ﺑﻪﻧﺎم آنﻛﻪ ﺟﺎن را ﻓﻜﺮت آﻣﻮﺧﺖ داﻧﺸﮕﺎه ﺻﻨﻌﺘﻲ ﺷﺮﻳﻒ داﻧﺸﻜﺪهي ﻣﻬﻨﺪﺳﻲ ﻛﺎﻣﭙﻴﻮﺗﺮ دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل ﺗﻬﻴﻪ و ﺗﺪوﻳﻦ: دﻛﺘﺮ ﻣﺤﻤﺪﺗﻘﻲ ﻣﻨﻈﻮري ﻣﻬﻨﺪس ﺳﻴﺪﻣﺤﻤﺪ ﻣﻜّﻲ ﺑﺎزﻧﮕﺮي: دﻛﺘﺮ ﻋﻠﻲﻣﺤﻤﺪاﻓﺸﻴﻦ ﻫﻤﺖﻳﺎر ﺗﺎﺑﺴﺘﺎن 1391 ﻓﻬﺮﺳﺖ ﻣﻨﺪرﺟﺎت ﻋﻨﻮان 1 2 ﺻﻔﺤﻪ ﻣﻌﺮﻓﻲ 1....................................................................................................................................... 1 ............................................................................................................................................................................ 1-1 ﻫﺪف 2-1 ﭘﻴﺶﻧﻴﺎزﻫﺎي ﻧﻈﺮي و ﻋﻤﻠﻲ 1 ................................................................................................................................................... 3-1 ﺗﺠﻬﻴﺰات و ﻧﺮماﻓﺰارﻫﺎي ﻻزم 2 .................................................................................................................................................. 4-1 دﺳﺘﻮر ﺗﻬﻴﻪ ﮔﺰارش ﻛﺎر 4 ........................................................................................................................................................... 5-1 ﻣﻘﺮرات آزﻣﺎﻳﺸﮕﺎه 5 ..................................................................................................................................................................... آزﻣﺎﻳﺶﻫﺎ 6 ................................................................................................................................ 6 ............................................................................................................................................................................ 1-2 ﻣﻘﺪﻣﻪ 2-2 آزﻣﺎﻳﺶ اول :ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ 8 .............................................................................................................................................. 2-3 آزﻣﺎﻳﺶ دوم :ﻣﺪارﻫﺎي اﺷﻤﻴﺖ ﺗﺮﻳﮕﺮ 14 ................................................................................................................................ 2-4 آزﻣﺎﻳﺶ ﺳﻮم :ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ 17 ............................................................................................................................ 2-5 آزﻣﺎﻳﺶ ﭼﻬﺎرم :ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ 19 ........................................................................................................................ 2-6 آزﻣﺎﻳﺶ ﭘﻨﺠﻢ :ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ 23 ................................................................................................................................ 7-2 آزﻣﺎﻳﺶ ﺷﺸﻢ :ﻣﺪار ﻧﻤﻮﻧﻪﺑﺮدار و ﻣﺒﺪلﻫﺎي دﻳﺠﻴﺘﺎلﺑﻪآﻧﺎﻟﻮگ و آﻧﺎﻟﻮگﺑﻪدﻳﺠﻴﺘﺎل 30 ................................................. 8-2 آزﻣﺎﻳﺶ ﻫﻔﺘﻢ :ﻣﺪارﻫﺎي ﻛﺎرﺑﺮدي ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ 33 ........................................................................................... 3 ﻣﺮاﺟﻊ 43 ................................................................................................................................... 4 ﭘﻴﻮﺳﺖﻫﺎ 44 .............................................................................................................................. دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل ﺻﻔﺤﻪ 1 1ﻣﻌﺮﻓﻲ 1-1ﻫﺪف ﻫﺪف از ﺑﺮﮔﺰاري اﻳﻦ آزﻣﺎﻳﺸﮕﺎه ﻣﺎﻧﻨﺪ دﻳﮕﺮ آزﻣﺎﻳﺸﮕﺎﻫﻬﺎي دوره ﻛﺎرﺷﻨﺎﺳﻲ ﺗﻔﻬﻴﻢ ﺑﻴﺶﺗﺮ ﻣﻮﺿﻮﻋﺎت ﻧﻈﺮي ﻣﻄﺮحﺷﺪه در ﻛﻼس درس ﻣﺮﺑﻮﻃﻪ و آﺷﻨﺎﻳﻲ ﻋﻤﻠﻲ ﺑﺎ ﻣﺒﺎﺣﺚ ﻣﻮرد ﻧﻈﺮ اﺳﺖ. در اﻳﻦ آزﻣﺎﻳﺸﮕﺎه ﺑﺎ روشﻫﺎي ﻋﻤﻠﻲ ﺳﺎﺧﺖ ﻣﺪارﻫﺎي اﻟﻜﺘﺮوﻧﻴﻜﻲ ﺑﺎ ﻛﺎرﺑﺮد دﻳﺠﻴﺘﺎل آﺷﻨﺎ ﺧﻮاﻫﻴﺪ ﺷﺪ. اﮔﺮﭼﻪ ﺑﺴﻴﺎري از ﻣﺪارﻫﺎي اﻟﻜﺘﺮوﻧﻴﻜﻲ ﺑﺎ ﻛﺎرﺑﺮد دﻳﺠﻴﺘﺎل ﺑﻪ ﺷﻜﻞ ﻣﺪارﻫﺎي ﻣﺠﺘﻤﻊ ﺑﻪ ﺑﺎزار ﻋﺮﺿﻪ ﺷﺪهاﻧﺪ، وﻟﻲ ﻣﺪارﻫﺎي ﺑﺎ ﻗﻄﻌﺎت ﻣﺠﺰا ﻧﻴﺰ ﻫﻨﻮز ﻛﺎرﺑﺮد دارﻧﺪ .ﻟﺬا در اﻳﻦ آزﻣﺎﻳﺸﮕﺎه ،ﻣﺪارﻫﺎي ﻣﺨﺘﻠﻒ را ﻫﻢ ﺑﺎ اﺳﺘﻔﺎده از ﻣﺪارﻫﺎي ﻣﺠﺘﻤﻊ و ﻫﻢ ﺑﺎ اﺳﺘﻔﺎده از ﻗﻄﻌﺎت ﻣﺠﺰا ﻣﻮرد آزﻣﺎﻳﺶ ﻗﺮار ﺧﻮاﻫﻴﺪ داد ﺗﺎ ﺑﺎ ﻧﺤﻮه ﻋﻤﻠﻜﺮد اﻧﻮاع ﻣﺨﺘﻠﻒ ﻣﺪارﻫﺎي ﻛﺎرﺑﺮدي آﺷﻨﺎ ﺷﻮﻳﺪ. 2-1ﭘﻴﺶﻧﻴﺎزﻫﺎي ﻧﻈﺮي و ﻋﻤﻠﻲ اﻳﻦ دﺳﺘﻮر ﻛﺎر ﺑﺮاي داﻧﺸﺠﻮﻳﺎن رﺷﺘﻪ ﻣﻬﻨﺪﺳﻲ ﻛﺎﻣﭙﻴﻮﺗﺮ و ﺑﺮاي ﺗﻜﻤﻴﻞ ﻣﺒﺎﺣﺚ ﺗﺪرﻳﺲﺷﺪه در درس اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل ﺗﻬﻴﻪ و ﺗﻨﻈﻴﻢ ﺷﺪه اﺳﺖ .ﻟﺬا ﺷﻤﺎ ﺑﺎﻳﺪ درس اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل را ﺑﻪﻋﻨﻮان ﭘﻴﺶﻧﻴﺎز ﻧﻈﺮي و درس آزﻣﺎﻳﺸﮕﺎه ﻣﺪارﻫﺎي ﻣﻨﻄﻘﻲ را ﺑﻪﻋﻨﻮان ﭘﻴﺶﻧﻴﺎز ﻋﻤﻠﻲ اﻳﻦ آزﻣﺎﻳﺸﮕﺎه ﮔﺬراﻧﺪه ﺑﺎﺷﻴﺪ .ﺿﻤﻨﺎً ﻻزم اﺳﺖ ﻛﻪ ﺑﺎ ﻳﻜﻲ ﻧﺮماﻓﺰارﻫﺎي ﺷﺒﻴﻪﺳﺎزي ﻣﺪارﻫﺎي اﻟﻜﺘﺮﻳﻜﻲ و اﻟﻜﺘﺮوﻧﻴﻜﻲ ﻧﻈﻴﺮ PSPICEآﺷﻨﺎﻳﻲ داﺷﺘﻪ ﺑﺎﺷﻴﺪ. دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل ﺻﻔﺤﻪ 2 3-1ﺗﺠﻬﻴﺰات و ﻧﺮماﻓﺰارﻫﺎي ﻻزم 1-3-1 ﺗﺠﻬﻴﺰات ﺗﺠﻬﻴﺰات ﻣﻮرد اﺳﺘﻔﺎده در اﻳﻦ آزﻣﺎﻳﺸﮕﺎه ﻣﺸﺎﺑﻪ آزﻣﺎﻳﺸﮕﺎه ﻣﺪارﻫﺎي ﻣﻨﻄﻘﻲ اﺳﺖ ﻛﻪ ﻗﺒﻼً ﺑﺎ آﻧﻬﺎ آﺷﻨﺎ ﺷﺪه، و ﻧﺤﻮه اﺳﺘﻔﺎده از آﻧﻬﺎ را ﻓﺮا ﮔﺮﻓﺘﻪاﻳﺪ .ﺑﺎ اﻳﻦ وﺟﻮد ،ﺗﻮﺿﻴﺤﺎت ﻣﺨﺘﺼﺮ زﻳﺮ درﺧﺼﻮص ﺗﺠﻬﻴﺰات آزﻣﺎﻳﺸﮕﺎه ﻣﻲﺗﻮاﻧﺪ ﺑﻪ ﻳﺎدآوري آﻣﻮﺧﺘﻪﻫﺎي ﻗﺒﻠﻲ ﻛﻤﻚ ﻛﻨﺪ: اﻟﻒ( ﻧﻮﺳﺎنﻧﻤﺎ )اﺳﻴﻠﻮﺳﻜﻮپ( وﺳﻴﻠﻪ ﻣﻨﺤﺼﺮ ﺑﻪﻓﺮدي اﺳﺖ ﺑﺮاي ﻣﺸﺎﻫﺪه ﺷﻜﻞﻣﻮج ﺳﻴﮕﻨﺎلﻫﺎي ﻣﻮرد ﻧﻈﺮ .ﻧﻮﺳﺎنﻧﻤﺎ ﺷﻜﻞﻣﻮج وﻟﺘﺎژ را ﻧﻤﺎﻳﺶ ﻣﻲدﻫﺪ ﻟﺬا ﺑﺮاي ﻣﺸﺎﻫﺪه ﺷﻜﻞﻣﻮج ﺟﺮﻳﺎن ﻻزم اﺳﺖ ﺗﻤﻬﻴﺪاﺗﻲ ﺑﺮاي ﺗﺒﺪﻳﻞ ﺟﺮﻳﺎن ﻣﻮرد ﻧﻈﺮ ﺑﻪ وﻟﺘﺎژ ﺑﻴﻨﺪﻳﺸﻴﺪ. ﺿﻤﻨﺎً ﻧﻮﺳﺎنﻧﻤﺎﻫﺎي ﻣﻮﺟﻮد در آزﻣﺎﻳﺸﮕﺎه دوﻛﺎﻧﺎﻟﻪ ﻫﺴﺘﻨﺪ و ﻣﻲﺗﻮاﻧﻨﺪ ﺑﻪﺻﻮرت ﻫﻢزﻣﺎن دو ﺷﻜﻞﻣﻮج را ﻧﻤﺎﻳﺶ دﻫﻨﺪ .ﻓﻘﻂ ﺑﺎﻳﺪ ﺗﻮﺟﻪ ﻛﻨﻴﺪ ﻛﻪ ﻣﺮﺟﻊ ﺳﻨﺠﺶ وﻟﺘﺎژ ﻫﺮ دو ﺷﻜﻞﻣﻮج ﺑﺎﻳﺪ ﻳﻚ ﻧﻘﻄﻪ از ﻣﺪار ﺑﺎﺷﺪ .ﺑﻪ ﻋﺒﺎرت دﻳﮕﺮ اﺗﺼﺎل زﻣﻴﻦ ﭘﺮوبﻫﺎي ﻧﻮﺳﺎنﻧﻤﺎ ﺑﺎﻳﺪ ﺑﻪ ﻳﻚ ﻧﻘﻄﻪ از ﻣﺪار ﻣﺘﺼﻞ ﺷﻮﻧﺪ .در ﻏﻴﺮ اﻳﻦﺻﻮرت ،اﺗﺼﺎل زﻣﻴﻦ ﭘﺮوبﻫﺎي ﺑﻪ دو ﻧﻘﻄﻪ از ﻣﺪار ﻣﻮﺟﺐ ﺗﻐﻴﻴﺮ ﺳﺎﺧﺘﺎر ﻣﺪار ﺷﺪه و ﺷﻜﻞﻣﻮجﻫﺎي ﻣﺸﺎﻫﺪه ﺷﺪه ﻣﻌﺘﺒﺮ ﻧﺨﻮاﻫﻨﺪ ﺑﻮد. ب( ﻣﻮﻟﺪ ﺷﻜﻞﻣﻮج )ﻓﺎﻧﻜﺸﻦ ژﻧﺮاﺗﻮر( وﺳﻴﻠﻪاي اﺳﺖ ﺑﺮاي ﺗﻮﻟﻴﺪ ﺷﻜﻞﻣﻮجﻫﺎي ورودي ﺑﻪ ﻣﺪارﻫﺎي ﻣﻮرد آزﻣﺎﻳﺶ .ﺑﺎﻳﺪ ﺗﻮﺟﻪ ﻛﻨﻴﺪ ﻛﻪ ﺷﻜﻞﻣﻮج ﻣﻮرد ﻧﻈﺮ را از ﻟﺤﺎظ داﻣﻨﻪ ،ﻓﺮﻛﺎﻧﺲ و دﻳﮕﺮ ﻣﺸﺨﺼﺎت ﻗﺎﺑﻞﺗﻨﻈﻴﻢ ،ﻗﺒﻞ از اﻋﻤﺎل ﺧﺮوﺟﻲ ﻣﻮﻟﺪ ﺑﻪ ورودي ﻣﺪار ﺗﻨﻈﻴﻢ ﺷﻮد؛ ﺗﺎ از آﺳﻴﺐ اﺣﺘﻤﺎﻟﻲ ﺑﻪ ﻣﺪار ﺟﻠﻮﮔﻴﺮي ﺷﻮد. ج( ﻣﻨﺒﻊﺗﻐﺬﻳﻪ وﻟﺘﺎژﻣﺴﺘﻘﻴﻢ وﺳﻴﻠﻪاي اﺳﺖ ﺑﺮاي ﺗﺄﻣﻴﻦ وﻟﺘﺎژﻫﺎي ﻣﺴﺘﻘﻴﻢ ﻻزم ﺑﺮاي ﺗﻐﺬﻳﻪ ﻣﺪارﻫﺎي ﻣﻮرد آزﻣﺎﻳﺶ .اﻟﺰاﻣﻲ اﺳﺖ ﻛﻪ ﻗﺒﻞ از اﺗﺼﺎل ﺧﺮوﺟﻲ ﻣﻨﺎﺑﻊ ﺑﻪ ﻣﺪار ،وﻟﺘﺎژ آﻧﻬﺎ را ﺗﻨﻈﻴﻢ ﻛﺮده و ﻣﻴﺰان ﺟﺮﻳﺎندﻫﻲ آﻧﻬﺎ را ﻧﻴﺰ ﻣﺘﻨﺎﺳﺐ ﺑﺎ ﻣﺼﺮف ﺗﻘﺮﻳﺒﻲ ﻣﺪار ﻣﺤﺪود ﻛﻨﻴﺪ. دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل ﺻﻔﺤﻪ 3 د( ﻣﻮﻟﺘﻲﻣﺘﺮ وﺳﻴﻠﻪاي اﺳﺖ ﺑﺮاي اﻧﺪازهﮔﻴﺮي ﻛﻤﻴﺖﻫﺎي اﺻﻠﻲ ﻧﻈﻴﺮ وﻟﺘﺎژ ،ﺟﺮﻳﺎن و ﻣﻘﺎوﻣﺖ .اﻟﺒﺘﻪ ﺑﺮﺧﻲ ﻣﺪلﻫﺎي اﻳﻦ وﺳﻴﻠﻪ ﻛﻤﻴﺖﻫﺎي ﻓﺮﻋﻲ ﻧﻈﻴﺮ ﻇﺮﻓﻴﺖ و دﻣﺎ را ﻧﻴﺰ اﻧﺪازهﮔﻴﺮي ﻣﻲﻛﻨﻨﺪ. ﺣﺘﻤﺎً ﻗﺒﻞ از اﻧﺪازهﮔﻴﺮي ﻫﺮ ﻛﻤﻴﺖ ،ﭘﺮوبﻫﺎي ﻣﻮﻟﺘﻲﻣﺘﺮ را ﺑﻪ وروديﻫﺎي ﻣﺮﺑﻮﻃﻪ ﻣﺘﺼﻞ ﻛﺮده و ﻛﻠﻴﺪ اﻧﺘﺨﺎبﮔﺮ ﻣﻮﻟﺘﻲﻣﺘﺮ را در وﺿﻌﻴﺖ ﻣﻨﺎﺳﺐ ﻗﺮار دﻫﻴﺪ. ﺑﺮاي اﻧﺪازهﮔﻴﺮي وﻟﺘﺎژ ،ﺑﺎﻳﺪ ﭘﺮوبﻫﺎي ﻣﻮﻟﺘﻲﻣﺘﺮ را ﺑﻪ دو ﻧﻘﻄﻪ ﻣﻮرد ﻧﻈﺮ ﻛﻪ اﺧﺘﻼف وﻟﺘﺎژﺷﺎن ﻣﻮرد ﻧﻈﺮ اﺳﺖ ،ﻣﺘﺼﻞ ﻛﻨﻴﺪ. ﺑﺮاي اﻧﺪازهﮔﻴﺮي ﺟﺮﻳﺎن ،ﺑﺎﻳﺪ اﺗﺼﺎل ﻣﺤﻞ ﻋﺒﻮر ﺟﺮﻳﺎن ﻣﻮرد ﻧﻈﺮ را ﻗﻄﻊ ﻛﺮده و ﭘﺮوبﻫﺎي ﻣﻮﻟﺘﻲﻣﺘﺮ را ﺑﻴﻦ دو ﻗﺴﻤﺖ ﻗﻄﻊ ﺷﺪه از ﻳﻜﺪﻳﮕﺮ ﻗﺮار داده و ﻣﺪار را از ﻃﺮﻳﻖ ﻣﻮﻟﺘﻲ ﻣﺠﺪداً ﺑﺮﻗﺮار ﻛﻨﻴﺪ .ﺑﺎﻳﺪ ﺗﻮﺟﻪ ﻛﻨﻴﺪ ﻛﻪ ﻣﻮﻟﺘﻲﻣﺘﺮ ﺑﺮاي اﻧﺪازهﮔﻴﺮي ﺟﺮﻳﺎن ﺣﺪاﻛﺜﺮ 200ﻣﻴﻠﻲآﻣﭙﺮ ﻃﺮاﺣﻲ ﺷﺪه و ﻋﺒﻮر ﺟﺮﻳﺎن ﺑﻴﺶﺗﺮ ﻣﻮﺟﺐ ﺳﻮﺧﺘﻦ ﻓﻴﻮز ﺗﻌﺒﻴﻪﺷﺪه در داﺧﻞ آن ﺧﻮاﻫﺪ ﺷﺪ .اﻟﺒﺘﻪ ﻣﻮﻟﺘﻲﻣﺘﺮ ﻳﻚ وروديﻣﺠﺰا ﺑﺮاي اﻧﺪازهﮔﻴﺮي ﺟﺮﻳﺎنﻫﺎي ﺑﻴﺶﺗﺮ ﻧﻴﺰ دارد ﻛﻪ ﻓﻴﻮزي ﺑﺮاي ﺣﺎﻓﻈﺖ از ﻣﻮﻟﺘﻲﻣﺘﺮ در ﻣﺴﻴﺮ اﻳﻦ ورودي ﺗﻌﺒﻴﻪ ﻧﺸﺪه اﺳﺖ .ﻟﺬا در ﺻﻮرت ﻧﻴﺎز ﺑﻪ اﻧﺪازهﮔﻴﺮي ﺟﺮﻳﺎنﻫﺎي ﺑﻴﺶﺗﺮ از 200 ﻣﻴﻠﻲآﻣﭙﺮ ﻻزم اﺳﺖ ﻛﻪ از ﻣﺤﺪود ﺑﻮدن ﺟﺮﻳﺎن ﻣﻮرد اﻧﺪازهﮔﻴﺮي اﻃﻤﻴﻨﺎن ﺣﺎﺻﻞ ﻛﻨﻴﺪ. ﺑﺮاي اﻧﺪازهﮔﻴﺮي ﻣﻘﺪار ﻣﻘﺎوﻣﺖ ﻳﺎ ﻇﺮﻓﻴﺖ ﻳﻚ ﻗﻄﻌﻪ ،ﺑﻬﺘﺮ اﺳﺖ ﻗﻄﻌﻪ را ﺧﺎرج از ﻣﺪار ﺑﻪ ﭘﺮوبﻫﺎي ﻣﻮﻟﺘﻲﻣﺘﺮ ﻣﺘﺼﻞ ﻛﻨﻴﺪ .اﻧﺪازهﮔﻴﺮي ﻣﻘﺪار ﻗﻄﻌﻪ در داﺧﻞ ﻣﺪار ﻣﻤﻜﻦ اﺳﺖ ﺑﻪ دﻟﻴﻞ وﺟﻮد ﻣﺴﻴﺮﻫﺎي ﻣﻮازي در داﺧﻞ ﻣﺪار ﻣﻨﺠﺮ ﺧﻄﺎي ﻗﺎﺑﻞﺗﻮﺟﻪ در اﻧﺪازهﮔﻴﺮي ﺷﻮد .در ﻫﺮ ﺣﺎل ﻫﺮﮔﺰ ﻗﻄﻌﻪ را داﺧﻞ ﻣﺪار روﺷﻦ و در ﺣﺎل ﻛﺎر اﻧﺪازهﮔﻴﺮي ﻧﻜﻨﻴﺪ .اﻧﺪازهﮔﻴﺮي ﻗﻄﻌﻪ در داﺧﻞ ﻣﺪار روﺷﻦ ﻋﻼوه ﺑﺮ اﻳﻦﻛﻪ ﻣﻤﻜﻦ اﺳﺖ ﻣﻮﺟﺐ آﺳﻴﺐ رﺳﻴﺪن ﺑﻪ ﻣﻮﻟﺘﻲﻣﺘﺮ ﺷﻮد ،ﻋﻤﺪﺗﺎً ﻧﺘﻴﺠﻪ ﻧﺎدرﺳﺖ و ﺑﻌﻀﺎً ﻏﻴﺮﻣﻨﻄﻘﻲ ﺑﻪ دﻧﺒﺎل ﺧﻮاﻫﺪ داﺷﺖ. دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل ﺻﻔﺤﻪ 4 ه( ﺑﺮد ﺳﻮراخدار ﻛﻪ ﺑﺮاي ﺑﺴﺘﻦ ﻣﺪارﻫﺎ و ﺑﺮﻗﺮار اﺗﺼﺎﻻت ﺑﻴﻦ ﻗﻄﻌﺎت ﻣﺪار ﻣﻮرد اﺳﺘﻔﺎده ﻗﺮار ﻣﻲﮔﻴﺮد. 2-3-1 ﻧﺮماﻓﺰارﻫﺎ در ﭘﺎﻳﺎن ﺗﻤﺎم آزﻣﺎﻳﺶﻫﺎ ﺳﺮﻓﺼﻠﻲ ﺗﺤﺖ ﻋﻨﻮان ﺷﺒﻴﻪﺳﺎزي ﺑﻪ ﭼﺸﻢ ﻣﻲﺧﻮرد .ﻟﺬا ﻻزم اﺳﺖ ﻋﻤﻠﻜﺮد ﻣﺪارﻫﺎي ﻣﻮرد آزﻣﺎﻳﺶ ﺑﺎ ﻧﺘﺎﻳﺞ ﺷﺒﻴﻪﺳﺎزي ﻛﺎﻣﭙﻴﻮﺗﺮي آﻧﻬﺎ ﻣﻘﺎﻳﺴﻪ ﺷﻮد .ﭘﺲ ﻻزم اﺳﺖ ﻛﻪ ﺑﺎ ﻳﻜﻲ از ﻧﺮماﻓﺰارﻫﺎي ﺷﺒﻴﻪﺳﺎزي ﻣﺪارﻫﺎي اﻟﻜﺘﺮﻳﻚ و اﻟﻜﺘﺮوﻧﻴﻜﻲ آﺷﻨﺎ ﺑﺎﺷﻴﺪ .از ﻧﺮماﻓﺰارﻫﺎي ﻣﻨﺎﺳﺐ ﺑﺮاي ﺷﺒﻴﻪﺳﺎزي ﻣﺪارﻫﺎي ﻣﻮرد آزﻣﺎﻳﺶ ﻣﻲﺗﻮان از PSPICEو ADSﻧﺎم ﺑﺮد؛ ﻛﻪ اﺣﺘﻤﺎﻻً ﺑﺎ اوﻟﻲ آﺷﻨﺎﻳﻲ ﺑﻴﺶﺗﺮي دارﻳﺪ. 4-1دﺳﺘﻮر ﺗﻬﻴﻪ ﮔﺰارش ﻛﺎر ﭘﻴﺶ از ﺷﺮوع ﻫﺮ ﺟﻠﺴﻪ ﺑﺎﻳﺪ دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺶ آن ﺟﻠﺴﻪ را ﺑﻪ دﻗﺖ ﻣﻄﺎﻟﻌﻪ ﻛﺮده و ﺑﺎ اﺳﺘﻔﺎده از ﻣﻌﻠﻮﻣﺎت ﺧﻮد ﻳﺎ ﺑﺎ ﻣﺮاﺟﻌﻪ ﺑﻪ ﻛﺘﺎبﻫﺎي درﺳﻲ ﻣﺮﺑﻮﻃﻪ ﻛﻪ ﺑﺮﺧﻲ از آﻧﻬﺎ در ﺑﺨﺶ ﻣﺮاﺟﻊ اﻳﻦ دﺳﺘﻮر ﻛﺎر ﻣﻌﺮﻓﻲ ﺷﺪهاﻧﺪ ،ﻃﺮاﺣﻲﻫﺎي ﺧﻮاﺳﺘﻪﺷﺪه را اﻧﺠﺎم دﻫﻴﺪ. ﺿﻤﻨﺎً ﺑﻬﺘﺮ اﺳﺖ ﻛﻪ ﺷﺒﻴﻪﺳﺎزي ﻣﺪارﻫﺎ را ﻧﻴﺰ ﻗﺒﻞ از ﺟﻠﺴﻪ آزﻣﺎﻳﺶ اﻧﺠﺎم دﻫﻴﺪ. ﻻزم اﺳﺖ ﻛﻪ ﻧﺘﺎﻳﺞ ﻃﺮاﺣﻲ و ﺷﺒﻴﻪﺳﺎزي را در ﻗﺎﻟﺐ ﻳﻚ ﭘﻴﺶﮔﺰارش آﻣﺎده ﻛﺮده و در ﺷﺮوع ﺟﻠﺴﻪ آزﻣﺎﻳﺸﮕﺎه ﺑﻪ دﺳﺘﻴﺎر آﻣﻮزﺷﻲ آزﻣﺎﻳﺸﮕﺎه ﺗﺤﻮﻳﻞ دﻫﻴﺪ. ﺑﻬﺘﺮ اﺳﺖ ﻛﻪ ﭘﻴﺶﮔﺰارش را ﺑﻪﮔﻮﻧﻪاي آﻣﺎده ﻛﻨﻴﺪ ﻛﻪ ﺑﺎ اﺿﺎﻓﻪ ﻛﺮدن ﻧﺘﺎﻳﺞ آزﻣﺎﻳﺶ و ﻣﻘﺎﻳﺴﻪ ﻧﺘﺎﻳﺞ ﻋﻤﻠﻲ ﺑﺎ ﻧﺘﺎﻳﺞ ﻧﻈﺮي و ﺷﺒﻴﻪﺳﺎزي ،ﻧﺴﺨﻪ ﻗﺎﺑﻞاراﺋﻪاي ﺑﺮاي ﮔﺰارش ﻧﻬﺎﻳﻲ آزﻣﺎﻳﺸﮕﺎه در اﺧﺘﻴﺎر داﺷﺘﻪ ﺑﺎﺷﻴﺪ. دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل ﺻﻔﺤﻪ 5 ﺗﻮﺟﻪ داﺷﺘﻪ ﺑﺎﺷﻴﺪ ﻛﻪ ﻣﻘﺎﻳﺴﻪ ﻧﺘﺎﻳﺞ ﻋﻤﻠﻲ و ﻧﻈﺮي و اراﺋﻪ دﻻﻳﻠﻲ ﻣﻨﻄﻘﻲ ﺑﺮاي اﺧﺘﻼﻓﺎت اﺣﺘﻤﺎﻟﻲ ﻣﻮﺟﻮد ﺑﻴﻦ ﻧﺘﺎﻳﺞ ﻣﺬﻛﻮر ﻳﻜﻲ ازﻣﻬﻢﺗﺮﻳﻦ ارﻛﺎن ﮔﺰارش آزﻣﺎﻳﺸﮕﺎه اﺳﺖ ﻛﻪ ﻫﺮﮔﺰ ﻧﺒﺎﻳﺪ ﻓﺮاﻣﻮش ﺷﺪه و ﻳﺎ ﺑﻲارزش ﺗﻠﻘﻲ ﺷﻮد. 5-1ﻣﻘﺮرات آزﻣﺎﻳﺸﮕﺎه ﻣﻘﺮرات اﻳﻦ آزﻣﺎﻳﺸﮕﺎه ﻧﻴﺰ ﻣﺸﺎﺑﻪ دﻳﮕﺮ آزﻣﺎﻳﺸﮕﺎﻫﻬﺎي داﻧﺸﻜﺪه اﺳﺖ ﻛﻪ ﺑﺮاي ﻳﺎدآوري ﺑﻪ اﺧﺘﺼﺎر در زﻳﺮ ﺑﻴﺎن ﺷﺪهاﻧﺪ .رﻋﺎﻳﺖ ﻛﻠﻴﻪ ﻣﻘﺮرات آزﻣﺎﻳﺸﮕﺎه ﺑﺮاي ﺷﻤﺎ اﻟﺰاﻣﻲ اﺳﺖ و ﺗﺨﻄﻲ از آﻧﻬﺎ ﻣﻮﺟﺐ ﻛﺴﺮﻧﻤﺮه و ﺣﺘﻲ ﻋﺪم ﻛﺴﺐ ﻧﻤﺮه ﻗﺒﻮﻟﻲ در آزﻣﺎﻳﺸﮕﺎه ﺧﻮاﻫﺪ ﺷﺪ. • ﺣﻀﻮر در ﺗﻤﺎﻣﻲ ﺟﻠﺴﺎت آزﻣﺎﻳﺸﮕﺎه )ﻋﺪم ﺣﻀﻮر در ﻳﻚ ﻳﺎ دو ﺟﻠﺴﻪ ﺟﻠﺴﻪ ﻣﻮﺟﺐ ﻛﺴﺮﻧﻤﺮه و ﻋﺪمﺣﻀﻮر در ﺑﻴﺶ از دو ﺟﻠﺴﻪ ﻣﻮﺟﺐ ﻛﺴﺐ ﻧﻤﺮه ﻣﺮدودي ﺧﻮاﻫﺪ ﺷﺪ(. • ﺣﻀﻮر ﺑﻪﻣﻮﻗﻊ در ﻣﺤﻞ آزﻣﺎﻳﺸﮕﺎه و ﻣﻌﺮﻓﻲ ﺧﻮد ﺑﻪ دﺳﺘﻴﺎر آﻣﻮزﺷﻲ • ﺧﺎرجﻧﺸﺪن از آزﻣﺎﻳﺸﮕﺎه ﺑﺪون اﺟﺰاي دﺳﺘﻴﺎر آﻣﻮزﺷﻲ • رﻋﺎﻳﺖ ﻧﻈﻢ ،ﺳﻜﻮت و ﻧﻈﺎﻓﺖ • ﻋﺪم دﺧﺎﻟﺖ در ﻛﺎر ﮔﺮوﻫﻬﺎي دﻳﮕﺮ • ﺑﺬل ﺗﻮﺟﻪ و دﻗﺖ ﻛﺎﻓﻲ در اﺳﺘﻔﺎده از ﺗﺠﻬﻴﺰات و ﻗﻄﻌﺎت • ﻣﺮﺗﺐ ﻛﺮدن ﻣﻴﺰ ﻛﺎر و ﺻﻨﺪﻟﻲﻫﺎ • ﻗﺮاردادن ﺗﻤﺎﻣﻲ ﺗﺠﻬﻴﺰات اﺳﺘﻔﺎدهﺷﺪه در ﻣﺤﻞ ﺧﻮد • ﺑﺎزﮔﺮداﻧﺪن ﺗﻤﺎﻣﻲ ﻗﻄﻌﺎت اﺳﺘﻔﺎدهﺷﺪه ﺑﻪ ﺟﻌﺒﻪﻫﺎي ﻣﺮﺑﻮﻃﻪ )اﮔﺮ ﺑﻪ ﺳﻼﻣﺖ ﻗﻄﻌﺎت اﺳﺘﻔﺎدهﺷﺪه ﻣﻄﻤﺌﻦ ﻧﻴﺴﺘﻴﺪ ،ﻣﻮﺿﻮع را ﺑﺎ دﺳﺘﻴﺎر آﻣﻮزﺳﻲ درﻣﻴﺎن ﮔﺬاﺷﺘﻪ و از ﻗﺮاردادن ﻗﻄﻌﺎت ﻣﺸﻜﻮك در ﺟﻌﺒﻪﻫﺎ اﺟﺘﻨﺎب ﻛﻨﻴﺪ(. دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل ﺻﻔﺤﻪ 6 2آزﻣﺎﻳﺶﻫﺎ 1-2ﻣﻘﺪﻣﻪ در ﺑﺮﺧﻲ آزﻣﺎﻳﺶﻫﺎ اﺑﺘﺪا ﻣﺪار ﺗﺮاﻧﺰﻳﺴﺘﻮري ﻣﻮرد ﺑﺤﺚ ﻗﺮار ﮔﺮﻓﺘﻪ اﺳﺖ ﺗﺎ ﻣﻔﺎﻫﻴﻢ اﺻﻠﻲ ﻣﻮرد ﺗﺄﻛﻴﺪ ﻗﺮار ﮔﻴﺮﻧﺪ .ﺳﭙﺲ ﻣﺪارﻫﺎي دﻳﮕﺮي ﺑﺎ ﻣﺪارﻫﺎي ﻣﺠﺘﻤﻊ ﻣﻌﺮﻓﻲ ﺷﺪهاﻧﺪ ﺗﺎ ﻋﻼوه ﺑﺮ ﮔﺴﺘﺮش دﻳﺪ ﻃﺮاﺣﻲ ،ﺑﺮاي ﭘﺮوژهﻫﺎي ﺑﺰرﮔﺘﺮ ﻧﻴﺰ ﻗﺎﺑﻠﻴﺖ اﻧﺘﺨﺎب ﻣﻨﺎﺳﺐﺗﺮ ﻓﺮاﻫﻢ ﺷﻮد. ﻋﻨﻮان ،ﻫﺪف و ﻣﺮاﺣﻞ آزﻣﺎﻳﺶﻫﺎي ﻃﺮاﺣﻲﺷﺪه ﺑﺮاي اﻳﻦ آزﻣﺎﻳﺸﮕﺎه ﺑﻪ ﻗﺮار زﻳﺮاﺳﺖ: آزﻣﺎﻳﺶ اول :ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ ﻫﺪف :آﺷﻨﺎﻳﻲ ﺑﺎ ﻣﻨﻄﻖ ﻣﺜﺒﺖ و ﻣﻨﻄﻖ ﻣﻨﻔﻲ ،ﺗﻮان ﻣﺼﺮﻓﻲ ،ﺗﺄﺧﻴﺮ اﻧﺘﺸﺎر ،ﺣﺪ ﭘﺎرازﻳﺖ ،ﺑﺮوندﻫﻲ و روشﻫﺎي ﺳﺎﺧﺖ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ ﻣﺮاﺣﻞ :آﺷﻨﺎﻳﻲ ﺑﺎ ﺧﺎﻧﻮاده ،RTLﻣﻨﻄﻖ ﻣﺜﺒﺖ و ﻣﻨﻔﻲ ،ﺧﺎﻧﻮاده ،DTLﺧﺎﻧﻮاده HTLو ﺧﺎﻧﻮاده TTL آزﻣﺎﻳﺶ دوم :ﻣﺪارﻫﺎي اﺷﻤﻴﺖﺗﺮﻳﮕﺮ ﻫﺪف :ﺑﺮرﺳﻲ اﻧﻮاع ﻣﺪارﻫﺎي اﺷﻤﻴﺖﺗﺮﻳﮕﺮ و ﻋﻤﻠﻜﺮد آﻧﻬﺎ ﻣﺮاﺣﻞ :اﺷﻤﻴﺖﺗﺮﻳﮕﺮ ﺗﺮاﻧﺰﻳﺴﺘﻮري ،اﺷﻤﻴﺖﺗﺮﻳﮕﺮ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ ،اﺷﻤﻴﺖﺗﺮﻳﮕﺮ ﺑﺎ ﻣﺪارات ﻣﺠﺘﻤﻊ آزﻣﺎﻳﺶ ﺳﻮم :ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ ﻫﺪف :ﺑﺮرﺳﻲ اﻧﻮاع ﻣﺪارﻫﺎي ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ و ﻋﻤﻠﻜﺮد آﻧﻬﺎ ﻣﺮاﺣﻞ :ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري و ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ ﺑﺎ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ آزﻣﺎﻳﺶ ﭼﻬﺎرم :ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﻫﺪف :ﺑﺮرﺳﻲ اﻧﻮاع ﻣﺪارﻫﺎي ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ و ﻋﻤﻠﻜﺮد آﻧﻬﺎ دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل ﺻﻔﺤﻪ 7 ﻣﺮاﺣﻞ :ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺑﺎ ﺗﺮاﻧﺰﻳﺴﺘﻮر ،ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ ،ﺑﺎ ﺗﺎﻳﻤﺮ 555و ﺑﺎ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ آزﻣﺎﻳﺶ ﭘﻨﺠﻢ :ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﻫﺪف :ﺑﺮرﺳﻲ اﻧﻮاع ﻣﺪارﻫﺎي ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ و ﻋﻤﻠﻜﺮد آﻧﻬﺎ ﻣﺮاﺣﻞ :ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري ﺑﺎ ﻛﻮﭘﻼژ ﻛﻠﻜﺘﻮر ،ﺗﺮاﻧﺰﻳﺴﺘﻮري ﺑﺎ ﻛﻮﭘﻼژ اﻣﻴﺘﺮ ،آﺳﺘﺎﺑﻞ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ ،ﺑﺎ ﺗﺎﻳﻤﺮ 555و ﺑﺎ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ آزﻣﺎﻳﺶ ﺷﺸﻢ :ﻣﺪار ﻧﻤﻮﻧﻪﺑﺮدار و ﻣﺒﺪلﻫﺎي دﻳﺠﻴﺘﺎلﺑﻪآﻧﺎﻟﻮك و آﻧﺎﻟﻮگﺑﻪدﻳﺠﻴﺘﺎل ﻫﺪف :ﺑﺮرﺳﻲ ﻋﻤﻠﻜﺮد ﻣﺪارﻫﺎي ﻧﻤﻮﻧﻪﺑﺮدار و ﻣﺒﺪلﻫﺎي دﻳﺠﻴﺘﺎلﺑﻪآﻧﺎﻟﻮگ و آﻧﺎﻟﻮگﺑﻪدﻳﺠﻴﺘﺎل ﻣﺮاﺣﻞ :ﻣﺪار ﻧﻤﻮﻧﻪﺑﺮدار ،ﻣﺒﺪل دﻳﺠﻴﺘﺎلﺑﻪآﻧﺎﻟﻮگ و ﻣﺒﺪل آﻧﺎﻟﻮگﺑﻪدﻳﺠﻴﺘﺎل آزﻣﺎﻳﺶ ﻫﻔﺘﻢ :ﻣﺪارﻫﺎي ﻛﺎرﺑﺮدي ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ ﻫﺪف :ﺑﺮرﺳﻲ ﺑﺮﺧﻲ ﻛﺎرﺑﺮدﻫﺎي ﺧﻄﻲ و ﻏﻴﺮﺧﻄﻲ ﺗﻘﻮﻳﺖﻛﻨﻨﺪهﻫﺎي ﻋﻤﻠﻴﺎﺗﻲ ﻣﺮاﺣﻞ :ﻣﺪارﻫﺎي ﺟﻤﻊﻛﻨﻨﺪه ،اﻧﺘﮕﺮالﮔﻴﺮ ،ﻣﺸﺘﻖﮔﻴﺮ،ﻳﻜﺴﻮﺳﺎز ﻧﻴﻢﻣﻮج ،ﻳﻜﺴﻮﺳﺎز ﺗﻤﺎمﻣﻮج ،ﻗﺪرﻣﻄﻠﻖﮔﻴﺮ، ﻣﺤﺪودﻛﻨﻨﺪه ،ﺑﺎﻧﺪ ﺑﻲواﻛﻨﺶ و آﺷﻜﺎرﺳﺎز داﻣﻨﻪ ﺻﻔﺤﻪ 8 دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 2-2آزﻣﺎﻳﺶ اول :ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ 1-2-2 ﻫﺪف آﺷﻨﺎﻳﻲ ﺑﺎ ﻣﻨﻄﻖ ﻣﺜﺒﺖ و ﻣﻨﻄﻖ ﻣﻨﻔﻲ ،ﺗﻮان ﻣﺼﺮﻓﻲ ) ،(Power Dissipationﺗﺄﺧﻴﺮ اﻧﺘﺸﺎر (Propagation ) ،Delayﺣﺪ ﭘﺎرازﻳﺖ ) ،(Noise Marginﺑﺮوندﻫﻲ ) (Fan Outو روشﻫﺎي ﺳﺎﺧﺖ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ 2-2-2 ﺧﺎﻧﻮاده RTL • ﺑﺎ اﺳﺘﻔﺎده از ﻳﻚ ﺗﺮاﻧﺰﻳﺴﺘﻮر و ﺗﻌﺪادي ﻣﻘﺎوﻣﺖ ،ﻣﺪار ﻳﻚ ﮔﻴﺖ NOTرا ﻃﺮاﺣﻲ ﻛﻨﻴﺪ. • ﻣﺪار را ﺑﺒﻨﺪﻳﺪ و ﻣﺸﺨﺼﻪ ) Vo = f(Viآن را اﻧﺪازهﮔﻴﺮي ﻛﺮده و رﺳﻢ ﻛﻨﻴﺪ. 3-2-2 ﻣﻨﻄﻖ ﻣﺜﺒﺖ و ﻣﻨﻄﻖ ﻣﻨﻔﻲ • ﻣﺪار ﺷﻜﻞ) (1-1را ﺑﺒﻨﺪﻳﺪ و ﺑﺎ در ﻧﻈﺮ ﮔﺮﻓﺘﻦ وﻟﺘﺎژﻫﺎي ﺻﻔﺮ و 12وﻟﺖ ﺑﺮاي ﺻﻔﺮ و ﻳﻚ ﻣﻨﻄﻘﻲ، ﺟﺪول درﺳﺘﻲ را ﺑﺮاي دو ﺣﺎﻟﺖ ﻣﻨﻄﻖ ﻣﺜﺒﺖ و ﻣﻨﻄﻖ ﻣﻨﻔﻲ ﺑﻪدﺳﺖ آورﻳﺪ. • در ﻫﺮ ﺣﺎﻟﺖ ،ﻣﺪار ﭼﻪ ﮔﻴﺘﻲ را ﺗﺤﻘﻖ داده اﺳﺖ؟ D1 A D2 B D3 C Y R 4.7K ﺷﻜﻞ) (1-1ﮔﻴﺖ RDLﺑﺎ ﺳﻪ ورودي دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 4-2-2 ﺻﻔﺤﻪ 9 ﺧﺎﻧﻮاده DTL • ﻣﺪار ﺷﻜﻞ) (2-1را ﺑﺒﻨﺪﻳﺪ و ﺑﺎ ﻓﺮض ﻣﻨﻄﻖ ﻣﺜﺒﺖ و اﺳﺘﻔﺎده از وﻟﺘﺎژﻫﺎي ﺻﻔﺮ وﻟﺖ و 12وﻟﺖ ،ﺟﺪول درﺳﺘﻲ را ﺑﻪدﺳﺖ آورﻳﺪ. • اﻳﻦ ﻣﺪار ﭼﻪ ﻧﻮع ﮔﻴﺘﻲ را ﺗﺤﻘﻖ داده اﺳﺖ؟ • ﺑﺎ وﺻﻞﻛﺮدن دو ﺗﺎ از وروديﻫﺎ ﺑﻪ 12وﻟﺖ و ورودي ﺳﻮم ﺑﻪ ﻣﻮج ﻣﺮﺑﻌﻲ ﺑﺎ داﻣﻨﻪ ﺑﻴﻦ ﺻﻔﺮ ﺗﺎ 12وﻟﺖ ، TPHL، TPLH ،VOL ، VOHﺣﺪ ﭘﺎرازﻳﺖ ) (Noise Marginو ﺗﻮان ﻣﺼﺮﻓﻲ ﮔﻴﺖ را ﺑﻪﻃﻮر ﻋﻤﻠﻲ ﺑﻪدﺳﺖ آورﻳﺪ. • ﺑﺮوندﻫﻲ ) (Fan Outرا ﺑﺮاي اﻳﻦ ﻣﺪار ﻣﺤﺎﺳﺒﻪ ﻛﻨﻴﺪ. +12V +12V R1 15K R4 2.2K D1 A Y R2 Q NPN 15K R3 100K D2 B D3 C -12V ﺷﻜﻞ) (2-1ﮔﻴﺖ DTLﺑﺎ ﺳﻪ ورودي دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 5-2-2 ﺻﻔﺤﻪ 10 ﺧﺎﻧﻮاده HTL • آزﻣﺎﻳﺶ ﻗﺒﻞ را ﺑﺮاي ﻣﺪار ﺷﻜﻞ) (3-1ﺗﻜﺮار ﻛﻨﻴﺪ .داﻣﻨﻪ وﻟﺘﺎژ ورودي را ﺑﻪﺟﺎي 12وﻟﺖ15 ،وﻟﺖ در ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ. • ﻣﺰﻳﺖ ﻣﺪار ﺷﻜﻞ) (3-1ﺑﺮ ﻣﺪار ﺷﻜﻞ) (2-1ﭼﻴﺴﺖ؟ +15V +15V R1 3K R4 15K R2 12K Y D4 Q2 NPN Q1 NPN D1 A D2 B R3 5K 6.9V D3 C ﺷﻜﻞ) (3-1ﮔﻴﺖ HTLﺑﺎ ﺳﻪ ورودي دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 6-2-2 ﺻﻔﺤﻪ 11 ﺧﺎﻧﻮاده TTL • ﻣﺪار ﺷﻜﻞ) (4-1را ﺑﺒﻨﺪﻳﺪ و ﻣﺸﺨﺼﻪ ) Vo = f(Viآن را اﻧﺪازهﮔﻴﺮي ﻛﺮده و رﺳﻢ ﻛﻨﻴﺪ. • ﻣﺸﺨﺼﻪ ﻣﺪار ﺷﻜﻞ) (4-1را ﺑﺎ ﻣﺸﺨﺼﻪ ﻣﺪار آزﻣﺎﻳﺶ RTLﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. • ﻣﺰاﻳﺎي ﺧﺎﻧﻮاده TTLﺑﺮ ﺧﺎﻧﻮاده ﻫﺎي RTLو DTLﭼﻴﺴﺖ؟ • ﺣﺪ ﭘﺎرازﻳﺖ ،ﺗﻮان ﻣﺼﺮﻓﻲ و ﺗﺄﺧﻴﺮ اﻧﺘﺸﺎر را ﺑﺮاي اﻳﻦ ﻣﺪار ﺑﻪدﺳﺖ آورﻳﺪ. • ﺑﺮوندﻫﻲ اﻳﻦ ﻣﺪار ﭼﻘﺪر اﺳﺖ؟ +5V R4 120 R2 1.5K R1 3.9K Q3 NPN D2 Q2 NPN Vo Vi Q1 NPN D1 Q4 NPN R3 1K ﺷﻜﻞ) (4-1ﮔﻴﺖ TTL NOT دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 7-2-2 ﺻﻔﺤﻪ 12 ﺷﺒﻴﻪﺳﺎزي • ﻣﺪار ﺷﻜﻞﻫﺎي ) (2-1و ) (4-1را ﺑﺎ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺷﺒﻴﻪﺳﺎزي ﻛﻨﻴﺪ و ﺗﻮان ﻣﺼﺮﻓﻲ ،ﺗﺄﺧﻴﺮ اﻧﺘﺸﺎر، ﺣﺪﭘﺎرازﻳﺖ و ﺑﺮوندﻫﻲ را ﺑﺮاي آﻧﻬﺎ ﺑﻪدﺳﺖ آورﻳﺪ. • اﻣﺮوزه ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ را ﺑﻴﺸﺘﺮ ﺑﺎ ﺗﻜﻨﻮﻟﻮژي CMOSﻣﻲﺳﺎزﻧﺪ .ﺷﻜﻞﻫﺎي ) (5-1و ) (6-1دو ﻧﻤﻮﻧﻪ از ﻣﺪارﻫﺎي ﻃﺮاﺣﻲﺷﺪه ﺑﺎ ﺗﺮاﻧﺰﻳﺴﺘﻮرﻫﺎي NMOSو PMOSرا ﻧﺸﺎن ﻣﻲدﻫﻨﺪ .اﻳﻦ ﻣﺪارﻫﺎ را ﺑﺎ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺷﺒﻴﻪﺳﺎزي ﻛﻨﻴﺪ و ﺗﺎﺑﻊ ﻣﻨﻄﻘﻲ ﺧﺮوﺟﻲ آﻧﻬﺎ را ﺑﻪدﺳﺖ آورﻳﺪ. ﺷﻜﻞ) (5-1ﮔﻴﺖ CMOS NOR دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل ﺷﻜﻞ) (6-1ﮔﻴﺖ CMOSﺑﺎ ﺳﻪ ورودي ﺻﻔﺤﻪ 13 ﺻﻔﺤﻪ 14 دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 3-2آزﻣﺎﻳﺶ دوم :ﻣﺪارﻫﺎي اﺷﻤﻴﺖ ﺗﺮﻳﮕﺮ 1-3-2 ﻫﺪف ﺑﺮرﺳﻲ اﻧﻮاع ﻣﺪارﻫﺎي اﺷﻤﻴﺖﺗﺮﻳﮕﺮ و ﻋﻤﻠﻜﺮد آﻧﻬﺎ 2-3-2 اﺷﻤﻴﺖﺗﺮﻳﮕﺮ ﺗﺮاﻧﺰﻳﺴﺘﻮري • ﻣﺪار ﺷﻜﻞ) (1-2را ﺑﺮاي ﺣﺼﻮل ﻣﺸﺨﺼﺎت زﻳﺮ ﻃﺮاﺣﻲ ﻛﻨﻴﺪ: Vomax = 12 V, Vomin = 6 V LTP = 3 V, UTP = 5 V, در ﻣﺤﺎﺳﺒﺎت ﺧﻮد از ﻓﺮﺿﻴﺎت زﻳﺮ اﺳﺘﻔﺎده ﻛﻨﻴﺪ: VBE active = VBE sat = 0.7 V, βmin = 100 VBE cut-in = 0.5 V, • ﻣﺪار ﻃﺮاﺣﻲﺷﺪه را ﺑﺒﻨﺪﻳﺪ و ﻣﺸﺨﺼﺎت ﻣﻮرد ﻧﻈﺮ را اﻧﺪازهﮔﻴﺮي ﻛﻨﻴﺪ. • رﻓﺘﺎر ﻣﺪار را ﺑﺎ اﻋﻤﺎل ﺷﻜﻞﻣﻮجﻫﺎي ﺳﻴﻨﻮﺳﻲ و ﻣﺜﻠﺜﻲ ﺑﺎ ﻓﺮﻛﺎﻧﺲ ﻳﻚ ﻛﻴﻠﻮﻫﺮﺗﺰ ﺑﺮرﺳﻲ ﻛﻨﻴﺪ. +VCC RC1 RC2 Vo R1 Q2 NPN Q1 NPN R2 RE ﺷﻜﻞ) (1-2اﺷﻤﻴﺖﺗﺮﻳﮕﺮ ﺗﺮاﻧﺰﻳﺴﺘﻮري Vi ﺻﻔﺤﻪ 15 دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل • داﻣﻨﻪ ﻣﻮج ورودي را اﻓﺰاﻳﺶ داده و ﺗﻐﻴﻴﺮات ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ را ﻣﺸﺎﻫﺪه ﻛﻨﻴﺪ .دﻟﻴﻞ ﺗﻐﻴﻴﺮ ﺷﻜﻞﻣﻮج را ﺗﻮﺿﻴﺢ دﻫﻴﺪ. • ﻓﺮﻛﺎﻧﺲ ﻣﻮج ورودي را اﻓﺰاﻳﺶ داده و ﺗﻐﻴﻴﺮات ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ را ﻣﺸﺎﻫﺪه ﻛﻨﻴﺪ .دﻟﻴﻞ ﺗﻐﻴﻴﺮ ﺷﻜﻞﻣﻮج را ﺗﻮﺿﻴﺢ داده و راهﺣﻠﻲ ﺑﺮاي ﺟﻠﻮﮔﻴﺮي از آن ﭘﻴﺸﻨﻬﺎد دﻫﻴﺪ .ﭘﻴﺸﻨﻬﺎد ﺧﻮد را در ﻋﻤﻞ ﻧﻴﺰ ﻣﻮرد ﺑﺮرﺳﻲ ﻗﺮار دﻫﻴﺪ. • ﺑﺎ ﺑﺮداﺷﺘﻦ R2ﭼﻪ ﺗﻐﻴﻴﺮي در ﻣﺪار ﺑﻪ وﺟﻮد ﻣﻲآﻳﺪ؟ آﻳﺎ وﺿﻌﻴﺖ ﺗﺮاﻧﺰﻳﺴﺘﻮرﻫﺎ ﺗﻐﻴﻴﺮ ﺧﻮاﻫﺪ ﻛﺮد؟ • در اﻳﻦ ﺣﺎﻟﺖ ﻛﺎﻫﺶ REﭼﻪ اﺛﺮي روي ﻣﺪار دارد؟ 3-3-2 اﺷﻤﻴﺖﺗﺮﻳﮕﺮ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ • ﻣﺪار ﺷﻜﻞ) (2-2را ﺑﺮاي وﻟﺘﺎژ آﺳﺘﺎﻧﻪ ﺑﺎﻻي ) 2 (UTPوﻟﺖ و وﻟﺘﺎژ ﭘﺴﻤﺎﻧﺪ 0/5وﻟﺖ ﻃﺮاﺣﻲ ﻛﻨﻴﺪ. • ﻣﺪار را ﺑﺒﻨﺪﻳﺪ و ﺑﺎ ﻗﺮار دادن اﺳﻴﻠﻮﺳﻜﻮپ در ﺣﺎﻟﺖ ،X-Yﻣﺸﺨﺼﻪ ) Vo = f(Viآن را ﻣﺸﺎﻫﺪه ﻛﺮده و ﺳﭙﺲ ﺑﺮ روي ﻛﺎﻏﺬ رﺳﻢ ﻛﻨﻴﺪ. • اﺷﻤﻴﺖﺗﺮﻳﮕﺮ ﺷﻜﻞ) (2-2از ﻧﻮع ﻣﻌﻜﻮسﻛﻨﻨﺪه ) (Invertingاﺳﺖ .ﭼﻪ ﺗﻐﻴﻴﺮي در ﻣﺪار اﻧﺠﺎم دﻫﻴﻢ ﺗﺎ اﺷﻤﻴﺖ ﺗﺮﻳﮕﺮي از ﻧﻮع ﻏﻴﺮﻣﻌﻜﻮسﻛﻨﻨﺪه ) (Non- Invertingداﺷﺘﻪ ﺑﺎﺷﻴﻢ؟ +15V 7 R2 Vo LM741 V+ OFS NULL OFS NULL 1 5 2 6 3 4 D1 6.2V R3 D2 6.2V R4 V- NC 8 -15V VR ﺷﻜﻞ) (2-2اﺷﻤﻴﺖﺗﺮﻳﮕﺮ ﻣﻌﻜﻮسﻛﻨﻨﺪه ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ R1 Vi دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 4-3-2 ﺻﻔﺤﻪ 16 اﺷﻤﻴﺖ ﺗﺮﻳﮕﺮ ﺑﺎ ﻣﺪارات ﻣﺠﺘﻤﻊ • ﻫﺮ ﻳﻚ از ﻣﺪارات ﻣﺠﺘﻤﻊ 7414و 4584داراي ﺷﺶ ﮔﻴﺖ NOTاﺷﻤﻴﺖﺗﺮﻳﮕﺮ اﺳﺖ .ﺑﺎ ﻣﺮاﺟﻌﻪ ﺑﻪ ﻛﺎﺗﺎﻟﻮگﻫﺎي ﻣﺮﺑﻮﻃﻪ ،ﻣﺸﺨﺼﺎت آﻧﻬﺎ را ﺑﺮرﺳﻲ ﻛﻨﻴﺪ .ﺳﭙﺲ ﺑﺎ ﺗﺮﺗﻴﺐدادن ﻳﻚ آزﻣﺎﻳﺶ، ﻣﺸﺨﺼﻪ ) Vo = f(Viآﻧﻬﺎ را اﻧﺪازهﮔﻴﺮي ﻛﺮده و رﺳﻢ ﻛﻨﻴﺪ. 5-3-2 ﺷﺒﻴﻪﺳﺎزي • ﻣﺪار ﺷﻜﻞﻫﺎي ) (2-2) ، (1-2و دو ﻣﺪار آزﻣﺎﻳﺶ ) (3-2را ﺑﺎ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺷﺒﻴﻪﺳﺎزي ﻛﻨﻴﺪ. • در ﻫﺮ ﺣﺎﻟﺖ UTP ،و LTPرا ﺑﻪدﺳﺖ آورﻳﺪ و ﺑﺎ ﻣﻘﺎدﻳﺮ ﺣﺎﺻﻞ از آزﻣﺎﻳﺶ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. ﺻﻔﺤﻪ 17 دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 4-2آزﻣﺎﻳﺶ ﺳﻮم :ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ 1-4-2 ﻫﺪف ﺑﺮرﺳﻲ اﻧﻮاع ﻣﺪارﻫﺎي ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ و ﻋﻤﻠﻜﺮد آﻧﻬﺎ 2-4-2 ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري ﺷﻜﻞ) (1-3ﻳﻚ ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري ﻳﺎ ﻓﻠﻴﭗ ﻓﻼپ RSرا ﻧﺸﺎن ﻣﻲدﻫﺪ. +VCC R3 R3 R1 R1 Vo1 Vo2 Q1 NPN Q2 NPN R2 D2 R2 R D1 R SET RESET ﺷﻜﻞ) (1-3ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري • ﻃﺮز ﻛﺎر ﻣﺪار را ﺗﻮﺿﻴﺢ دﻫﻴﺪ و ﺑﮕﻮﻳﻴﺪ ﻛﺪاﻣﻴﻚ از ﺧﺮوﺟﻲﻫﺎي Vo1و Vo2ﻣﻌﺎدل ﺧﺮوﺟﻲ Qي ﻓﻠﻴﭗﻓﻼپ RSاﺳﺖ. • ﻣﺪار را ﺑﺮاي ﺣﺼﻮل ﻣﺸﺨﺼﺎت زﻳﺮ ﻃﺮاﺣﻲ ﻛﻨﻴﺪ: IOL = 16 mA Æ Vo < 0.4 V , IOH = -400 mA Æ Vo > 2.4 V در ﻣﺤﺎﺳﺒﺎت ﺧﻮد از ﻓﺮﺿﻴﺎت زﻳﺮ اﺳﺘﻔﺎده ﻛﻨﻴﺪ: VBE cut-off = -0.2 V, VBE cut-in = 0.2 V, VBE active = 0.6 V, VBE sat = 0.7 V, VCE sat = 0.2 V دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل ﺻﻔﺤﻪ 18 • ﻣﺪار را ﺑﺒﻨﺪﻳﺪ و ﻋﻤﻠﻜﺮد آن را ﻣﺸﺎﻫﺪه ﻛﻨﻴﺪ .ﺟﺪول ﻣﺸﺨﺼﻪ ﻓﻠﻴﭗ ﻓﻼپ را ﺑﺎ آزﻣﺎﻳﺶ ﺑﻪدﺳﺖ آورﻳﺪ. ﺗﻮﺟﻪ داﺷﺘﻪ ﺑﺎﺷﻴﺪ ﻛﻪ ﺑﺮاي Setﻳﺎ Resetﻛﺮدن ﻓﻠﻴﭗ ﻓﻼپ ﺑﺎﻳﺪ ﻳﻜﻲ از دو ورودي SETﻳﺎ RESET را ﺑﻪ ﻳﻚ ﻣﻨﻄﻘﻲ وﺻﻞ ﻛﺮد. • ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻣﺪار ،ﻋﻠﺖ اﺳﺘﻔﺎده از دﻳﻮدﻫﺎ را ﺗﻮﺿﻴﺢ دﻫﻴﺪ. • ﺑﻪ ﻧﻈﺮ ﺷﻤﺎ ﭼﻪ روشﻫﺎي دﻳﮕﺮي ﺑﺮاي ﺗﻐﻴﻴﺮ ﺣﺎﻟﺖ ﻳﻚ ﻓﻠﻴﭗ ﻓﻼپ وﺟﻮد دارد؟ • ﻋﻠﺖ اﺳﺘﻔﺎده از ﻣﻘﺎوﻣﺖﻫﺎي R2را ﺗﻮﺿﻴﺢ دﻫﻴﺪ. • اﻓﺰاﻳﺶ ﻳﺎ ﻛﺎﻫﺶ ﻣﻘﺪار اﻳﻦ ﻣﻘﺎوﻣﺖﻫﺎ ﭼﻪ ﺗﺄﺛﻴﺮي ﺑﺮ روي ﻋﻤﻠﻜﺮد ﻣﺪار ﻣﻲﮔﺬارد؟ • ورودي ﻫﺎي SETو RESETرا ﺑﻪ ﻳﻜﺪﻳﮕﺮ و ﺑﻪ ورودي ﻣﺮﺑﻌﻲ ﺑﺎ داﻣﻨﻪ ﺑﻴﻦ ﺻﻔﺮ و +Vccوﺻﻞ ﻛﻨﻴﺪ. ﻫﺮ ﻳﻚ از ﺧﺮوﺟﻲﻫﺎ ﭼﻪ وﺿﻌﻲ ﺧﻮاﻫﻨﺪ داﺷﺖ؟ ﭼﺮا؟ • ﺑﺎ ﻗﺮار دادن ﺧﺎزن ﻛﻮﭼﻜﻲ روي ﻣﻘﺎوﻣﺖ ﻫﺎي ،R1ﺧﺮوﺟﻲﻫﺎ ﭼﻪ ﺗﻐﻴﻴﺮي ﻣﻲﻛﻨﻨﺪ؟ ﭼﺮا؟ 3-4-2 ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ ﺑﺎ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ • ﺑﺎ اﺳﺘﻔﺎده از ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ ﻳﻚ ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ ﻃﺮاﺣﻲ ﻛﺮده و ﭘﺲ از ﺑﺴﺘﻦ ﻣﺪار ﻣﺮﺑﻮﻃﻪ، آن را آزﻣﺎﻳﺶ ﻛﻨﻴﺪ. 4-4-2 ﺷﺒﻴﻪﺳﺎزي • ﻣﺪار آزﻣﺎﻳﺶﻫﺎي ) (1-3و ) (2-3را ﺑﺎ اﺳﺘﻔﺎده از ﻛﺎﻣﭙﻴﻮﺗﺮ ﺷﺒﻴﻪﺳﺎزي ﻛﺮده و ﻋﻤﻠﻜﺮد آﻧﻬﺎ را ﻣﻮرد ﺑﺮرﺳﻲ ﻗﺮار دﻫﻴﺪ .ﺳﭙﺲ ﻧﺘﺎﻳﺞ ﺷﺒﻴﻪﺳﺎزي را ﺑﺎ ﻧﺘﺎﻳﺞ ﺑﻪدﺳﺖآﻣﺪه از آزﻣﺎﻳﺶﻫﺎ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. ﺻﻔﺤﻪ 19 دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 5-2آزﻣﺎﻳﺶ ﭼﻬﺎرم :ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ 1-5-2 ﻫﺪف ﺑﺮرﺳﻲ اﻧﻮاع ﻣﺪارﻫﺎي ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ و ﻋﻤﻠﻜﺮد آﻧﻬﺎ 2-5-2 ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري ﺷﻜﻞ) (1-4ﻳﻚ ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري را ﻧﺸﺎن ﻣﻲدﻫﺪ ﻛﻪ از ﻧﻮع ﻛﻮﭘﻼژ اﻣﻴﺘﺮ اﺳﺖ. • ﻣﺪار را ﺑﺮاي ﺣﺼﻮل ﻣﺸﺨﺼﺎت زﻳﺮ ﻃﺮاﺣﻲ ﻛﻨﻴﺪ: T0 = 1 mSec VOL = 2 V, VOH = 10 V, در ﻣﺤﺎﺳﺒﺎت ﺧﻮد از ﻓﺮﺿﻴﺎت زﻳﺮ اﺳﺘﻔﺎده ﻛﻨﻴﺪ: βmin = 100 VBE active = VBE sat = 0.7 V, VBE cut-in = 0.5 V, +VCC RB Rc2 R1 R Rc1 D1 C Vo C1 Trigger Q1 NPN Q2 NPN R2 RE ﺷﻜﻞ) (1-4ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري ﺻﻔﺤﻪ 20 دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل • ﻣﺪار را ﺑﺒﻨﺪﻳﺪ .از ﻣﻮج ﻣﺮﺑﻌﻲ ﺑﺎ ﻓﺮﻛﺎﻧﺲ 500ﻫﺮﺗﺰ ﺑﻪ ﻋﻨﻮان ﺗﺮﻳﮕﺮ ورودي اﺳﺘﻔﺎده ﻛﻨﻴﺪ T0 .را اﻧﺪازهﮔﻴﺮي ﻛﻨﻴﺪ و ﺑﺎ ﻣﻘﺪار ﻣﻮرد ﻧﻈﺮ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. • ﺑﺎ ﺗﻐﻴﻴﺮ ﻓﺮﻛﺎﻧﺲ ﻳﺎ Duty Cycleورودي ﺗﺮﻳﮕﺮ T0 ،ﭼﻪ ﺗﻐﻴﻴﺮي ﻣﻲﻛﻨﺪ؟ • ﺑﺮاي ﻛﺎﻫﺶ زﻣﺎن ﺑﺮﮔﺸﺖ ﻣﻮج ) (Recovery Timeﭼﻪ ﻣﺪاري ﭘﻴﺸﻨﻬﺎد ﻣﻲﻛﻨﻴﺪ؟ ﻣﺪار ﭘﻴﺸﻨﻬﺎدي را در آزﻣﺎﻳﺸﮕﺎه ﺑﺒﻨﺪﻳﺪ و آن را ﺑﺮرﺳﻲ ﻛﻨﻴﺪ. • ﻣﺪار ﺗﺎ ﭼﻪ ﻓﺮﻛﺎﻧﺴﻲ ﺑﻪﺧﻮﺑﻲ ﻋﻤﻞ ﻣﻲﻛﻨﺪ؟ • در ﭼﻪ ﻣﺤﺪودهاي از ﻓﺮﻛﺎﻧﺲ ،ﻣﺪار ﺑﻪ ﺻﻮرت ﻳﻚ ﺗﻘﺴﻴﻢﻛﻨﻨﺪه ﻓﺮﻛﺎﻧﺲ ﺑﺮ 2ﻳﺎ 3ﻋﻤﻞ ﻣﻲﻛﻨﺪ؟ • ﺣﺪاﻗﻞ داﻣﻨﻪ ﺗﺮﻳﮕﺮ در دو ﻣﺪار ﭼﻘﺪر اﺳﺖ؟ • ﺑﺮداﺷﺘﻦ ﻣﻘﺎوﻣﺖ R2ﭼﻪ اﺛﺮي در ﻣﺪار ﻣﻲﮔﺬارد؟ 3-5-2 • ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ ﻣﺪار ﺷﻜﻞ) (2-4را ﺑﺮاي ﺣﺼﻮل ﻣﺸﺨﺼﺎت Vtrigger = 2 Vو T0 = 2 mSecﻃﺮاﺣﻲ ﻛﻨﻴﺪ. • ﻣﺪار را ﺑﺒﻨﺪﻳﺪ T0 .را اﻧﺪازه ﺑﮕﻴﺮﻳﺪ و ﻧﺘﻴﺠﻪ را ﺑﺎ ﻣﻘﺪار ﻣﻮرد ﻧﻈﺮ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. +15V R3 C2 +15V 7 Vo U1 V+ OFS NULL OFS NULL -15V D1 C1 2 6 4 1 5 Trigger 3 V- NC LM741 8 R2 R1 ﺷﻜﻞ) (2-4ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ ﺻﻔﺤﻪ 21 دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل • ﻣﺪار ﺗﺎ ﭼﻪ ﻓﺮﻛﺎﻧﺴﻲ ﺑﻪﺧﻮﺑﻲ ﻋﻤﻞ ﻣﻲﻛﻨﺪ؟ • در ﭼﻪ ﻣﺤﺪودهاي از ﻓﺮﻛﺎﻧﺲ ،ﻣﺪار ﺑﻪ ﺻﻮرت ﻳﻚ ﺗﻘﺴﻴﻢﻛﻨﻨﺪه ﻓﺮﻛﺎﻧﺲ ﺑﺮ 2ﻳﺎ 3ﻋﻤﻞ ﻣﻲﻛﻨﺪ؟ • ﺣﺪاﻗﻞ داﻣﻨﻪ ﺗﺮﻳﮕﺮ ورودي در ﺗﺌﻮري و در ﻋﻤﻞ را ﺑﺎ ﻳﻜﺪﻳﮕﺮ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. 4-5-2 ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺑﺎ ﺗﺎﻳﻤﺮ 555 • ﻣﺪار ﺷﻜﻞ) (3-4را ﺑﺮاي ﺣﺼﻮل T0 = 2 mSecﻃﺮاﺣﻲ ﻛﻨﻴﺪ .ﺑﺮاي ورودي ﺗﺮﻳﮕﺮ از ﻣﻮج ﻣﺮﺑﻌﻲ ﺑﻪ ﻓﺮﻛﺎﻧﺲ 100ﻫﺮﺗﺰ و ﺑﺎ داﻣﻨﻪ ﺑﻴﻦ ﺻﻔﺮ و 5وﻟﺖ اﺳﺘﻔﺎده ﻛﻨﻴﺪ. • T0را اﻧﺪازه ﺑﮕﻴﺮﻳﺪ و آن را ﺑﺎ ﻣﻘﺪار ﻣﻮرد ﻧﻈﺮ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. • ﺑﺮاي ﺑﻬﺒﻮد ﺗﺮﻳﮕﺮﻛﺮدن ﻣﺪار ﺷﻜﻞ) (3-4ﭼﻪ ﻣﺪاري را ﭘﻴﺸﻨﻬﺎد ﻣﻲﻛﻨﻴﺪ؟ • ﻣﺪار را ﺑﺒﻨﺪﻳﺪ و ﻧﺘﻴﺠﻪ را ﺑﺮرﺳﻲ ﻛﻨﻴﺪ. +VCC 8 R 4 7 Vo 555 3 6 2 1 Trigger 5 C2 C1 ﺷﻜﻞ) (3-4ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺑﺎ ﺗﺎﻳﻤﺮ 555 دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 5-5-2 ﺻﻔﺤﻪ 22 ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺑﺎ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ • ﻣﺪار ﺷﻜﻞ) (4-4را ﺑﺮاي T0 = 100 µSecﻃﺮاﺣﻲ ﻛﻨﻴﺪ. • ﻣﺪار را ﺑﺒﻨﺪﻳﺪ و T0را اﻧﺪازه ﮔﺮﻓﺘﻪ ،ﺑﺎ ﻣﻘﺪار ﻣﻮرد اﻧﺘﻈﺎر ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. • ﻣﺪار ﺑﺎ ﻟﺒﻪ ﻣﺜﺒﺖ ﻛﺎر ﻣﻲﻛﻨﺪ ﻳﺎ ﺑﺎ ﻟﺒﻪ ﻣﻨﻔﻲ؟ • اﻓﺰاﻳﺶ ﻳﺎ ﻛﺎﻫﺶ ﺷﺪﻳﺪ Rﭼﻪ ﺗﺄﺛﻴﺮي در ﻣﺪار دارد؟ ﭼﺮا؟ • ﺑﺎ ﻣﺮاﺟﻌﻪ ﺑﻪ ﻛﺎﺗﺎﻟﻮگ ﻣﺪارات ﻣﺠﺘﻤﻊ ،TTLﻣﺸﺨﺼﺎت ﻣﺪار ﻣﺠﺘﻤﻊ 74121را ﻣﻮرد ﺑﺮرﺳﻲ ﻗﺮار دﻫﻴﺪ. ﺳﭙﺲ ﺑﺎ اﺳﺘﻔﺎده از آن ﻣﺪار ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺑﺎ T0 = 1 Secﺑﺴﺎزﻳﺪ. G2 C G1 Trigger Vo R ﺷﻜﻞ) (4-4ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺑﺎ ﮔﻴﺖﻫﺎي TTL 6-5-2 ﺷﺒﻴﻪﺳﺎزي • ﻣﺪار ﺷﻜﻞﻫﺎي ) (1-4ﺗﺎ ) (4-4را ﺑﺎ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺷﺒﻴﻪﺳﺎزي ﻛﻨﻴﺪ .در ﻫﺮ ﻣﻮرد ﻣﻘﺪار T0ﺣﺎﺻﻞ از ﺷﺒﻴﻪﺳﺎزي را ﺑﺎ ﻣﻘﺪار ﺑﻪدﺳﺖ آﻣﺪه در آزﻣﺎﻳﺶ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. ﺻﻔﺤﻪ 23 دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 6-2آزﻣﺎﻳﺶ ﭘﻨﺠﻢ :ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ 1-6-2 ﻫﺪف ﺑﺮرﺳﻲ اﻧﻮاع ﻣﺪارﻫﺎي ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ و ﻋﻤﻠﻜﺮد آﻧﻬﺎ 2-6-2 ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري از ﻧﻮع ﻛﻮﭘﻼژ ﻛﻠﻜﺘﻮر • ﻣﺪار ﺷﻜﻞ) (1-5را ﺑﺮاي T1 = 10 µSecو T2 = 20 µSecﻃﺮاﺣﻲ ﻛﻨﻴﺪ. • ﻣﺪار را ﺑﺒﻨﺪﻳﺪ T1 .و T2را ﺑﺎ آزﻣﺎﻳﺶ ﺑﻪدﺳﺖ آورﻳﺪ و ﺑﺎ ﻣﻘﺎدﻳﺮ ﻣﻮرد ﻧﻈﺮ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. • ﺑﺮاي ﻧﺰدﻳﻚ ﺷﺪن ﺷﻜﻞ ﭘﺎﻟﺲ ﺧﺮوﺟﻲ ﺑﻪ ﺣﺎﻟﺖ اﻳﺪهآل آن ﭼﻪ ﻣﺪاري را ﭘﻴﺸﻨﻬﺎد ﻣﻲ ﻛﻨﻴﺪ؟ • ﻣﺪار ﭘﻴﺸﻨﻬﺎدي را ﺑﺒﻨﺪﻳﺪ و ﻋﻤﻠﻜﺮد آن را ﺑﺮرﺳﻲ ﻛﻨﻴﺪ. +5V RC2 RB1 RB2 RC1 Vo1 Vo2 Q2 NPN C2 C1 Q1 NPN ﺷﻜﻞ) (1-5ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري از ﻧﻮع ﻛﻮﭘﻼژ ﻛﻠﻜﺘﻮر • ﺑﺮاي ﻛﻨﺘﺮل T1و T2ﻣﻲﺗﻮان از ﻣﺪار ﺷﻜﻞ) (2-5اﺳﺘﻔﺎده ﻛﺮد .ﺑﺎ ﺗﺌﻮري و آزﻣﺎﻳﺶ ﻧﺸﺎن دﻫﻴﺪ ﻛﻪ دوره ﺗﻨﺎوب ﻣﻮج ﺑﻪ دﺳﺖ آﻣﺪه ﺑﺎ Vtﻧﺴﺒﺖ ﻋﻜﺲ دارد .ﺣﺪاﻗﻞ وﻟﺘﺎژ Vtﭼﻘﺪر ﻣﻲﺗﻮاﻧﺪ ﺑﺎﺷﺪ؟ • ﺑﻪﺟﺎي ﻣﻘﺎوﻣﺖﻫﺎي RB1و ،RB2ﻣﻲﺗﻮان ﻣﻄﺎﺑﻖ ﺷﻜﻞ) (3-5از ﻣﻨﺎﺑﻊ ﺟﺮﻳﺎن اﺳﺘﻔﺎده ﻛﺮد. ﺻﻔﺤﻪ 24 دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل ﺑﺪﻳﻦ ﺗﺮﺗﻴﺐ ﻳﻚ ﻣﺒﺪل وﻟﺘﺎژ ﺑﻪ ﻓﺮﻛﺎﻧﺲ ) (Voltage to Frequency Converterﺳﺎﺧﺘﻪ ﻣﻲﺷﻮد. • ﻣﺪار ﺷﻜﻞ) (3-5را ﺑﺮاي ﻣﺸﺨﺼﺎت T1 = 10 µSecو T2 = 20 µSecو Vt = +3Vﻃﺮاﺣﻲ ﻛﻨﻴﺪ. • ﻣﺪار را ﺑﺒﻨﺪﻳﺪ T1 .و T2را ﺑﻪدﺳﺖ آورﻳﺪ و ﺑﺎ ﻣﻘﺎدﻳﺮ ﻣﻮرد ﻧﻈﺮ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. • ﭼﻪ ﻋﻮاﻣﻠﻲ وﻟﺘﺎژ Vtرا ﻣﺤﺪود ﻣﻲﻛﻨﺪ؟ ﺣﺪاﻗﻞ ﻣﻘﺪار Vtﭼﻘﺪر اﺳﺖ؟ +5V Vt RC2 RB2 RC1 RB1 Vo1 Vo2 C2 Q2 NPN C1 Q1 NPN ﺷﻜﻞ) (2-5ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري از ﻧﻮع ﻛﻮﭘﻼژ ﻛﻠﻜﺘﻮر ﺑﺎ ﺗﻨﻈﻴﻢ ﻓﺮﻛﺎﻧﺲ +5V Vt Q3 PNP Q4 PNP R RC2 RC1 Vo1 Vo2 Q2 NPN C2 C1 Q1 NPN ﺷﻜﻞ) (3-5ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري از ﻧﻮع ﻛﻮﭘﻼژ ﻛﻠﻜﺘﻮر ﺑﺎ ﺗﻨﻈﻴﻢ ﻓﺮﻛﺎﻧﺲ دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 3-6-2 ﺻﻔﺤﻪ 25 ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري از ﻧﻮع ﻛﻮﭘﻼژ اﻣﻴﺘﺮ • ﻣﺪار ﺷﻜﻞ) (4-5را ﺑﺮاي ﻣﺸﺨﺼﺎت T1 = 10 µSecو T2 = 20 µSecو VOH = +3 Vﻃﺮاﺣﻲ ﻛﻨﻴﺪ. +VCC RC1 D1 Q2 NPN Vt Vo Q1 NPN C RE1 RE2 -VEE ﺷﻜﻞ) (4-5ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري از ﻧﻮع ﻛﻮﭘﻼژ اﻣﻴﺘﺮ • از ﻣﻌﺎﻳﺐ اﻳﻦ ﻣﺪار ﻧﺴﺒﺖ ﺑﻪ ﻣﺪارﻫﺎي ﻗﺒﻠﻲ ،وﺟﻮد دو ﻣﻨﺒﻊ ﺗﻐﺬﻳﻪ اﺳﺖ .ﺑﺮاي ﺣﺬف ﻣﻨﺒﻊ –VEEﭼﻪ ﭘﻴﺸﻨﻬﺎدي دارﻳﺪ؟ ﻣﻌﺎﻳﺐ ﻣﺪار ﺟﺪﻳﺪ ﻧﺴﺒﺖ ﺑﻪ ﻣﺪار ﺷﻜﻞ) (4-5ﭼﻴﺴﺖ؟ • ﺑﺎ ﺗﻐﻴﻴﺮ Vtﻓﺮﻛﺎﻧﺲ ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺗﻐﻴﻴﺮ ﻣﻲﻛﻨﺪ .ﺑﻨﺎﺑﺮاﻳﻦ از ﻣﺪار ﺷﻜﻞ) (4-5ﻣﻲﺗﻮان ﺑﻪﻋﻨﻮان VCO اﺳﺘﻔﺎده ﻛﺮد .ﺳﻴﮕﻨﺎﻟﻲ ﺑﺎ ﻓﺮﻛﺎﻧﺲ ﺑﺴﻴﺎر ﻛﻤﺘﺮ از ﻓﺮﻛﺎﻧﺲ ﻛﺎر ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﻪ اﺿﺎﻓﻪ وﻟﺘﺎژ DCﻻزم ﺑﻪ Vtاﻋﻤﺎل ﻛﻨﻴﺪ .ﻧﺘﻴﺠﻪ ﭼﻴﺴﺖ؟ دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 4-6-2 ﺻﻔﺤﻪ 26 ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ • ﻣﺪار ﺷﻜﻞ) (5-5را ﺑﺮاي ﻓﺮﻛﺎﻧﺲ 3ﻛﻴﻠﻮﻫﺮﺗﺰ ﻃﺮاﺣﻲ ﻛﻨﻴﺪ. • ﻣﺪار را ﺑﺒﻨﺪﻳﺪ و ﻓﺮﻛﺎﻧﺲ ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ آن را اﻧﺪازه ﺑﮕﻴﺮﻳﺪ. • دﻳﻮدﻫﺎي زﻧﺮ را از ﻣﺪار ﺣﺬف ﻛﻨﻴﺪ .ﭼﻪ اﺗﻔﺎﻗﻲ ﻣﻲاﻓﺘﺪ؟ ﭼﺮا؟ R1 +12V 7 U1 V+ OFS NULL OFS NULL 2 6 Vo 4 D1 6.2V R2 D2 6.2V R3 -12V 1 5 3 V- NC 8 LM741 C VR ﺷﻜﻞ) (5-5ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 5-6-2 ﺻﻔﺤﻪ 27 ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺑﺎ ﺗﺎﻳﻤﺮ 555 • ﻣﺪار ﺷﻜﻞ) (6-5را ﺑﺮاي ﻣﺸﺨﺼﺎت f = 1 KHzو Duty Cycle = 66%ﻃﺮاﺣﻲ ﻛﻨﻴﺪ. • ﻣﺪار را ﺑﺒﻨﺪﻳﺪ و ﻧﺘﺎﻳﺞ آزﻣﺎﻳﺶ را ﺑﺎ ﻣﻘﺎدﻳﺮ ﻣﻮرد ﻧﻈﺮ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. • ﺑﺮاي ﺑﻪدﺳﺖ آوردن ﺷﻜﻞﻣﻮﺟﻲ ﺑﺎ Duty Cycle = 50%ﭼﻪ ﻣﺪاري را ﭘﻴﺸﻨﻬﺎد ﻣﻲﻛﻨﻴﺪ؟ • ﻣﺪار ﭘﻴﺸﻨﻬﺎدي را ﺑﺒﻨﺪﻳﺪ و ﻧﺘﻴﺠﻪ را ﻣﺸﺎﻫﺪه ﻛﻨﻴﺪ. • ﺑﺮاي ﺑﻪدﺳﺖ آوردن ﻣﻮﺟﻲ ﺑﺎ Duty Cycleﻗﺎﺑﻞﺗﻨﻈﻴﻢ ﭼﻪ ﻣﺪاري را ﭘﻴﺸﻨﻬﺎد ﻣﻲﻛﻨﻴﺪ؟ • ﻣﺪار ﭘﻴﺸﻨﻬﺎدي را ﺑﺒﻨﺪﻳﺪ و ﻧﺘﻴﺠﻪ را ﻣﺸﺎﻫﺪه ﻛﻨﻴﺪ. +15V 8 +VCC Vo 3 4 RST 555 R1 7 DIS OUT R2 6 THR 2 TRIG GND 1 CVOLT 5 C2 ﺷﻜﻞ) (6-5ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺑﺎ ﺗﺎﻳﻤﺮ 555 C1 دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 6-6-2 ﺻﻔﺤﻪ 28 ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺑﺎ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ • ﻣﺪار ﺷﻜﻞ) (7-5را ﺑﺮاي دوره ﺗﻨﺎوب T = 30 µSecﻃﺮاﺣﻲ ﻛﻨﻴﺪ. • ﻣﺪار را ﺑﺒﻨﺪﻳﺪ و ﺷﻜﻞ ﻣﻮج ﺧﺮوﺟﻲ را ﻣﺸﺎﻫﺪه ﻛﺮده ،رﺳﻢ ﻛﻨﻴﺪ. • ﻗﺮار دادن ﻣﻘﺎوﻣﺖ ﺑﺴﻴﺎر ﺑﺰرﮔﻲ ﺑﻴﻦ ﻣﺤﻞ اﺗﺼﺎل ﺧﺎزن و ﻣﻘﺎوﻣﺖ و ورودي ﮔﻴﺖ G1ﭼﻪ اﺛﺮي در ﻣﺪار دارد؟ G1 G2 Vo R C ﺷﻜﻞ) (7-5ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺑﺎ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ ﺑﺎ اﺳﺘﻔﺎده از ﮔﻴﺖﻫﺎي اﺷﻤﻴﺖ ﺗﺮﻳﮕﺮ ﻣﻲﺗﻮان ﻣﻮﻟﺘﻲ وﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺳﺎﺧﺖ .ﺷﻜﻞ) (8-5ﭼﻨﻴﻦ ﻣﺪاري را ﺑﺎ ﻣﺪار ﻣﺠﺘﻤﻊ 7414ﻳﺎ 4584ﻧﺸﺎن ﻣﻲدﻫﺪ. • ﻣﺪار را ﺑﺎ ﻓﺮض VH = 1Vﺑﺮاي دوره ﺗﻨﺎوب T = 2 µSecﻃﺮاﺣﻲ ﻛﻨﻴﺪ. R Vo1 GS2 GS1 Vo2 C ﺷﻜﻞ) (8-5ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺑﺎ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ اﺷﻤﻴﺖﺗﺮﻳﮕﺮ دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل ﺻﻔﺤﻪ 29 • ﻣﺪار ﺑﺒﻨﺪﻳﺪ و ﻧﺘﺎﻳﺞ ﻋﻤﻠﻲ را ﺑﺎ ﺗﺌﻮري ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. • ﺑﺎ ﻣﻘﺎﻳﺴﻪ Vo1و Vo2ﺑﮕﻮﻳﻴﺪ ﮔﻴﺖ GS2ﺑﻪ ﭼﻪ دﻟﻴﻞ در ﻣﺪار ﻗﺮار ﮔﺮﻓﺘﻪ اﺳﺖ؟ • ﻣﺪار ﺷﻜﻞ) (9-5را ﺑﺮاي T1 = T2 = 1 Secﻃﺮاﺣﻲ ﻛﻨﻴﺪ. • ﻣﺪار را ﺑﺒﻨﺪﻳﺪ و ﻧﺘﺎﻳﺞ ﻋﻤﻠﻲ را ﺑﺎ ﺗﺌﻮري ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. ﺷﻜﻞ) (9-5ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺑﺎ ﮔﻴﺖﻫﺎي NAND • ﭼﮕﻮﻧﻪ ﺑﺎ اﺳﺘﻔﺎده از ﮔﻴﺖﻫﺎي NORﻣﻲﺗﻮان ﻣﺪاري ﺑﺎ ﻋﻤﻠﻜﺮد ﻣﺸﺎﺑﻪ ﻣﺪار ﺷﻜﻞ ) (9-5ﺳﺎﺧﺖ؟ 7-6-2 ﺷﺒﻴﻪﺳﺎزي • ﻣﺪار آزﻣﺎﻳﺶﻫﺎﻳﻲ را ﻛﻪ اﻧﺠﺎم دادهاﻳﺪ ﺑﺎ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺷﺒﻴﻪﺳﺎزي ﻛﻨﻴﺪ .در ﻫﺮ ﻣﻮرد ﻧﺘﺎﻳﺞ ﺷﺒﻴﻪﺳﺎزي را ﺑﺎ ﻧﺘﺎﻳﺞ ﻋﻤﻠﻲ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. ﺻﻔﺤﻪ 30 دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 7-2آزﻣﺎﻳﺶ ﺷﺸﻢ :ﻣﺪار ﻧﻤﻮﻧﻪﺑﺮدار و ﻣﺒﺪلﻫﺎي دﻳﺠﻴﺘﺎلﺑﻪآﻧﺎﻟﻮگ و آﻧﺎﻟﻮگﺑﻪدﻳﺠﻴﺘﺎل 1-7-2 ﻫﺪف ﺑﺮرﺳﻲ ﻋﻤﻠﻜﺮد ﻣﺪارﻫﺎي ﻧﻤﻮﻧﻪﺑﺮدار ،ﻣﺒﺪل دﻳﺠﻴﺘﺎلﺑﻪآﻧﺎﻟﻮگ و ﻣﺒﺪل آﻧﺎﻟﻮگﺑﻪدﻳﺠﻴﺘﺎل 2-7-2 ﻣﺪار ﻧﻤﻮﻧﻪﺑﺮدار • ﺑﺘﺪا ﺑﺎ ﻣﺮاﺟﻌﻪ ﺑﻪ ﻛﺎﺗﺎﻟﻮگ ﻣﺪارات ﻣﺠﺘﻤﻊ ﺧﻄﻲ ،ﻋﻤﻠﻜﺮد ﻣﺪار ﻣﺠﺘﻤﻊ LF398و ﻧﻘﺶ ﻫﺮ ﻳﻚ از وروديﻫﺎي آن را ﺷﺮح دﻫﻴﺪ؛ و ﺳﭙﺲ ﻣﺪار ﺷﻜﻞ) (1-6را ﺑﺒﻨﺪﻳﺪ. • ﻳﻚ ﻣﻮجﺳﻴﻨﻮﺳﻲ ﺑﺎ داﻣﻨﻪ 12وﻟﺖ و ﻓﺮﻛﺎﻧﺲ ﻳﻚ ﻛﻴﻠﻮﻫﺮﺗﺰ را ﺑﻪ ورودي آﻧﺎﻟﻮگ و ﻣﻮجﻣﺮﺑﻌﻲ ﺑﺎ داﻣﻨﻪ ﺑﻴﻦ ﺻﻔﺮ ﺗﺎ +5وﻟﺖ و ﻓﺮﻛﺎﻧﺲ 20ﻛﻴﻠﻮﻫﺮﺗﺰ و Duty Cycle= 5%را ﺑﻪ ورودي ﻧﻤﻮﻧﻪﺑﺮداري ﻣﺘﺼﻞ ﻛﻨﻴﺪ. • ﺷﻜﻞﻣﻮج وروديﻫﺎي آﻧﺎﻟﻮگ و ﻧﻤﻮﻧﻪﺑﺮداري و ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ را روي ﻳﻚ ﻧﻤﻮدار ﻧﺸﺎن دﻫﻴﺪ. • در اداﻣﻪ آزﻣﺎﻳﺶ ﻗﺒﻞ ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪﺑﺮداري را از 20ﻛﻴﻠﻮﻫﺮﺗﺰ ﺑﻪ 2ﻛﻴﻠﻮﻫﺮﺗﺰ ﻛﺎﻫﺶ دﻫﻴﺪ .ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ ﭼﻪ ﺗﻐﻴﻴﺮي ﻣﻲﻛﻨﺪ؟ ﭼﺮا؟ 5 Sampled Output 6 C LF398 OUT CH IN LOGIC REF LOGIC OFFSET ADJ 4 V- V+ -15V ﺷﻜﻞ) (1-6ﻣﺪار ﻧﻤﻮﻧﻪﺑﺮدار 3 7 8 2 1 +15V Analog Input Sampling Input دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل ﺻﻔﺤﻪ 31 • اﻛﻨﻮن ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪﺑﺮداري را ﺑﻪﺗﺪرﻳﺞ از 5ﻛﻴﻠﻮﻫﺮﺗﺰ ﺗﺎ 500ﻫﺮﺗﺰ و ﺑﺎ ﮔﺎمﻫﺎي 500ﻫﺮﺗﺰي ﻛﺎﻫﺶ دﻫﻴﺪ .در ﻫﺮ ﻣﺮﺣﻠﻪ ﻓﺮﻛﺎﻧﺲ ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ را ﻳﺎدداﺷﺖ ﻛﻨﻴﺪ. • ﻣﻨﺤﻨﻲ ﺗﻐﻴﻴﺮات ﻓﺮﻛﺎﻧﺲ ﺧﺮوﺟﻲ را ﺑﺮﺣﺴﺐ ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪﺑﺮداري رﺳﻢ ﻛﻨﻴﺪ. 3-7-2 ﻣﺒﺪل دﻳﺠﻴﺘﺎلﺑﻪآﻧﺎﻟﻮگ )(D/A • ﻣﺪار ﺷﻜﻞ) (2-6را ﺑﺎ اﻧﺘﺨﺎب ﻳﻚ ﻣﻘﺪار ﻣﻨﺎﺳﺐ ﺑﺮاي Rﺑﺒﻨﺪﻳﺪ. • ﺑﺎ اﻋﻤﺎل ﺗﻤﺎم ﺣﺎﻟﺖﻫﺎي وروديﻫﺎي D3D2D1D0از 0000ﺗﺎ ،1111ﺧﺮوﺟﻲ را اﻧﺪازه ﺑﮕﻴﺮﻳﺪ و ﻧﺘﻴﺠﻪ را روي ﻧﻤﻮدار رﺳﻢ ﻛﻨﻴﺪ. • ﻋﻤﻠﻜﺮد ﻣﺪار را ﺗﻮﺿﻴﺢ دﻫﻴﺪ. • ﻣﺪار را ﺑﻪﮔﻮﻧﻪاي ﺗﻐﻴﻴﺮ دﻫﻴﺪ ﻛﻪ ﺧﺮوﺟﻲ ﺑﺎ وﻟﺘﺎژﻫﺎي ﻣﺜﺒﺖ ﺑﻪدﺳﺖ آﻳﺪ .ﺳﭙﺲ ﻗﺴﻤﺖ ﻗﺒﻠﻲ آزﻣﺎﻳﺶ را دوﺑﺎره ﺗﻜﺮار ﻛﻨﻴﺪ. • ﺑﺎ ﻣﺮاﺟﻌﻪ ﺑﻪ ﻛﺎﺗﺎﻟﻮگ ﻣﺪارات ﻣﺠﺘﻤﻊ ﺧﻄﻲ ،ﻣﺪار داﺧﻠﻲ DAC08را ﺑﺮرﺳﻲ ﻛﻨﻴﺪ .ﺗﻔﺎوتﻫﺎي ﻣﺪار داﺧﻠﻲ اﻳﻦ ﻣﺒﺪل ﺑﺎ ﻣﺪار ﺷﻜﻞ) (2-6ﭼﻴﺴﺖ؟ ﻣﺪار ﺷﻜﻞ) (2-6را ﺑﺎ DAC08ﭘﻴﺎده ﺳﺎزي ﻛﻨﻴﺪ. ﺻﻔﺤﻪ 32 دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل +5V 2R +15V 7 2R R LM741 V+ OFS NULL OFS NULL 4 2 3 D2 1 3 2 6 Analog Output 1 5 2R 2 D3 1 R 3 V- -15V NC 8 2R 2 D1 1 3 2R R 2R 2 D0 1 3 R ﺷﻜﻞ) (2-6ﻳﻚ ﻧﻤﻮﻧﻪ ﻣﺪار ﻣﺒﺪل دﻳﺠﻴﺘﺎلﺑﻪآﻧﺎﻟﻮگ 4-7-2 ﻣﺒﺪل آﻧﺎﻟﻮگﺑﻪدﻳﺠﻴﺘﺎل )(A/D • ﺑﺎ ﻣﺮاﺟﻌﻪ ﺑﻪ ﻛﺎﺗﺎﻟﻮگ ﻣﺪارات ﻣﺠﺘﻤﻊ ﺧﻄﻲ ،ﻋﻤﻠﻜﺮد ﻣﺪار ﻣﺠﺘﻤﻊ ADC0804و ﻫﺮﻳﻚ از ﭘﺎﻳﻪﻫﺎي آن را ﺑﺮرﺳﻲ ﻛﻨﻴﺪ. • ﻣﺪار ﺷﻜﻞ) (3-6را ﺑﺒﻨﺪﻳﺪ. دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل LED 1K LED 1K ﺻﻔﺤﻪ 33 18 17 16 15 14 13 12 11 5 8 10 ADC0804 DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7 INTR VIN+ VINCLKIN CLKR CS RD WR AGND VREF/2 DGND VCC 6 7 5K 4 19 10K 1 2 3 9 150pF +15V 20 Start 10uF ﺷﻜﻞ) (3-6ﻳﻚ ﻧﻤﻮﻧﻪ ﻣﺪار ﻣﺒﺪل آﻧﺎﻟﻮگﺑﻪدﻳﺠﻴﺘﺎل • ﺑﺎ ﺗﻐﻴﻴﺮ ﭘﺘﺎﻧﺴﻴﻮﻣﺘﺮ ،وﻟﺘﺎژ ﭘﺎﻳﻪ Vin+را از ﺻﻔﺮ ﺗﺎ 5وﻟﺖ و ﺑﺎ ﮔﺎمﻫﺎي 0/2وﻟﺖ ﺗﻐﻴﻴﺮ دﻫﻴﺪ .در ﻫﺮ ﺣﺎﻟﺖ ﺑﻪوﺳﻴﻠﻪ دﻳﻮدﻫﺎي ﻧﻮراﻧﻲ ،ﻋﺪد ﻫﺸﺖ ﺑﻴﺘﻲ ﺧﺮوﺟﻲ را ﻳﺎدداﺷﺖ ﻛﻨﻴﺪ .ﺑﺮاي ﺷﺮوع اﻧﺠﺎم ﺗﺒﺪﻳﻞ آﻧﺎﻟﻮگ ﺑﻪ دﻳﺠﻴﺘﺎل ،از ﻛﻠﻴﺪ ﻓﺸﺎري Startاﺳﺘﻔﺎده ﻛﻨﻴﺪ. • ﭼﮕﻮﻧﻪ ﻣﻲﺗﻮان اﻳﻦ ﻣﺪار ﻣﺠﺘﻤﻊ را ﺑﻪ ﻳﻚ ﻣﻴﻜﺮوﭘﺮوﺳﺴﻮر ﻣﺘﺼﻞ ﻛﺮد؟ ﻣﻴﻜﺮوﭘﺮوﺳﺴﻮر دﻟﺨﻮاﻫﻲ را اﻧﺘﺨﺎب ﻛﻨﻴﺪ و ﻧﻘﺸﻪ ﻣﺪار ﻣﺮﺑﻮﻃﻪ را رﺳﻢ ﻛﻨﻴﺪ. 5-7-2 ﺷﺒﻴﻪﺳﺎزي • ﻣﺪار ﺷﻜﻞ) (2-6را ﺑﺎ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺷﺒﻴﻪﺳﺎزي ﻛﺮده و ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ را ﺑﺎ ﻧﺘﺎﻳﺞ آزﻣﺎﻳﺶ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. 8-2آزﻣﺎﻳﺶ ﻫﻔﺘﻢ :ﻣﺪارﻫﺎي ﻛﺎرﺑﺮدي ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ 1-8-2 ﻫﺪف ﺑﺮرﺳﻲ ﺑﺮﺧﻲ ﻛﺎرﺑﺮدﻫﺎي ﺧﻄﻲ و ﻏﻴﺮﺧﻄﻲ ﺗﻘﻮﻳﺖﻛﻨﻨﺪهﻫﺎي ﻋﻤﻠﻴﺎﺗﻲ دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 2-8-2 ﺻﻔﺤﻪ 34 ﺟﻤﻊﻛﻨﻨﺪه • ﻣﺪار ﺟﻤﻊﻛﻨﻨﺪه ﺷﻜﻞ) (1-7را ﺑﺒﻨﺪﻳﺪ .ﺳﻴﮕﻨﺎلﻫﺎي Vi1و Vi2ﻣﻲﺗﻮاﻧﻨﺪ DCﻳﺎ ACﺑﺎﺷﻨﺪ. 2R +15V 7 LM741 V+ OFS NULL OFS NULL 2R 1 5 Vi1 2 Vi2 6 Vo 3 4 V- NC 2R 8 -15V R ﺷﻜﻞ) (1-7ﻣﺪار ﺟﻤﻊﻛﻨﻨﺪه ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ • دو ﺳﻴﮕﻨﺎل Vi1و Vi2را ﻛﻪ ﻳﻜﻲ ﻣﺮﺑﻌﻲ و دﻳﮕﺮي ﺳﻴﻨﻮﺳﻲ ﺑﺎﺷﺪ ﺑﺎ ﻫﻢ ﺟﻤﻊ ﻛﻨﻴﺪ .ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ را ﻣﺸﺎﻫﺪه ﻛﺮده ﺑﺎ ﺷﻜﻞﻣﻮج وروديﻫﺎ در ﻳﻚ ﻣﺤﻮر ﻣﺨﺘﺼﺎت رﺳﻢ ﻛﻨﻴﺪ. • ﺳﭙﺲ دو ﺳﻴﮕﻨﺎل ﺳﻴﻨﻮﺳﻲ ﺑﻪ ﻓﺮﻛﺎﻧﺲﻫﺎي f1و f2را ﺑﺎ ﻫﻢ ﺟﻤﻊ ﻛﻨﻴﺪ. • ﺑﺎ ﻧﺰدﻳﻚﻛﺮدن f2ﺑﻪ ،f1اﺛﺮ ﺗﺪاﺧﻞ دو ﻣﻮج و ﭘﺪﻳﺪه ﺿﺮﺑﺎن را ﻣﺸﺎﻫﺪه ﻛﻨﻴﺪ .ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ و ﺷﻜﻞﻣﻮجﻫﺎي ورودي را روي ﻳﻚ ﻣﺤﻮر ﻣﺨﺘﺼﺎت رﺳﻢ ﻛﻨﻴﺪ. • ﭼﺮا ﻣﻮج ﺧﺮوﺟﻲ در اﻳﻦ ﺣﺎﻟﺖ از ﻧﻮع ﻣﺪوﻻﺳﻴﻮن داﻣﻨﻪ ﻧﻴﺴﺖ؟ 3-8-2 اﻧﺘﮕﺮالﮔﻴﺮ • ﻣﺪار اﻧﺘﮕﺮالﮔﻴﺮ ﺷﻜﻞ) (2-7را ﺑﺒﻨﺪﻳﺪ. ﺻﻔﺤﻪ 35 دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل C +15V 7 Vo LM741 V+ OFS NULL OFS NULL R 2 6 4 1 5 Vi 3 V- NC -15V 8 R ﺷﻜﻞ) (2-7ﻣﺪار اﻧﺘﺮالﮔﻴﺮ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ • ﺑﺎ اﻋﻤﺎل ﻳﻚ ﻣﻮج ﺳﻴﻨﻮﺳﻲ ﺑﻪ ورودي ﻣﺪار ،ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ را ﻣﺸﺎﻫﺪه ﻛﺮده و ﻫﻤﺮاه ﺑﺎ ﺷﻜﻞﻣﻮج ورودي در ﻳﻚ ﻣﺤﻮر ﻣﺨﺘﺼﺎت رﺳﻢ ﻛﻨﻴﺪ. • ﺑﺎ اﻋﻤﺎل ﻳﻚ ﻣﻮج ﻣﺮﺑﻌﻲ ﺑﻪ ورودي ﻣﺪار ،ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ را ﻣﺸﺎﻫﺪه ﻛﺮده و ﻫﻤﺮاه ﺑﺎ ﺷﻜﻞﻣﻮج ورودي در ﻳﻚ ﻣﺤﻮر ﻣﺨﺘﺼﺎت رﺳﻢ ﻛﻨﻴﺪ. • ﺷﻜﻞﻣﻮجﻫﺎي ﺧﺮوﺟﻲ ﺑﻪدﺳﺖ آﻣﺪه را ﺗﻔﺴﻴﺮ ﻛﻨﻴﺪ. دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 4-8-2 ﺻﻔﺤﻪ 36 ﻣﺸﺘﻖﮔﻴﺮ • ﻣﺪار ﻣﺸﺘﻖﮔﻴﺮ ﺷﻜﻞ) (3-7را ﺑﺒﻨﺪﻳﺪ. R +15V 7 LM741 V+ OFS NULL OFS NULL 1 5 C 2 Vo Vi 6 3 4 V- NC -15V 8 R ﺷﻜﻞ) (3-7ﻣﺪار ﻣﺸﺘﻖﮔﻴﺮ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ • ﻣﺸﺎﺑﻪ آزﻣﺎﻳﺶ ﻗﺒﻞ ﺑﺎ اﻋﻤﺎل ﺷﻜﻞﻣﻮجﻫﺎي ﺳﻴﻨﻮﺳﻲ و ﻣﺮﺑﻌﻲ ﺑﻪ ورودي ﻣﺪار ،ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ را در ﻫﺮ ﺣﺎﻟﺖ ﻣﺸﺎﻫﺪه ﻛﺮده و ﻫﻤﺮاه ﺑﺎ ﺷﻜﻞﻣﻮج ورودي ﻣﺮﺑﻮﻃﻪ در ﻳﻚ ﻣﺤﻮر ﻣﺨﺘﺼﺎت رﺳﻢ ﻛﻨﻴﺪ. • ﺷﻜﻞﻣﻮجﻫﺎي ﺧﺮوﺟﻲ ﺑﻪدﺳﺖ آﻣﺪه را ﺗﻔﺴﻴﺮ ﻛﻨﻴﺪ. دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 5-8-2 ﺻﻔﺤﻪ 37 ﻳﻜﺴﻮﺳﺎز ﻧﻴﻢﻣﻮج • ﻃﺮز ﻛﺎر ﻣﺪار ﻳﻜﺴﻮﺳﺎز ﻧﻴﻢﻣﻮج ﺷﻜﻞ) (4-7را ﺗﻮﺿﻴﺢ دﻫﻴﺪ. • ﭘﺲ از ﺑﺴﺘﻦ ﻣﺪار ،ﺑﺎ ﺗﻐﻴﻴﺮ وﻟﺘﺎژ ورودي ،Viﺗﻐﻴﻴﺮات وﻟﺘﺎژﻫﺎي ﺧﺮوﺟﻲ Vo1و Vo2را ﺑﺮرﺳﻲ ﻛﺮده و ﻣﺸﺨﺼﻪﻫﺎي اﻧﺘﻘﺎﻟﻲ ) Vo1 = f1(Viو ) Vo2 = f2(Viرا رﺳﻢ ﻛﻨﻴﺪ. • ﺑﺎ اﻋﻤﺎل ورودي ﺳﻴﻨﻮﺳﻲ ،ﻋﻤﻠﻜﺮد ﻳﻜﺴﻮﺳﺎزي ﻣﺪار را ﺑﺮرﺳﻲ ﻛﺮده و ﺷﻜﻞﻣﻮجﻫﺎي Vo1و Vo2را رﺳﻢ ﻛﻨﻴﺪ. • ﺣﺪاﻗﻞ ﻣﻘﺪار داﻣﻨﻪ ﺳﻴﮕﻨﺎل ورودي ﭼﻘﺪر ﻣﻲﺗﻮاﻧﺪ ﺑﺎﺷﺪ ﺗﺎ ﻋﻤﻞ ﻳﻜﺴﻮﺳﺎزي ﺑﻪدرﺳﺘﻲ اﻧﺠﺎم ﺷﻮد؟ • ﻣﺰﻳﺖ اﻳﻦ ﻣﺪار ﻧﺴﺒﺖ ﺑﻪ ﻳﻜﺴﻮﺳﺎز ﻧﻴﻢﻣﻮج ﻣﻌﻤﻮﻟﻲ )ﺑﺪون اﺳﺘﻔﺎده از ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ( ﭼﻴﺴﺖ؟ R D +15V Vo2 7 LM741 V+ D OFS NULL OFS NULL 4 R -15V R 2 6 Vo1 1 5 Vi 3 V- NC 8 R/2 ﺷﻜﻞ) (4-7ﻣﺪار ﻳﻜﺴﻮﺳﺎز ﻧﻴﻢﻣﻮج ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 6-8-2 ﺻﻔﺤﻪ 38 ﻳﻜﺴﻮﺳﺎز ﺗﻤﺎمﻣﻮج • ﻃﺮز ﻛﺎر ﻣﺪار ﻳﻜﺴﻮﺳﺎز ﺗﻤﺎمﻣﻮج ﺷﻜﻞ) (5-7را ﺗﻮﺿﻴﺢ دﻫﻴﺪ. • ﭘﺲ از ﺑﺴﺘﻦ ﻣﺪار ،ﺑﺎ ﺗﻐﻴﻴﺮ وﻟﺘﺎژ ورودي ،Viﺗﻐﻴﻴﺮات ﺧﺮوﺟﻲ Voرا ﺑﺮرﺳﻲ ﻛﺮده و ﻣﺸﺨﺼﻪ اﻧﺘﻘﺎﻟﻲ ) Vo = f (Viﻣﺪار را رﺳﻢ ﻛﻨﻴﺪ. • ﺑﺎ اﻋﻤﺎل ورودي ﺳﻴﻨﻮﺳﻲ ،ﻋﻤﻠﻜﺮد ﻳﻜﺴﻮﺳﺎزي ﻣﺪار را ﺑﺮرﺳﻲ ﻛﺮده و ﺷﻜﻞﻣﻮج Voرا رﺳﻢ ﻛﻨﻴﺪ. R +15V 7 R +15V LM741 V+ R OFS NULL OFS NULL 1 5 D 7 LM741 V+ OFS NULL OFS NULL 2 Vo 2 6 6 3 4 -15V 1 5 V- NC 3 4 8 D NC V- 8 -15V R ﺷﻜﻞ) (5-7ﻣﺪار ﻳﻜﺴﻮﺳﺎز ﺗﻤﺎمﻣﻮج ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ R Vi دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 7-8-2 ﺻﻔﺤﻪ 39 ﻗﺪرﻣﻄﻠﻖﮔﻴﺮ • ﻣﺪار ﻗﺪرﻣﻄﻠﻖﮔﻴﺮ ﺷﻜﻞ) (6-7را ﺑﺒﻨﺪﻳﺪ. • ﻧﺤﻮه ﻋﻤﻠﻜﺮد ﻣﺪار را ﺑﻪازاي وﻟﺘﺎژﻫﺎي ورودي DCو ACرا ﺑﺮرﺳﻲ ﻛﺮده و ﻣﺸﺨﺼﻪ )Vo = f(Vi ﻣﺪار را رﺳﻢ ﻛﻨﻴﺪ. ﺷﻜﻞ) (6-7ﻣﺪار ﻗﺪرﻣﻄﻠﻖﮔﻴﺮ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 8-8-2 ﺻﻔﺤﻪ 40 ﻣﺤﺪودﻛﻨﻨﺪه • ﻣﺪار ﻣﺤﺪودﻛﻨﻨﺪه ﺷﻜﻞ) (7-7را ﺑﺒﻨﺪﻳﺪ. • ﻧﺤﻮه ﻋﻤﻠﻜﺮد ﻣﺪار را ﺑﻪازاي ﺗﻐﻴﻴﺮات وﻟﺘﺎژ ورودي ﺑﺮرﺳﻲ ﻛﺮده و ﻣﺸﺨﺼﻪ ) Vo = f(Viﻣﺪار را رﺳﻢ ﻛﻨﻴﺪ. 6.2V 6.2V 10K +15V 7 Vo LM741 V+ OFS NULL OFS NULL 1 5 10K 2 6 Vi 3 4 -15V V- NC 8 5K ﺷﻜﻞ) (7-7ﻣﺪار ﻣﺤﺪودﻛﻨﻨﺪه ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 9-8-2 ﺑﺎﻧﺪ ﺑﻲواﻛﻨﺶ )(Dead Band • ﻣﺪاري ﻃﺮاﺣﻲ ﻛﻨﻴﺪ ﻛﻪ ﻣﺸﺨﺼﻪ اﻧﺘﻘﺎﻟﻲ آن ﻣﻄﺎﺑﻖ ﺷﻜﻞ) (8-7ﺑﺎﺷﺪ. • ﻣﺪار ﻃﺮاﺣﻲﺷﺪه را ﺑﺒﻨﺪﻳﺪ و ﻣﺸﺨﺼﻪ اﻧﺘﻘﺎﻟﻲ آن را ﺑﻪدﺳﺖ آورﻳﺪ. • ﻣﺸﺨﺼﻪ اﻧﺘﻘﺎﻟﻲ ﺑﻪدﺳﺖ آﻣﺪه را ﺑﺎ ﻣﺸﺨﺼﻪ ﻣﻮرد اﻧﺘﻈﺎر ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. ﺷﻜﻞ) (8-7ﻣﺸﺨﺼﻪ اﻧﺘﻘﺎﻟﻲ ﺑﺎﻧﺪ ﺑﻲواﻛﻨﺶ ﺻﻔﺤﻪ 41 دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل 10-8-2 ﺻﻔﺤﻪ 42 آﺷﻜﺎرﺳﺎز داﻣﻨﻪ • ﻣﺪار ﺷﻜﻞ) (9-7را ﺑﺒﻨﺪﻳﺪ و ﻋﻤﻠﻜﺮد آن را ﺑﺮرﺳﻲ ﻛﻨﻴﺪ. • ﻣﺪاري ﺑﺮاي ﺗﺨﻠﻴﻪ ﺧﺎزن Cﭘﻴﺸﻨﻬﺎد ﻛﻨﻴﺪ. +15V 7 D LM741 V+ OFS NULL OFS NULL 2 6 Vo1 4 C = 100uF 1 5 3 V- NC Vi 8 -15V ﺷﻜﻞ ) (9-7ﻣﺪار آﺷﻜﺎرﺳﺎز داﻣﻨﻪ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ 11-8-2 ﺷﺒﻴﻪﺳﺎزي * ﻣﺪارﻫﺎي آزﻣﺎﻳﺶﻫﺎﻳﻲ را ﻛﻪ اﻧﺠﺎم دادهاﻳﺪ ،ﺑﺎ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺷﺒﻴﻪﺳﺎزي ﻛﻨﻴﺪ .در ﻫﺮ ﻣﻮرد ﻧﺘﺎﻳﺢ ﺷﺒﻴﻪﺳﺎزي را ﺑﺎ ﻧﺘﺎﻳﺞ ﻋﻤﻠﻲ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. 43 ﺻﻔﺤﻪ دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل ﻣﺮاﺟﻊ3 1) T. A. DeMassa and Z. Ciccone, Digital Integrated Circuits, John Wiley & Sons, 1996. 2) A. S. Sedra and K. C. Swith, Microelectrronic Circuitrs (4th edition), Oxford University Press,1993. 3) L. O. Chua, C. A. Desoer and E.S. Kuh, Linear and Nonlinear Circuits, McGraw Hill, 1987. 4) A. Agarwal and J. H. Lang, Foundations of Analog and Digital Electronic Circuits, Morgan Kaufmann, 2005. ، ﻧﺸﺮ ﻋﻠﻮم داﻧﺸﮕﺎﻫﻲ،( ﻣﺪارﻫﺎي ﻣﻴﻜﺮواﻟﻜﺘﺮوﻧﻴﻚ )وﻳﺮاﺳﺖ ﭼﻬﺎرم،( ﻋﺎدل ﺻﺪره و ﻛﻨﺖ اﺳﻤﻴﺖ5 .1381 .National Semicoductors ( ﻛﺎﺗﺎﻟﻮگ آيﺳﻲﻫﺎي آﻧﺎﻟﻮگ ﺷﺮﻛﺖ6 دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل ﺻﻔﺤﻪ 44 4ﭘﻴﻮﺳﺖﻫﺎ ﺑﺮﮔﻪﻫﺎي ﻣﺸﺨﺼﺎت ﻓﻨﻲ ﺑﺮﺧﻲ ﻗﻄﻌﺎت ﻣﻮرد اﺳﺘﻔﺎده در آزﻣﺎﻳﺶﻫﺎ ،ﻧﻈﻴﺮ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ ،LM741 ﻣﺪارﻣﺠﺘﻤﻊ ﺗﺎﻳﻤﺮ LM555و ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ،DM74121ﺑﻪ ﭘﻴﻮﺳﺖ اﻳﻦ دﺳﺘﻮر ﻛﺎر اراﺋﻪ ﺷﺪهاﻧﺪ. LM741 Operational Amplifier General Description The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications. The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations. The LM741C is identical to the LM741/LM741A except that the LM741C has their performance guaranteed over a 0˚C to +70˚C temperature range, instead of −55˚C to +125˚C. Features Connection Diagrams Metal Can Package Dual-In-Line or S.O. Package 00934103 00934102 Note 1: LM741H is available per JM38510/10101 Order Number LM741H, LM741H/883 (Note 1), LM741AH/883 or LM741CH See NS Package Number H08C Order Number LM741J, LM741J/883, LM741CN See NS Package Number J08A, M08A or N08E Ceramic Flatpak 00934106 Order Number LM741W/883 See NS Package Number W10A Typical Application Offset Nulling Circuit 00934107 © 2004 National Semiconductor Corporation DS009341 www.national.com LM741 Operational Amplifier August 2000 LM741 Absolute Maximum Ratings (Note 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 7) LM741A LM741 ± 22V ± 22V ± 18V 500 mW 500 mW 500 mW ± 30V ± 15V ± 30V ± 15V ± 30V ± 15V Output Short Circuit Duration Continuous Continuous Continuous Operating Temperature Range −55˚C to +125˚C −55˚C to +125˚C 0˚C to +70˚C Storage Temperature Range −65˚C to +150˚C −65˚C to +150˚C −65˚C to +150˚C 150˚C 150˚C 100˚C N-Package (10 seconds) 260˚C 260˚C 260˚C J- or H-Package (10 seconds) 300˚C 300˚C 300˚C Vapor Phase (60 seconds) 215˚C 215˚C 215˚C Infrared (15 seconds) 215˚C 215˚C 215˚C Supply Voltage Power Dissipation (Note 3) Differential Input Voltage Input Voltage (Note 4) Junction Temperature LM741C Soldering Information M-Package See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices. ESD Tolerance (Note 8) 400V 400V 400V Electrical Characteristics (Note 5) Parameter Conditions LM741A Min Input Offset Voltage LM741 Min LM741C Typ Max 1.0 5.0 Min Units Typ Max Typ Max 0.8 3.0 2.0 6.0 mV 4.0 mV TA = 25˚C RS ≤ 10 kΩ RS ≤ 50Ω mV TAMIN ≤ TA ≤ TAMAX RS ≤ 50Ω RS ≤ 10 kΩ 6.0 Average Input Offset 7.5 15 mV µV/˚C Voltage Drift Input Offset Voltage TA = 25˚C, VS = ± 20V ± 10 ± 15 ± 15 mV Adjustment Range Input Offset Current TA = 25˚C 3.0 TAMIN ≤ TA ≤ TAMAX Average Input Offset 30 20 200 70 85 500 20 200 nA 300 nA 0.5 nA/˚C Current Drift Input Bias Current TA = 25˚C Input Resistance TA = 25˚C, VS = ± 20V 1.0 TAMIN ≤ TA ≤ TAMAX, 0.5 30 TAMIN ≤ TA ≤ TAMAX 80 80 0.210 6.0 500 80 1.5 0.3 2.0 500 0.8 0.3 2.0 nA µA MΩ MΩ VS = ± 20V Input Voltage Range ± 12 TA = 25˚C TAMIN ≤ TA ≤ TAMAX www.national.com ± 12 2 ± 13 ± 13 V V Parameter (Continued) Conditions LM741A Min Large Signal Voltage Gain Typ LM741 Max Min Typ 50 200 LM741C Max Min Typ 20 200 Units Max TA = 25˚C, RL ≥ 2 kΩ VS = ± 20V, VO = ± 15V 50 V/mV VS = ± 15V, VO = ± 10V V/mV TAMIN ≤ TA ≤ TAMAX, RL ≥ 2 kΩ, VS = ± 20V, VO = ± 15V 32 V/mV VS = ± 15V, VO = ± 10V VS = ± 5V, VO = ± 2V Output Voltage Swing 25 15 V/mV 10 V/mV ± 16 ± 15 V VS = ± 20V RL ≥ 10 kΩ RL ≥ 2 kΩ V VS = ± 15V RL ≥ 10 kΩ ± 12 ± 10 RL ≥ 2 kΩ Output Short Circuit TA = 25˚C 10 Current TAMIN ≤ TA ≤ TAMAX 10 Common-Mode TAMIN ≤ TA ≤ TAMAX Rejection Ratio 25 35 Supply Voltage Rejection TAMIN ≤ TA ≤ TAMAX, Ratio VS = ± 20V to VS = ± 5V RS ≤ 50Ω 25 ± 14 ± 13 V 25 mA 95 86 96 90 70 90 dB 77 96 77 96 dB µs TA = 25˚C, Unity Gain 0.25 0.8 0.3 0.3 Overshoot 6.0 20 5 5 TA = 25˚C Slew Rate TA = 25˚C, Unity Gain Supply Current TA = 25˚C Power Consumption TA = 25˚C 0.437 1.5 0.3 0.7 VS = ± 20V 80 LM741 % MHz 0.5 0.5 V/µs 1.7 2.8 1.7 2.8 mA 50 85 50 85 mW 150 VS = ± 15V LM741A dB dB Rise Time Bandwidth (Note 6) V mA 70 80 RS ≤ 10 kΩ Transient Response ± 12 ± 10 40 RS ≤ 10 kΩ, VCM = ± 12V RS ≤ 50Ω, VCM = ± 12V ± 14 ± 13 mW VS = ± 20V TA = TAMIN 165 mW TA = TAMAX 135 mW VS = ± 15V TA = TAMIN 60 100 mW TA = TAMAX 45 75 mW Note 2: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. 3 www.national.com LM741 Electrical Characteristics (Note 5) LM741 Electrical Characteristics (Note 5) (Continued) Note 3: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and Tj max. (listed under “Absolute Maximum Ratings”). Tj = TA + (θjA PD). Thermal Resistance θjA (Junction to Ambient) θjC (Junction to Case) Cerdip (J) DIP (N) HO8 (H) SO-8 (M) 100˚C/W 100˚C/W 170˚C/W 195˚C/W N/A N/A 25˚C/W N/A Note 4: For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply voltage. Note 5: Unless otherwise specified, these specifications apply for VS = ± 15V, −55˚C ≤ TA ≤ +125˚C (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to 0˚C ≤ TA ≤ +70˚C. Note 6: Calculated value from: BW (MHz) = 0.35/Rise Time(µs). Note 7: For military specifications see RETS741X for LM741 and RETS741AX for LM741A. Note 8: Human body model, 1.5 kΩ in series with 100 pF. Schematic Diagram 00934101 www.national.com 4 LM741 Physical Dimensions inches (millimeters) unless otherwise noted Metal Can Package (H) Order Number LM741H, LM741H/883, LM741AH/883, LM741AH-MIL or LM741CH NS Package Number H08C 5 www.national.com LM741 Physical Dimensions inches (millimeters) unless otherwise noted (Continued) Ceramic Dual-In-Line Package (J) Order Number LM741J/883 NS Package Number J08A Dual-In-Line Package (N) Order Number LM741CN NS Package Number N08E www.national.com 6 LM741 Operational Amplifier Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 10-Lead Ceramic Flatpak (W) Order Number LM741W/883, LM741WG-MPR or LM741WG/883 NS Package Number W10A National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications. For the most current product information visit us at www.national.com. LIFE SUPPORT POLICY NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. BANNED SUBSTANCE COMPLIANCE National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no ‘‘Banned Substances’’ as defined in CSP-9-111S2. National Semiconductor Americas Customer Support Center Email: [email protected] Tel: 1-800-272-9959 www.national.com National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: [email protected] Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: [email protected] National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: [email protected] Tel: 81-3-5639-7560 LM555 Timer General Description Features The LM555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and duty cycle are accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output circuit can source or sink up to 200mA or drive TTL circuits. n n n n n n n n n Direct replacement for SE555/NE555 Timing from microseconds through hours Operates in both astable and monostable modes Adjustable duty cycle Output can source or sink 200 mA Output and supply TTL compatible Temperature stability better than 0.005% per ˚C Normally on and normally off output Available in 8-pin MSOP package Applications n n n n n n n Precision timing Pulse generation Sequential timing Time delay generation Pulse width modulation Pulse position modulation Linear ramp generator Schematic Diagram 00785101 © 2006 National Semiconductor Corporation DS007851 www.national.com LM555 Timer July 2006 LM555 Connection Diagram Dual-In-Line, Small Outline and Molded Mini Small Outline Packages 00785103 Top View Ordering Information Package 8-Pin SOIC 8-Pin MSOP 8-Pin MDIP www.national.com Part Number Package Marking Media Transport LM555CM LM555CM Rails LM555CMX LM555CM 2.5k Units Tape and Reel LM555CMM Z55 1k Units Tape and Reel LM555CMMX Z55 3.5k Units Tape and Reel LM555CN LM555CN Rails 2 NSC Drawing M08A MUA08A N08E Soldering Information Dual-In-Line Package If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Supply Voltage Soldering (10 Seconds) +18V (SOIC and MSOP) 1180 mW LM555CMM 613 mW Storage Temperature Range Vapor Phase (60 Seconds) 215˚C Infrared (15 Seconds) 220˚C See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices. Operating Temperature Ranges LM555C 260˚C Small Outline Packages Power Dissipation (Note 3) LM555CM, LM555CN LM555 Absolute Maximum Ratings (Note 2) 0˚C to +70˚C −65˚C to +150˚C Electrical Characteristics (Notes 1, 2) (TA = 25˚C, VCC = +5V to +15V, unless othewise specified) Parameter Conditions Limits Units LM555C Min Supply Voltage Supply Current Typ 4.5 Max 16 V 6 15 mA VCC = 5V, RL = ∞ VCC = 15V, RL = ∞ (Low State) (Note 4) 3 10 1 % RA = 1k to 100kΩ, 50 ppm/˚C Timing Error, Monostable Initial Accuracy Drift with Temperature C = 0.1µF, (Note 5) Accuracy over Temperature 1.5 % Drift with Supply 0.1 %/V 2.25 % 150 ppm/˚C 3.0 % Timing Error, Astable Initial Accuracy Drift with Temperature RA, RB = 1k to 100kΩ, C = 0.1µF, (Note 5) Accuracy over Temperature Drift with Supply 0.30 %/V Threshold Voltage 0.667 x VCC VCC = 15V 5 V VCC = 5V 1.67 Trigger Voltage Trigger Current 0.5 Reset Voltage 0.4 Reset Current Threshold Current Control Voltage Level (Note 6) VCC = 15V VCC = 5V 9 2.6 Pin 7 Leakage Output High V 0.9 µA 0.5 1 V 0.1 0.4 mA 0.1 0.25 µA 10 3.33 11 4 V 1 100 nA Pin 7 Sat (Note 7) Output Low VCC = 15V, I7 = 15mA 180 Output Low VCC = 4.5V, I7 = 4.5mA 80 3 mV 200 mV www.national.com LM555 Electrical Characteristics (Notes 1, 2) (Continued) (TA = 25˚C, VCC = +5V to +15V, unless othewise specified) Parameter Conditions Limits Units LM555C Min Output Voltage Drop (Low) Typ Max ISINK = 10mA 0.1 0.25 V ISINK = 50mA 0.4 0.75 V ISINK = 100mA 2 2.5 V ISINK = 200mA 2.5 VCC = 15V V VCC = 5V ISINK = 8mA V ISINK = 5mA 0.25 ISOURCE = 200mA, VCC = 15V 12.5 V 12.75 13.3 V 2.75 3.3 V Rise Time of Output 100 ns Fall Time of Output 100 ns Output Voltage Drop (High) ISOURCE = 100mA, VCC = 15V VCC = 5V 0.35 V Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified. Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance. Note 3: For operating at elevated temperatures the device must be derated above 25˚C based on a +150˚C maximum junction temperature and a thermal resistance of 106˚C/W (DIP), 170˚C/W (S0-8), and 204˚C/W (MSOP) junction to ambient. Note 4: Supply current when output high typically 1 mA less at VCC = 5V. Note 5: Tested at VCC = 5V and VCC = 15V. Note 6: This will determine the maximum value of RA + RB for 15V operation. The maximum total (RA + RB) is 20MΩ. Note 7: No protection against excessive pin 7 current is necessary providing the package dissipation rating will not be exceeded. Note 8: Refer to RETS555X drawing of military LM555H and LM555J versions for specifications. www.national.com 4 LM555 Typical Performance Characteristics Minimuim Pulse Width Required for Triggering Supply Current vs. Supply Voltage 00785119 00785104 High Output Voltage vs. Output Source Current Low Output Voltage vs. Output Sink Current 00785121 00785120 Low Output Voltage vs. Output Sink Current Low Output Voltage vs. Output Sink Current 00785123 00785122 5 www.national.com LM555 Typical Performance Characteristics (Continued) Output Propagation Delay vs. Voltage Level of Trigger Pulse Output Propagation Delay vs. Voltage Level of Trigger Pulse 00785125 00785124 Discharge Transistor (Pin 7) Voltage vs. Sink Current Discharge Transistor (Pin 7) Voltage vs. Sink Current 00785127 00785126 www.national.com 6 MONOSTABLE OPERATION When the reset function is not in use, it is recommended that it be connected to VCC to avoid any possibility of false triggering. In this mode of operation, the timer functions as a one-shot (Figure 1). The external capacitor is initially held discharged by a transistor inside the timer. Upon application of a negative trigger pulse of less than 1/3 VCC to pin 2, the flip-flop is set which both releases the short circuit across the capacitor and drives the output high. Figure 3 is a nomograph for easy determination of R, C values for various time delays. NOTE: In monostable operation, the trigger should be driven high before the end of timing cycle. 00785105 00785107 FIGURE 1. Monostable FIGURE 3. Time Delay The voltage across the capacitor then increases exponentially for a period of t = 1.1 RA C, at the end of which time the voltage equals 2/3 VCC. The comparator then resets the flip-flop which in turn discharges the capacitor and drives the output to its low state. Figure 2 shows the waveforms generated in this mode of operation. Since the charge and the threshold level of the comparator are both directly proportional to supply voltage, the timing interval is independent of supply. ASTABLE OPERATION If the circuit is connected as shown in Figure 4 (pins 2 and 6 connected) it will trigger itself and free run as a multivibrator. The external capacitor charges through RA + RB and discharges through RB. Thus the duty cycle may be precisely set by the ratio of these two resistors. 00785106 VCC = 5V Top Trace: Input 5V/Div. TIME = 0.1 ms/DIV. RA = 9.1kΩ Middle Trace: Output 5V/Div. Bottom Trace: Capacitor Voltage 2V/Div. C = 0.01µF 00785108 FIGURE 2. Monostable Waveforms FIGURE 4. Astable During the timing cycle when the output is high, the further application of a trigger pulse will not effect the circuit so long as the trigger input is returned high at least 10µs before the end of the timing interval. However the circuit can be reset In this mode of operation, the capacitor charges and discharges between 1/3 VCC and 2/3 VCC. As in the triggered mode, the charge and discharge times, and therefore the frequency are independent of the supply voltage. 7 www.national.com LM555 during this time by the application of a negative pulse to the reset terminal (pin 4). The output will then remain in the low state until a trigger pulse is again applied. Applications Information LM555 Applications Information FREQUENCY DIVIDER (Continued) The monostable circuit of Figure 1 can be used as a frequency divider by adjusting the length of the timing cycle. Figure 7 shows the waveforms generated in a divide by three circuit. Figure 5 shows the waveforms generated in this mode of operation. 00785109 VCC = 5V Top Trace: Output 5V/Div. TIME = 20µs/DIV. Bottom Trace: Capacitor Voltage 1V/Div. 00785111 VCC = 5V Top Trace: Input 4V/Div. RA = 3.9kΩ TIME = 20µs/DIV. Middle Trace: Output 2V/Div. RB = 3kΩ RA = 9.1kΩ Bottom Trace: Capacitor 2V/Div. C = 0.01µF C = 0.01µF FIGURE 5. Astable Waveforms FIGURE 7. Frequency Divider The charge time (output high) is given by: t1 = 0.693 (RA + RB) C And the discharge time (output low) by: t2 = 0.693 (RB) C Thus the total period is: T = t1 + t2 = 0.693 (RA +2RB) C The frequency of oscillation is: PULSE WIDTH MODULATOR When the timer is connected in the monostable mode and triggered with a continuous pulse train, the output pulse width can be modulated by a signal applied to pin 5. Figure 8 shows the circuit, and in Figure 9 are some waveform examples. Figure 6 may be used for quick determination of these RC values. The duty cycle is: 00785112 FIGURE 8. Pulse Width Modulator 00785110 FIGURE 6. Free Running Frequency www.national.com 8 LM555 Applications Information (Continued) 00785113 VCC = 5V 00785115 Top Trace: Modulation 1V/Div. TIME = 0.2 ms/DIV. VCC = 5V Bottom Trace: Output Voltage 2V/Div. Top Trace: Modulation Input 1V/Div. TIME = 0.1 ms/DIV. RA = 9.1kΩ Bottom Trace: Output 2V/Div. RA = 3.9kΩ C = 0.01µF RB = 3kΩ C = 0.01µF FIGURE 9. Pulse Width Modulator FIGURE 11. Pulse Position Modulator PULSE POSITION MODULATOR This application uses the timer connected for astable operation, as in Figure 10, with a modulating signal again applied to the control voltage terminal. The pulse position varies with the modulating signal, since the threshold voltage and hence the time delay is varied. Figure 11 shows the waveforms generated for a triangle wave modulation signal. LINEAR RAMP When the pullup resistor, RA, in the monostable circuit is replaced by a constant current source, a linear ramp is generated. Figure 12 shows a circuit configuration that will perform this function. 00785116 00785114 FIGURE 12. FIGURE 10. Pulse Position Modulator Figure 13 shows waveforms generated by the linear ramp. The time interval is given by: VBE . 0.6V 9 www.national.com LM555 Applications Information (Continued) 00785117 VCC = 5V Top Trace: Input 3V/Div. TIME = 20µs/DIV. Middle Trace: Output 5V/Div. R1 = 47kΩ Bottom Trace: Capacitor Voltage 1V/Div. 00785118 R2 = 100kΩ RE = 2.7 kΩ FIGURE 14. 50% Duty Cycle Oscillator C = 0.01 µF Note that this circuit will not oscillate if RB is greater than 1/2 RA because the junction of RA and RB cannot bring pin 2 down to 1/3 VCC and trigger the lower comparator. FIGURE 13. Linear Ramp 50% DUTY CYCLE OSCILLATOR For a 50% duty cycle, the resistors RA and RB may be connected as in Figure 14. The time period for the output high is the same as previous, t1 = 0.693 RA C. For the output low it is t2 = ADDITIONAL INFORMATION Adequate power supply bypassing is necessary to protect associated circuitry. Minimum recommended is 0.1µF in parallel with 1µF electrolytic. Lower comparator storage time can be as long as 10µs when pin 2 is driven fully to ground for triggering. This limits the monostable pulse width to 10µs minimum. Delay time reset to output is 0.47µs typical. Minimum reset pulse width must be 0.3µs, typical. Thus the frequency of oscillation is Pin 7 current switches within 30ns of the output (pin 3) voltage. www.national.com 10 LM555 Physical Dimensions inches (millimeters) unless otherwise noted Small Outline Package (M) NS Package Number M08A 8-Lead (0.118” Wide) Molded Mini Small Outline Package NS Package Number MUA08A 11 www.national.com LM555 Timer Physical Dimensions inches (millimeters) unless otherwise noted (Continued) Molded Dual-In-Line Package (N) NS Package Number N08E National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications. For the most current product information visit us at www.national.com. LIFE SUPPORT POLICY NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. BANNED SUBSTANCE COMPLIANCE National Semiconductor follows the provisions of the Product Stewardship Guide for Customers (CSP-9-111C2) and Banned Substances and Materials of Interest Specification (CSP-9-111S2) for regulatory environmental compliance. Details may be found at: www.national.com/quality/green. Lead free products are RoHS compliant. National Semiconductor Americas Customer Support Center Email: [email protected] Tel: 1-800-272-9959 www.national.com National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: [email protected] Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: [email protected] National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: [email protected] Tel: 81-3-5639-7560 Revised November 1999 DM74121 One-Shot with Clear and Complementary Outputs General Description Features The DM74121 is a monostable multivibrator featuring both positive and negative edge triggering with complementary outputs. An internal 2kΩ timing resistor is provided for design convenience minimizing component count and layout problems. this device can be used with a single external capacitor. Inputs (A) are active-LOW trigger transition inputs and input (B) is and active-HIGH transition Schmitttrigger input that allows jitter-free triggering from inputs with transition rates as slow as 1 volt/second. A high immunity to VCC noise of typically 1.5V is also provided by internal circuitry at the input stage. ■ Triggered from active-HIGH transition or active-LOW transition inputs ■ Variable pulse width from 30 ns to 28 seconds ■ Jitter free Schmitt-trigger input ■ Excellent noise immunity typically 1.2V ■ Stable pulse width up to 90% duty cycle ■ TTL, DTL compatible ■ Compensated for VCC and temperature variations ■ Input clamp diodes To obtain optimum and trouble free operation please read operating rules and one-shot application notes carefully and observe recommendations. Ordering Code: Order Number DM74121N Package Number N14A Package Description 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Connection Diagram Function Table Inputs A2 B Q Q L X H L H X L H L H X X L L H H H X H ↓ H ↓ H H ↓ ↓ H L X ↑ X L H = HIGH Logic Level L = LOW Logic Level X = Can Be Either LOW or HIGH = A Positive Pulse = A Negative Pulse Outputs A1 ↑ L H ↑ = Positive Going Transition ↓ = Negative Going Transition Functional Description The basic output pulse width is determined by selection of an internal resistor RINT or an external resistor (RX) and capacitor (CX). Once triggered the output pulse width is independent of further transitions of the inputs and is function of the timing components. Pulse width can vary from a © 1999 Fairchild Semiconductor Corporation DS006538 few nano-seconds to 28 seconds by choosing appropriate RX and CX combinations. There are three trigger inputs from the device, two negative edge-triggering (A) inputs, one positive edge Schmitt-triggering (B) input. www.fairchildsemi.com DM74121 One-Shot with Clear and Complementary Outputs June 1989 DM74121 Operating Rules 1. To use the internal 2 kΩ timing resistor, connect the RINT pin to VCC. 2. An external resistor (RX) or the internal resistor (2 kΩ) and an external capacitor (CX) are required for proper operation. The value of CX may vary from 0 to any necessary value. For small time constants use high-quality mica, glass, polypropylene, polycarbonate, or polystyrene capacitors. For large time constants use solid tantalum or special aluminum capacitors. If the timing capacitors have leakages approaching 100 nA or if stray capacitance from either terminal to ground is greater than 50 pF the timing equations may not represent the pulse width the device generates. FIGURE 1. 3. The pulse width is essentially determined by external timing components RX and CX. For CX < 1000 pF see Figure 1 design curves on tW as function of timing components value. For CX > 1000 pF the output is defined as: t W = K RX CX FIGURE 2. where [RX is in Kilo-ohm] [CX is in pico Farad] [tW is in nano second] [K ≈ 0.7] 4. If CX is an electrolytic capacitor a switching diode is often required for standard TTL one-shots to prevent high inverse leakage current Figure 2. 5. Output pulse width versus VCC and operation temperatures: Figure 3 depicts the relationship between pulse width variation versus VCC. Figure 4 depicts pulse width variation versus ambient temperature. FIGURE 3. 6. The “K” coefficient is not a constant, but varies as a function of the timing capacitor CX. Figure 5 details this characteristic. 7. Under any operating condition CX and RX must be kept as close to the one-shot device pins as possible to minimize stray capacitance, to reduce noise pick-up, and to reduce I X R and Ldi/dt voltage developed along their connecting paths. If the lead length from CX to pins (10) and (11) is greater than 3 cm, for example, the output pulse width might be quite different from values predicted from the appropriate equations. A noninductive and low capacitive path is necessary to ensure complete discharge of CX in each cycle of its operation so that the output pulse width will be accurate. FIGURE 4. 8. VCC and ground wiring should conform to good highfrequency standards and practices so that switching transients on the VCC and ground return leads do not cause interaction between one-shots. A 0.01 µF to 0.10 µF bypass capacitor (disk ceramic or monolithic type) from VCC to ground is necessary on each device. Furthermore, the bypass capacitor should be located as close to the VCC-pin as space permits. For further detailed device characteristics and output performance please refer to the one-shot application note, AN366. FIGURE 5. www.fairchildsemi.com 2 Supply Voltage 7V Input Voltage Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The Recommended Operating Conditions table will define the conditions for actual device operation. 5.5V 0°C to +70°C Operating Free Air Temperature Range Storage Temperature Range −65°C to +150°C Recommended Operating Conditions Symbol Parameter VCC Supply Voltage VT+ Positive-Going Input Threshold Voltage Min Nom Max Units 4.75 5 5.25 V 1.4 2 V at the A Input (VCC = Min) VT− Negative-Going Input Threshold Voltage 0.8 at the A Input (VCC = Min) VT+ Positive-Going Input Threshold Voltage 1.5 at the B Input (VCC = Min) VT− 1.4 Negative-Going Input Threshold Voltage 0.8 at the B Input (VCC = Min) V 2 1.3 V V IOH HIGH Level Output Current −0.4 mA IOL LOW Level Output Current 16 mA tW Input Pulse Width (Note 2) dV/dt Rate of Rise or Fall of 40 ns 1 V/s 1 V/µs 1.4 40 kΩ 0 1000 µF Schmidt Input (B) (Note 2) dV/dt Rate of Rise or Fall of Schmidt Input (A) (Note 2) REXT External Timing Resistor (Note 2) CEXT External Timing Capacitance (Note 2) DC Duty Cycle (Note 2) TA RT = 2 kΩ 67 RT = REXT (Max) 90 Free Air Operating Temperature 0 % 70 °C Max Units −1.5 V Note 2: TA = 25°C and VCC = 5V Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted) Symbol Parameter Conditions VI Input Clamp Voltage VCC = Min, II = −12 mA VOH HIGH Level Output VCC = Min, IOH = Max, Voltage VIL = Max, VIH = Min LOW Level Output VCC = Min, IOL = Max, Voltage VIH = Max, VIL = Min VOL II Input Current @ Max Input Voltage IIH IIL Min 2.4 Typ (Note 3) 3.4 0.2 VCC = Max, VI = 5.5V HIGH Level VCC = Max, A1, A2 Input Current VI = 2.4V B LOW Level VCC = Max, A1, A2 B Input Current VI = 0.4V IOS Short Circuit Output Current VCC = Max (Note 4) ICC Supply Current VCC = Max V 0.4 V 1 mA 40 80 −1.6 −3.2 −18 −55 Quiescent 13 25 Triggered 23 40 µA mA mA mA Note 3: All typicals are at VCC = 5V, TA = 25°C. Note 4: Not more than one output should be shorted at a time. 3 www.fairchildsemi.com DM74121 Absolute Maximum Ratings(Note 1) DM74121 Switching Characteristics At VCC = 5V and TA = 25°C (See Test Waveforms and Output Load Section) Symbol tPLH tPLH Parameter Propagation Delay Time CL = 15 pF Q RL = 400Ω Propagation Delay Time Output Pulse Width Using the Max Units 70 ns 55 ns 80 ns 65 ns 150 ns 50 ns 600 800 ns 6 8 ms RINT to VCC B to Propagation Delay Time Min CEXT = 80 pF A1, A2 Propagation Delay Time HIGH-to-LOW Level Output tW(OUT) Conditions to Q HIGH-to-LOW Level Output tPHL To (Output) LOW-to-HIGH Level Output LOW-to-HIGH Level Output tPHL From (Input) A1, A2 to Q B to Q CEXT = 80 pF A1, A2 or B RINT to VCC to Q, Q RL = 400Ω Internal Timing Resistor 70 CL = 15 pF tW(OUT) Output Pulse A1, A2 CEXT = 0 pF Width Using Zero to Q, Q RINT to VCC RL = 400Ω Timing Capacitance CL = 15 pF tW(OUT) Output Pulse A1, A2 CEXT = 100pF Width Using External to Q, Q RINT = 10 kΩ RL = 400Ω Timing Resistor CL = 15pF A1, A2 CEXT = 1 µF to Q, Q RINT = 10 kΩ RL = 400Ω CL = 15 pF www.fairchildsemi.com 4 DM74121 One-Shot with Clear and Complementary Outputs Physical Dimensions inches (millimeters) unless otherwise noted 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N14A Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. www.fairchildsemi.com 5 www.fairchildsemi.com This datasheet has been downloaded from: www.DatasheetCatalog.com Datasheets for electronic components.
© Copyright 2026 Paperzz