Hossein Sameti
Department of Computer Engineering
Sharif University of Technology
• Eigen vector of matrix A:
AX X
• In other words, once matrix A is multiplied by vector X,
the direction of X is preserved.
• Eigen function of a system:
Ф(n)
System
αФ(n)
Hossein Sameti, CE, SUT, Fall 1992
2
cosn j sin n
x(n)
LTI System
e jn
y(n)
H ( )e jn
k
k
y ( n) x ( k ) h( n k ) h( k ) x ( n k )
H ( ) h(k )e jk
k
y ( n ) h ( k )e
k
j ( n k )
( h(k )e jk )e jn
k
Frequency
response
y (n) H ( )e jn
jn
H ( ) magnifies the input e
based on freq ω.
Clarification: Some textbooks use H (e j ) instead of
H(w ).
Hossein Sameti, CE, SUT, Fall 1992
3
H ( ) h(k )e jk
1
k
H ( 2 ) h(k )e j ( 2 ) k h(k )e jk e j 2k H ( )
k
k
• Frequency response is periodic with the period of 2π. Implication?
Hossein Sameti, CE, SUT, Fall 1992
4
cos 0 n :
Hossein Sameti, CE, SUT, Fall 1992
5
H ( ) h(k )e
jk
k
H ( )
h ( k ) e j k h ( k )
k
k
h( k )
k
The same condition as the
stability condition
Hossein Sameti, CE, SUT, Fall 1992
6
DTFT{x(n)} X ( ) x(n)e
Same mathematical representation
as the freq. response
jn
n
• Existence of DTFT:
x ( n)
n
• Inverse DTFT:
x(n) is absolutely summable.
x(n)
1
2
jn
X
(
)
e
d
Fourier analysis considers signals to be constructed from a sum of complex
exponentials with appropriate frequencies, amplitudes and phase.
Frequency components are the complex exponentials which, when added
together, make up the signal.
Hossein Sameti, CE, SUT, Fall 1992
7
IDTFT of the ideal low-pass filter:
c
1
X ( )
0 c
c
c
x(n) 1 X ( )e jn d 1 e jn d
2
2
1
e jc n e jc n
jn c
x(n)
[e ]c
j 2n
j 2n
x ( n)
sin c n
n
Hossein Sameti, CE, SUT, Fall 1992
8
sin(𝜔𝑐 𝑛)
1,
⟺𝑋 𝜔 =
0,
𝑛
|𝜔| ≤ 𝜔𝑐
𝜔𝑐 < 𝜔 ≤ 𝜋
Hossein Sameti, CE, SUT, Fall 1992
9
x ( n) a n u ( n )
n jn
X ( ) a e
n 0
DTFT?
(ae j ) n
X ( )
n 0
1
1 ae j
a 1
What happens if a>1?
1 a cos
a sin
j
1 a 2 2a cos
1 a 2 2a cos
X R ()
X I ()
Hossein Sameti, CE, SUT, Fall 1992
10
x ( n) a n u ( n )
X ( )
1
1 ae j
X () X () e jX ( )
2
X ( ) X ( ) X * ( )
1
1 a 2 2a cos
X ( ) arctan(
a sin
)
1 a cos
Hossein Sameti, CE, SUT, Fall 1992
11
Hossein Sameti, CE, SUT, Fall 1992
12
Hossein Sameti, CE, SUT, Fall 1992
13
x1(n) X1()
x2 (n) X 2 ()
• Linearity: a1x1(n) a2 x2 (n) a1X1() a2 X 2 ()
• Time-shifting:
• Time-reversal:
x(n k ) e jk X ()
x(n) X ( )
• Convolution :
x(n)
LTI System
h(n)
y ( n) x ( n ) * h( n)
y(n)
Y ( ) X ( ) H ( )
Hossein Sameti, CE, SUT, Fall 1992
14
• Cross-correlation:
y(n) x1(n) * x2 (n)
Y () X1() X 2 ()
•Frequency Shifting:
e j0 n x(n)
X ( 0 )
•Parseval’s Theorem:
*
*
1
x
(
n
)
y
(
n
)
X
(
)
Y
( )d
2
2
2
y ( n) x ( n)
x(n) 21 X ( )
Hossein Sameti, CE, SUT, Fall 1992
15
• Modulation:
x(n) cos 0n
1
2
X ( 0 ) 12 X ( 0 )
• Multiplication:
x1(n) x2 (n)
1
2
X1 ( )X 2 ( )d
• Differentiation in the freq. domain:
nx(n)
j
dX ( )
d
• Conjugation:
x* ( n )
X * ( )
Hossein Sameti, CE, SUT, Fall 1992
16
• Conjugate Symmetric:
x(n) x* (n)
• Conjugate Anti-Symmetric:
x(n) x* (n)
• Why are these properties important?
Conjugate Symmetric
xe (n) 12 [ x(n) x* (n)]
x(n) xe (n) xo (n)
Conjugate Anti-symmetric
xo (n) 12 [ x(n) x* (n)]
X e () 12 [ X () X * ()]
X () X e () X o ()
X o () 12 [ X () X * ()]
Hossein Sameti, CE, SUT, Fall 1992
17
x (n )
X ( )
x* ( n )
X * ( )
x* (n)
X * ( )
Re{ x(n)}
X e ()
j Im{x(n)}
X o ()
xe (n)
xo (n)
X R () Re{ X ()}
jX I () j Im{X ()}
Hossein Sameti, CE, SUT, Fall 1992
18
x (n ) : real
x(n) Re{ x(n)}
X () 12 [ X () X * ()]
X () X e ()
X ( ) X * ( )
• If a sequence is real, then its DTFT is conjugate
symmetric.
Hossein Sameti, CE, SUT, Fall 1992
19
x (n )
X ( )
x (n ) : real
X ( ) X * ( )
x (n ) : real
X R () X R ()
x (n ) : real
X I () X I ()
x (n ) : real
X ( ) X ( )
x (n ) : real
X ( ) X ( )
Hossein Sameti, CE, SUT, Fall 1992
20
Proakis, et.al
Hossein Sameti, CE, SUT, Fall 1992
21
Determining an inverse fourier transform
X (e
X (e
j
j
1
)
(1 ae j )(1 be j )
a /(a b ) b /(a b )
)
j
1 ae
1 be j
b
a
n
x [n ] (
)a (
)b n u [n ]
a b
a b
Hossein Sameti, CE, SUT, Fall 1992
22
Determining the Impulse response from the frequency
response
Hossein Sameti, CE, SUT, Fall 1992
23
Determining the Impulse response for a Difference
1
1
Equation
y [n ] y [n 1] x [n ] x [n 1]
2
4
To find the impulse response h[n], we set x [n ] [n ]
1
1
h [n ] h [n 1] [n ] [n 1]
2
4
Applying the DTFT to both sides of equation. We obtain
1
1
H (e j ) e j H (e j ) 1 e j
2
4
1
1 e j
4
H (e j )
1
1 e j
2
Hossein Sameti, CE, SUT, Fall 1992
24
Example:
x[n] a nu[n 5]
1
a u[n]
1 ae j
j 5
e
a n5u[n 5]
1 ae j
a 5e j 5
n
a u[n 5]
1 ae j
n
Hossein Sameti, CE, SUT, Fall 1992
25
Reviewed Discrete-time Fourier Transform, some of its
properties and FT pairs
Next: the Z-transform
Hossein Sameti, CE, SUT, Fall 1992
26
© Copyright 2026 Paperzz