ماشین های تورینگ ،تشخیص پذیری و تصمیم پذیری
زبان ها
جلسات حل تمرین نظریه زبان ها و ماشین ها
دانشگاه صنعتی شریف
بهار 87
Enumerators
Show that a language is decidable iff some
enumerator enumerates the language in
lexicographic order.
Show that every infinite recognizable language
has an infinite decidable language as a subset.
طراحی تصمیم گیر
زبان های مکمل-تشخیص پذیر()co-recognizable
زبان های تصمیم پذیر
زبان های تصمیم پذیر
M is a Turing machine
Does M take more than k steps on input x?
Does M take more than k steps on some input?
Does M take more than k steps on all inputs?
Does M ever move the tape head more than k
cells away from the starting position?
زبان های تصمیم پذیر
{M: M is the description of a Turing machine and L(M) is a Turing
recognizable language}
زبان های تصمیم ناپذیر
زبان های تشخیص ناپذیر
زبان های تشخیص ناپذیر
Consider the following language L:
L = { <M> | for every input string w, M will halt within 1000|w|2 steps }
Show that this language is not recognizable. (Reduce from ~ATM.)
complement of
طراحی تشخیص دهنده
Close look to the formal definition of a TM
Exercise 3.5:
Can a Turing machine ever write the blank symbol on its
tape?
Can the tape alphabet be the same as the input alphabet?
Can a Turing machine's read head ever be in the same
location in two successive steps?
Can a Turing machine contain just a single state?
خواص بسته بودن
• زبان های تشخیص پذیر:
• اجتماع
• اشتراک
• تکرار(*)
• الحاق
• زبان های تصمیم پذیر
• اجتماع
• اشتراک
• مکمل گیری
• تکرار(*)
• الحاق
Robustness
•
•
•
•
•
•
•
doubly infinite tape
k-stack PDAs (k>1)
A Turing machine with only RIGHT and RESET moves
Cyclical Turing machine
A queue automaton
2(k) head Turing machine
Turing machine with k-dimensional tape
× A single tape TM not allowed to change the input -> regular language
× Only Right and Stay Put moves -> regular language
Clue to the Solution: input-read-only TM
At most the last |Q| squares of input on tape can be determining.
Myhill-Nerode theorem
if a language L partitions ∑* into a finite number of equivalence
classes then L is regular.
See:
http://www.eecs.berkeley.edu/~tah/172/7.pdf
http://en.wikipedia.org/wiki/Myhill-Nerode_theorem
© Copyright 2026 Paperzz