨﻄﻘﻲ ﺍﺳﺘﻘﺮﺍﻳﻲ ﺍﺯ ﺍﻭﺍﺋﻞ ﺩﻫﻪ ۷۰ﻣﻴﻼﺩﻱ ﻣﻄﺮﺡ ﺷﺪﻩ ﺍﺳﺖ .ﺳﺎﻟﻬﺎﻱ ۱۹۸۷ﺗﺎ ۱۹۹۶ﻋﺼﺮ ﻃﻼﻳﻲ ﺍﻳﻦ ﺭﻭﻳﮑﺮﺩ
ﺑﻪ ﺷﻤﺎﺭ ﻣﻲﺁﻳﺪ .ﺩﺭ ﻃﻲ ﺍﻳﻦ ﺳﺎﻝﻫﺎ ILPﺩﺭ ﺣﻞ ﻣﺴﺎﺋﻞ ﻣﺨﺘﻠﻔﻲ ﺑﻪ ﮐﺎﺭ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺍﺳﺖ .ﺍﺯ ﻃﺮﻑ ﺩﻳﮕﺮ ﺩﺭ ﺳﺎﻝﻫﺎﻱ ﺍﺧﻴﺮ
ﺑﺤﺚﻫﺎﻳﻲ ﻧﻈﻴﺮ ﺍﺳﺘﺨﺮﺍﺝ ﺩﺍﻧﺶ ﺍﺯ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩﻫﺎ ،ﺩﺍﺩﻩﮐﺎﻭﻱ ﻭ ﻭﺏﮐﺎﻭﻱ ﺑﺴﻴﺎﺭ ﻣﻮﺭﺩ ﺗﻮﺟﻪ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﺍﺳﺖ .ﻣﺎ ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺳﻌﻲ
ﺧﻮﺍﻫﻴﻢ ﮐﺮﺩ ﺗﺎ ﺭﻭﺷﻲ ﺟﺪﻳﺪ ﺑﺮﺍﻱ ﺍﺳﺘﺨﺮﺍﺝ ﺩﺍﻧﺶ ﻭ ﻗﻮﺍﻋﺪ ﺣﺎﮐﻢ ﺑﻴﻦ ﻣﻮﺟﻮﺩﻳﺖﻫﺎﻱ ﺍﻃﻼﻋﺎﺗﻲ ﺩﺭ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩﻫﺎ ﺭﺍ ﺍﺭﺍﺋﻪ ﺩﻫﻴﻢ.
ﺩﺭ ﺍﺩﺍﻣﻪ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺩﺭ ﺑﺨﺶ ۲ﺑﻪ ﻣﻌﺮﻓﻲ ﺍﺟﻤﺎﻟﻲ ILPﺧﻮﺍﻫﻴﻢ ﭘﺮﺩﺍﺧﺖ .ﺑﺨﺶ ۳ﺑﻪ ﻣﺮﻭﺭ ﮐﺎﺭﻫﺎﻱ ﻣﺸﺎﺑﻪ ﺍﺧﺘﺼﺎﺹ ﺩﺍﺭﺩ .ﺩﺭ
ﺑﺨﺶ ۴ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩﻱ ﺑﺮﺍﻱ ﮐﺸﻒ ﺭﻭﺍﺑﻂ ﺩﺭ ﺑﺎﻧﮏﻫﺎﻱ ﺍﻃﻼﻋﺎﺗﻲ ﺑﻪ ﮐﻤﮏ ILPﺗﻮﺿﻴﺢ ﺩﺍﺩﻩ ﻣﻲﺷﻮﺩ .ﺩﺭ ﻧﻬﺎﻳﺖ ﺑﺨﺶ ۵ﺑﻪ
ﻧﺘﻴﺠﻪﮔﻴﺮﻱ ﻭ ﺍﺭﺯﻳﺎﺑﻲ ﺭﻭﻳﮑﺮﺩ ﺍﻧﺘﺨﺎﺑﻲ ﺍﺧﺘﺼﺎﺹ ﺩﺍﺭﺩ.
-۲ﺑﺮﻧﺎﻣﻪﻧﻮﻳﺴﻲ ﻣﻨﻄﻘﻲ ﺍﺳﺘﻘﺮﺍﺋﻲ
ILPﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺑﻪ ﻋﻨﻮﺍﻥ ﻓﺼﻞ ﻣﺸﺘﺮﮎ ﺑﺮﻧﺎﻣﻪﻧﻮﻳﺴﻲ ﻣﻨﻄﻘﻲ ﻭ ﻳﺎﺩﮔﻴﺮﻱ ﻣﺎﺷﻴﻦ ﺍﺳﺘﻘﺮﺍﺋﻲ ﺩﺍﻧﺴﺖ .ﺩﺭ ﺭﻭﻳﮑﺮﺩ ILPﺩﺭ ﭘﻲ ﺍﻳﻦ
ﻫﺴﺘﻴﻢ ﮐﻪ ﺑﺮ ﺍﺳﺎﺱ ﺷﻮﺍﻫﺪ ﻭ ﺍﻃﻼﻋﺎﺕ ﻣﻮﺟﻮﺩ ﻭ ﺑﺮ ﻣﺒﻨﺎﻱ ﺍﺳﺘﻘﺮﺍﺀ ،ﻗﻮﺍﻋﺪ ﮐﻠﻲ ﺣﺎﮐﻢ ﺑﺮ ﺁﻥ ﺍﻃﻼﻋﺎﺕ ﺭﺍ ﺑﻪ ﺩﺳﺖ ﺁﻭﺭﻳﻢ .ﺩﺭ
ﺭﻭﻳﮑﺮﺩ ،ILPﻣﺴﺎﺋﻞ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺍﺭﺍﺋﻪ ﻣﻲﺷﻮﻧﺪ]:[Dze96
ﻣﺜﺎﻝ : ﻣﺠﻤﻮﻋﻪﺍﻱ ﺍﺯ ﻣﺜﺎﻝﻫﺎﻱ ﻳﺎﺩﮔﻴﺮﻱ ﻣﺜﺒﺖ ) (E+ﻭ ﻣﻨﻔﻲ ) (E-ﺑﺮﺍﻱ ﮔﺰﺍﺭﻩ .P
ﺯﺑﺎﻥ ﺗﻮﺻﻴﻒ ﻣﻔﺎﻫﻴﻢ : Lﺯﺑﺎﻥ ﻣﻨﻄﻖ ﮔﺰﺍﺭﻩﻫﺎﻱ ﻣﺮﺗﺒﻪ ﺍﻭﻝ
٢
ﺩﺍﻧﺶ ﭘﻴﺶ ﺯﻣﻴﻨﻪ : Bﮔﺰﺍﺭﻩﻫﺎﻱ Piﺭﺍ ﺗﻌﺮﻳﻒ ﻣﻲﮐﻨﺪ ﮐﻪ ﻣﻲﺗﻮﺍﻧﻨﺪ ﺩﺭ ﺗﻌﺮﻳﻒ Pﺑﻪ ﮐﺎﺭ ﮔﺮﻓﺘﻪ ﺷﻮﻧﺪ.
ﻫﺪﻑ : ﭘﻴﺪﺍ ﮐﺮﺩﻥ ﻳﮏ ﻓﺮﺿﻴﻪ Hﺑﺮﺍﻱ Pﮐﻪ ﺩﺭ Lﺑﻴﺎﻥ ﺷﺪﻩ ﺑﺎﺷﺪ ﻭ Hﮐﺎﻣﻞ ﻭ ﺳﺎﺯﮔﺎﺭ ﺑﺎﺷﺪ.
1
Inductive Logic Programming
2
First-Order Predicate Logic
Hﮐﺎﻣﻞ ﺍﺳﺖ ﺍﮔﺮ ∀e ∈ E + : B ∧ H → eﺑﺮﻗﺮﺍﺭ ﺑﺎﺷﺪ.
Hﺳﺎﺯﮔﺎﺭ ﺍﺳﺖ ﺍﮔﺮ ∀e ∈ E − : B ∧ H a eﺑﺮﻗﺮﺍﺭ ﺑﺎﺷﺪ.
-۳ﺳﺎﺑﻘﻪ ﺗﺤﻘﻴﻘﺎﺕ
ﻣﻨﻄﻖ ﻣﺮﺗﺒﻪ ﺍﻭﻝ ﺍﺑﺰﺍﺭ ﻣﻨﺎﺳﺒﻲ ﺑﺮﺍﻱ ﺑﻴﺎﻥ ﺩﺍﻧﺶ ﺗﻮﺻﻴﻔﻲ ١ﺑﻪ ﺷﻤﺎﺭ ﻣﻲ ﺁﻳﺪ ILP .ﺭﻭﺷﻲ ﺭﺍ ﻓﺮﺍﻫﻢ ﻣﻲﺁﻭﺭﺩ ﮐﻪ ﺑﻪ ﮐﻤﮏ ﺁﻥ
ﻣﻲﺗﻮﺍﻧﻴﻢ ﻓﺮﻣﻮﻝﻫﺎ ﻭ ﻗﻮﺍﻋﺪ ﻣﻨﻄﻘﻲ ﺭﺍ ﺍﺯ ﺭﻭﻱ ﺩﺍﺩﻩﻫﺎ ﺍﺳﺘﺨﺮﺍﺝ ﮐﻨﻴﻢ] .[Mug95],[Mit97ﻣﻨﺒﻊ ﺍﺻﻠﻲ ﺍﺳﺘﺨﺮﺍﺝ ﺍﻳﻦ ﺍﻃﻼﻋﺎﺕ
ﻓﺎﻳﻞﻫﺎﻱ logﺍﺳﺖ .ﺍﻭ ﺳﻌﻲ ﮐﺮﺩﻩ ﺍﺳﺖ ﺗﺎ ﺭﻭﺷﻲ ﺑﺮﺍﻱ ﺗﻮﻟﻴﺪ ﻗﻮﺍﻋﺪ ﻣﻨﻄﻖ ﻣﺮﺗﺒﻪ ﺍﻭﻝ ﺑﺮﺍﻱ ﺍﻟﮕﻮﻫﺎﻱ ﺗﺮﺍﻓﻴﮑﻲ ﻭﺏ ﭘﻴﺪﺍ ﮐﻨﺪ.
Loggieﺍﺯ ILPﺩﺭ ﺑﺎﺯﻳﺎﺑﻲ ﺍﻃﻼﻋﺎﺕ ﺍﺯ ﮐﺘﺎﺑﺨﺎﻧﻪﻫﺎﻱ ﺍﻟﮑﺘﺮﻭﻧﻴﮑﻲ ﺍﺳﺘﻔﺎﺩﻩ ﮐﺮﺩﻩ ﺍﺳﺖ] DARPA .[Log00ﭘﺲ ﺍﺯ ﺣﺎﺩﺛﻪ ۱۱
ﺳﭙﺘﺎﻣﺒﺮ ۲۰۰۱ﭘﺮﻭﮊﻩﺍﻱ ﺭﺍ ﺑﺮﺍﻱ ﺷﻨﺎﺳﺎﻳﻲ ﻭ ﻣﺒﺎﺭﺯﻩ ﺑﺎ ﻓﻌﺎﻟﻴﺖﻫﺎﻱ ﺗﺮﻭﺭﻳﺴﺘﻲ ﺁﻏﺎﺯ ﮐﺮﺩ .ﺩﺭ ﺍﻳﻦ ﭘﺮﻭﮊﻩ ﺍﺯ ILPﺑﻪ ﻣﻨﻈﻮﺭ ﺷﻨﺎﺳﺎﻳﻲ
ﺍﻟﮕﻮﻫﺎﻱ ﭘﻴﭽﻴﺪﻩ ﺭﺍﺑﻄﻪﺍﻱ ﺩﺭ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩﻫﺎﻱ ﺑﺰﺭﮒ ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪﻩ ﺍﺳﺖ].[Moo02
-۴ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩﻱ ﺩﺭ ﺍﺳﺘﺨﺮﺍﺝ ﺩﺍﻧﺶ ﺑﻪ ﮐﻤﮏ ILP
ﻣﺮﺍﺣﻞ ﮐﺸﻒ ﻗﻮﺍﻋﺪ ﺑﻴﻦ ﺩﺍﺩﻩﻫﺎ ﺩﺭ ﺍﺩﺍﻣﻪ ﻃﻲ ﭼﻬﺎﺭ ﻣﺮﺣﻠﻪ ﺍﺭﺍﺋﻪ ﻣﻲﺷﻮﺩ .ﺑﻪ ﻋﻨﻮﺍﻥ ﻧﻤﻮﻧﻪ ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩﻱ ﺭﻭﯼ ﺑﺎﻧﮏ ﺍﻃﻼﻋﺎﺕ
ﺧﺪﻣﺎﺕ ﺗﻠﻔﻦ ﻫﻤﺮﺍﻩ ﺍﻋﻤﺎﻝ ﺷﺪﻩ ﺍﺳﺖ .ﺍﻳﻦ ﺑﺎﻧﮏ ﺍﺯ ﺩﻭ ﺟﺪﻭﻝ ﺗﺸﮑﻴﻞ ﻣﻲ ﺷﻮﺩ.
ﺷﮑﻞ ) :۲ﺍﻟﻒ( ﻗﺴﻤﺘﻲ ﺍﺯ ﺟﺪﻭﻝ ﻣﺮﺑﻮﻁ ﺑﻪ ﻫﺰﻳﻨﻪ ﻣﮑﺎﻟﻤﺎﺕ ﻭ )ﺏ( ﺑﺨﺸﻲ ﺍﺯ ﺟﺪﻭﻝ ﻣﺮﺑﻮﻁ ﺑﻪ ﻗﻄﻊ ﻫﻤﮑﺎﺭﻱ ﻣﺸﺘﺮﻳﺎﻥ ﺑﺎ ﺷﺮﮐﺖ
ﻣﺮﺣﻠﻪ -۱ﭘﻴﺶ ﭘﺮﺩﺍﺯﺵ
ﮐﺎﺭ ﭘﻴﺶ ﭘﺮﺩﺍﺯﺵ ﺍﻃﻼﻋﺎﺕ ﺑﺎﻧﮏ ﺷﺎﻣﻞ ﻣﻮﺍﺭﺩ ﺯﻳﺮ ﻣﻲ ﺷﻮﺩ:
)ﺍﻟﻒ( ﺣﺬﻑ ﻣﺸﺨﺼﻪﻫﺎﻳﻲ ﺍﺯ ﺟﺪﺍﻭﻝ ﮐﻪ ﺩﺭ ﺟﺮﻳﺎﻥ ﮐﺸﻒ ﺭﻭﺍﺑﻂ ﺑﻲ ﺍﻫﻤﻴﺖ ﻫﺴﺘﻨﺪ .
)ﺏ( ﺗﺒﺪﻳﻞ ﻣﺸﺨﺼﻪﻫﺎ ﺑﻪ ﺻﻮﺭﺕ ﻃﺒﻘﻪﺑﻨﺪﯼ ﺷﺪﻩ .ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ﺷﮑﻞ ،۳ﺟﺪﺍﻭﻝ ﻣﺮﺑﻮﻁ ﺑﻪ ﺑﺎﻧﮏ ﺍﻃﻼﻋﺎﺗﻲ ﺷﺮﮐﺖ ﺧﺪﻣﺎﺕ ﺗﻠﻔﻦ
ﻫﻤﺮﺍﻩ ﺭﺍ ﭘﺲ ﺍﺯ ﺍﻋﻤﺎﻝ ﻃﺒﻘﻪﺑﻨﺪﯼ ﻧﺸﺎﻥ ﻣﯽﺩﻫﺪ.
ﺷﮑﻞ -۳ﺗﺒﺪﻳﻞ ﺍﻃﻼﻋﺎﺕ ﺑﻪ ﺻﻮﺭﺕ ﻃﺒﻘﻪﺑﻨﺪﻱ ﺷﺪﻩ
)ﺝ(
ﺣﺬﻑ ﻧﻮﻳﺰ ﺍﺯ ﺩﺍﺩﻩﻫﺎ :ﺩﺭ ﺍﻳﻦ ﻣﺮﺣﻠﻪ ﺩﺍﺩﻩﻫﺎﻱ ﺧﺎﺭﺝ ﺍﺯ ﻣﺤﺪﻭﺩﻩ ﺍﺯ ﺑﻴﻦ ﺍﻃﻼﻋﺎﺕ ﺗﺸﺨﻴﺺ ﺩﺍﺩﻩ ﺷﺪﻩ ﻭ ﺣﺬﻑ ﻣﻲﮔﺮﺩﻧﺪ.
ﺑﺮﺍﯼ ﺍﻳﻦ ﻣﻨﻈﻮﺭ ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﺍﻟﮕﻮﺭﻳﺘﻢﻫﺎﻱ ﻣﻮﺟﻮﺩ ﺑﺮﺍﯼ ﺣﺬﻑ ﻧﻮﻳﺰ ﻧﻈﻴﺮ [Ver02] ﺍﺳﺘﻔﺎﺩﻩ ﮐﺮﺩ.
Declarative Knowledge
1
)ﺩ( ﻣﺸﺨﺺ ﮐﺮﺩﻥ ﮐﻠﻴﺪﻫﺎﻱ ﺟﺪﻭﻝﻫﺎ ﻭ ﮐﻠﻴﺪﻫﺎﻱ ﺧﺎﺭﺟﻲ ﺑﻪ ﺻﻮﺭﺕ ﻧﻤﺎﺩﻳﻦ :ﺑﺮﺍﻱ ﺍﻳﻦ ﻣﻨﻈﻮﺭ ﺑﺎ ﺗﻐﻴﻴﺮ ﻧﺎﻣﮕﺬﺍﺭﻱ ﻭ ﺗﺨﺼﻴﺺ
ﺍﺳﺎﻣﻲ ﻳﮑﺘﺎ ﺳﻌﻲ ﻣﻲﺷﻮﺩ ﺗﺎ ﺑﻪ ﮐﻠﻴﺪﻫﺎ ﻣﺎﻫﻴﺖ ﻧﻤﺎﺩﻳﻦ ﺩﺍﺩﻩ ﺷﻮﺩ .ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ﺩﻭ ﺟﺪﻭﻝ ﺷﮑﻞ ۴ﺑﻪ ﺟﺪﻭﻝﻫﺎﻱ ﺟﺪﻳﺪﻱ
ﺗﺒﺪﻳﻞ ﺷﺪﻩﺍﻧﺪ .
ﺷﮑﻞ -۴ﺗﺒﺪﻳﻞ ﮐﻠﻴﺪﻫﺎﻱ ﺍﺻﻠﻲ ﻭ ﮐﻠﻴﺪﻫﺎﻱ ﺧﺎﺭﺟﻲ ﺑﻪ ﺍﺳﺎﻣﻲ ﻧﻤﺎﺩﻱ
ﻣﺮﺣﻠﻪ ﺩﻭﻡ -ﺗﻮﻟﻴﺪ ﻣﺜﺎﻝﻫﺎﻱ ﻣﺜﺒﺖ ﻭ ﻣﻨﻔﻲ ﺍﺯ ﺭﻭﻱ ﺍﻃﻼﻋﺎﺕ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ
ﭘﺲ ﺍﺯ ﺍﻳﻨﮑﻪ ﭘﻴﺶ ﭘﺮﺩﺍﺯﺵ ﻫﺎﻱ ﻻﺯﻡ ﺭﻭﻱ ﺩﺍﺩﻩ ﻫﺎ ﭘﺎﻳﺎﻥ ﭘﺬﻳﺮﻓﺖ ،ﺑﺎﻳﺪ ﺍﻃﻼﻋﺎﺕ ﺁﻧﻬﺎ ﺭﺍ ﺑﻪ ﻣﺜﺎﻝﻫﺎﻱ ﻣﺜﺒﺖ ﻭ ﻣﻨﻔﻲ ﺗﺒﺪﻳﻞ ﮐﻨﻴﻢ.
)ﺍﻟﻒ( ﺗﻮﻟﻴﺪ ﻣﺜﺎﻟﻬﺎﻱ ﻣﺜﺒﺖ
ﻫﺮ ﺭﮐﻮﺭﺩ ﺍﺯ ﺍﻃﻼﻋﺎﺕ ﺟﺪﻭﻝ ﺑﻪ ﻳﮏ ﻣﺜﺎﻝ ﻣﺜﺒﺖ ﺗﺒﺪﻳﻞ ﻣﻲﺷﻮﺩ .ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺍﻳﻨﮑﻪ ﺩﺭ ﻣﺮﺣﻠﻪ ﭘﻴﺶ ﭘﺮﺩﺍﺯﺵ ﻫﻤﻪ ﮐﻠﻴﺪﻫﺎ ﺍﺭﺯﺵ
ﻧﻤﺎﺩﻳﻦ ﭘﻴﺪﺍ ﮐﺮﺩﻩﺍﻧﺪ ،ﻟﺬﺍ ﻧﻴﺎﺯﻱ ﺑﻪ ﺗﺒﺪﻳﻞ ﺭﻭﺍﺑﻂ ﺩﺭ ﺍﻳﻦ ﻣﺮﺣﻠﻪ ﻧﻴﺴﺖ .ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ﺭﮐﻮﺭﺩﻫﺎﻱ ﺟﺪﺍﻭﻝ ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺩﺭ ﺷﮑﻞ ۲
ﺑﻪ ﻣﺜﺎﻝﻫﺎﻱ ﻣﺜﺒﺖ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺩﺭ ﺷﮑﻞ ۵ﺗﺒﺪﻳﻞ ﻣﻲﺷﻮﺩ .
Charge (3824657,High,High,High,Normal,Normal)
Charge (3717191,High,Normal,Normal,High,High)
Ö
Churn(3759999,False)
Churn(3306626,False)
Ö
ﺷﮑﻞ -۵ﻣﺜﺎﻝﻫﺎﻱ ﻣﺜﺒﺖ ﺍﺳﺘﺨﺮﺍﺝ ﺷﺪﻩ ﺍﺯ ﺟﺪﻭﻝ ﺑﺎﻧﮏ ﺍﻃﻼﻋﺎﺗﻲ ﺷﺮﮐﺖ ﺧﺪﻣﺎﺕ ﺗﻠﻔﻦ ﻫﻤﺮﺍﻩ
)ﺏ( ﺳﺎﺧﺖ ﻣﺜﺎﻝﻫﺎﻱ ﻣﻨﻔﻲ
ﺍﺳﺎﺳﹰﺎ ﺍﻃﻼﻋﺎﺕ ﻣﻮﺟﻮﺩ ﺩﺭ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ ﻣﺜﺒﺖ ﺍﺳﺖ ﻭ ﺑﻪ ﺩﻟﻴﻞ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻟﮕﻮﺭﻳﺘﻢﻫﺎﻱ ﻣﺒﺘﻨﻲ ﺑﺮ rlggﻧﻴﺎﺯ ﺩﺍﺭﻳﻢ ﺗﺎ ﺭﻭﻳﻪ ﮐﺸﻒ ﺭﻭﺍﺑﻂ
ﺭﺍ ﺑﺎ ﻣﺜﺎﻝﻫﺎﻱ ﻣﻨﻔﻲ ﻫﺪﺍﻳﺖ ﮐﻨﻴﻢ .ﻣﺎ ﺩﺭ ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩﻱ ﺑﺎ ﺭﺟﻮﻉ ﺑﻪ ﺍﻃﻼﻋﺎﺕ ﺑﺎﻧﮏ ﺗﺮﮐﻴﺐﻫﺎﻳﻲ ﺍﺯ ﺩﺍﺩﻩﻫﺎ ﺭﺍ ﭘﻴﺪﺍ ﻣﻲﮐﻨﻴﻢ ﮐﻪ ﺩﺭ
ﺑﺎﻧﮏ ﺛﺒﺖ ﻧﺸﺪﻩﺍﻧﺪ ﻭ ﺁﻧﻬﺎ ﺭﺍ ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ﻣﻨﻔﻲ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻗﺮﺍﺭ ﻣﻲ ﺩﻫﻴﻢ.
ﻣﺮﺣﻠﻪ ﺳﻮﻡ-ﺍﺟﺮﺍﻱ ﺍﻟﮕﻮﺭﻳﺘﻢ ILP
ﺩﺭ ﺍﻳﻦ ﻣﺮﺣﻠﻪ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻳﮏ ﺭﻭﺵ ﻣﺒﺘﻨﻲ ﺑﺮ ﺗﮑﺮﺍﺭ ،ﻫﺮ ﺑﺎﺭ ﺗﻤﺎﻣﻲ ﻣﺜﺎﻟﻬﺎﻱ ﻣﺜﺒﺖ ﻭ ﺑﺨﺸﻲ ﺍﺯ ﻣﺜﺎﻟﻬﺎﻱ ﻣﻨﻔﻲ ﺑﻪ ﺍﺑﺰﺍﺭ ) ILPﻣﺜﻼ
(GOLEMﺩﺍﺩﻩ ﻣﻲ ﺷﻮﺩ ﻭ ﻫﺮ ﺑﺎﺭ ﺗﻌﺪﺍﺩﻱ ﻗﺎﻋﺪﻩ ﺑﻪ ﺩﺳﺖ ﻣﻲ ﺁﻳﺪ.
ﺑﺎ ﺍﺟﺮﺍﯼ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻣﻨﻄﻖ ﺍﺳﺘﻘﺮﺍﻳﻲ ﺑﻪ ﮐﻤﮏ ﺍﺑﺰﺍﺭ ﻫﺎﻱ ﺫﮐﺮ ﺷﺪﻩ ﺭﻭﻱ ﺟﺪﺍﻭﻝ ﺷﮑﻞ ۲ﻗﻮﺍﻋﺪ ﺯﻳﺮ ﺗﻮﺳﻂ ﺳﻴﺴﺘﻢ ﮐﺸﻒ ﻣﻲﮔﺮﺩﺩ:
Charge(A,B,High,High,,C,D)
ﺍﻳﻦ ﻗﺎﻋﺪﻩ ﻧﺸﺎﻥ ﻣﻲ ﺩﻫﺪ ﮐﻪ ﺑﻴﻦ ﻣﺪﺕ ﻣﮑﺎﻟﻤﻪ ﻭ ﻫﺰﻳﻨﻪ ﺁﻥ ﺍﺭﺗﺒﺎﻁ ﻣﺴﺘﻘﻴﻤﻲ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﻭ ﺍﮔﺮ ﻣﺪﺕ ﻣﮑﺎﻟﻤﻪ ﻃﻮﻻﻧﻲ ﺑﺎﺷﺪ ،ﻫﺰﻳﻨﻪ ﺁﻥ
ﻧﻴﺰ ﺑﺎﻻ ﺧﻮﺍﻫﺪ ﺑﻮﺩ.
Churn(A,False):-Charge(A,High,B,C,D,E)
ﺍﻳﻦ ﻗﺎﻋﺪﻩ ﻧﺸﺎﻥ ﻣﻲ ﺩﻫﺪ ﮐﻪ ﺍﻓﺮﺍﺩﻱ ﮐﻪ ﻣﻴﺰﺍﻥ ﺍﺳﺘﻔﺎﺩﻩ ﺁﻧﻬﺎ ﺍﺯ ﺧﺪﻣﺎﺕ ﭘﻴﺎﻡ ﺻﻮﺗﻲ ﺑﺎﻻ ﺑﻮﺩﻩ ﺍﺳﺖ ﺑﻪ ﺍﻳﻦ ﺷﺮﮐﺖ ﻭﻓﺎﺩﺍﺭ ﻣﺎﻧﺪﻩ ﺍﻧﺪ .ﺍﻳﻦ
ﺍﻣﺮ ﻣﻲ ﺗﻮﺍﻧﺪ ﻧﺎﺷﻲ ﺍﺯ ﮐﻴﻔﻴﺖ ﺧﺪﻣﺎﺕ ﭘﻴﺎﻡ ﺻﻮﺗﻲ ﻳﺎ ﻧﺮﺥ ﺍﺭﺯﺍﻥ ﺁﻥ ﻭ ﻳﺎ ﺍﻳﺠﺎﺩ ﻭﺍﺑﺴﺘﮕﻲ ﺩﺭ ﺍﺛﺮ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺁﻥ ﺑﺎﺷﺪ.
ﻣﺮﺣﻠﻪ ﭼﻬﺎﺭﻡ -ﭘﺎﻻﻳﺶ ﻗﻮﺍﻋﺪ
ﺟﻬﺖ ﺣﺼﻮﻝ ﺍﻃﻤﻴﻨﺎﻥ ﺍﺯ ﺩﺭﺳﺘﻲ ﻗﻮﺍﻋﺪ ﮐﺸﻒ ﺷﺪﻩ ﺗﻮﺳﻂ ﺍﺑﺰﺍﺭ ) ILPﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ( Golemﻻﺯﻡ ﺍﺳﺖ ﺗﺎ ﻗﻮﺍﻋﺪ ﮐﺸﻒ ﺷﺪﻩ
ﺩﺭ ﻫﺮ ﻣﺮﺣﻠﻪ ﭘﺎﻻﻳﺶ ﺷﻮﻧﺪ ﻭ ﻣﻮﺍﺭﺩ ﻧﺎﺩﺭﺳﺖ ﺣﺬﻑ ﮔﺮﺩﻧﺪ .ﺭﻭﻳﻪ ﭘﺎﻻﻳﺶ ﺑﻪ ﺍﻳﻨﺼﻮﺭﺕ ﺍﻧﺠﺎﻡ ﻣﻲﺷﻮﺩ ﮐﻪ ﺍﺯ ﺭﻭﻱ ﻗﻮﺍﻋﺪ ﻣﻨﻄﻘﻲ
. ﺳﭙﺲ ﺑﺎ ﻗﺎﻋﺪﻩ ﻣﻮﺭﺩ ﻧﻈﺮ ﺗﻄﺒﻴﻖ ﺩﺍﺩﻩ ﻣﻲﺷﻮﺩ. ﭘﺮﺱ ﻭ ﺟﻮﻫﺎﻱ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ ﺍﻳﺠﺎﺩ ﻣﻲ ﺷﻮﺩ ﻭ ﺭﻭﻱ ﺑﺎﻧﮏ ﺍﺟﺮﺍ ﻣﻲﮔﺮﺩﺩ،ﮐﺸﻒ ﺷﺪﻩ
. ﺣﺬﻑ ﻣﻲﺷﻮﺩ،ﺩﺭ ﺻﻮﺭﺗﻴﮑﻪ ﺍﻳﻦ ﻗﺎﻋﺪﻩ ﺑﺎ ﻧﺘﻴﺠﻪ ﺣﺎﺻﻞ ﺍﺯ ﭘﺮﺱ ﻭ ﺟﻮ ﺗﻄﺒﻴﻖ ﻧﺪﺍﺷﺘﻪ ﺑﺎﺷﺪ
:ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ﻓﺮﺽ ﮐﻨﻴﺪ ﺍﺯ ﺭﻭﻱ ﺟﺪﻭﻝ ﻣﺸﺘﺮﻳﺎﻥ ﻗﺎﻋﺪﻩ ﺯﻳﺮ ﺍﺳﺘﺨﺮﺍﺝ ﺷﺪﻩ ﺍﺳﺖ
Charge(A,B,C,D,High,High) .ﻣﻌﻨﺎﻱ ﺍﻳﻦ ﻗﺎﻋﺪﻩ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﺑﻴﻦ ﺑﺎﻻ ﺑﻮﺩﻥ ﻫﺰﻳﻨﻪ ﻣﮑﺎﻟﻤﺎﺕ ﺑﻴﻦ ﺍﻟﻤﻠﻠﻲ ﻭ ﻃﻮﻻﻧﻲ ﺑﻮﺩﻥ ﺯﻣﺎﻥ ﻣﮑﺎﻟﻤﺎﺕ ﺍﺭﺗﺒﺎﻁ ﻣﺴﺘﻘﻴﻢ ﻭﺟﻮﺩ ﺩﺍﺭﺩ
:ﺑﺮﺍﻱ ﺍﻃﻤﻴﻨﺎﻥ ﺍﺯ ﺩﺭﺳﺘﻲ ﺍﻳﻦ ﻗﺎﻋﺪﻩ ﭘﺮﺱ ﻭ ﺟﻮﻱ ﺯﻳﺮ ﺭﻭﻱ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ ﺍﺟﺮﺍ ﻣﻲﺷﻮﺩ
Select distinct IntlMins from Charge where IntlCharge =High
ﺑﺮﮔﺮﺩﺍﻧﺪﻩ ﻣﻲ ﺷﻮﺩ ﮐﻪ ﺍﻳﻦ ﺍﻣﺮ ﻣﻮﻳﺪ ﺍﻳﻦ ﻧﮑﺘﻪ ﺍﺳﺖ ﮐﻪ ﻫﻤﻪ ﺭﮐﻮﺭﺩﻫﺎﻳﻲ ﮐﻪ ﻣﻘﺪﺍﺭHigh ﺩﺭ ﻧﺘﻴﺠﻪ ﺍﺟﺮﺍﻱ ﺍﻳﻦ ﭘﺮﺱ ﻭ ﺟﻮ ﻣﻘﺪﺍﺭ
ﺩﺍﺭﻧﺪ ﺳﺎﻳﺮ ﻗﺎﻋﺪﻩﻫﺎ ﻧﻴﺰ ﺑﻪ ﻫﻤﻴﻦ ﺗﺮﺗﻴﺐ ﺑﺎ ﺍﺟﺮﺍﻱ ﭘﺮﺱ ﻭHigh ﺍﺳﺖ ﺩﺭ ﻓﻴﻠﺪ ﻫﺰﻳﻨﻪ ﻣﮑﺎﻟﻤﻪ ﻧﻴﺰ ﻣﻘﺪﺍﺭHigh ﻓﻴﻠﺪ ﻣﺪﺕ ﻣﮑﺎﻟﻤﻪ ﺁﻧﻬﺎ
.ﺟﻮ ﺭﻭﻱ ﺑﺎﻧﮏ ﺍﺛﺒﺎﺕ ﻳﺎ ﺭﺩ ﻣﻲﺷﻮﻧﺪ
. ﻣﺮﺍﺣﻞ ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩﻱ ﺟﻬﺖ ﮐﺸﻒ ﻗﻮﺍﻋﺪ ﺭﺍ ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ۵ﺷﮑﻞ
ﻣﺮﺍﺣﻞ ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩﻱ ﺑﺮﺍﻱ ﮐﺸﻒ ﻗﻮﺍﻋﺪ-۵ ﺷﮑﻞ
ﻭ ﻧﺘﻴﺠﻪﮔﻴﺮﻱ ﺍﺭﺯﻳﺎﺑﻲ ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩﻱ-۵
[ ﻭQui93] C4.5 ﺭﻭﺵ ﺩﺭﺧﺖ ﺗﺼﻤﻴﻢ.ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺭﻭﺷﯽ ﺟﻬﺖ ﮐﺸﻒ ﻗﻮﺍﻋﺪ ﺣﺎﮐﻢ ﺑﻴﻦ ﺩﺍﺩﻩﻫﺎﻱ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ ﺍﺭﺍﺋﻪ ﺷﺪ
[ ﺭﻭﻱ ﻳﮏ ﺟﺪﻭﻝ ﮐﺎﺭ ﻣﻲﮐﻨﻨﺪ ﺩﺭ ﺣﺎﻟﻴﮑﻪ ﺩﺭ ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩﻱ ﭼﻨﻴﻦMor97] [ ﻭMoo02] ﺍﮐﺜﺮ ﺭﻭﺵﻫﺎﻱ ﻣﺸﺎﺑﻪ ﻧﻈﻴﺮ
ﮐﻪ ﻧﺴﺒﺖ ﺑﻪ ﺳﺎﻳﺮ، ﻳﮑﻲ ﺍﺯ ﺍﻣﺘﻴﺎﺯﺍﺕ ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩﻱ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻣﻨﻄﻖ ﻣﺮﺗﺒﻪ ﺍﻭﻝ ﺟﻬﺖ ﺑﻴﺎﻥ ﻗﻮﺍﻋﺪ ﻣﻲﺑﺎﺷﺪ.ﻣﺤﺪﻭﺩﻳﺘﻲ ﻭﺟﻮﺩ ﻧﺪﺍﺭﺩ
ﻫﻤﭽﻨﻴﻦ ﺍﻣﮑﺎﻥ ﺗﻌﺮﻳﻒ ﺩﺍﻧﺶ ﭘﻴﺶ ﺯﻣﻴﻨﻪ ﻳﮑﻲ ﺍﺯ ﻣﺤﺎﺳﻦ ﺍﻳﻦ ﺭﻭﺵ ﺑﻪ ﺷﻤﺎﺭ.ﺭﻭﺵﻫﺎ ﺷﮑﻞ ﻣﻨﺎﺳﺐ ﺗﺮﻱ ﺟﻬﺖ ﺑﻴﺎﻥ ﻧﺘﺎﻳﺞ ﻣﻲﺑﺎﺷﺪ
.ﺁﻳﺪ
ﻣﻲ
ﻣﺮﺍﺟﻊ
[Dze96]
[Lav93]
[Log00] [Mit97]
[Moo02] [Mor97]
[Mug95]
[Qui93] [Ver02] Dzeroski S., Inductive Logic Programming and Knowledge Discovery in Databases, Advances in Knowledge Discovery and Data Mining, pp 117ñ152. MIT Press, 1996. Lavra N. and Dzeroski S., Inductive Logic Programming - Techniques and Applications. Prentice Hall, 1993. Loggie W. T. H., Using Inductive Logic Programming to Assist in the Retrieval of Relevant Information from an Electronic Library System, PKDD Workshop, 2000.
Mitchell T., Machine Learning, McGraw-Hill, 1997. Mooney R. J., Melville, P., and Tang, L. R., Relational Data Mining with Inductive Logic Programming for Link Discovery, in proc. Of the NSFNational Science Foundation Workshop on Next Generation Data Mining, Nov 2002.
Morik K., Knowledge Discovery in Database- An Inductive Logic Programming Approach, Foundations of Computer Science: Potential - Theory - Cognition, pp 429-436, 1997. Muggleton S., Inverse entailment and Progol, New Generation Computing, pp. 245ñ286, 1995. Quinlan, J.R. C4.5: programs for machine learning, Morgan Kaufmann, San Mateo, CA, 1993. Verbaeten, S., Identifying mislabeled training examples in ILP classification problems, Proc. of Machine learning conf. of Belgium and the Netherlands, 2002.
© Copyright 2026 Paperzz