HW2_Sol.pdf

.1
‫ 𝑛[𝛿 ∢ π‘€π‘œπ‘›π‘˜ 𝑒𝑀 (Ψ§Ω„Ωβ€¬βˆ’ 𝑛0 ] βˆ— π‘₯ [𝑛] = π‘₯ [𝑛 βˆ’ 𝑛0 ] => 𝛿[𝑛 + 1] βˆ— π‘₯ [𝑛] = π‘₯ [𝑛 + 1],
𝛿 [𝑛 βˆ’ 3] βˆ— π‘₯[𝑛] = π‘₯[𝑛 βˆ’ 3] => 𝑦[𝑛] = π‘₯ [𝑛 + 1] βˆ’ π‘₯[𝑛 βˆ’ 3] = 𝛿 [𝑛 + 1] +
2𝛿[𝑛] βˆ’ 𝛿 [𝑛 βˆ’ 1] βˆ’ 𝛿 [𝑛 βˆ’ 3] βˆ’ 2𝛿[𝑛 βˆ’ 4] + 𝛿 [𝑛 βˆ’ 5]
‫ ]𝑛[ 𝛿 = ]𝑛[ π‘₯ (ب‬+ 2𝛿[𝑛 βˆ’ 1] βˆ’ 𝛿 [𝑛 βˆ’ 2] => π‘₯[𝑛 βˆ’ 1] = 𝛿 [𝑛 βˆ’ 1] + 2𝛿[𝑛 βˆ’ 2] βˆ’
𝛿 [𝑛 βˆ’ 3] => 𝑦[𝑛] = π‘₯[𝑛 βˆ’ 1] βˆ— β„Ž[𝑛] = 𝛿 [𝑛] + 2𝛿[𝑛 βˆ’ 1] βˆ’ 𝛿[𝑛 βˆ’ 2] βˆ’ 𝛿 [𝑛 βˆ’ 4]
βˆ’2𝛿[𝑛 βˆ’ 5] + 𝛿 [𝑛 βˆ’ 6]
‫ (Ψ¬β€¬β„Ž[𝑛] = 𝛿 [𝑛 + 1] βˆ’ 𝛿 [𝑛 βˆ’ 3] => β„Ž[𝑛 + 2] = 𝛿 [𝑛 + 3] βˆ’ 𝛿 [𝑛 βˆ’ 1] => 𝑦[𝑛] =
π‘₯ [𝑛 + 3] βˆ’ π‘₯ [𝑛 βˆ’ 1] = 𝛿 [𝑛 + 3] + 2𝛿[𝑛 + 2] βˆ’ 𝛿[𝑛 + 1] βˆ’ 𝛿 [𝑛 βˆ’ 1] βˆ’
2 𝛿[𝑛 βˆ’ 2] + 𝛿 [𝑛 βˆ’ 3]
.2
𝑦[𝑛] = 𝑒[𝑛 + 3] βˆ’ 𝑒[𝑛 βˆ’ 2]: βˆ’3 ≀ 𝑛 ≀ 1 => 𝑦[𝑛] = 1, π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ 𝑦[𝑛] = 0
=> 𝑀 = 𝑛 + 3, 𝑁 = 𝑛 βˆ’ 1
𝑁
.3
𝑀𝑒 π‘˜π‘›π‘œπ‘€ ∢ 𝛿 [𝑛 βˆ’ 𝑛0 ] βˆ— π‘₯[𝑛] = π‘₯[𝑛 βˆ’ 𝑛0 ] => β„Ž[𝑛] = βˆ‘ 𝛿 [𝑛 βˆ’ π‘˜] =>
𝑁
𝑁
π‘˜=0
𝑦[𝑛] = π‘₯ [𝑛] βˆ— β„Ž[𝑛] = βˆ‘ π‘₯ [𝑛 βˆ’ π‘˜] => 𝑦[4] = βˆ‘ π‘₯[4 βˆ’ π‘˜] = 5 => π‘˜π‘šπ‘Žπ‘₯ = 4
π‘˜=0
4
π‘˜=0
=> 𝑁 = 4 => 𝑦[14] = βˆ‘ π‘₯[14 βˆ’ π‘˜] = 0
π‘˜=0
‫ (Ψ§Ω„Ωβ€¬β„Ž(𝑑) = π‘’βˆ’(1βˆ’2𝑗) 𝑑 𝑒(𝑑) = 𝑒 βˆ’π‘‘ (π‘π‘œπ‘ 2𝑑 + 𝑗𝑠𝑖𝑛2𝑑)𝑒(𝑑) => π‘ π‘‘π‘Žπ‘π‘™π‘’
‫ (Ψ¨β€¬β„Ž(𝑑) = 𝑒 βˆ’π‘‘ cos (2𝑑) 𝑒(𝑑) => π‘ π‘‘π‘Žπ‘π‘™π‘’
πœ‹
‫ (Ψ¬β€¬β„Ž[𝑛] = π‘›π‘π‘œπ‘  ( 𝑛) 𝑒[𝑛] => π‘’π‘›π‘ π‘‘π‘Žπ‘π‘™π‘’
4
‫ (Ψ―β€¬β„Ž[𝑛] = 3𝑛𝑒[βˆ’π‘› + 2] => π‘ π‘‘π‘Žπ‘π‘™π‘’
π‘₯ (𝑑) = 𝑒( βˆ’1+3𝑗) 𝑑 𝑒(𝑑) = 𝑒 βˆ’π‘‘ (π‘π‘œπ‘ 3𝑑 + 𝑗𝑠𝑖𝑛3𝑑)𝑒(𝑑) =>
=> 𝑦(𝑑) = 𝑐1 π‘’βˆ’π‘‘ π‘π‘œπ‘ 3𝑑 + 𝑐2 π‘—π‘’βˆ’π‘‘ 𝑠𝑖𝑛3𝑑 =>
.4
𝑑
𝑦(𝑑) + 4𝑦(𝑑) = π‘₯(𝑑)
𝑑𝑑
𝑑
𝑦(𝑑) = βˆ’π‘1 π‘’βˆ’π‘‘ π‘π‘œπ‘ 3𝑑 βˆ’ 3𝑐1 𝑠𝑖𝑛3𝑑
𝑑𝑑
.5
‫>= 𝑑β€ͺβˆ’π‘2 π‘—π‘’βˆ’π‘‘ 𝑠𝑖𝑛3𝑑 + 3𝑐2π‘—π‘’βˆ’π‘‘ π‘π‘œπ‘ 3𝑑 + (4𝑦(𝑑) =)4𝑐1π‘’βˆ’π‘‘ π‘π‘œπ‘ 3𝑑 + 4𝑐2 π‘—π‘’βˆ’π‘‘ 𝑠𝑖𝑛3‬‬
‫𝐼 β€ͺπ‘’βˆ’π‘‘ π‘π‘œπ‘ 3𝑑(βˆ’π‘1 + 3𝑗𝑐2 + 4𝑐1) = 𝑒 βˆ’π‘‘ π‘π‘œπ‘ 3𝑑 => 3𝑐1 + 3𝑗𝑐2 = 1‬‬
‫𝐼𝐼 β€ͺπ‘’βˆ’π‘‘ 𝑠𝑖𝑛3𝑑(βˆ’3𝑐1 βˆ’ 𝑗𝑐2 + 4𝑗𝑐2) = 𝑒 βˆ’π‘‘ 𝑠𝑖𝑛3𝑑 => βˆ’3𝑐1 + 3𝑗𝑐2 = 1‬‬
‫𝑗β€ͺ1 𝑗 βˆ’β€¬β€¬
‫β€ͺ1‬‬
‫= × = β€ͺ𝐼, 𝐼𝐼 => 6𝑗𝑐2 = 1 => 𝑐2‬‬
‫>= = β€ͺ=> 𝑐1‬‬
‫𝑗 𝑗β€ͺ6‬‬
‫β€ͺ6‬‬
‫β€ͺ6‬‬
‫𝑑β€ͺ1 βˆ’β€¬β€¬
‫𝑑β€ͺ1 βˆ’β€¬β€¬
‫)𝑑(𝑒 𝑑β€ͺ𝑦𝑝 (𝑑) = ( 𝑒 π‘π‘œπ‘ 3𝑑 βˆ’ 𝑗𝑒 𝑠𝑖𝑛3𝑑)𝑒(𝑑), π‘¦β„Ž (𝑑) = 𝑒 βˆ’4‬‬
‫β€ͺ6‬‬
‫β€ͺ6‬‬
‫)𝑑( β€ͺ=> 𝑦(𝑑) = 𝑦𝑝 (𝑑) + π‘¦β„Žβ€¬β€¬
‫β€ͺ.6‬‬
‫β€ͺ1‬‬
‫β€ͺ1‬‬
‫β€ͺ1‬‬
‫= ]β€ͺ𝑦[βˆ’1] = 𝑦[βˆ’2] + π‘₯ [βˆ’1] = 0 + 1 = 1 => 𝑦[0] = × 1 + 0 = => 𝑦[1‬‬
‫β€ͺ4‬‬
‫β€ͺ4‬‬
‫β€ͺ4‬‬
‫β€ͺ1 1‬‬
‫β€ͺ1‬‬
‫β€ͺ1‬‬
‫]𝑛[𝑒 β€ͺ× + 0 = ( )2 => β„Ž[𝑛] = ( )𝑛+1‬‬
‫β€ͺ4 4‬‬
‫β€ͺ4‬‬
‫β€ͺ4‬‬
‫β€ͺ .7‬الف)‬
‫β€ͺ1‬‬
‫𝛼‬
‫β€ͺ𝑦[𝑛] = 𝛼𝑦[𝑛 βˆ’ 1] + 𝛽𝑀[𝑛] => 𝑀[𝑛] = 𝑦[𝑛] βˆ’ 𝑦[𝑛 βˆ’ 1],‬‬
‫𝛽‬
‫𝛽‬
‫β€ͺ1‬‬
‫𝛼‬
‫β€ͺ1‬‬
‫β€ͺ1‬‬
‫β€ͺ𝑀[𝑛 βˆ’ 1] = 𝑦[𝑛 βˆ’ 1] βˆ’ 𝑦[𝑛 βˆ’ 2] => 𝑀[𝑛] βˆ’ 𝑀[𝑛 βˆ’ 1] = 𝑦[𝑛] βˆ’β€¬β€¬
‫𝛽‬
‫𝛽‬
‫β€ͺ2‬‬
‫𝛽‬
‫𝛼‬
‫β€ͺ1‬‬
‫𝛼‬
‫β€ͺ1‬‬
‫β€ͺ𝑦[𝑛 βˆ’ 1 ] βˆ’β€¬β€¬
‫β€ͺ𝑦[𝑛 βˆ’ 1 ] +‬‬
‫β€ͺ𝑦[𝑛 βˆ’ 2] = π‘₯[𝑛] => 𝑦[𝑛] = (𝛼 + ) 𝑦[𝑛 βˆ’ 1] βˆ’β€¬β€¬
‫𝛽‬
‫𝛽β€ͺ2‬‬
‫𝛽β€ͺ2‬‬
‫β€ͺ2‬‬
‫𝛼‬
‫β€ͺ1‬‬
‫β€ͺ𝑦[𝑛 βˆ’ 2] + 𝛽π‘₯[𝑛] => 𝛼 = , 𝛽 = 1‬‬
‫β€ͺ2‬‬
‫β€ͺ4‬‬
‫ب)‬
‫β€ͺ1‬‬
‫β€ͺ1‬‬
‫= ]𝑛[ β€ͺβ„Ž1[𝑛] = ( )𝑛𝑒[𝑛], β„Ž2[𝑛] = ( )𝑛 𝑒[𝑛] => β„Ž[𝑛] = β„Ž1[𝑛] βˆ— β„Ž2‬‬
‫β€ͺ2‬‬
‫β€ͺ4‬‬
β€«βˆžβ€¬
‫𝑛‬
‫𝑛‬
β€«π‘˜β€ͺ1 π‘˜ 1 π‘›βˆ’β€¬β€¬
β€«π‘˜β€ͺ1 π‘˜ 1 π‘›βˆ’β€¬β€¬
‫β€ͺ1‬‬
‫) ( ) (βˆ‘β€¬
‫) ( ) (βˆ‘ = ]π‘˜ β€ͺ𝑒[𝑛 βˆ’β€¬β€¬
‫= )π‘˜β€ͺ= βˆ‘( )2(π‘›βˆ’β€¬β€¬
‫β€ͺ2 4‬‬
‫β€ͺ2 4‬‬
‫β€ͺ2‬‬
‫β€ͺπ‘˜=0‬‬
‫β€ͺπ‘˜=0‬‬
‫β€ͺ .8‬قسمΨͺ الف ΨΉΪ©Ψ³ Ψ³Ω…Ψͺ Ψ±Ψ§Ψ³Ψͺ و Ω‚Ψ³Ω…Ψͺ Ψ¨ ΨΉΪ©Ψ³ Ψ³Ω…Ψͺ Ϊ†ΩΎ Ψ§Ψ³Ψͺβ€ͺ.‬‬
‫β€ͺπ‘˜=0‬‬
‫𝑛 β€ͺ1‬‬
‫𝑛 β€ͺ1‬‬
‫]𝑛[𝑒 ] ) ( β€ͺ[2 ( ) βˆ’β€¬β€¬
‫β€ͺ2‬‬
‫β€ͺ4‬‬
.9
∞
∞
β€«βˆ« (Ψ§Ω„Ωβ€¬βˆ’βˆž 𝑒0 (𝑑) cos(𝑑) 𝑑𝑑 = βˆ«βˆ’βˆž 𝛿 (𝑑) cos(𝑑) 𝑑𝑑 = cos(0) = 1
5
β€«βˆ« (ب‬0 𝑠𝑖𝑛(2πœ‹π‘‘) 𝛿 (𝑑 + 3)𝑑𝑑 = sin(2πœ‹(5 + 3)) βˆ’ sin(2πœ‹(0 + 3)) = 0
)‫ الف‬.10
π‘Ÿ 2 + 3π‘Ÿ + 2 = 0 => (π‘Ÿ + 1)(π‘Ÿ + 2) = 0 => π‘Ÿ = βˆ’1, βˆ’2 => 𝑦(𝑑) = 𝑐1π‘’βˆ’π‘‘ +
𝑐2 𝑒 βˆ’2𝑑 => 𝑦(0) = 𝑐1 + 𝑐2 = 0 => 𝑦̇ (0) = βˆ’π‘1 βˆ’ 2𝑐2 = 2 => 𝑐1 = βˆ’π‘2 =>
βˆ’π‘2 = 2 => 𝑐2 = βˆ’2 => 𝑐1 = 2 => 𝑦(𝑑) = 2π‘’βˆ’π‘‘ βˆ’ 2π‘’βˆ’2𝑑
)‫ب‬
π‘Ÿ 3 + π‘Ÿ 2 βˆ’ π‘Ÿ βˆ’ 1 = 0 => (π‘Ÿ + 1)(π‘Ÿ 2 βˆ’ 1) = (π‘Ÿ + 1)2 (π‘Ÿ βˆ’ 1) =>
𝑦(𝑑) = 𝑐1 𝑒 βˆ’π‘‘ + 𝑐2π‘‘π‘’βˆ’π‘‘ + 𝑐3 𝑒 𝑑 => 𝑦(0) = 𝑐1 + 𝑐2 + 𝑐3 = 1
𝑦̇ (0) = βˆ’π‘1 βˆ’ 𝑐2 + 𝑐3 = 1, π‘¦Μˆ (0) = 𝑐1 + 𝑐3 βˆ’ 2𝑐2 = βˆ’2 =>
2𝑐3 = 2 => 𝑐3 = 1 => 𝑐1 + 𝑐2 = 0,2𝑐2 βˆ’ 𝑐1 = 3 => 𝑐2 = 1, 𝑐1 = βˆ’1 =>
𝑦(𝑑) = βˆ’π‘’ βˆ’π‘‘ + 𝑑𝑒 βˆ’π‘‘ + 𝑒𝑑