F14 8:40 Final Exam Problem 1 Linear Algebra, Dave Bayer [1] Find the intersection of the following two affine subspaces of R4 . w x 1 0 0 0 = 1 0 0 0 1 y 1 z w 1 1 1 x = 2 + 1 0 r y −2 0 1 s z 1 1 1 w x = y z w 1 0 x = 0 + 1 t y 0 −1 z 1 0 + t F14 8:40 Final Exam Problem 2 Linear Algebra, Dave Bayer [2] Find the 3 × 3 matrix A that maps the vector (1, 2, 1) to (3, 6, 3), and maps each point on the plane x + y + z = 0 to the zero vector. A= 3 3 3 1 A = 6 6 6 4 3 3 3 1 F14 8:40 Final Exam Problem 3 Linear Algebra, Dave Bayer [3] Find the inverse of the matrix 1 0 2 A=2 0 1 3 1 2 A−1 = −1 2 0 1 −1 −4 3 A = 3 2 −1 0 1 F14 8:40 Final Exam Problem 4 Linear Algebra, Dave Bayer [4] Find An where A is the matrix A = 3 2 −2 −2 n An = λ = −1, 2 A n (−1)n = 3 + −1 −2 2 4 2n + 3 4 2 −2 −1 n F14 8:40 Final Exam Problem 5 Linear Algebra, Dave Bayer [5] Solve the differential equation y 0 = Ay where 0 3 A = , 2 −1 y(0) = y = λ = −3, 2 e At e−3t = 5 2 −3 −2 3 e 2t + 5 3 3 2 2 1 2 + e−3t y = 5 −4 4 e 2t + 5 9 6 F14 8:40 Final Exam Problem 6 Linear Algebra, Dave Bayer [6] Find eAt where A is the matrix 2 1 2 A = 0 2 1 0 1 2 eAt = λ = 1, 2, 3 + + eAt 0 1 −1 0 3 3 1 −2 −1 3t et e 0 1 1 0 1 −1 + e2t 0 0 0 + = 2 2 0 0 0 0 −1 1 0 1 1 F14 8:40 Final Exam Problem 7 Linear Algebra, Dave Bayer [7] Solve the differential equation y 0 = Ay where 2 0 1 A = 1 1 1 , 0 1 2 y = eAt 0 y(0) = 1 1 + + 1 1 2 3 −1 −2 1 −1 0 t t e e te 1 1 2 + −1 3 −2 + 1 −1 0 = 4 4 2 1 1 2 −1 −1 2 −1 1 0 3t λ = 3, 1, 1 3 −3 −1 t e3t et te −1 3 + 1 + y = 4 4 2 3 1 1 F14 8:40 Final Exam Problem 8 Linear Algebra, Dave Bayer [8] Express the quadratic form 2x2 − 2xy + 3y2 + 2yz + 2z2 as a sum of squares of orthogonal linear forms. 2 + 2 + 2 1 1 −1 1 −2 −1 2 −1 0 1 0 1 1 2 1 −1 + 0 0 0 + −2 4 2 3 1 = 1 A = −1 3 3 −1 −1 1 −1 2 1 0 1 2 1 0 1 λ = 1, 2, 4 2 1 (x + y − z)2 + (x + z)2 + (x − 2y − z)2 3 3
© Copyright 2025 Paperzz