ﺑﺎﺳﻤﻪ ﺗﻌﺎﻟﻲ ﺳﻴﺴﺘﻢ ﻫﺎﻱ ﭼﻨﺪﺭﺳﺎﻧﻪﺍﻱ )(۴۰-۳۴۲ ﺩﺍﻧﺸﻜﺪﻩ ﻣﻬﻨﺪﺳﻲ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺗﺮﻡ ﭘﺎﻳﻴﺰ ۱۳۸۷ ﺩﻛﺘﺮ ﺣﻤﻴﺪﺭﺿﺎ ﺭﺑﻴﻌﻲ ﺗﻜﻠﻴﻒ ﺷﻤﺎﺭﻩ :٢ﻓﺸﺮﺩﻩ ﺳﺎﺯﻱ ﺳﻴﮕﻨﺎﻝ ﺻﻮﺗﻲ/ﺗﺼﻮﻳﺮﻱ :ﮔﻔﺘﺎﺭ ﻭ ﺻﻮﺕ -١ﻣﻘﺪﻣﻪ ﺁﻧﭽﻪ ﺗﻮﺯﻳﻊ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﺻﻮﺕ ﻭ ﮔﻔﺘﺎﺭ ﺭﺍ ﺑﺪﻭﻥ ﻧﻴﺎﺯ ﺑﻪ ﺍﺧﺘﺼﺎﺹ ﭘﻬﻨﺎﻱ ﺑﺎﻧﺪ ﻭﺳﻴﻌﻲ ﺑﺮﺍﻱ ﺍﻧﺘﻘﺎﻝ ﻭ ﺫﺧﻴﺮﻩ ﺣﺠﻢ ﺯﻳﺎﺩﻱ ﺍﺯ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﺻﻮﺗﻲ ﻣﻤﻜﻦ ﻣﻲﺳﺎﺯﺩ ،ﺗﻜﻨﻴﻚ ﻓﺸﺮﺩﻩ ﺳﺎﺯﻱ ﻳﺎ ﺑﻪ ﺑﻴﺎﻥ ﺩﻳﮕﺮ ﻛﺪ ﻛﺮﺩﻥ ﺍﺳﺖ .ﺍﻳﻦ ﺗﻜﻨﻴﻚ ﻣﻘﺪﺍﺭ ﺩﺍﺩﻩ ﻣﻮﺭﺩﻧﻴﺎﺯ ﺑﺮﺍﻱ ﺍﻧﺘﻘﺎﻝ ﻭ ﺫﺧﻴﺮﻩ ﺻﻮﺕ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺷﺪﻩ ﺩﻳﺠﻴﺘﺎﻟﻲ ﺭﺍ ﻫﻢ ﺩﺭ ﻃﻮﻝ ﻣﺮﺣﻠﻪ ﺗﺒﺪﻳﻞ ﺁﻧﺎﻟﻮﮒ – ﺑﻪ – ﺩﻳﺠﻴﺘﺎﻝ ﻭ ﻫﻢ ﭘﺲ ﺍﺯ ﺫﺧﻴﺮﻩ ﻓﺎﻳﻞ ﺧﺎﻡ ﺑﻪ ﺻﻮﺭﺕ ﺩﻳﺠﻴﺘﺎﻟﻲ ،ﻛﺎﻫﺶ ﻣﻲﺩﻫﺪ .ﻓﺸﺮﺩﻩ ﺳﺎﺯﻱ ﻭ ﻋﻜﺲ ﻓﺸﺮﺩﻩ ﺳﺎﺯﻱ ﺑﻮﺳﻴﻠﻪ ﺍﻟﮕﻮﺭﻳﺘﻤﻬﺎﻱ ﻣﺘﻌﺪﺩﻱ ﻗﺎﺑﻞ ﭘﻴﺎﺩﻩ ﺳﺎﺯﻱ ﺍﺳﺖ ﻛﻪ ﻣﻲﺗﻮﺍﻧﺪ ﺩﺭ ﻛﺎﺭﺑﺮﺩﻫﺎﻱ ﻧﺮﻡ ﺍﻓﺰﺍﺭﻱ ﻳﺎ ﻛﺎﺭﺑﺮﺩﻫﺎﻱ ﺧﺎﺹ ﻣﺪﺍﺭﻫﺎﻱ ﻣﺠﺘﻤﻊ )ﺗﺮﺍﺷﻪ ﻫﺎ( ﺑﻜﺎﺭ ﮔﺮﻓﺘﻪ ﺷﻮﺩ. ﺍﺳﺘﺎﻧﺪﺍﺭﺩﻫﺎﻱ ﻣﺘﻌﺪﺩ ﺟﻬﺎﻧﻲ ﺑﺮﺍﻱ ﻛﺪ ﻛﺮﺩﻥ ﻭﻳﺪﻳﻮ ﻭ ﺻﻮﺕ ﭘﺎﻳﻪ ﺭﻳﺰﻱ ﺷﺪﻩ ﺍﻧﺪ .ﺑﺮﺧﻲ ﺍﺯ ﺍﻳﻦ ﺍﺳﺘﺎﻧﺪﺍﺭﺩﻫﺎ ﺷﺎﻣﻞ MPEG-2 ،MPEG-1ﻭ MPEG-4ﻣﻲﺑﺎﺷﻨﺪ .ﺍﻟﺒﺘﻪ ﺍﺳﺘﺎﻧﺪﺍﺭﺩﻫﺎﻱ ﻣﺘﻌﺪﺩﻱ ﺑﺮﺍﻱ ﻓﺸﺮﺩﻩ ﺳﺎﺯﻱ ﻭ ﻋﻜﺲ ﻋﻤﻞ ﻓﺸﺮﺩﻩ ﺳﺎﺯﻱ ﺷﻜﻞ ﻣﻮﺟﻬﺎﻱ ﺻﻮﺕ ﻭ ﮔﻔﺘﺎﺭ ﺑﺮﺍﻱ ﻛﺎﺭﺑﺮﺩﻫﺎﻱ desktopﭼﻨﺪ ﺭﺳﺎﻧﻪ ﺍﻱ ﻭﺟﻮﺩ ﺩﺍﺭﺩ .ﺑﺨﺶ ﻫﺎﻱ ﺑﻌﺪﻱ ﺑﻪ ﺍﻟﮕﻮﺭﻳﺘﻢﻫﺎﻱ ﻣﻌﻤﻮﻝ ﻭ ﺍﻧﻮﺍﻉ ﮔﻮﻧﺎﮔﻮﻧﻲ ﺍﺯ ﺭﻭﺷﻬﺎﻱ ﻓﺸﺮﺩﻩ ﺳﺎﺯﻱ ﺑﺮﺍﻱ ﺻﻮﺕ ﻭ ﮔﻔﺘﺎﺭ ﺍﺧﺘﺼﺎﺹ ﺩﺍﺭﺩ. -٢ﺗﺌﻮﺭﻳﻬﺎ ﻭ ﻃﺮﺣﻬﺎ ﻼ ﺗﺌﻮﺭﻱ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺭﺍ ﺩﺭ ﺗﻜﻠﻴﻒ ١ﻣﻮﺭﺩ ﺑﺮﺭﺳﻲ ﻗﺮﺍﺭ ﺩﺍﺩﻩ ﺍﻳﻢ .ﻫﻤﭽﻨﻴﻦ ﻧﺸﺎﻥ ﺩﺍﺩﻳﻢ ﻛﻪ ﻧﻤﻮﻧﻪ ﻫﺎﻱ ﻳﻚ ﻣﺎ ﻗﺒ ﹰ ﺳﻴﮕﻨﺎﻝ ﺁﻧﺎﻟﻮﮒ ﻧﻤﺎﻳﺶ ﻣﻨﺤﺼﺮ ﺑﻪ ﻓﺮﺩﻱ ﺍﺯ ﺳﻴﮕﻨﺎﻝ ﺍﻭﻟﻴﻪ ﻣﻲﺑﺎﺷﻨﺪ ﺑﻪ ﺷﺮﻃﻲ ﻛﻪ ﭘﻬﻨﺎﻱ ﺑﺎﻧﺪ ﻣﺤﺪﻭﺩ ﺩﺍﺷﺘﻪ ﺑﺎﺷﻨﺪ ﻭ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺣﺪﺍﻗﻞ ﺩﻭﺑﺮﺍﺑﺮ ﻓﺮﻛﺎﻧﺲ ﺳﻴﮕﻨﺎﻝ ﺑﺎﺷﺪ .ﺍﺯ ﺁﻧﺠﺎﻳﻲ ﻛﻪ ﻣﺎ ﺑﺎ ﻧﻤﺎﻳﺶ ﺩﻳﺠﻴﺘﺎﻟﻲ ﺻﻮﺕ ﻭ ﮔﻔﺘﺎﺭ ﺳﺮ ﻭ ﻛﺎﺭ ﺩﺍﺭﻳﻢ ،ﺍﺣﺘﻴﺎﺝ ﺑﻪ ﺩﺍﻧﺴﺘﻦ ﺧﺼﻮﺻﻴﺎﺕ ﻃﻴﻔﻲ ﺻﺪﺍ ﻭ ﮔﻔﺘﺎﺭ ﺩﺍﺭﻳﻢ .ﺑﻪ ﺭﺍﺣﺘﻲ ﻣﺸﺎﻫﺪﻩ ﻣﻲﺷﻮﺩ ﻛﻪ ﺑﺮﺍﻱ ﺻﺪﺍﻫﺎﻱ ﻭﺍﮐﺪﺍﺭ ،ﺩﺍﻣﻨﻪ ﻃﻴﻒ ﻓﺮﻛﺎﻧﺴﻲ ﺳﻴﮕﻨﺎﻝ ﺩﺭ ﻓﺮﻛﺎﻧﺴﻬﺎﻱ ﺑﺎﻻﻱ ٤٠dB ،٤KHzﭘﺎﻳﻴﻦ ﺗﺮ ﺍﺯ ﻗﻠﻪ ﻃﻴﻔﻲ ﺳﻴﮕﻨﺎﻝ ﺍﺳﺖ. ﻭﻟﻲ ،ﺩﺭ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﺻﻮﺗﻲ ،ﺍﻓﺖ ﻃﻴﻒ ﺳﻴﮕﻨﺎﻝ ﺣﺘﻲ ﺩﺭ ﻓﺮﻛﺎﻧﺴﻬﺎﻱ ﺑﺎﻻﻱ ٨KHzﻗﺎﺑﻞ ﻣﻼﺣﻈﻪ ﻧﻴﺴﺖ .ﻋﻼﻭﻩ ﺑﺮ ﺍﻳﻦ ،ﺩﺭ ﻛﺎﺭﺑﺮﺩﻫﺎﻱ ﻛﺎﻣﭙﻴﻮﺗﺮﻱ ﺑﺮﺍﻱ ﻧﻤﺎﻳﺶ ﺳﻴﮕﻨﺎﻝ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺷﺪﻩ ،ﻣﻘﺎﺩﻳﺮ ﻣﻤﻜﻦ ﻳﻚ ﻧﻤﻮﻧﻪ ﻛﻪ ﺩﺭ ﻣﺤﺪﻭﺩﺓ 1 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 ﭘﻴﻮﺳﺘﻪ ﺍﻱ ﺗﻐﻴﻴﺮ ﻣﻲﻛﻨﻨﺪ ﺑﺎﻳﺪ ﺑﻪ ﺗﻌﺪﺍﺩ ﻣﺤﺪﻭﺩﻱ ﺍﺯ ﻣﻘﺎﺩﻳﺮ ﮔﺴﺴﺘﻪ ﺗﺒﺪﻳﻞ ﺷﻮﺩ .ﺍﻳﻦ ﭘﺮﻭﺳﻪ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﻧﺎﻣﻴﺪﻩ ﻣﻲﺷﻮﺩ. -١-٢ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺷﺪﻩ ﻣﺤﺪﻭﺩﻩ ﻫﺎ ﻭ ﺳﻄﻮﺡ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﻣﻤﻜﻦ ﺍﺳﺖ ﺑﻪ ﺻﻮﺭﺕﻫﺎﻱ ﻣﺘﻌﺪﺩﻱ ﺍﻧﺘﺨﺎﺏ ﺷﻮﻧﺪ ﻛﻪ ﺑﺴﺘﮕﻲ ﺑﻪ ﻛﺎﺭﺑﺮﺩﻫﺎﻱ ﺍﺯ ﭘﻴﺶ ﺗﻌﻴﻴﻦ ﺷﺪﺓ ﻧﻤﺎﻳﺶ ﺩﻳﺠﻴﺘﺎﻟﻲ ﺁﻥ ﺩﺍﺭﺩ .ﺑﺎ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﻳﻜﻨﻮﺍﺧﺖ ،ﻣﺤﺪﻭﺩﺓ ﺩﻳﻨﺎﻣﻴﻚ )ﻓﺎﺻﻠﻪ ﻱ ﺣﺪﺍﻗﻞ ﺗﺎ ﺣﺪﺍﻛﺜﺮ( ﺳﻴﮕﻨﺎﻝ ،Rﺑﻪ Wﺑﺎﺯﻩ ﺑﺎ ﻃﻮﻝ ﻳﻜﺴﺎﻥ ∆ ﺗﻘﺴﻴﻢ ﻣﻲﺷﻮﺩ .ﻣﺎ ∆ ﺭﺍ ﭘﻠﺔ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﻣﻲﻧﺎﻣﻴﻢ .ﺭﺍﺑﻄﻪ ﻭﺭﻭﺩﻱ ﻭ ﻣﻘﺪﺍﺭ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻧﺸﺪﻩ ،ﻭ ﺧﺮﻭﺟﻲ )ﻣﻘﺪﺍﺭ ﻛﻮﺍﻧﺘﻴﺰﻩ ﺷﺪﻩ( ﺑﺮﺍﻱ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﻳﻜﻨﻮﺍﺧﺖ ﺩﺭ ﺷﮑﻞ ١ﻧﺸﺎﻥ ) ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ .ﻛﻪ ﺩﺭ ﺁﻥ ،xiﻣﺤﺪﻭﺩﺓ ﺭﺍﺳﺖ ﺑﺎﺯﺓ iﻭ xiﺳﻄﺢ ﻛﻮﺍﻧﺘﻴﺰﻩ ﺷﺪﺓ ﺍﻳﻦ ﺑﺎﺯﻩ ﺍﺳﺖ ﻛﻪ ﺷﺮﻁ ﻫﺎﻱ ﺯﻳﺮ ﺭﺍ ﺑﺮﺁﻭﺭﺩﻩ ﻣﻲﺳﺎﺯﺩ. )(١-٣ )(٢-٣ ﻫﺮ ﻣﻘﺪﺍﺭ ﺩﺭ ﻣﺤﺪﻭﺩﺓ iﺍﻡ ﺑﻪ ﻣﻘﺪﺍﺭ ﻣﻴﺎﻧﻲ ﺍﻳﻦ ﻣﺤﺪﻭﺩﻩ ﻧﮕﺎﺷﺖ ﻣﻲﺷﻮﺩ. )(٣-٣ ﺩﺭ ﻛﺎﻣﭙﻴﻮﺗﺮ ،ﻫﺮ ﺳﻄﺢ ﺑﺎ ﻳﻚ ﻛﻠﻤﻪ ﻛﺪ ﺑﺎﻳﻨﺮﻱ ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﻣﻲﺷﻮﺩ .ﺑﺎ Wﺳﻄﺢ ﻛﻮﺍﻧﻴﺰ ﺷﺪﻩ ،ﻫﺮ ﺳﻄﺢ ﻣﻲﺗﻮﺍﻧﺪ ﺑﺎ B ]) = [log2(Lﺑﻴﺖ ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﻮﺩ )ﺷﮑﻞ.(١ 2 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 ﺷﮑﻞ -١ﺧﺼﻮﺻﻴﺎﺕ ﻭﺭﻭﺩﻱ – ﺧﺮﻭﺟﻲ ﻳﻚ ﻛﻮﺍﻧﻴﺰﻩ ﻛﻨﻨﺪﺓ ٣ﺑﻴﺘﻲ ﺍﮔﺮ ﻣﺤﺪﻭﺩﺓ ﺳﻴﮕﻨﺎﻝ Rﺑﺎﺷﺪ ،ﻳﻚ ﻛﻮﺍﻧﻴﺰﻩ ﻛﻨﻨﺪﻩ ﻳﻜﻨﻮﺍﺧﺖ ﻓﻘﻂ ﻳﻚ ﭘﺎﺭﺍﻣﺘﺮ ﺩﺍﺭﺩ :ﺗﻌﺪﺍﺩ ﺳﻄﻮﺡ Nﻳﺎ ﺍﻧﺪﺍﺯﻩ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ∆ ،ﻛﻪ ﻫﺮ ﺩﻭ ﺑﺎ ﺭﺍﺑﻄﺔ ﺯﻳﺮ ﺑﻪ ﻫﻢ ﺍﺭﺗﺒﺎﻁ ﺩﺍﺭﻧﺪ. )(٤-٣ ﺗﻌﺪﺍﺩ ﺳﻄﻮﺡ Nﻣﻌﻤﻮ ﹰﻻ ﺑﻪ ﮔﻮﻧﻪ ﺍﻱ ﺍﻧﺘﺨﺎﺏ ﻣﻲﺷﻮﻧﺪ ﻛﻪ ﺑﻪ ﺻﻮﺭﺕ 2Bﺑﺎﺷﻨﺪ ﺗﺎ ﺑﻬﺘﺮﻳﻦ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻛﻠﻤﺔ ﻛﺪ B ﺑﻴﺘﻲ ﺷﻮﺩ .ﺍﮔﺮ ﺳﻴﮕﻨﺎﻝ ﺗﺎﺑﻊ ﭼﮕﺎﻟﻲ ﺍﺣﺘﻤﺎﻝ ﻣﺘﻘﺎﺭﻥ ﺑﺎﺷﺪ ﺑﻪ ﺍﻳﻦ ﺗﺮﺗﻴﺐ ﻛﻪ | x (n ) |≤ x maxﻳﺎ R=2xmaxﺑﺎﺷﺪ، ﺁﻧﮕﺎﻩ ﺑﺎﻳﺪ ﻣﻘﺎﺩﻳﺮ ﺯﻳﺮ ﺗﻨﻈﻴﻢ ﺷﻮﻧﺪ. )(٥-٣ ) ﺩﺭ ﺑﺤﺚ ﺗﺎﺛﻴﺮﺍﺕ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﻣﻔﻴﺪ ﺑﻪ ﻧﻈﺮ ﻣﻲﺭﺳﺪ ﻛﻪ ﻣﻘﺎﺩﻳﺮ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺷﺪﻩ ) x (nﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻧﻤﺎﻳﺶ ﺩﻫﻴﻢ )(٦-٣ ﻛﻪ ) x(nﻧﻤﻮﻧﻪ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻧﺸﺪﻩ e(n) ،ﺧﻄﺎﻱ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻳﺎ ﻧﻮﻳﺰ ﻛﻮﺍﻧﺘﻴﺰﻩ ﺍﺳﺖ .ﺍﺯ ﺷﻜﻞ ١ﺩﻳﺪﻩ ﻣﻲﺷﻮﺩ ﻛﻪ ﺍﮔﺮ ∆ ﻭ Bﻣﺎﻧﻨﺪ ﺭﺍﺑﻄﺔ ) (٥-٣ﺍﻧﺘﺨﺎﺏ ﺷﻮﻧﺪ ،ﺁﻧﮕﺎﻩ )(٧-٣ ﻧﺴﺒﺖ ﺳﻴﮕﻨﺎﻝ ﺑﻪ ﻧﻮﻳﺰ ﻛﻮﺍﻧﺘﻴﺰﻩ ﺩﺭ ﺭﺍﺑﻄﻪ ﺯﻳﺮ ﺑﻴﺎﻥ ﺷﺪﻩ ﺍﺳﺖ. 3 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 )(٨-٣ R2 ﺑﻪ ﻳﺎﺩ ﺑﻴﺎﻭﺭﻳﻢ ﻛﻪ ﺑﺮﺍﻱ ﺳﻴﮕﻨﺎﻝ ﺑﺎ ﺗﻮﺯﻳﻊ ﻳﻜﻨﻮﺍﺧﺖ ﺩﺭ ﻣﺤﺪﻭﺩﺓ ،Rﻭﺍﺭﻳﺎﻧﺲ ﺑﺮﺍﺑﺮ 12 ∆ ∆ ﻧﻮﻳﺰ ﺩﺭ ﺑﺎﺯﺓ ) (− ,ﻳﻜﻨﻮﺍﺧﺖ ﺑﺎﺷﺪ ،ﺭﺍﺑﻄﻪ ﺯﻳﺮ ﺑﺮﺍﻱ ﻧﻮﻳﺰ ﻧﺘﻴﺠﻪ ﻣﻲﺷﻮﺩ. 2 2 ﺍﺳﺖ .ﺍﮔﺮ ﺗﻮﺯﻳﻊ ﺩﺍﻣﻨﻪ )(۹-٣ ﺑﺎ ﺟﺎﻳﮕﺰﻳﻨﻲ ﺭﺍﺑﻄﺔ ) (٩-٣ﺩﺭ ﺭﺍﺑﻄﺔ ):(٨-٣ )(١٠-٣ ﻳﺎ ﺑﻴﺎﻥ ﺧﻄﺎﻱ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﺩﺭ ﻭﺍﺣﺪ dB )(۱۱-۳ ﺍﮔﺮ ﻣﺤﺪﻭﺩﺓ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﺭﺍ xmax = 4σ xﻓﺮﺽ ﻛﻨﻴﻢ ﺳﭙﺲ ﺭﺍﺑﻄﺔ ) (١١-٣ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺩﺭ ﻣﻲﺁﻳﺪ. )(١٢-٣ ﺍﻳﻦ ﺭﺍﺑﻄﻪ ﺑﻴﺎﻥ ﻣﻲﻛﻨﺪ ﻛﻪ ﻫﺮ ﺑﻴﺖ ﺍﺿﺎﻓﻲ 6dB ،ﺑﻪ ﺑﻬﺒﻮﺩ SNRﻛﻤﻚ ﻣﻲﻛﻨﺪ .ﺑﺮﺍﻱ ﺣﻔﻆ ﺍﻋﺘﺒﺎﺭ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻛﺮﺩﻥ ﻳﻜﻨﻮﺍﺧﺖ ،ﻻﺯﻡ ﺍﺳﺖ ﺗﺎ ﺗﻌﺪﺍﺩ ﺑﻴﺖ ﺑﻴﺸﺘﺮﻱ ﻧﺴﺒﺖ ﺑﻪ ﺁﻧﺎﻟﻴﺰ ﻗﺒﻠﻲ ﻛﻪ ﺩﺭ ﺁﻥ ﺳﻴﮕﻨﺎﻝ ﺍﻳﺴﺘﺎﻥ ﻭ ﺩﺍﺭﺍﻱ ﺗﻮﺯﻳﻊ ﻣﺘﻘﺎﺭﻥ ﻓﺮﺽ ﻣﻲﺷﺪ ﻭ X max = 4σ xﺑﻮﺩ ،ﺍﺧﺘﺼﺎﺹ ﻳﺎﺑﺪ .ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ،ﺩﺭ ﺣﺎﻟﻲ ﻛﻪ ﺭﺍﺑﻄﺔ ) (١٢-٣ﺗﻌﺪﺍﺩ ﺑﻴﺖ ﻫﺎ )(B ﺭﺍ ﺑﺮﺍﺑﺮ ۷ﻗﺮﺍﺭ ﻣﻲﺩﻫﺪ ﺗﺎ ) SNRﺣﺪﻭﺩ (36dBﻛﻴﻔﻴﺖ ﻗﺎﺑﻞ ﻗﺒﻮﻟﻲ ﺭﺍ ﺩﺭ ﺍﻏﻠﺐ ﺳﻴﺴﺘﻤﻬﺎﻱ ﻣﺨﺎﺑﺮﺍﺗﻲ ﺗﺄﻣﻴﻦ ﻛﻨﺪ ،ﺑﻪ ﻃﻮﺭ ﻣﻌﻤﻮﻝ ﺗﻌﺪﺍﺩ ﺑﻴﺖ ﻫﺎﻱ ﻣﻮﺭﺩﻧﻴﺎﺯ ﺑﺮﺍﻱ ﺗﺄﻣﻴﻦ ﻛﻴﻔﻴﺖ ﺑﺎﻻﻱ ﺳﻴﮕﻨﺎﻝ ﮔﻔﺘﺎﺭ ﺑﺎ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﻳﻜﻨﻮﺍﺧﺖ ١١ ،ﺑﻴﺖ ﺍﺳﺖ. µ − law -٢-١-٢ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻛﺮﺩﻥ ﻳﻜﻨﻮﺍﺧﺖ ﺗﻨﻬﺎ ﺑﺮﺍﻱ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﺑﺎ ﺗﻮﺯﻳﻊ ﻳﻜﻨﻮﺍﺧﺖ ﺑﻬﻴﻨﻪ ﺍﺳﺖ .ﺑﺮﺍﻱ ﺳﻴﮕﻨﺎﻟﻬﺎﻳﻲ ﻛﻪ ﻧﺰﺩﻳﻚ ﻣﻘﺎﺩﻳﺮ ﻛﻮﭼﻚ ﺩﺍﻣﻨﻪ ﺗﺠﻤﻊ ﺩﺍﺭﻧﺪ ،ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ﺗﻮﺯﻳﻊ ﮔﻮﺳﻲ ﺑﺎ ﻣﻴﺎﻧﮕﻴﻦ ﺻﻔﺮ ،ﺑﻬﺘﺮ ﺍﺳﺖ ﻛﻪ ﺩﺍﻣﻨﻪ ﻫﺎﻱ ﻛﻮﭼﻚ ﺑﺎ ﺩﻗﺖ ﺑﻴﺸﺘﺮﻱ ﻛﻮﺍﻧﺘﻴﺰﻩ ﺷﻮﻧﺪ .ﺑﺮﺍﻱ ﺗﺤﻘﻖ ﺍﻳﻦ ﺍﻣﺮ ﺍﺑﺘﺪﺍ ﺑﺎﻳﺪ ﻧﮕﺎﺷﺘﻲ ﺑﻪ ﺳﻴﮕﻨﺎﻝ ﻛﺮﺩ ﺑﻪ ﻃﻮﺭﻱ ﻛﻪ ﻣﻘﺎﺩﻳﺮ ﻛﻮﭼﻚ ﺭﺍ ﺗﻘﻮﻳﺖ 4 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 ﻛﻨﺪ ﻭ ﺳﭙﺲ ﻳﻚ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻛﻨﻨﺪﺓ ﻳﻜﻨﻮﺍﺧﺖ ﺑﻪ ﺳﻴﮕﻨﺎﻝ ﻧﮕﺎﺷﺖ ﺷﺪﻩ ﺍﻋﻤﺎﻝ ﻛﺮﺩ .ﻳﻜﻲ ﺍﺯ ﻧﮕﺎﺷﺖﻫﺎ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺍﺳﺖ. )(١٣-٣ ﺷﮑﻞ -٢ﺭﺍﺑﻄﻪ ﻭﺭﻭﺩﻱ – ﺧﺮﻭﺟﻲ ﺑﺮﺍﻱ ﻳﻚ ﻣﺸﺨﺼﻪ ) µ − lawﺍﻗﺘﺒﺎﺱ ﺍﺯ ](smith[2 ﺷﮑﻞ ،٢ﻳﻚ ﺧﺎﻧﻮﺍﺩﻩ ﺍﺯ ﻣﻨﺤﻨﻲ ﻫﺎﻱ ) y(nﺑﺮ ﺣﺴﺐ ) x(nﺭﺍ ﺑﺮﺍﻱ ﻣﻘﺎﺩﻳﺮ ﻣﺘﻔﺎﻭﺕ µﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ .ﻭﺍﺿﺢ ﺍﺳﺖ ﻛﻪ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺗﺎﺑﻊ ) (١٣-٣ﺩﺍﻣﻨﻪ ﻫﺎﻱ ﻭﺭﻭﺩﻱ ﻛﻮﭼﻚ ﺗﻘﻮﻳﺖ ﻣﻲﺷﻮﻧﺪ .ﺷﮑﻞ ٣ﺗﻮﺯﻳﻊ ﺳﻄﻮﺡ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﺭﺍ ﺑﺮﺍﻱ ﺣﺎﻟﺘﻲ ﻛﻪ µ =٤٠ﻭ N=٨ﺍﺳﺖ ،ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ .ﺍﮔﺮ µ =٠ﺑﺎﺷﺪ ،ﻣﻌﺎﺩﻟﺔ ) (١٣-٣ﺑﻪ ﻣﻌﺎﺩﻟﺔ )y(n)=x(n ﺧﻼﺻﻪ ﻣﻲﺷﻮﺩ ،ﺳﻄﻮﺡ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﺑﺎ ﻓﺎﺻﻠﻪﻫﺎﻱ ﻳﻜﻨﻮﺍﺧﺖ ﺗﻘﺴﻴﻢ ﺷﺪﻩ ﺍﻧﺪ ،ﺑﺎ ﺍﻳﻦ ﻭﺟﻮﺩ ﺑﺮﻱ ﻣﻘﺎﺩﻳﺮ ﺑﺰﺭﮒ µ ﻭ ﺑﺮﺍﻱ |) |x(nﻫﺎﻱ ﺑﺰﺭﮒ: )(١٤-٣ ﺑﻨﺎﺑﺮﺍﻳﻦ ﺑﻪ ﺟﺰ ﺩﺍﻣﻨﻪ ﻫﺎﻱ ﺑﺴﻴﺎﺭ ﻛﻮﭼﻚ ،ﺳﻄﻮﺡ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﺑﻪ ﻃﻮﺭ ﻧﻤﺎﻳﻲ ﺑﺎ ﺍﻧﺪﻳﺲ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﺍﻓﺰﺍﻳﺶ ﻣﻲﻳﺎﺑﻨﺪ .ﺍﻳﻦ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ،ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ µ − lawﻧﺎﻣﻴﺪﻩ ﻣﻲﺷﻮﺩ ﻭ ﺍﻭﻟﻴﻦ ﺑﺎﺭ ﺗﻮﺳﻂ smithﺍﺭﺍﻳﻪ ﺷﺪ ].[2 5 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 ﺷﮑﻞ -٣ﺗﻮﺯﻳﻊ ﺳﻄﻮﺡ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﺑﺮﺍﻱ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻛﻨﻨﺪﺓ ٣ﺑﻴﺘﻲ -law µﺑﺎ µ =٤٠ﺍﺯ ][1 ﺑﺎ ﺑﻜﺎﺭﮔﻴﺮﻱ ﻫﻤﺎﻥ ﻓﺮﺿﻴﺎﺕ ﻛﻪ ﺑﺮﺍﻱ ﺁﻧﺎﻟﻴﺰ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﻳﻜﻨﻮﺍﺧﺖ ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪ smith[2] ،ﺭﺍﺑﻄﻪ ﺯﻳﺮ ﺑﺮﺍﻱ ﻧﺴﺒﺖ ﺳﻴﮕﻨﺎﻝ ﺑﻪ ﻧﻮﻳﺰ ﻛﻮﺍﻧﺘﻴﺰﻩ ﺷﺪﻩ ﺩﺭ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻛﻨﻨﺪﺓ µ − lawﺑﺪﺳﺖ ﺁﻭﺭﺩ. )(١٥-٣ x max ﺍﻳﻦ ﻣﻌﺎﺩﻟﻪ ﺑﺴﺘﮕﻲ ﻛﻤﺘﺮ SNRﺑﻪ ﻣﻘﺪﺍﺭ ) σx (١٢ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ. ( ﺭﺍ ﻛﻪ ﺑﻪ ﺗﻮﻳﻊ ﺳﻴﮕﻨﺎﻝ ﺑﺴﺘﮕﻲ ﺩﺍﺭﺩ ﺭﺍ ﺩﺭ ﻣﻘﺎﻳﺴﻪ ﺑﺎ ﻣﻌﺎﺩﻟﻪ )-٣ x max ﻣﺸﺎﻫﺪﻩ ﻣﻲﺷﻮﺩ ﻛﻪ ﺑﺎ ﺍﻓﺰﺍﻳﺶ SNR ، µﺑﻪ ﺗﻐﻴﻴﺮﺍﺕ ) σx ( ﻛﻤﺘﺮ ﺑﺴﺘﮕﻲ ﭘﻴﺪﺍ ﻣﻲﻛﻨﺪ ،ﻳﻌﻨﻲ ﺑﺎ ﻭﺟﻮﺩ ﺍﻳﻨﻜﻪ ﺗﺮﻡ x max ]) SNR ، - 20log10[ln (1 + µﺭﺍ ﻛﺎﻫﺶ ﻣﻲﺩﻫﺪ ،ﻣﺤﺪﻭﺩﻩ ﺍﻱ ﺍﺯ ) σx µﺍﻓﺰﺍﻳﺶ ﻣﻲﻳﺎﺑﺪ .ﺑﻨﺎﺑﺮﺍﻳﻦ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻳﻚ µﺑﺰﺭﮒ ،ﻛﺎﺭﺁﻳﻲ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻛﻨﻨﺪﻩ ﺑﻪ ﺁﻣﺎﺭﮔﺎﻥ ﺳﻴﮕﻨﺎﻝ ﻭﺍﺑﺴﺘﮕﻲ ﻛﻤﺘﺮﻱ ( ﻛﻪ ﺩﺭ ﺁﻥ SNRﺛﺎﺑﺖ ﺍﺳﺖ ﺑﺎ ﭘﻴﺪﺍ ﻣﻲﻛﻨﺪ. -٢-٢ﻛﺪ ﻛﺮﺩﻥ ﭘﻴﺸﮕﻮﻳﺎﻧﻪ )(Predictive Coding ﺩﺭ ﻳﻚ ﺷﻜﻞ ﻣﻮﺝ ﺻﻮﺕ ﻣﻌﻤﻮﻟﻲ ،ﻧﻤﻮﻧﻪ ﻫﺎﻱ ﻣﺘﻮﺍﻟﻲ ﺑﺠﺰ ﺩﺭ ﮔﺬﺍﺭﻫﺎﻱ ﺑﻴﻦ ﺁﻭﺍﻫﺎﻱ ﻣﺘﻔﺎﻭﺕ ،ﻣﻘﺎﺩﻳﺮ ﻣﺸﺎﺑﻬﻲ ﺩﺍﺭﻧﺪ. ﻳﻚ ﺭﺍﻩ ﺑﺮﺍﻱ ﺑﻬﺮﻩ ﮔﻴﺮﻱ ﺍﺯ ﺍﻳﻦ ﻫﻤﺒﺴﺘﮕﻲ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻛﺪ ﻛﺮﺩﻥ ﺑﻪ ﺭﻭﺵ ﭘﻴﺸﮕﻮﻳﻲ ﺧﻄﻲ ﺍﺳﺖ .ﺍﺑﺘﺪﺍ ﻧﻤﻮﻧﻪ ﻓﻌﻠﻲ ) ) x(nﺍﺯ ﺭﻭﻱ ﺗﺮﻛﻴﺐ ﺧﻄﻲ ﻧﻤﻮﻧﻪ ﻫﺎﻱ ﻗﺒﻠﻲ ﺳﺎﺧﺘﻪ ﺷﺪﻩ ) x ( n − kﺗﺨﻤﻴﻦ ﺯﺩﻩ ﻣﻲﺷﻮﺩ ﺗﺎ 6 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 ﺳﭙﺲ ﺧﻄﺎﻱ ﺑﻴﻦ ﻣﻘﺪﺍﺭ ﻧﻤﻮﻧﻪ ﺍﺻﻠﻲ ﻭ ﻣﻘﺪﺍﺭ ﭘﻴﺶ ﺑﻴﻨﻲ ﺷﺪﻩ ﺑﻪ ) d(nﻛﻮﺍﻧﺘﻴﺰﻩ ﻣﻲﺷﻮﺩ ﻭ ﺑﻮﺳﻴﻠﺔ ﻛﻠﻤﺔ ﻛﺪ ) ،c(nﻛﺪ ﻣﻲﺷﻮﺩ. ﺩﺭ ﺩﻱ ﻛﺪ ﻛﻨﻨﺪﻩ ،ﺍﺑﺘﺪﺍ ﻫﻤﺎﻥ ﻣﻘﺪﺍﺭ ﭘﻴﺸﮕﻮﻳﻲ ﺷﺪﻩ ﺍﺯ ﺭﻭﻱ ﻧﻤﻮﻧﻪ ﻫﺎﻱ ﻗﺒﻠﻲ ﺩﻱ ﻛﺪ ﺷﺪﻩ ﺳﺎﺧﺘﻪ ﻣﻲﺷﻮﺩ .ﺍﻳﻦ ﻣﻘﺪﺍﺭ ﺳﭙﺲ ﺑﻪ ﻣﻘﺪﺍﺭ ﺧﻄﺎﻱ ﺩﻱ ﻛﺪ ﻭ ﻛﻮﺍﻧﺘﻴﺰﻩ ﺷﺪﻩ ﺍﺿﺎﻓﻪ ﻣﻲﺷﻮﺩ ﺗﺎ ﻣﻘﺪﺍﺭ ﻛﻮﺍﻧﺘﻴﺰﻩ ﺷﺪﻩ ﺑﺮﺍﻱ ﻧﻤﻮﻧﻪ ﻓﻌﻠﻲ ﺑﺪﺳﺖ ﺁﻳﺪ .ﻳﻌﻨﻲ: ﺑﻠﻮﻙ ﺩﻳﺎﮔﺮﺍﻡ ﻛﺪ ﻛﻨﻨﺪﻩ ﻭ ﺩﻱ ﻛﺪ ﻛﻨﻨﺪﻩ ﻳﻚ ﺳﻴﺴﺘﻢ ﻛﺪ ﻛﻨﻨﺪﺓ ﭘﻴﺸﮕﻮ ﺩﺭ ﺷﮑﻞ ٤ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ .ﺳﻴﺴﺘﻢ ﻛﺪ ﻛﻨﻨﺪﻩ ﭘﻴﺸﮕﻮ ﻣﻌﻤﻮ ًﻵ ﺑﻪ ﻣﺪﻭﻻﺳﻴﻮﻥ ﻛﺪ ﺷﺪﻩ ﺳﻴﮕﻨﺎﻝ ﺗﻔﺎﺿﻠﻲ ﻳﺎ ” “DPCMﺷﻨﺎﺧﺘﻪ ﻣﻲﺷﻮﺩ .ﻛﻠﻤﺔ »ﺗﻔﺎﺿﻠﻲ« ﺑﻪ ﺍﻳﻦ ﻣﻮﺿﻮﻉ ﺍﺷﺎﺭﻩ ﻣﻲﻛﻨﺪ ﻛﻪ ﺳﻴﮕﻨﺎﻝ ﺧﻄﺎﻱ ﭘﻴﺸﮕﻮﻳﻲ ﻛﺪ ﻣﻲﺷﻮﺩ ﻭ ” “PCMﺑﻪ ﻃﺮﺡ ﻣﺪﻭﻻﺳﻴﻮﻥ ﺍﺷﺎﺭﻩ ﻣﻲﻛﻨﺪ ﻛﻪ ﺩﺭ ﺁﻥ ﻫﺮ ﺑﻴﺖ ﻛﺪ ﺷﺪﻩ ﻳﻚ ﺳﻤﺒﻞ ﺍﺳﺖ ﻛﻪ ﺑﻮﺳﻴﻠﻪ ﻳﻚ ﭘﺎﻟﺲ )ﺑﺎ ﺩﺍﻣﻨﻪ ﺻﻔﺮ ﻳﺎ ﻳﻚ( ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﻣﻲﺷﻮﺩ .ﻛﻮﺍﻧﺘﻴﺰﻩ ﻛﺮﺩﻥ ﻣﺴﺘﻘﻴﻢ ﻳﻚ ﻧﻤﻮﻧﺔ ﺍﻭﻟﻴﻪ ﺑﺎ ﻃﻮﻝ ﺛﺎﺑﺖ ﺩﺭ ﻛﺪ ﻛﺮﺩﻥ “PCM” ،ﻧﺎﻣﻴﺪﻩ ﻣﻲﺷﻮﺩ. 7 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 ﺷﮑﻞ -٤ﻛﺪ ﻛﺮﺩﻥ ﭘﻴﺸﮕﻮﻳﺎﻧﻪ )ﺍﻟﻒ( ﻛﺪ ﻛﻨﻨﺪﻩ )ﺏ( ﺩﻱ ﻛﺪ ﻛﻨﻨﺪﻩ -١-٢-٢ﻣﺪﻭﻻﺳﻴﻮﻥ ﺩﻟﺘﺎ ﻳﻚ ﺳﻴﺴﺘﻢ ﺳﺎﺩﺓ ﭘﻴﺸﮕﻮﻳﺎﻧﻪ ،ﺳﻴﺴﺘﻢ ﻣﺪﻭﻻﺳﻴﻮﻥ ﺩﻟﺘﺎ ) (DMﺍﺳﺖ ﻛﻪ ﺩﺭ ﺷﮑﻞ ٥ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ .ﺩﺭ ﺍﻳﻦ ﺳﻴﺴﺘﻢ ،ﻛﻮﺍﻧﺘﻴﺰﻩ ﻛﻨﻨﺪﺓ ﺧﻄﺎﻱ ﭘﻴﺸﮕﻮﻳﻲ ﻓﻘﻂ ﺩﻭ ﺳﻄﺢ ﺩﺍﺭﺩ ﻭ ﻃﻮﻝ ﭘﻠﻪ »ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ« ﺛﺎﺑﺖ ﺍﺳﺖ .ﺳﻄﺢ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻣﺜﺒﺖ ﺑﺎ c(n)=0ﻭ ﻣﻨﻔﻲ ﺑﺎ c(n)=1ﻣﺸﺨﺺ ﻣﻲﺷﻮﺩ .ﺑﻨﺎﺑﺮﺍﻳﻦ ) d(nﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺗﻌﺮﻳﻒ ﻣﻲﺷﻮﺩ. )(١٦-٣ ﻛﻪ ﺍﺯ ﻳﻚ ﭘﻴﺸﮕﻮﻳﻲ ﺧﻄﻲ ﺩﺭﺟﻪ ﺍﻭﻝ ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪﻩ ﺍﺳﺖ ،ﻳﻌﻨﻲ ) xp(n) = x(n-1ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﺷﮑﻞ-٥ﺍﻟﻒ ﻣﺸﺎﻫﺪﻩ ﻛﺮﺩ ﻛﻪ ﻣﻌﻤﻮ ﹰﻻ ) x(nﺩﺭ ﻣﻌﺎﺩﻟﻪ ﺗﻔﺎﺿﻠﻲ ﺯﻳﺮ ﺻﺪﻕ ﻣﻲﻛﻨﺪ. )(١٧-٣ ﺑﺎ ، α = 1ﺍﻳﻦ ﻣﻌﺎﺩﻟﻪ ،ﻣﻌﺎﺩﻝ ﺩﻳﺠﻴﺘﺎﻟﻲ ﺍﻧﺘﮕﺮﺍﻝ ﺍﺳﺖ .ﻫﻤﭽﻨﻴﻦ ﺑﺎﻳﺪ ﺩﻗﺖ ﻛﺮﺩ ﻛﻪ ﻭﺭﻭﺩﻱ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻛﻨﻨﺪﻩ )(١٨-٣ ) ﻣﻲﺑﺎﺷﺪ .ﺑﻨﺎﺑﺮﺍﻳﻦ ﺑﻪ ﺟﺰ ﺧﻄﺎﻱ ﻛﻮﺍﻧﺘﻴﺰﻩ ﺷﺪﻩ ﺩﺭ ) d(n) ، x ( n − 1ﻳﻚ ﺗﻔﺎﺿﻠﻲ ﺑﺮﮔﺸﺘﻲ ﺩﺭﺟﻪ ﺍﻭﻝ ﺍﺯ ) x(nﺍﺳﺖ ﻛﻪ ﻣﻲﺗﻮﺍﻧﺪ ﺑﻪ ﻋﻨﻮﺍﻥ ﺗﻘﺮﻳﺐ ﺩﻳﺠﻴﺘﺎﻟﻲ ﺑﺮﺍﻱ ﻣﺸﺘﻘﺎﺕ ﻭﺭﻭﺩﻱ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﻮﺩ ،ﻣﻌﻜﻮﺱ ﭘﺮﻭﺳﺔ ﺍﻧﺘﮕﺮﺍﻝ ﺩﻳﺠﻴﺘﺎﻟﻲ. ﺍﺯ ﺁﻧﺠﺎ ﻛﻪ ﺧﻄﺎﻱ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﻓﻘﻂ ﺩﻭ ﺳﻄﺢ ﺩﺍﺭﺩ ،ﻣﺪﻭﻻﺳﻴﻮﻥ ﺩﻟﺘﺎ ﺩﺍﺭﺍﻱ ﻧﺮﺥ ﺑﻴﺘﻲ ﺑﺮﺍﺑﺮ ۱bit/sampleﺍﺳﺖ. ﺍﮔﺮ ﺑﻪ ﺩﻧﺒﺎﻟﻪ ١٦bits/sampleﺍﻋﻤﺎﻝ ﺷﻮﺩ ،ﺁﻧﮕﺎﻩ ﺑﻪ ﻧﺮﺥ ﻓﺸﺮﺩﻩ ﺳﺎﺯﻱ ) (CRﺑﺮﺍﺑﺮ ١٦ﻣﻲﺭﺳﺪ. 8 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 ﺷﮑﻞ -٥ﺑﻠﻮﻙ ﺩﻳﺎﮔﺮﺍﻡ ﺳﻴﺴﺘﻢ ﻣﺪﻭﻻﺳﻴﻮﻥ ﺩﻟﺘﺎ ﺍﻟﻒ( ﻛﺪ ﻛﻨﻨﺪﻩ ﺏ( ﺩﻱ ﻛﺪ ﻛﻨﻨﺪﻩ ﺑﺮﺍﻱ ﺍﻳﻨﻜﻪ ﻣﺪﻭﻻﺳﻴﻮﻥ ﺩﻟﺘﺎ ﺑﻪ ﺧﻮﺑﻲ ﻛﺎﺭ ﻛﻨﺪ ،ﺍﻧﺪﺍﺯﻩ ﭘﻠﻪ ﺑﺎﻳﺪ ﻃﻮﺭﻱ ﺍﻧﺘﺨﺎﺏ ﺷﻮﺩ ﻛﻪ ﺗﻐﻴﻴﺮﺍﺕ ﺳﻴﮕﻨﺎﻝ ﺭﺍ ﺩﻧﺒﺎﻝ ﻛﻨﺪ. ﺗﺤﻘﻖ ﺍﻳﻦ ﺍﻣﺮ ﻣﺸﻜﻞ ﺍﺳﺖ ﺯﻳﺮﺍ ﻣﺸﺨﺼﺎﺕ ﺳﻴﮕﻨﺎﻝ ﺍﺯ ﻳﻚ toneﺑﻪ toneﺩﻳﮕﺮ ﺗﻐﻴﻴﺮ ﻣﻲﻛﻨﺪ .ﺷﮑﻞ-٦ﺍﻟﻒ ﭘﺮﻭﺳﻪ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﻣﺪﻭﻻﺳﻴﻮﻥ ﺩﻟﺘﺎ ﺭﺍ ﺑﺎ ﻃﻮﻝ ﭘﻠﻪ ﻣﺘﻨﺎﺳﺐ ﻭ ﺩﻗﻴﻖ ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ .ﻣﻲﺗﻮﺍﻥ ﻣﺸﺎﻫﺪﻩ ﻛﺮﺩ ﻛﻪ ﻃﻮﻝ ﭘﻠﻪ ﺩﺭ ﺍﺑﺘﺪﺍ ﺑﺴﻴﺎﺭ ﻛﻮﭼﻚ ﺍﺳﺖ ﻛﻪ ﺑﺎﻋﺚ ﻣﻲﺷﻮﺩ ﺳﻴﮕﻨﺎﻝ ﻛﻮﺍﻧﺘﻴﺰﻩ ﺷﺪﻩ ﺯﻳﺮ ﺩﺍﻣﻨﻪ ﺳﻴﮕﻨﺎﻝ ﺍﺻﻠﻲ ﺁﻫﺴﺘﻪ ﺗﺮ ﺣﺮﻛﺖ ﻛﻨﺪ .ﺍﺯ ﻃﺮﻑ ﺩﻳﮕﺮ ﺍﮔﺮ ﻃﻮﻝ ﭘﻠﻪ ﺭﺍ ﺧﻴﻠﻲ ﺑﺰﺭﮒ ﺑﮕﻴﺮﻳﻢ ،ﺑﺎﻋﺚ ﻣﻲﺷﻮﺩ ﻛﻪ ﺳﻴﮕﻨﺎﻝ ﻛﻮﺍﻧﺘﻴﺰﻩ ﺷﺪﻩ ﺩﺭ ﺣﻮﻝ ﻭ ﺣﻮﺵ ﺳﻴﮕﻨﺎﻝ ﺍﺻﻠﻲ ﻧﻮﺳﺎﻥ ﻛﻨﺪ .ﺑﺮﺍﻱ ﻛﺎﺭﺁﻳﻲ ﺑﻬﺘﺮ ،ﻃﻮﻝ ﭘﻠﻪ ﺑﺎﻳﺪ ﺑﻪ ﻃﻮﺭ ﻭﻓﻘﻲ ﺑﺎﺷﺪ ﻛﻪ ﻣﻮﺿﻮﻉ ﺑﺨﺶ ﺁﻳﻨﺪﻩ ﺍﺳﺖ. 9 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 ﺷﮑﻞ-٦ﻧﻤﺎﻳﺶ ﻣﺪﻭﻻﺳﻴﻮﻥ ﺩﻟﺘﺎ ﺍﻟﻒ( ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻳﻚ ﭘﻠﻪ ﺑﺎ ﻃﻮﻝ ﺛﺎﺑﺖ ﺏ( ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻃﻮﻝ ﭘﻠﻪ ﻭﻓﻘﻲ -٢-٢-٢ﻣﺪﻭﻻﺳﻴﻮﻥ ﺩﻟﺘﺎﻱ ﻭﻓﻘﻲ ﻃﺮﺣﻬﺎﻱ ﻣﺪﻭﻻﺳﻴﻮﻥ ﺩﻟﺘﺎﻱ ﻭﻓﻘﻲ ) (ADMﻣﺘﻌﺪﺩﻱ ﭘﻴﺸﻨﻬﺎﺩ ﺷﺪﻩ ﺍﻧﺪ .ﺑﻴﺸﺘﺮ ﺍﻳﻦ ﻃﺮﺣﻬﺎ ﺍﺯ ﻧﻮﻉ ﺑﺮﮔﺸﺘﻲ ﻫﺴﺘﻨﺪ ﻛﻪ ﺩﺭ ﺁﻧﻬﺎ ﻃﻮﻝ ﭘﻠﻪ ﺑﺮﺍﻱ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻛﻨﻨﺪﺓ ﺩﻭ ﺳﻄﺤﻲ ﺑﺮ ﻣﺒﻨﺎﻱ ﻛﻠﻤﺎﺕ ﻛﺪ ﺩﺭ ﺧﺮﻭﺟﻲ ﺑﻬﻴﻨﻪ ﻣﻲﺷﻮﺩ .ﺳﻴﺴﺘﻤﻲﻛﻪ ﻣﺎ ﺩﺭ ﺯﻳﺮ ﭘﻴﺸﻨﻬﺎﺩ ﻛﺮﺩﻩ ﺍﻳﻢ ﺑﻮﺳﻴﻠﺔ ] Jayant[3ﻃﺮﺍﺣﻲ ﺷﺪﻩ ﺍﺳﺖ .ﻃﻮﻝ ﭘﻠﻪ ﺩﺭ ﺍﻟﮕﻮﺭﻳﺘﻢ Jayantﺍﺯ ﻗﺎﻧﻮﻥ ﺯﻳﺮ ﭘﻴﺮﻭﻱ ﻣﻲﻛﻨﺪ. )-١٩-٣ﺍﻟﻒ( )-١٩-٣ﺏ( ﺍﻟﮕﻮﺭﻳﺘﻢ ﺑﺮﺍﻱ ﺗﻌﻴﻴﻦ ﻃﻮﻝ ﭘﻠﻪ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺍﺳﺖ. )(٢٠-٣ 10 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 ﺷﮑﻞ-٦ﺏ -ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ ﻛﻪ ﭼﮕﻮﻧﻪ ﺷﻜﻞ ﻣﻮﺝ ﺷﮑﻞ-٦ﺍﻟﻒ ﻣﻲﺗﻮﺍﻧﺪ ﺗﻮﺳﻂ ﻳﻚ ﻣﺪﻭﻻﺳﻴﻮﻥ ﺩﻟﺘﺎﻱ ﻭﻓﻘﻲ ﻛﻪ ﺩﺭ ﺭﺍﺑﻄﻪ ) (١٨-٣ﻭ ) (٢٠-٣ﺑﻴﺎﻥ ﺷﺪ ﻛﻮﺍﻧﺘﻴﺰﻩ ﺷﻮﺩ .ﺑﺮﺍﻱ ﺭﺍﺣﺘﻲ ،ﭘﺎﺭﺍﻣﺘﺮﻫﺎﻱ ﺳﻴﺴﺘﻢ ﺩﺭ p = 2ﻭ α = 1ﺗﻨﻈﻴﻢ ﻣﻲﺷﻮﻧﺪ ﻭ ﺣﺪﺍﻗﻞ ﻃﻮﻝ ﭘﻠﻪ ﺩﺭ ﺷﻜﻞ ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ .ﻣﻲﺗﻮﺍﻥ ﻣﺸﺎﻫﺪﻩ ﻛﺮﺩ ﻛﻪ ﻧﻮﺍﺣﻲ ﺑﺎ ﺷﻴﺐ ﻣﺜﺒﺖ ﺯﻳﺎﺩ ﻫﻨﻮﺯ ﻳﻚ ﺩﻧﺒﺎﻟﻪ ﺍﺯ ﺻﻔﺮ ﺗﻮﻟﻴﺪ ﻣﻲﻛﻨﻨﺪ ﺍﻣﺎ ﺩﺭ ﺍﻳﻦ ﺣﺎﻟﺖ ﻃﻮﻝ ﭘﻠﻪ ﺁﻧﻘﺪﺭ ﺍﻓﺰﺍﻳﺶ ﻣﻲﻳﺎﺑﺪ ﺗﺎ ﺍﺯﺩﻳﺎﺩ ﺷﻴﺐ ﺷﻜﻞ ﻣﻮﺝ ﺭﺍ ﺩﻧﺒﺎﻝ ﻛﻨﺪ .ﻧﻮﺍﺣﻲ ﺩﺍﻧﻪ ﺩﺍﻧﻪ ﺍﻱ ﺩﺭ ﺳﻤﺖ ﺭﺍﺳﺖ ﺷﻜﻞ ﺩﻭﺑﺎﺭﻩ ﺑﻮﺳﻴﻠﻪ ﻳﻚ ﺩﻧﺒﺎﻟﻪ ﺍﺯ ﺻﻔﺮ ﻭ ﻳﻚ ﻫﺎﻱ ﻣﺘﻨﺎﺳﺐ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻣﻲﺷﻮﻧﺪ ،ﺍﻣﺎ ﺩﺭ ﺍﻳﻦ ﺣﺎﻟﺖ ﻃﻮﻝ ﭘﻠﻪ ﺳﺮﻳﻌﹰﺎ ﺑﻪ ﻣﻘﺪﺍﺭ ﺣﺪﺍﻗﻞ ) (∆ minﻛﺎﻫﺶ ﻣﻲﻳﺎﺑﺪ ﻭ ﺗﺎ ﻭﻗﺘﻲ ﻛﻪ ﺷﻴﺐ ﻛﻢ ﺑﺎﺷﺪ ﺩﺭ ﺍﻳﻦ ﻣﻘﺪﺍﺭ ﻣﻲﻣﺎﻧﺪ. ﺷﮑﻞ -٧ﻧﺴﺒﺖ ﻫﺎﻱ ﺳﻴﮕﻨﺎﻝ ﺑﻪ ﻧﻮﻳﺰ ﺍﺯ ﻳﻚ ﻣﺪﻭﻻﺗﻮﺭ ﺩﻟﺘﺎﻱ ﻭﻓﻘﻲ ﺑﺮ ﺣﺴﺐ ﺗﻮﺍﺑﻊ p ﺷﮑﻞ ،٧ﻧﺘﺎﻳﺞ ﺷﺒﻴﻪ ﺳﺎﺯﻱ ﺭﺍ ﺑﺮﺍﻱ ﺳﻴﮕﻨﺎﻝ ﮔﻔﺘﺎﺭ ﺑﺎ PQ = 1ﺑﺮﺍﻱ ﺳﻪ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻣﺘﻔﺎﻭﺕ ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ. ﻣﺸﺎﻫﺪﻩ ﻣﻲﺷﻮﺩ ﻛﻪ ﺣﺪﺍﻛﺜﺮ SNRﺑﺮﺍﻱ P = ١/٥ﺑﺪﺳﺖ ﻣﻲﺁﻳﺪ ،ﺑﺎ ﺍﻳﻦ ﻭﺟﻮﺩ ،ﻗﻠﺔ ﻣﻨﺤﻨﻲ ﺑﺴﻴﺎﺭ ﭘﻬﻦ ﺍﺳﺖ ﻭ SNRﭼﻨﺪ dBﺑﺎﻻﺗﺮ ﻭ ﭘﺎﻳﻴﻦ ﺗﺮ ﺍﺯ ﻣﻘﺪﺍﺭ ﺣﺪﺍﻛﺜﺮ ﺑﺮﺍﻱ ١/٢٥<p<٢ﻗﺮﺍﺭ ﺩﺍﺭﺩ .ﺗﻮﺟﻪ ﻛﻨﻴﺪ ﺑﺮﺍﻱ ﺍﻳﻨﻜﻪ ﻣﺪﻭﻻﺳﻴﻮﻥ ﺩﻟﺘﺎ ﺧﻮﺏ ﻛﺎﺭ ﻛﻨﺪ ﺑﺎﻳﺪ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺍﺯ ﺳﻴﮕﻨﺎﻝ ﺩﺭ ﻓﺮﻛﺎﻧﺴﻲ ﺑﺎﻻﺗﺮ ﺍﺯ ﺁﻧﭽﻪ ﺗﺌﻮﺭﻱ ﻧﺎﻳﻜﻮﺋﻴﺴﺖ ﺗﺤﻤﻴﻞ ﻣﻲﻛﻨﺪ، ﺍﻧﺠﺎﻡ ﺷﻮﺩ ﺗﺎ ﺗﻐﻴﻴﺮﺍﺕ ﺑﻴﻦ ﻧﻤﻮﻧﻪ ﻫﺎﻱ ﻣﺘﻮﺍﻟﻲ ﻛﻮﭼﻚ ﺑﺎﺷﺪ .ﺍﻳﻦ ﭘﺪﻳﺪﻩ ﺩﺭ ﺣﻘﻴﻘﺖ ﻣﺼﺎﻟﺤﻪ ﺑﻴﻦ ﺩﻗﺖ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻭ ﺩﻗﺖ ﺩﺍﻣﻨﻪ ﺭﺍ ﺁﺷﻜﺎﺭ ﻣﻲﻛﻨﺪ .ﻳﻌﻨﻲ ﺑﺮﺍﻱ ﻛﺎﻫﺶ ﺩﻗﺖ ﺩﺍﻣﻨﻪ )ﻳﻚ ﺑﻴﺖ ﺩﺭ ﻣﺪﻭﻻﺳﻴﻮﻥ ﺩﻟﺘﺎ( ﺑﺎﻳﺪ ﺩﻗﺖ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺭﺍ ﺍﻓﺰﺍﻳﺶ ﺩﺍﺩ. ﺩﺭ ﺍﻳﻦ ﺁﺯﻣﺎﻳﺶ ﺷﻤﺎ ﺑﺎ ﻣﺪﻭﻻﺳﻴﻮﻥ ﺩﻟﺘﺎ ﺩﺭ ﺣﺎﻟﺖ ﻃﻮﻝ ﭘﻠﻪ ﺛﺎﺑﺖ ﻭ ﻭﻓﻘﻲ ﻛﺎﺭ ﺧﻮﺍﻫﻴﺪ ﻛﺮﺩ. DPCM -٣-٢-٢ﻫﺎﻱ ﻣﺮﺗﺒﻪ ﺑﺎﻻﺗﺮ ﻣﺪﻭﻻﺗﻮﺭﻫﺎﻱ ﺩﻟﺘﺎ ،ﻫﻤﺎﻧﻄﻮﺭ ﻛﻪ ﺩﺭ ﺑﺨﺶ ﻗﺒﻠﻲ ﺑﻴﺎﻥ ﺷﺪ ،ﻣﻲﺗﻮﺍﻧﻨﺪ ﺳﻴﺴﺘﻤﻬﺎﻱ DPCMﻳﻚ ﺑﻴﺘﻲ ﻧﺎﻣﻴﺪﻩ ﺷﻮﻧﺪ .ﺑﻪ ﻃﻮﺭ ﻛﻠﻲ ،ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﺑﻴﺸﺘﺮ ﺍﺯ ﻳﻚ ﻧﻤﻮﻧﻪ ﻗﺒﻠﻲ ﺑﺮﺍﻱ ﺗﺨﻤﻴﻦ ﻧﻤﻮﻧﻪ ﻓﻌﻠﻲ ﺍﺳﺘﻔﺎﺩﻩ ﻛﺮﺩ .ﻫﻤﭽﻨﻴﻦ ،ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﻳﻚ 11 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 ﻛﻮﺍﻧﺘﻴﺰﻩ ﻛﻨﻨﺪﻩ ﺑﺎ ﺑﻴﺸﺘﺮ ﺍﺯ ﺩﻭ ﺳﻄﺢ ﺍﺳﺘﻔﺎﺩﻩ ﻛﺮﺩ .ﺑﺮﺍﻱ ﺩﺭﻙ ﺑﻬﺘﺮ ﺍﺯ ﭼﮕﻮﻧﮕﻲ ﺗﻌﻴﻴﻦ ﺿﺮﺍﻳﺐ ﭘﻴﺸﮕﻮ ﻭ ﻃﺮﺍﺣﻲ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻛﻨﻨﺪﻩ ﺑﻬﻴﻨﻪ ﺑﻪ ﻣﺮﺟﻊ ] [1ﻣﺮﺍﺟﻌﻪ ﻛﻨﻴﺪ .ﻋﻤﻮﻣﺎﹰ DPCM ،ﺑﺮﺍﻱ ﺳﻴﺴﺘﻤﻬﺎﻱ ﻛﻮﺍﻧﺘﻴﺰﻩ ﺗﻔﺎﺿﻠﻲ ﻛﻪ ﺩﺭ ﺁﻥ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻛﻨﻨﺪﻩ ﺑﻴﺸﺘﺮ ﺍﺯ ﺩﻭ ﺳﻄﺢ ﺩﺍﺭﺩ ،ﻣﻌﻜﻮﺱ ﻣﻲﺷﻮﺩ .ﺳﻴﺴﺘﻤﻬﺎﻱ DPCMﺑﺎ ﭘﻴﺸﮕﻮﻫﺎﻱ ﺛﺎﺑﺖ ﻣﻲﺗﻮﺍﻧﻨﺪ ﺍﺯ ٤ ﺗﺎ dB ١١ﺑﻬﺒﻮﺩ ﺩﺭ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﻣﺴﺘﻘﻴﻢ ) (PCMﺍﻳﺠﺎﺩ ﻛﻨﻨﺪ .ﺑﻴﺸﺘﺮﻳﻦ ﺑﻬﺒﻮﺩ ﺩﺭ ﻣﺮﺣﻠﻪ ﺗﻐﻴﻴﺮ ﺍﺯ ﺣﺎﻟﺖ ﺑﺪﻭﻥ ﭘﻴﺸﮕﻮﻳﻲ ﺑﻪ ﺣﺎﻟﺖ ﭘﻴﺸﮕﻮﻳﻲ ﺩﺭﺟﻪ ﺍﻭﻝ ﺭﺥ ﻣﻲﺩﻫﺪ .ﺍﻳﻦ ﺑﻬﺒﻮﺩ ﺩﺭ ﮔﺬﺭ ﺑﻪ ﭘﻴﺸﮕﻮﻫﺎﻱ ﺩﺭﺟﻪ ٤ﻳﺎ ٥ﻛﻤﺘﺮ ﻣﺤﺴﻮﺱ ﻣﻲﺑﺎﺷﺪ .ﺩﺭ ﮔﻔﺘﺎﺭ ﺍﺯ ﭘﻴﺸﮕﻮﻫﺎﻱ ﺑﺎ ﺩﺭﺟﻪ ﺑﺎﻻﺗﺮ ﺍﺯ ١٠ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ ،ﺯﻳﺮﺍ ﺳﻴﮕﻨﺎﻝ ﮔﻔﺘﺎﺭ ﺑﺎ ﺩﺭﺟﺎﺕ ﺑﺎﻻﺗﺮ ﺑﻬﺘﺮ ﻣﻲﺗﻮﺍﻧﺪ ﻣﺪﻝ ﺷﻮﺩ .ﺑﻬﺮﻩ SNRﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ ﻛﻪ ﺩﺭ ﻳﻚ ﺳﻴﺴﺘﻢ ،DPCMﺑﺪﺳﺖ ﺁﻭﺭﺩﻥ SNRﺧﻮﺍﺳﺘﻪ ﺷﺪﻩ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺑﻴﺖ ﻫﺎﻱ ﻛﻤﺘﺮ ﺍﺯ ﺑﻴﺖ ﻫﺎﻱ ﻣﻮﺭﺩﻧﻴﺎﺯ ،ﻫﻨﮕﺎﻣﻲﻛﻪ ﻫﻤﺎﻥ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻛﻨﻨﺪﻩ ﺑﻪ ﻃﻮﺭ ﻣﺴﺘﻘﻴﻢ ﺭﻭﻱ ﺳﻴﮕﻨﺎﻝ ﮔﻔﺘﺎﺭ ﺍﺛﺮ ﻣﻲﻛﻨﺪ ،ﻋﻤﻠﻲ ﺍﺳﺖ .ﺑﻪ ﻳﺎﺩﺁﻭﺭﻳﺪ ﻛﻪ ﻫﻨﮕﺎﻡ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻛﺮﺩﻥ ﻣﺴﺘﻘﻴﻢ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ،ﻫﺮ ﺑﻴﺖ ﺍﺿﺎﻓﻲ ﺑﻪ ﺑﻬﺮﺓ 6dBﻣﻨﺠﺮ ﻣﻲﺷﺪ ،ﺑﻨﺎﺑﺮﺍﻳﻦ ﺍﮔﺮ ﺳﻴﺴﺘﻢ DPCMﺑﺘﻮﺍﻧﺪ ﺑﻪ ﺑﻬﺮﻩ ﭘﻴﺸﮕﻮﻳﻲ 6dBﺑﺮﺳﺪ ﺑﻪ ﺍﻳﻦ ﻣﻌﻨﻲ ﺍﺳﺖ ﻛﻪ ﻳﻚ ﺑﻴﺖ ﻛﻤﺘﺮ ﻧﺴﺒﺖ ﺑﻪ ﺣﺎﻟﺘﻲ ﻛﻪ ﺳﻴﺴﺘﻢ PCMﻭﺟﻮﺩ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ ،ﻣﻮﺭﺩﻧﻴﺎﺯ ﺍﺳﺖ ﺗﺎ ﺑﻪ ﻫﻤﺎﻥ ﻛﻴﻔﻴﺖ ﺍﺯ ﺳﻴﮕﻨﺎﻝ ﺑﺮﺳﺪ. ADPCM -٤-٢-٢ ﺩﻭ ﻃﺮﺡ ﻋﻤﺪﻩ ﺑﺮﺍﻱ DPCMﻭﻓﻘﻲ ﻳﺎ ADPCMﻭﺟﻮﺩ ﺩﺍﺭﺩ .ﻳﻜﻲ ﺍﺯ ﺁﻧﻬﺎ DPCMﺑﺎ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻭﻓﻘﻲ ﻭ ﺩﻳﮕﺮﻱ DPCMﺑﺎ ﭘﻴﺸﮕﻮﻳﻲ ﻭﻓﻘﻲ ﺍﺳﺖ. ﺑﺮﺍﻱ DPCMﺑﺎ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻭﻓﻘﻲ ،ﻃﻮﻝ ﭘﻠﻪ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻛﻨﻨﺪﻩ ﻣﺘﻨﺎﺳﺐ ﺑﺎ ﻭﺍﺭﻳﺎﻧﺲ ﻭﺭﻭﺩﻱ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻛﻨﻨﺪﻩ ﺗﻐﻴﻴﺮ ﻣﻲﻛﻨﺪ. ﺑﺎ ﺍﻳﻦ ﻭﺟﻮﺩ ،ﺍﺯ ﺁﻧﺠﺎﻳﻲ ﻛﻪ ﺳﻴﮕﻨﺎﻝ ﺗﻔﺎﺿﻞ ) d(nﻣﺘﻨﺎﺳﺐ ﺑﺎ ﻭﺭﻭﺩﻱ ﺍﺳﺖ ،ﻣﻌﻘﻮﻝ ﺍﺳﺖ ﻛﻪ ﺗﻨﻈﻴﻢ ﻃﻮﻝ ﭘﻠﻪ ﺍﺯ ﺭﻭﻱ ﺳﻴﮕﻨﺎﻝ ﻭﺭﻭﺩﻱ ) x(nﺍﻧﺠﺎﻡ ﺷﻮﺩ ﻛﻪ ﺩﺭ ﺷﮑﻞ ٨ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ .ﺭﻭﻳﻪ ﻫﺎﻱ ﻭﻓﻘﻲ ﻣﺘﻌﺪﺩﻱ ﺑﺮﺍﻱ ﺗﻨﻈﻴﻢ ﻃﻮﻝ ﭘﻠﻪ ﺩﺭ ﮔﺬﺷﺘﻪ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺍﻧﺪ .ﻧﺘﺎﻳﺞ ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ ﻛﻪ ﺍﻳﻦ ﻗﺒﻴﻞ ﺭﻭﻳﻪ ﻫﺎﻱ ﻭﻓﻘﻲ ﻣﻲﺗﻮﺍﻧﻨﺪ ﺩﺭ ﺣﺪﻭﺩ ٥ dBﺩﺭ SNR ﻧﺴﺒﺖ ﺑﻪ ﺣﺎﻟﺖ ﻏﻴﺮ ﻭﻓﻘﻲ µ − lawﺩﺭ PCMﺑﻬﺒﻮﺩ ﺍﻳﺠﺎﺩ ﻛﻨﻨﺪ .ﺍﻳﻦ ﺑﻬﺒﻮﺩ ﻣﻲﺗﻮﺍﻧﺪ ﺑﺎ ٦ dBﺑﻬﺒﻮﺩ ﻛﻪ ﺍﺯ ﻭﺿﻌﻴﺖ ﺗﻔﺎﺿﻠﻲ ﺑﺎ ﭘﻴﺸﮕﻮﻳﻲ ﺛﺎﺑﺖ ﺑﺪﺳﺖ ﻣﻲﺁﻳﺪ ،ﺗﺮﻛﻴﺐ ﺷﺪﻩ ﻭ ADPCMﺑﺎ ﭘﻴﺸﮕﻮﻳﻲ ﻭﻓﻘﻲ ﺭﻭ ﺑﻪ ﺟﻠﻮ ،ﺑﻬﺒﻮﺩ SNRﺍﻱ ﺑﺮﺍﺑﺮ 10-11dBﻧﺴﺒﺖ ﺑﻪ PCMﺑﺎ ﻫﻤﺎﻥ ﺗﻌﺪﺍﺩ ﺳﻄﻮﺡ ،ﻧﺘﻴﺠﻪ ﺩﻫﺪ. 12 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 ﺷﮑﻞ -٨ﺳﻴﺴﺘﻢ ADPCMﺑﺎ ﻛﻮﺍﻧﺘﻴﺰﻩ ﻭﻓﻘﻲ ﺭﻭ ﺑﻪ ﺟﻠﻮ ﺍﻟﻒ( ﻛﺪ ﻛﻨﻨﺪﻩ ﺏ( ﺩﻱ ﻛﺪ ﻛﻨﻨﺪﻩ ﺑﺮﺍﻱ DPCMﺑﺎ ﭘﻴﺸﮕﻮﻳﻲ ﻭﻓﻘﻲ ،ﺿﺮﺍﻳﺐ ﭘﻴﺸﮕﻮﻳﻲ ﻛﻨﻨﺪﻩ ﺑﺴﺘﮕﻲ ﺑﻪ ﺯﻣﺎﻥ ﺩﺍﺭﻧﺪ ،ﺑﻨﺎﺑﺮﺍﻳﻦ ﻣﻘﺎﺩﻳﺮ ﭘﻴﺸﮕﻮﻳﻲ ﺷﺪﻩ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻫﺴﺘﻨﺪ. )(٢١-٣ ﺩﺭ ﺗﻄﺒﻴﻖ ﺿﺮﺍﻳﺐ ﭘﻴﺸﮕﻮﻳﻲ ) ، α k (nﻣﻌﻤﻮﻝ ﺍﺳﺖ ﻛﻪ ﻓﺮﺽ ﻛﻨﻴﻢ ﺧﺼﻮﺻﻴﺎﺕ ﺁﻣﺎﺭﻱ ﺳﻴﮕﻨﺎﻝ ﺩﺭ ﻃﻮﻝ ﻳﻚ ﺑﺎﺯﻩ ﻛﻮﺗﺎﻩ ﺯﻣﺎﻧﻲ ﺛﺎﺑﺖ ﻣﻲﻣﺎﻧﻨﺪ .ﺿﺮﺍﻳﺐ ﭘﻴﺸﮕﻮ ﺑﻪ ﮔﻮﻧﻪ ﺍﻱ ﺍﻧﺘﺨﺎﺏ ﻣﻲﺷﻮﻧﺪ ﺗﺎ ﻣﻴﺎﻧﮕﻴﻦ ﻣﺮﺑﻊ ﺧﻄﺎﻱ ﭘﻴﺸﮕﻮﻳﻲ ﺩﺭ ﻫﺮ ﭘﻨﺠﺮﻩ ﻛﻮﭼﻚ ﺯﻣﺎﻧﻲ ﺣﺪﺍﻗﻞ ﺷﻮﺩ .ﺑﺮﺍﻱ ﺁﺷﻨﺎﻳﻲ ﺑﻴﺸﺘﺮ ﺑﺎ ﻧﺤﻮﺓ ﺍﻧﺘﺨﺎﺏ ﺑﻬﻴﻨﺔ ﺿﺮﺍﻳﺐ ﭘﻴﺸﮕﻮﻳﻲ ﺧﻄﻲ ﺑﻪ ﻣﺮﺟﻊ ][1 ﻣﺮﺍﺟﻌﻪ ﻛﻨﻴﺪ. -٣-٣ﺍﺳﺘﺎﻧﺪﺍﺭﺩﻫﺎﻱ ﻛﺪ ﻛﺮﺩﻥ ﮔﻔﺘﺎﺭ ﺍﺳﺘﺎﻧﺪﺍﺭﺩﻫﺎﻱ ﺟﻬﺎﻧﻲ ﻣﺘﻌﺪﺩﻱ ﺑﺮﺍﻱ ﻛﺪ ﻛﺮﺩﻥ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﮔﻔﺘﺎﺭ ﻭﺟﻮﺩ ﺩﺍﺭﻧﺪ .ﺗﻌﺪﺍﺩﻱ ﺍﺯ ﺍﻳﻦ ﺍﺳﺘﺎﻧﺪﺍﺭﺩﻫﺎ ﺩﺭ ﻟﻴﺴﺖ ﭘﺎﻳﻴﻦ ﺁﻣﺪﻩ ﺍﻧﺪ .ﺑﻪ ﺟﺰ ﺍﺳﺘﺎﻧﺪﺍﺭﺩ G.711ﻫﻤﮕﻦ ﺍﺯ ﻧﻮﻋﻲ ADPCMﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﻛﻨﻨﺪ. 13 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 -٣ﺁﺯﻣﺎﻳﺸﺎﺕ (۱ﺩﺭ ﺍﻳﻦ ﺁﺯﻣﺎﻳﺶ ﻗﺮﺍﺭ ﺍﺳﺖ ﺷﮑﻞ ﮐﻠﻲ Formantﺳﻴﮕﻨﺎﻝ ﭼﻨﺪ ﺣﺮﻑ ﺭﺍ ﭘﻴﺪﺍ ﮐﻨﻴﺪ .ﺑﺮﺍﻱ ﺍﻳﻦ ﻣﻨﻈﻮﺭ ﮐﻠﻤﺎﺕ ﻣﺨﺘﻠﻔﻲ ﮐﻪ ﺷﺎﻣﻞ ﺣﺮﻭﻑ ﻣﻮﺭﺩ ﻧﻈﺮ ﻫﺴﺘﻨﺪ ﺭﺍ ﺑﻴﺎﻥ ﮐﻨﻴﺪ ،ﺻﺪﺍﻱ ﺧﻮﺩ ﺭﺍ ﺿﺒﻂ ﮐﺮﺩﻩ ﻭ ﺍﺳﭙﮑﺘﺮﻭﮔﺮﺍﻡ ﺳﻴﮕﻨﺎﻝ ﺻﺪﺍﻱ ﺿﺒﻂ ﺷﺪﻩ ﺭﺍ ﺩﺭ MATLABﻳﺎ CoolEditﺑﺮﺭﺳﻲ ﮐﻨﻴﺪ. (٢ﺑﺮﻧﺎﻣﻪ MATLABﻣﻮﺟﻮﺩ ﺩﺭ “demo-quant,” ،Appendixﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﻳﻜﻨﻮﺍﺧﺘﻲ ﺭﻭﻱ ﺳﻴﮕﻨﺎﻝ ﺻﻮﺕ ﺍﻧﺠﺎﻡ ﻣﻲﺩﻫﺪ .ﺑﺮﻧﺎﻣﻪ ﺭﺍ ﺑﺎ ﺩﻗﺖ ﺑﺨﻮﺍﻧﻴﺪ ﺗﺎ ﻣﺘﻮﺟﻪ ﺷﻮﻳﺪ ﭼﮕﻮﻧﻪ ﻛﺎﺭ ﻣﻲﻛﻨﺪ .ﺻﺪﺍﻱ ﺧﻮﺩ ﺭﺍ ﺑﺎ ﺩﻗﺖ ) 16bps(bits per sampleﺿﺒﻂ ﮐﻨﻴﺪ .ﺍﻏﺘﺸﺎﺵ ) (Distortionﺩﺭ ﺷﻜﻞ ﻣﻮﺝ ﻭ ﻛﻴﻔﻴﺖ ﺻﺪﺍ ﺭﺍ ﺑﺎ ﺗﻐﻴﻴﺮ ﺳﻄﻮﺡ ﻛﻮﺍﻧﺘﻴﺎﺯﺳﻴﻮﻥ ) (Nﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ N .ﻣﻮﺭﺩﻧﻴﺎﺯ ﺑﺮﺍﻱ ﺩﺍﺷﺘﻦ ﻳﻚ ﺻﺪﺍﻱ ﺑﺎ ﻛﻴﻔﻴﺖ ﺧﻮﺏ ﻛﺪﺍﻡ ﺍﺳﺖ؟ ﺷﻜﻞﻫﺎﻱ ﺗﻮﻟﻴﺪ ﺷﺪﻩ ﺑﻮﺳﻴﻠﻪ ﺍﻧﺘﺨﺎﺏ ﻫﺎﻱ ﻣﺘﻔﺎﻭﺕ ﺭﺍ ﭘﺮﻳﻨﺖ ﻛﻨﻴﺪ. (٣ﺑﺮﻧﺎﻣﻪ ﻧﻤﻮﻧﻪ ﻣﻮﺳﻴﻘﻲ ﺭﺍ ﺑﺮﺍﻱ ﻛﻮﺍﻧﺘﺰﺍﺳﻴﻮﻥ ) µ − lawﺑﻪ ﺟﺎﻱ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﻳﻜﻨﻮﺍﺧﺖ( ﺗﻜﺮﺍﺭ ﻛﻨﻴﺪ .ﺷﻤﺎ ﺑﺎﻳﺪ ﻗﺎﺩﺭ ﺑﻪ ﺗﻨﻈﻴﻢ ﭘﺎﺭﺍﻣﺘﺮ µﻋﻼﻭﻩ ﺑﺮ ﺗﻌﺪﺍﺩ ﺳﻄﻮﺡ ﻛﻮﺍﻧﺘﺰﺍﺳﻴﻮﻥ ،N ،ﺑﺎﺷﻴﺪ .ﻧﺘﺎﻳﺞ ﺑﺪﺳﺖ ﺁﻣﺪﻩ ﺑﺎ µﻭ Nﻫﺎﻱ ﻣﺘﻔﺎﻭﺕ ﺭﺍ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ .ﺑﺮﺍﻱ ﻳﻚ µﺍﻧﺘﺨﺎﺏ ﺷﺪﻩ ،ﺗﻌﺪﺍﺩ ﺑﻴﺘﻬﺎﻱ ﻻﺯﻡ ﺑﺮﺍﻱ ﺑﺪﺳﺖ ﺁﻭﺭﺩﻥ ﻛﻴﻔﻴﺖ ﻗﺎﺑﻞ ﻗﺒﻮﻟﻲ ﺍﺯ ﻣﻮﺳﻴﻘﻲ ﭼﻪ ﻣﻲﺑﺎﺷﺪ؟ ﺍﻳﻦ ﻣﻘﺎﺩﻳﺮ ﺭﺍ ﺑﺎ ﺑﻴﺖ ﻫﺎﻱ ﻣﻮﺭﺩﻧﻴﺎﺯ ﺩﺭ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﻳﻜﻨﻮﺍﺧﺖ ،ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. ﺭﺍﻫﻨﻤﺎﻳﻲ :ﺷﻤﺎ ﺑﺎﻳﺪ µ − lawﺭﺍ ﺑﻪ ﻣﻘﺪﺍﺭ ﻧﻤﻮﻧﻪ ﺍﻭﻟﻴﻪ ﺍﻋﻤﺎﻝ ﻛﻨﻴﺪ ،ﻣﻘﺪﺍﺭ ﺗﺒﺪﻳﻞ ﻳﺎﻓﺘﻪ ﺭﺍ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﻳﻜﻨﻮﺍﺧﺖ ،ﻛﻮﺍﻧﺘﻴﺰﻩ ﻛﻨﻴﺪ ،ﺳﭙﺲ ﻋﻜﺲ µ − lawﺭﺍ ﺑﻪ ﻣﻘﺪﺍﺭ ﻛﻮﺍﻧﺘﻴﺰﻩ ﺷﺪﻩ ﺍﻋﻤﺎﻝ ﻛﻨﻴﺪ ﺗﺎ ﻣﻘﺪﺍﺭ ﻛﻮﺍﻧﺘﻴﺰﻩ ﺷﺪﻩ ﺩﺭ ﻓﻀﺎﻱ ﺳﻴﮕﻨﺎﻝ ﺍﻭﻟﻴﻪ ﺑﺪﺳﺖ ﺁﻳﺪ .ﺑﺮﺍﻱ ﻋﻜﺲ µ − lawﮔﺮﻓﺘﻦ ،ﺷﻤﺎ ﺍﺣﺘﻴﺎﺝ ﺑﻪ ﺗﻌﻴﻴﻦ ) x(nﺍﺯ ) y(nﺩﺍﺭﻳﺪ )ﻣﻌﺎﺩﻟﺔ .(٣-١٣ (٤ﺑﺮﻧﺎﻣﺔ ﻣﻄﻠﺐ ” “sinadm.mﻭ ” “sindm.mﺭﺍ ﺩﺭ Appendixﺑﺨﻮﺍﻧﻴﺪ ﻛﻪ DMﻭ ADMﺭﺍ ﺑﺮﺍﻱ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺳﻴﻨﻮﺳﻲ ﭘﻴﺎﺩﻩﺳﺎﺯﻱ ﻣﻲﻛﻨﺪ. ﺑﺮﻧﺎﻣﻪ ﺭﺍ ﺑﻪ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﮔﻔﺘﺎﺭ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺷﺪﻩ ﺩﺭ 11KHzﻭ 22KHzﻭ ﻛﻮﺍﻧﺘﻴﺰﻩ ﺷﺪﻩ ﺑﻪ ٨ﺑﻴﺖ ﺍﻋﻤﺎﻝ ﻛﻨﻴﺪ. ﺑﺮﺍﻱ ﻫﺮ ﻓﺎﻳﻞ ﻭﺭﻭﺩﻱ DM ،ﺭﺍ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺑﺮﻧﺎﻣﺔ MATLABﺍﻋﻤﺎﻝ ﻛﻨﻴﺪ .ﺷﻤﺎ ﺑﺎﻳﺪ ﻃﻮﻝ ﭘﻠﻪ ﺭﺍ ﺑﻪ ﮔﻮﻧﻪ ﺍﻱ ﺗﻨﻈﻴﻢ ﻛﻨﻴﺪ ﻛﻪ ﺑﻬﺘﺮﻳﻦ ﻛﻴﻔﻴﺖ ﻣﻤﻜﻦ ﺩﺭ ﻫﺮ ﻣﻮﺭﺩ ﺑﺪﺳﺖ ﺁﻳﺪ .ﺳﻌﻲ ﻛﻨﻴﺪ ﺍﺯ ﻫﻴﺴﺘﻮﮔﺮﺍﻡ ﺍﺧﺘﻼﻑ ﻧﻤﻮﻧﻪ ﻫﺎ ﺑﺮﺍﻱ ﺗﻌﻴﻴﻦ ﻃﻮﻝ ﭘﻠﻪ ﺍﺳﺘﻔﺎﺩﻩ ﻛﻨﻴﺪ .ﻛﻴﻔﻴﺖ ﺻﺪﺍ ﻭ ﺗﻐﻴﻴﺮﺍﺕ ﺩﺍﻣﻨﻪ ﺭﺍ ﺩﺭ ﻫﺮ ﻣﻮﺭﺩ ﻣﺸﺎﻫﺪﻩ ﻛﻨﻴﺪ .ﺩﺭ ﭼﻪ ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ،ﺳﻴﮕﻨﺎﻝ ﻓﺸﺮﺩﻩ ﺷﺪﺓ DMﻛﻴﻔﻴﺖ ﻗﺎﺑﻞ ﻣﻘﺎﻳﺴﻪ ﺍﻱ ﺑﺎ ﺳﻴﮕﻨﺎﻝ ﺍﺻﻠﻲ ٨ﺑﻴﺘﻲ ﻭ 11KHzﻓﺮﺍﻫﻢ ﻣﻲﻛﻨﺪ؟ ﺑﺮﺍﻱ ﻫﺮ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻓﺮﻛﺎﻧﺴﻬﺎﻱ ﺩﺍﺩﻩ ﺍﺻﻠﻲ ﻭ ﺩﺍﺩﻩ ﺑﻌﺪ ﺍﺯ DMﺭﺍ ﺑﺮﺍﻱ ﻫﺮ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺑﺪﺳﺖ ﺁﻭﺭﻳﺪ )ﺩﻟﺨﻮﺍﻩ(. bit ﺗﻮﺟﻪ ﻛﻨﻴﺪ ﻛﻪ ﺑﺎ ﺑﺮﻧﺎﻣﻪ ،MATLABﻫﺮ ﭼﻨﺪ ﺧﻄﺎﻱ ﭘﻴﺸﮕﻮﻳﻲ ﺑﻪ sample ﺑﺎﺯﺳﺎﺯﻱ ﺷﺪﻩ ﺩﻗﺖ doubleﺭﺍ ﺩﺍﺭﺩ ﻭ ﻫﻨﮕﺎﻣﻲﻛﻪ ﺑﻪ ﻳﻚ ﻓﺎﻳﻞ .wavﺗﺒﺪﻳﻞ ﻣﻲﺷﻮﺩ ،ﻫﺮ ﻧﻤﻮﻧﻪ ٨ﻳﺎ ١٦ﺑﻴﺖ ﺟﺎ ١ﻛﻮﺍﻧﺘﻴﺰﻩ ﻣﻲﺷﻮﺩ ،ﺳﻴﮕﻨﺎﻝ 14 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 ﻣﻲﮔﻴﺮﺩ .ﺑﻨﺎﺑﺮﺍﻳﻦ ﺍﻧﺪﺍﺯﻩ ﻓﺎﻳﻞ .wavﻛﻪ ﺷﻤﺎ ﺳﺎﺧﺘﻪﺍﻳﺪ ،ﻧﻤﺎﻳﺶ ﺩﺭﺳﺘﻲ ﺍﺯ ﺍﻧﺪﺍﺯﻩ ﻓﺎﻳﻞ ﻓﺸﺮﺩﻩ ﺷﺪﻩ ﺣﻘﻴﻘﻲ ﻧﻴﺴﺖ. bit ﻳﻚ ﺑﺮﻧﺎﻣﻪ ﻓﺸﺮﺩﻩ ﺳﺎﺯﻱ ﻭﺍﻗﻌﻲ ﺧﻄﺎﻱ ﭘﻴﺸﮕﻮﻳﻲ ﺭﺍ ﺑﺎ sample (٤) (٥ﺭﺍ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ADMﺗﻜﺮﺍﺭ ﻛﻨﻴﺪ .ﺩﺭ ﺍﻳﻦ ﺣﺎﻟﺖ ﺷﻤﺎ ﺑﺎﻳﺪ ﭘﺎﺭﺍﻣﺘﺮﻫﺎﻱ Pﻭ xmeanﻭ dminﻭ dmax ١ﺫﺧﻴﺮﻩ ﻣﻲﻛﻨﺪ. ﺭﺍ ﺑﻪ ﻃﻮﺭ ﻣﻨﺎﺳﺐ ﺍﻧﺘﺨﺎﺏ ﻛﻨﻴﺪ .ﺳﻌﻲ ﻛﻨﻴﺪ ﻛﻪ ﺍﺯ ﻫﻴﺴﺘﻮﮔﺮﺍﻡ ﺍﺧﺘﻼﻑ ﻧﻤﻮﻧﻪﻫﺎ ﺑﺮﺍﻱ ﺗﻌﻴﻴﻦ ﺍﻳﻦ ﭘﺎﺭﺍﻣﺘﺮﻫﺎ ﺍﺳﺘﻔﺎﺩﻩ ﻛﻨﻴﺪ .ﻛﻴﻔﻴﺖ ADMﺭﺍ ﺑﺎ DMﺩﺭ ﻧﺮﺥ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﻳﻜﻨﻮﺍﺧﺖ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. (۶ﺍﺯ ﺳﻴﮕﻨﺎﻝ ﺻﻮﺕ ﺑﺎﻻ ﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ﺑﮕﻴﺮﻳﺪ )ﻧﻤﻮﻧﻪ ﺍﻱ ﺍﺯ ﮐﺪ ﻓﻴﻠﺘﺮﻳﻨﮓ ﺩﺭ ﺍﻧﺘﻬﺎﻱ ﺗﻤﺮﻳﻨﻬﺎ ﺁﻣﺪﻩ ﺍﺳﺖ( ﻭ ﺑﺎ ﺍﻋﻤﺎﻝ ﻓﻴﻠﺘﺮ ﻳﻮﻧﻴﻔﺮﻡ ،ﻓﺮﮐﺎﻧﺲﻫﺎﻱ ﺑﺎﻻ ﺭﺍ ﺣﺬﻑ ﮐﻨﻴﺪ ﺗﺎ ﺣﺪﻱ ﮐﻪ ﮐﻴﻔﻴﺖ ﺻﺪﺍﻱ ﺍﻭﻟﻴﻪ ﻭ ﺻﺪﺍﻱ ﻓﻴﻠﺘﺮ ﺷﺪﻩ ﺗﻘﺮﻳﺒﺎ ﻳﮑﺴﺎﻥ ﺑﺎﺷﺪ ،ﺍﮐﻨﻮﻥ ﻣﺮﺍﺣﻞ ﺍﻧﺠﺎﻡ ﺷﺪﻩ ﺩﺭ ﺳﻮﺍﻝ ۳ﺭﺍ ﺭﻭﻱ ﺍﻳﻦ ﺳﻴﮕﻨﺎﻝ ﻓﻴﻠﺘﺮ ﺷﺪﻩ ﺍﻋﻤﺎﻝ ﮐﻨﻴﺪ .ﺁﻳﺎ ﺑﺮﺍﻱ ﺑﻪ ﺩﺳﺖ ﺁﻭﺭﺩﻥ ﮐﻴﻔﻴﺖ ﻗﺒﻠﻲ ،ﻣﻘﺎﺩﻳﺮ Nﻭ µﺗﻐﻴﻴﺮ ﮐﺮﺩﻩ؟ -٥ﮔﺰﺍﺭﺵ ﺑﺮﻧﺎﻣﻪ ﻫﺎﻱ MATLABﻭ ﺷﻜﻞ ﻫﺎ ) (plotsﺭﺍ ﺗﺤﻮﻳﻞ ﺩﻫﻴﺪ .ﻫﺮ ﭘﺪﻳﺪﻩ ﺍﻱ ﻛﻪ ﻣﺸﺎﻫﺪﻩ ﻛﺮﺩﻩ ﺍﻳﺪ .ﺗﻮﺿﻴﺢ ﺩﻫﻴﺪ. ﭼﻬﺎﺭ ﺭﻭﺵ ﮐﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﺭﺍ ﺩﺭ ﻳﮏ ﺟﺪﻭﻝ ﺑﺎ ﻫﻢ ﻣﻘﺎﻳﺴﻪ ﮐﻨﻴﺪ. ﺭﻭﻱ ﻛﻴﻔﻴﺖ ﺻﺪﺍ ﺑﺎ ﺗﻨﻈﻴﻢ ﭘﺎﺭﺍﻣﺘﺮﻫﺎﻱ ﻣﺘﻔﺎﻭﺕ ﻧﻈﺮ ﺩﻫﻴﺪ ﻭ ﺳﻮﺍﻻﺕ ﺧﻮﺍﺳﺘﻪ ﺷﺪﻩ ﺩﺭ ﺁﺯﻣﺎﻳﺶ ﺭﺍ ﭘﺎﺳﺦ ﺩﻫﻴﺪ. -٦ﻣﺮﺍﺟﻊ [1]. L.R.Rabiner and R.W.Schafer, Digital Processing of Speech Signals, Prentice Hall 1978 [2]. B.Smith, “Instantaneous Companding of Quantized Signals”, Bell System Tech. J., Vol.36, No.3, pp.653-709, May 1957. [3]. N.S.Jayant, “Adaptive Quantization with a One Word Memory”, Bell System Tech. J., pp. 1119-1144, September 1973. [4]. Guido van. Rossum, “FAQ: Audio File Formats”, http://www.cis.ohio_state.edu. 15 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 16 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 17 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 18 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 19 CE 342 – Multimedia HW# 2 H. Rabiee, Fall 2008 20
© Copyright 2025 Paperzz