1) Using the bilinear transform frequency mapping equation, (ππ + 2ππ) 2 2 ππ Ξ©π = tan ( ) = tan ( ) π 2 π 2 3π 2 => T = tan ( 5 ) = 1.46ππ 2Ο(300) 2 2) For impulse invariance method, we have: πΊ= π , ππ π»(π ππ ) = π»(ππΊ) So, (a) 89125 β€ |π»(πΞ©)| β€ 1 , |π»(πΞ©)| β€ 0.17783, 0 β€ |Ξ©| β€ 0.2π ππ 0.3π π β€ |Ξ©| β€ ππ ππ (b) Because the Butterworth frequency response is monotonic, we can solve: π0.2π 2 )| = |π»π ( ππ π0.3π 2 )| = |π»π ( ππ 1 0.2π 2π 1 + (Ξ© π ) π π 1 = 0.891252 = 0.177832 0.3π 2π 1 + (Ξ© π ) π π To obtain Ξ©π ππ = 0.7047 and π = 5.88. Rounding up to π = 6 and yieldsΞ©π ππ = 0.7032. (c) We see that the poles of the magnitude-squared function are again evenly distributed around a circle radius 0.7032. For being causal and stable, π»π (π ) should have the left half-plane poles of the magnitude squared function & the result is the same for any value of ππ . Correspondingly, π»(π§) does not depend on ππ . 3) (a) 1 β πΏΜ1 = 1 β πΏ1 1 + πΏ1 πΏΜ1 = => πΏΜ2 = 2πΏ1 1 + πΏ1 πΏ2 1 + πΏ1 (b) πΏ1 = πΏΜ1 2 β πΏΜ1 , πΏ2 = 2πΏΜ2 2 β πΏΜ2 For the example, we were given πΏΜ1 = 1 β 0.89125 = 0.10875 πΏΜ2 = 0.17783 So: πΏ1 = 0.0575 πΏ2 = 0.1881 (c) We can calculate π»(π§) as example 7.2. 4) Using the bilinear transform frequency mapping equation, 2 ππ 2 0.2π πππ Ξ©π = ( ) = tan ( ) = 2π(51.7126) π 2 0.002 2 π 2 ππ 2 0.3π πππ Ξ©π = ( ) = tan ( ) = 2π(81.0935) π 2 0.002 2 π Thus, the specification which should be used to design the prototype continuous-time filter are |π»π (πΞ©)| < 0.04 0.995 < |π»π (πΞ©)| < 1.005 |Ξ©| β€ 2π(51.7126) |Ξ©| β₯ 2π(81.0935)
© Copyright 2025 Paperzz