Exam2-S15-Solutions-Combinatorics

S15 Exam 2 Problem 1
[Reserved for Score]
III mil III
Combinatorics, Dave Bayer
exam01a2pl
Exam 01
SOlotlQioS
Name.
Uni.
[1] Up to rotational symmetry, how many nine bead necklaces have three red beads and six blue beads?
/
.
\
I
3.4-7
Ix^
DhMS€. oofe<mvpv-e^
a
\
2 .
S
H
5
1-/'
0
0
G
3
7
O
O
?S
^0
'
10
ow s^dCf dSWk. A &OM^pV.
■&< ckW IQ p9$5iV)vV(hej,
S15 Exam 2 Problem 2
[Reserved for Score]
I III IIII III
Combinatorics, Dave Bayer
exam01a2p2
Exam 01
[2] Up to symmetry (rotations and flips), how^ many ways can the squares of a 4 by 4 checkerboard be
colored using n colors?
^
(IA
'
0
:
p
6
c
CC^ c \
M
<!r
o
J
^ fS)
a
>r
c
A
G
c
a
5|s
p
a
E f
1
G
[
A
B
f
B
6
G
a
P
9
h r
X
J
J
D
10
%
Ueic
■
n^l
j
%
IG
S15 Exam 2 Problem 3
[Reserved for Score]
IIIIIIII III
Combinatorics, Dave Bayer
exain01a2p3
Exam 01
[3] Up to rotational symmetry, how many ways can the eight corners of a cube be colored using n colors?
1
/a^i
a'/j
/
^
a'/z.
/a - a
!
•
*
f
24 Vcstzctloviil
Y^^coir\^
O
%
6
I
1x3
Vh,
6
+
3
n
I
'
1^; Sl^
<o
n^
I
bajtc c>^' ii=\ = \ (3^
S15 Exam 2 Problem 4
[Reserved for Score]
Combinatorics, Dave Bayer
exam01a2p4
Exam 01
[4] Give a proof of Burnside's Lemma: If a group G acts on a set of patterns X, then the number of distinct
patterns up to symmetry is equal to the average number of patterns fixed by an element of the group;
!G|
geG
QU) [K)t uJoAA^-f^ ahd U)\\\
[G| = Oi/Mtor of 3^w\i>r\€\<)es
|G^\ r of S>^V)0*)^^eS -fix ^ X
fvj - '®l/g^ (j^e
1 ^Cqo$e
cf g6&otbne^k
S(^(iK50b5elB
5^1^ vyjrvjfeeAT
^yiYy)rO^€s
^ "f'X X, ^
in'rVictl
Hqu) 2'Q
X6X
{c3/")lax='^^l ^ 9€&
rk
£tGIx^
*G>a
T