Digital Electronics Lab 1391.pdf

‫ﺑﻪﻧﺎم آنﻛﻪ ﺟﺎن را ﻓﻜﺮت آﻣﻮﺧﺖ‬
‫‪ ‬‬
‫داﻧﺸﮕﺎه ﺻﻨﻌﺘﻲ ﺷﺮﻳﻒ‬
‫داﻧﺸﻜﺪهي ﻣﻬﻨﺪﺳﻲ ﻛﺎﻣﭙﻴﻮﺗﺮ‬
‫دﺳﺘﻮر ﻛﺎر‬
‫آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫ﺗﻬﻴ‪‬ﻪ و ﺗﺪوﻳﻦ‪:‬‬
‫دﻛﺘﺮ ﻣﺤﻤ‪‬ﺪﺗﻘﻲ ﻣﻨﻈﻮري‬
‫ﻣﻬﻨﺪس ﺳﻴ‪‬ﺪﻣﺤﻤ‪‬ﺪ ﻣﻜّﻲ‬
‫ﺑﺎزﻧﮕﺮي‪:‬‬
‫دﻛﺘﺮ ﻋﻠﻲﻣﺤﻤ‪‬ﺪاﻓﺸﻴﻦ ﻫﻤ‪‬ﺖﻳﺎر‬
‫ﺗﺎﺑﺴﺘﺎن ‪1391‬‬
‫ﻓﻬﺮﺳﺖ ﻣﻨﺪرﺟﺎت‬
‫ﻋﻨﻮان‬
‫‪1‬‬
‫‪2‬‬
‫ﺻﻔﺤﻪ‬
‫‪ ‬ﻣﻌﺮﻓﻲ ‪1.......................................................................................................................................‬‬
‫‪ ‬‬
‫‪ 1 ............................................................................................................................................................................‬‬
‫‪1-1‬‬
‫‪ ‬ﻫﺪف‬
‫‪2-1‬‬
‫‪ ‬ﭘﻴﺶﻧﻴﺎزﻫﺎي ﻧﻈﺮي و ﻋﻤﻠﻲ ‪ 1 ...................................................................................................................................................‬‬
‫‪3-1‬‬
‫‪ ‬ﺗﺠﻬﻴﺰات و ﻧﺮماﻓﺰارﻫﺎي ﻻزم ‪ 2 ..................................................................................................................................................‬‬
‫‪4-1‬‬
‫‪ ‬دﺳﺘﻮر ﺗﻬﻴﻪ ﮔﺰارش ﻛﺎر ‪ 4 ...........................................................................................................................................................‬‬
‫‪5-1‬‬
‫‪ ‬ﻣﻘﺮرات آزﻣﺎﻳﺸﮕﺎه‪ 5 .....................................................................................................................................................................‬‬
‫‪ ‬آزﻣﺎﻳﺶﻫﺎ ‪6 ................................................................................................................................‬‬
‫‪ ‬‬
‫‪ 6 ............................................................................................................................................................................‬‬
‫‪1-2‬‬
‫‪ ‬ﻣﻘﺪﻣﻪ‬
‫‪2-2‬‬
‫‪ ‬آزﻣﺎﻳﺶ او‪‬ل‪ :‬ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ ‪ 8 ..............................................................................................................................................‬‬
‫‪2-3‬‬
‫‪ ‬آزﻣﺎﻳﺶ دو‪‬م‪ :‬ﻣﺪارﻫﺎي اﺷﻤﻴﺖ ﺗﺮﻳﮕﺮ ‪ 14 ................................................................................................................................‬‬
‫‪2-4‬‬
‫‪ ‬آزﻣﺎﻳﺶ ﺳﻮ‪‬م‪ :‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ ‪ 17 ............................................................................................................................‬‬
‫‪2-5‬‬
‫‪ ‬آزﻣﺎﻳﺶ ﭼﻬﺎرم‪ :‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ‪ 19 ........................................................................................................................‬‬
‫‪2-6‬‬
‫‪ ‬آزﻣﺎﻳﺶ ﭘﻨﺠﻢ‪ :‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ‪ 23 ................................................................................................................................‬‬
‫‪7-2‬‬
‫‪ ‬آزﻣﺎﻳﺶ ﺷﺸﻢ‪ :‬ﻣﺪار ﻧﻤﻮﻧﻪﺑﺮدار و ﻣﺒﺪلﻫﺎي دﻳﺠﻴﺘﺎلﺑﻪآﻧﺎﻟﻮگ و آﻧﺎﻟﻮگﺑﻪدﻳﺠﻴﺘﺎل ‪ 30 .................................................‬‬
‫‪8-2‬‬
‫‪ ‬آزﻣﺎﻳﺶ ﻫﻔﺘﻢ‪ :‬ﻣﺪارﻫﺎي ﻛﺎرﺑﺮدي ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ ‪ 33 ...........................................................................................‬‬
‫‪3‬‬
‫‪ ‬ﻣﺮاﺟﻊ ‪43 ...................................................................................................................................‬‬
‫‪ ‬‬
‫‪4‬‬
‫‪ ‬ﭘﻴﻮﺳﺖﻫﺎ ‪44 ..............................................................................................................................‬‬
‫‪ ‬‬
‫‪ ‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪ ‬ﺻﻔﺤﻪ ‪1‬‬
‫‪ 1‬ﻣﻌﺮﻓﻲ‬
‫‪ 1-1‬ﻫﺪف‬
‫ﻫﺪف از ﺑﺮﮔﺰاري اﻳﻦ آزﻣﺎﻳﺸﮕﺎه ﻣﺎﻧﻨﺪ دﻳﮕﺮ آزﻣﺎﻳﺸﮕﺎﻫﻬﺎي دوره ﻛﺎرﺷﻨﺎﺳﻲ ﺗﻔﻬﻴﻢ ﺑﻴﺶﺗﺮ ﻣﻮﺿﻮﻋﺎت ﻧﻈﺮي‬
‫ﻣﻄﺮحﺷﺪه در ﻛﻼس درس ﻣﺮﺑﻮﻃﻪ و آﺷﻨﺎﻳﻲ ﻋﻤﻠﻲ ﺑﺎ ﻣﺒﺎﺣﺚ ﻣﻮرد ﻧﻈﺮ اﺳﺖ‪.‬‬
‫در اﻳﻦ آزﻣﺎﻳﺸﮕﺎه ﺑﺎ روشﻫﺎي ﻋﻤﻠﻲ ﺳﺎﺧﺖ ﻣﺪارﻫﺎي اﻟﻜﺘﺮوﻧﻴﻜﻲ ﺑﺎ ﻛﺎرﺑﺮد دﻳﺠﻴﺘﺎل آﺷﻨﺎ ﺧﻮاﻫﻴﺪ ﺷﺪ‪.‬‬
‫اﮔﺮﭼﻪ ﺑﺴﻴﺎري از ﻣﺪارﻫﺎي اﻟﻜﺘﺮوﻧﻴﻜﻲ ﺑﺎ ﻛﺎرﺑﺮد دﻳﺠﻴﺘﺎل ﺑﻪ ﺷﻜﻞ ﻣﺪارﻫﺎي ﻣﺠﺘﻤﻊ ﺑﻪ ﺑﺎزار ﻋﺮﺿﻪ ﺷﺪهاﻧﺪ‪،‬‬
‫وﻟﻲ ﻣﺪارﻫﺎي ﺑﺎ ﻗﻄﻌﺎت ﻣﺠﺰا ﻧﻴﺰ ﻫﻨﻮز ﻛﺎرﺑﺮد دارﻧﺪ‪ .‬ﻟﺬا در اﻳﻦ آزﻣﺎﻳﺸﮕﺎه‪ ،‬ﻣﺪارﻫﺎي ﻣﺨﺘﻠﻒ را ﻫﻢ ﺑﺎ‬
‫اﺳﺘﻔﺎده از ﻣﺪارﻫﺎي ﻣﺠﺘﻤﻊ و ﻫﻢ ﺑﺎ اﺳﺘﻔﺎده از ﻗﻄﻌﺎت ﻣﺠﺰا ﻣﻮرد آزﻣﺎﻳﺶ ﻗﺮار ﺧﻮاﻫﻴﺪ داد ﺗﺎ ﺑﺎ ﻧﺤﻮه‬
‫ﻋﻤﻠﻜﺮد اﻧﻮاع ﻣﺨﺘﻠﻒ ﻣﺪارﻫﺎي ﻛﺎرﺑﺮدي آﺷﻨﺎ ﺷﻮﻳﺪ‪.‬‬
‫‪ 2-1‬ﭘﻴﺶﻧﻴﺎزﻫﺎي ﻧﻈﺮي و ﻋﻤﻠﻲ‬
‫اﻳﻦ دﺳﺘﻮر ﻛﺎر ﺑﺮاي داﻧﺸﺠﻮﻳﺎن رﺷﺘﻪ ﻣﻬﻨﺪﺳﻲ ﻛﺎﻣﭙﻴﻮﺗﺮ و ﺑﺮاي ﺗﻜﻤﻴﻞ ﻣﺒﺎﺣﺚ ﺗﺪرﻳﺲﺷﺪه در درس‬
‫اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل ﺗﻬﻴﻪ و ﺗﻨﻈﻴﻢ ﺷﺪه اﺳﺖ‪ .‬ﻟﺬا ﺷﻤﺎ ﺑﺎﻳﺪ درس اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل را ﺑﻪﻋﻨﻮان ﭘﻴﺶﻧﻴﺎز‬
‫ﻧﻈﺮي و درس آزﻣﺎﻳﺸﮕﺎه ﻣﺪارﻫﺎي ﻣﻨﻄﻘﻲ را ﺑﻪﻋﻨﻮان ﭘﻴﺶﻧﻴﺎز ﻋﻤﻠﻲ اﻳﻦ آزﻣﺎﻳﺸﮕﺎه ﮔﺬراﻧﺪه ﺑﺎﺷﻴﺪ‪ .‬ﺿﻤﻨﺎً‬
‫ﻻزم اﺳﺖ ﻛﻪ ﺑﺎ ﻳﻜﻲ ﻧﺮماﻓﺰارﻫﺎي ﺷﺒﻴﻪﺳﺎزي ﻣﺪارﻫﺎي اﻟﻜﺘﺮﻳﻜﻲ و اﻟﻜﺘﺮوﻧﻴﻜﻲ ﻧﻈﻴﺮ ‪ PSPICE‬آﺷﻨﺎﻳﻲ داﺷﺘﻪ‬
‫ﺑﺎﺷﻴﺪ‪.‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪ ‬ﺻﻔﺤﻪ ‪2‬‬
‫‪ 3-1‬ﺗﺠﻬﻴﺰات و ﻧﺮماﻓﺰارﻫﺎي ﻻزم‬
‫‪1-3-1‬‬
‫ﺗﺠﻬﻴﺰات‬
‫ﺗﺠﻬﻴﺰات ﻣﻮرد اﺳﺘﻔﺎده در اﻳﻦ آزﻣﺎﻳﺸﮕﺎه ﻣﺸﺎﺑﻪ آزﻣﺎﻳﺸﮕﺎه ﻣﺪارﻫﺎي ﻣﻨﻄﻘﻲ اﺳﺖ ﻛﻪ ﻗﺒﻼً ﺑﺎ آﻧﻬﺎ آﺷﻨﺎ ﺷﺪه‪،‬‬
‫و ﻧﺤﻮه اﺳﺘﻔﺎده از آﻧﻬﺎ را ﻓﺮا ﮔﺮﻓﺘﻪاﻳﺪ‪ .‬ﺑﺎ اﻳﻦ وﺟﻮد‪ ،‬ﺗﻮﺿﻴﺤﺎت ﻣﺨﺘﺼﺮ زﻳﺮ درﺧﺼﻮص ﺗﺠﻬﻴﺰات‬
‫آزﻣﺎﻳﺸﮕﺎه ﻣﻲﺗﻮاﻧﺪ ﺑﻪ ﻳﺎدآوري آﻣﻮﺧﺘﻪﻫﺎي ﻗﺒﻠﻲ ﻛﻤﻚ ﻛﻨﺪ‪:‬‬
‫اﻟﻒ( ﻧﻮﺳﺎنﻧﻤﺎ )اﺳﻴﻠﻮﺳﻜﻮپ( وﺳﻴﻠﻪ ﻣﻨﺤﺼﺮ ﺑﻪﻓﺮدي اﺳﺖ ﺑﺮاي ﻣﺸﺎﻫﺪه ﺷﻜﻞﻣﻮج ﺳﻴﮕﻨﺎلﻫﺎي‬
‫ﻣﻮرد ﻧﻈﺮ‪ .‬ﻧﻮﺳﺎنﻧﻤﺎ ﺷﻜﻞﻣﻮج وﻟﺘﺎژ را ﻧﻤﺎﻳﺶ ﻣﻲدﻫﺪ ﻟﺬا ﺑﺮاي ﻣﺸﺎﻫﺪه ﺷﻜﻞﻣﻮج ﺟﺮﻳﺎن ﻻزم اﺳﺖ‬
‫ﺗﻤﻬﻴﺪاﺗﻲ ﺑﺮاي ﺗﺒﺪﻳﻞ ﺟﺮﻳﺎن ﻣﻮرد ﻧﻈﺮ ﺑﻪ وﻟﺘﺎژ ﺑﻴﻨﺪﻳﺸﻴﺪ‪.‬‬
‫ﺿﻤﻨﺎً ﻧﻮﺳﺎنﻧﻤﺎﻫﺎي ﻣﻮﺟﻮد در آزﻣﺎﻳﺸﮕﺎه دوﻛﺎﻧﺎﻟﻪ ﻫﺴﺘﻨﺪ و ﻣﻲﺗﻮاﻧﻨﺪ ﺑﻪﺻﻮرت ﻫﻢزﻣﺎن دو‬
‫ﺷﻜﻞﻣﻮج را ﻧﻤﺎﻳﺶ دﻫﻨﺪ‪ .‬ﻓﻘﻂ ﺑﺎﻳﺪ ﺗﻮﺟﻪ ﻛﻨﻴﺪ ﻛﻪ ﻣﺮﺟﻊ ﺳﻨﺠﺶ وﻟﺘﺎژ ﻫﺮ دو ﺷﻜﻞﻣﻮج ﺑﺎﻳﺪ ﻳﻚ‬
‫ﻧﻘﻄﻪ از ﻣﺪار ﺑﺎﺷﺪ‪ .‬ﺑﻪ ﻋﺒﺎرت دﻳﮕﺮ اﺗﺼﺎل زﻣﻴﻦ ﭘﺮوبﻫﺎي ﻧﻮﺳﺎنﻧﻤﺎ ﺑﺎﻳﺪ ﺑﻪ ﻳﻚ ﻧﻘﻄﻪ از ﻣﺪار ﻣﺘﺼﻞ‬
‫ﺷﻮﻧﺪ‪ .‬در ﻏﻴﺮ اﻳﻦﺻﻮرت‪ ،‬اﺗﺼﺎل زﻣﻴﻦ ﭘﺮوبﻫﺎي ﺑﻪ دو ﻧﻘﻄﻪ از ﻣﺪار ﻣﻮﺟﺐ ﺗﻐﻴﻴﺮ ﺳﺎﺧﺘﺎر ﻣﺪار‬
‫ﺷﺪه و ﺷﻜﻞﻣﻮجﻫﺎي ﻣﺸﺎﻫﺪه ﺷﺪه ﻣﻌﺘﺒﺮ ﻧﺨﻮاﻫﻨﺪ ﺑﻮد‪.‬‬
‫ب( ﻣﻮﻟﺪ ﺷﻜﻞﻣﻮج )ﻓﺎﻧﻜﺸﻦ ژﻧﺮاﺗﻮر( وﺳﻴﻠﻪاي اﺳﺖ ﺑﺮاي ﺗﻮﻟﻴﺪ ﺷﻜﻞﻣﻮجﻫﺎي ورودي ﺑﻪ‬
‫ﻣﺪارﻫﺎي ﻣﻮرد آزﻣﺎﻳﺶ‪ .‬ﺑﺎﻳﺪ ﺗﻮﺟﻪ ﻛﻨﻴﺪ ﻛﻪ ﺷﻜﻞﻣﻮج ﻣﻮرد ﻧﻈﺮ را از ﻟﺤﺎظ داﻣﻨﻪ‪ ،‬ﻓﺮﻛﺎﻧﺲ و‬
‫دﻳﮕﺮ ﻣﺸﺨﺼﺎت ﻗﺎﺑﻞﺗﻨﻈﻴﻢ‪ ،‬ﻗﺒﻞ از اﻋﻤﺎل ﺧﺮوﺟﻲ ﻣﻮﻟﺪ ﺑﻪ ورودي ﻣﺪار ﺗﻨﻈﻴﻢ ﺷﻮد؛ ﺗﺎ از آﺳﻴﺐ‬
‫اﺣﺘﻤﺎﻟﻲ ﺑﻪ ﻣﺪار ﺟﻠﻮﮔﻴﺮي ﺷﻮد‪.‬‬
‫ج( ﻣﻨﺒﻊﺗﻐﺬﻳﻪ وﻟﺘﺎژﻣﺴﺘﻘﻴﻢ وﺳﻴﻠﻪاي اﺳﺖ ﺑﺮاي ﺗﺄﻣﻴﻦ وﻟﺘﺎژﻫﺎي ﻣﺴﺘﻘﻴﻢ ﻻزم ﺑﺮاي ﺗﻐﺬﻳﻪ ﻣﺪارﻫﺎي‬
‫ﻣﻮرد آزﻣﺎﻳﺶ‪ .‬اﻟﺰاﻣﻲ اﺳﺖ ﻛﻪ ﻗﺒﻞ از اﺗﺼﺎل ﺧﺮوﺟﻲ ﻣﻨﺎﺑﻊ ﺑﻪ ﻣﺪار‪ ،‬وﻟﺘﺎژ آﻧﻬﺎ را ﺗﻨﻈﻴﻢ ﻛﺮده و‬
‫ﻣﻴﺰان ﺟﺮﻳﺎندﻫﻲ آﻧﻬﺎ را ﻧﻴﺰ ﻣﺘﻨﺎﺳﺐ ﺑﺎ ﻣﺼﺮف ﺗﻘﺮﻳﺒﻲ ﻣﺪار ﻣﺤﺪود ﻛﻨﻴﺪ‪.‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪ ‬ﺻﻔﺤﻪ ‪3‬‬
‫د( ﻣﻮﻟﺘﻲﻣﺘﺮ وﺳﻴﻠﻪاي اﺳﺖ ﺑﺮاي اﻧﺪازهﮔﻴﺮي ﻛﻤﻴﺖﻫﺎي اﺻﻠﻲ ﻧﻈﻴﺮ وﻟﺘﺎژ‪ ،‬ﺟﺮﻳﺎن و ﻣﻘﺎوﻣﺖ‪ .‬اﻟﺒﺘﻪ‬
‫ﺑﺮﺧﻲ ﻣﺪلﻫﺎي اﻳﻦ وﺳﻴﻠﻪ ﻛﻤﻴﺖﻫﺎي ﻓﺮﻋﻲ ﻧﻈﻴﺮ ﻇﺮﻓﻴﺖ و دﻣﺎ را ﻧﻴﺰ اﻧﺪازهﮔﻴﺮي ﻣﻲﻛﻨﻨﺪ‪.‬‬
‫ﺣﺘﻤﺎً ﻗﺒﻞ از اﻧﺪازهﮔﻴﺮي ﻫﺮ ﻛﻤﻴﺖ‪ ،‬ﭘﺮوبﻫﺎي ﻣﻮﻟﺘﻲﻣﺘﺮ را ﺑﻪ وروديﻫﺎي ﻣﺮﺑﻮﻃﻪ ﻣﺘﺼﻞ ﻛﺮده و‬
‫ﻛﻠﻴﺪ اﻧﺘﺨﺎبﮔﺮ ﻣﻮﻟﺘﻲﻣﺘﺮ را در وﺿﻌﻴﺖ ﻣﻨﺎﺳﺐ ﻗﺮار دﻫﻴﺪ‪.‬‬
‫ﺑﺮاي اﻧﺪازهﮔﻴﺮي وﻟﺘﺎژ‪ ،‬ﺑﺎﻳﺪ ﭘﺮوبﻫﺎي ﻣﻮﻟﺘﻲﻣﺘﺮ را ﺑﻪ دو ﻧﻘﻄﻪ ﻣﻮرد ﻧﻈﺮ ﻛﻪ اﺧﺘﻼف وﻟﺘﺎژﺷﺎن ﻣﻮرد‬
‫ﻧﻈﺮ اﺳﺖ‪ ،‬ﻣﺘﺼﻞ ﻛﻨﻴﺪ‪.‬‬
‫ﺑﺮاي اﻧﺪازهﮔﻴﺮي ﺟﺮﻳﺎن‪ ،‬ﺑﺎﻳﺪ اﺗﺼﺎل ﻣﺤﻞ ﻋﺒﻮر ﺟﺮﻳﺎن ﻣﻮرد ﻧﻈﺮ را ﻗﻄﻊ ﻛﺮده و ﭘﺮوبﻫﺎي‬
‫ﻣﻮﻟﺘﻲﻣﺘﺮ را ﺑﻴﻦ دو ﻗﺴﻤﺖ ﻗﻄﻊ ﺷﺪه از ﻳﻜﺪﻳﮕﺮ ﻗﺮار داده و ﻣﺪار را از ﻃﺮﻳﻖ ﻣﻮﻟﺘﻲ ﻣﺠﺪداً ﺑﺮﻗﺮار‬
‫ﻛﻨﻴﺪ‪ .‬ﺑﺎﻳﺪ ﺗﻮﺟﻪ ﻛﻨﻴﺪ ﻛﻪ ﻣﻮﻟﺘﻲﻣﺘﺮ ﺑﺮاي اﻧﺪازهﮔﻴﺮي ﺟﺮﻳﺎن ﺣﺪاﻛﺜﺮ ‪ 200‬ﻣﻴﻠﻲآﻣﭙﺮ ﻃﺮاﺣﻲ ﺷﺪه و‬
‫ﻋﺒﻮر ﺟﺮﻳﺎن ﺑﻴﺶﺗﺮ ﻣﻮﺟﺐ ﺳﻮﺧﺘﻦ ﻓﻴﻮز ﺗﻌﺒﻴﻪﺷﺪه در داﺧﻞ آن ﺧﻮاﻫﺪ ﺷﺪ‪ .‬اﻟﺒﺘﻪ ﻣﻮﻟﺘﻲﻣﺘﺮ ﻳﻚ‬
‫وروديﻣﺠﺰا ﺑﺮاي اﻧﺪازهﮔﻴﺮي ﺟﺮﻳﺎنﻫﺎي ﺑﻴﺶﺗﺮ ﻧﻴﺰ دارد ﻛﻪ ﻓﻴﻮزي ﺑﺮاي ﺣﺎﻓﻈﺖ از ﻣﻮﻟﺘﻲﻣﺘﺮ در‬
‫ﻣﺴﻴﺮ اﻳﻦ ورودي ﺗﻌﺒﻴﻪ ﻧﺸﺪه اﺳﺖ‪ .‬ﻟﺬا در ﺻﻮرت ﻧﻴﺎز ﺑﻪ اﻧﺪازهﮔﻴﺮي ﺟﺮﻳﺎنﻫﺎي ﺑﻴﺶﺗﺮ از ‪200‬‬
‫ﻣﻴﻠﻲآﻣﭙﺮ ﻻزم اﺳﺖ ﻛﻪ از ﻣﺤﺪود ﺑﻮدن ﺟﺮﻳﺎن ﻣﻮرد اﻧﺪازهﮔﻴﺮي اﻃﻤﻴﻨﺎن ﺣﺎﺻﻞ ﻛﻨﻴﺪ‪.‬‬
‫ﺑﺮاي اﻧﺪازهﮔﻴﺮي ﻣﻘﺪار ﻣﻘﺎوﻣﺖ ﻳﺎ ﻇﺮﻓﻴﺖ ﻳﻚ ﻗﻄﻌﻪ‪ ،‬ﺑﻬﺘﺮ اﺳﺖ ﻗﻄﻌﻪ را ﺧﺎرج از ﻣﺪار ﺑﻪ‬
‫ﭘﺮوبﻫﺎي ﻣﻮﻟﺘﻲﻣﺘﺮ ﻣﺘﺼﻞ ﻛﻨﻴﺪ‪ .‬اﻧﺪازهﮔﻴﺮي ﻣﻘﺪار ﻗﻄﻌﻪ در داﺧﻞ ﻣﺪار ﻣﻤﻜﻦ اﺳﺖ ﺑﻪ دﻟﻴﻞ وﺟﻮد‬
‫ﻣﺴﻴﺮﻫﺎي ﻣﻮازي در داﺧﻞ ﻣﺪار ﻣﻨﺠﺮ ﺧﻄﺎي ﻗﺎﺑﻞﺗﻮﺟﻪ در اﻧﺪازهﮔﻴﺮي ﺷﻮد‪ .‬در ﻫﺮ ﺣﺎل ﻫﺮﮔﺰ ﻗﻄﻌﻪ‬
‫را داﺧﻞ ﻣﺪار روﺷﻦ و در ﺣﺎل ﻛﺎر اﻧﺪازهﮔﻴﺮي ﻧﻜﻨﻴﺪ‪ .‬اﻧﺪازهﮔﻴﺮي ﻗﻄﻌﻪ در داﺧﻞ ﻣﺪار روﺷﻦ ﻋﻼوه‬
‫ﺑﺮ اﻳﻦﻛﻪ ﻣﻤﻜﻦ اﺳﺖ ﻣﻮﺟﺐ آﺳﻴﺐ رﺳﻴﺪن ﺑﻪ ﻣﻮﻟﺘﻲﻣﺘﺮ ﺷﻮد‪ ،‬ﻋﻤﺪﺗﺎً ﻧﺘﻴﺠﻪ ﻧﺎدرﺳﺖ و ﺑﻌﻀﺎً‬
‫ﻏﻴﺮﻣﻨﻄﻘﻲ ﺑﻪ دﻧﺒﺎل ﺧﻮاﻫﺪ داﺷﺖ‪.‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪ ‬ﺻﻔﺤﻪ ‪4‬‬
‫ه( ﺑﺮد ﺳﻮراخدار ﻛﻪ ﺑﺮاي ﺑﺴﺘﻦ ﻣﺪارﻫﺎ و ﺑﺮﻗﺮار اﺗﺼﺎﻻت ﺑﻴﻦ ﻗﻄﻌﺎت ﻣﺪار ﻣﻮرد اﺳﺘﻔﺎده ﻗﺮار‬
‫ﻣﻲﮔﻴﺮد‪.‬‬
‫‪2-3-1‬‬
‫ﻧﺮماﻓﺰارﻫﺎ‬
‫در ﭘﺎﻳﺎن ﺗﻤﺎم آزﻣﺎﻳﺶﻫﺎ ﺳﺮﻓﺼﻠﻲ ﺗﺤﺖ ﻋﻨﻮان ﺷﺒﻴﻪﺳﺎزي ﺑﻪ ﭼﺸﻢ ﻣﻲﺧﻮرد‪ .‬ﻟﺬا ﻻزم اﺳﺖ ﻋﻤﻠﻜﺮد‬
‫ﻣﺪارﻫﺎي ﻣﻮرد آزﻣﺎﻳﺶ ﺑﺎ ﻧﺘﺎﻳﺞ ﺷﺒﻴﻪﺳﺎزي ﻛﺎﻣﭙﻴﻮﺗﺮي آﻧﻬﺎ ﻣﻘﺎﻳﺴﻪ ﺷﻮد‪ .‬ﭘﺲ ﻻزم اﺳﺖ ﻛﻪ ﺑﺎ ﻳﻜﻲ از‬
‫ﻧﺮماﻓﺰارﻫﺎي ﺷﺒﻴﻪﺳﺎزي ﻣﺪارﻫﺎي اﻟﻜﺘﺮﻳﻚ و اﻟﻜﺘﺮوﻧﻴﻜﻲ آﺷﻨﺎ ﺑﺎﺷﻴﺪ‪ .‬از ﻧﺮماﻓﺰارﻫﺎي ﻣﻨﺎﺳﺐ ﺑﺮاي‬
‫ﺷﺒﻴﻪﺳﺎزي ﻣﺪارﻫﺎي ﻣﻮرد آزﻣﺎﻳﺶ ﻣﻲﺗﻮان از ‪ PSPICE‬و ‪ ADS‬ﻧﺎم ﺑﺮد؛ ﻛﻪ اﺣﺘﻤﺎﻻً ﺑﺎ اوﻟﻲ آﺷﻨﺎﻳﻲ‬
‫ﺑﻴﺶﺗﺮي دارﻳﺪ‪.‬‬
‫‪ 4-1‬دﺳﺘﻮر ﺗﻬﻴﻪ ﮔﺰارش ﻛﺎر‬
‫ﭘﻴﺶ از ﺷﺮوع ﻫﺮ ﺟﻠﺴﻪ ﺑﺎﻳﺪ دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺶ آن ﺟﻠﺴﻪ را ﺑﻪ دﻗﺖ ﻣﻄﺎﻟﻌﻪ ﻛﺮده و ﺑﺎ اﺳﺘﻔﺎده از ﻣﻌﻠﻮﻣﺎت‬
‫ﺧﻮد ﻳﺎ ﺑﺎ ﻣﺮاﺟﻌﻪ ﺑﻪ ﻛﺘﺎبﻫﺎي درﺳﻲ ﻣﺮﺑﻮﻃﻪ ﻛﻪ ﺑﺮﺧﻲ از آﻧﻬﺎ در ﺑﺨﺶ ﻣﺮاﺟﻊ اﻳﻦ دﺳﺘﻮر ﻛﺎر ﻣﻌﺮﻓﻲ‬
‫ﺷﺪهاﻧﺪ‪ ،‬ﻃﺮاﺣﻲﻫﺎي ﺧﻮاﺳﺘﻪﺷﺪه را اﻧﺠﺎم دﻫﻴﺪ‪.‬‬
‫ﺿﻤﻨﺎً ﺑﻬﺘﺮ اﺳﺖ ﻛﻪ ﺷﺒﻴﻪﺳﺎزي ﻣﺪارﻫﺎ را ﻧﻴﺰ ﻗﺒﻞ از ﺟﻠﺴﻪ آزﻣﺎﻳﺶ اﻧﺠﺎم دﻫﻴﺪ‪.‬‬
‫ﻻزم اﺳﺖ ﻛﻪ ﻧﺘﺎﻳﺞ ﻃﺮاﺣﻲ و ﺷﺒﻴﻪﺳﺎزي را در ﻗﺎﻟﺐ ﻳﻚ ﭘﻴﺶﮔﺰارش آﻣﺎده ﻛﺮده و در ﺷﺮوع ﺟﻠﺴﻪ‬
‫آزﻣﺎﻳﺸﮕﺎه ﺑﻪ دﺳﺘﻴﺎر آﻣﻮزﺷﻲ آزﻣﺎﻳﺸﮕﺎه ﺗﺤﻮﻳﻞ دﻫﻴﺪ‪.‬‬
‫ﺑﻬﺘﺮ اﺳﺖ ﻛﻪ ﭘﻴﺶﮔﺰارش را ﺑﻪﮔﻮﻧﻪاي آﻣﺎده ﻛﻨﻴﺪ ﻛﻪ ﺑﺎ اﺿﺎﻓﻪ ﻛﺮدن ﻧﺘﺎﻳﺞ آزﻣﺎﻳﺶ و ﻣﻘﺎﻳﺴﻪ ﻧﺘﺎﻳﺞ ﻋﻤﻠﻲ ﺑﺎ‬
‫ﻧﺘﺎﻳﺞ ﻧﻈﺮي و ﺷﺒﻴﻪﺳﺎزي‪ ،‬ﻧﺴﺨﻪ ﻗﺎﺑﻞاراﺋﻪاي ﺑﺮاي ﮔﺰارش ﻧﻬﺎﻳﻲ آزﻣﺎﻳﺸﮕﺎه در اﺧﺘﻴﺎر داﺷﺘﻪ ﺑﺎﺷﻴﺪ‪.‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪ ‬ﺻﻔﺤﻪ ‪5‬‬
‫ﺗﻮﺟﻪ داﺷﺘﻪ ﺑﺎﺷﻴﺪ ﻛﻪ ﻣﻘﺎﻳﺴﻪ ﻧﺘﺎﻳﺞ ﻋﻤﻠﻲ و ﻧﻈﺮي و اراﺋﻪ دﻻﻳﻠﻲ ﻣﻨﻄﻘﻲ ﺑﺮاي اﺧﺘﻼﻓﺎت اﺣﺘﻤﺎﻟﻲ ﻣﻮﺟﻮد ﺑﻴﻦ‬
‫ﻧﺘﺎﻳﺞ ﻣﺬﻛﻮر ﻳﻜﻲ ازﻣﻬﻢﺗﺮﻳﻦ ارﻛﺎن ﮔﺰارش آزﻣﺎﻳﺸﮕﺎه اﺳﺖ ﻛﻪ ﻫﺮﮔﺰ ﻧﺒﺎﻳﺪ ﻓﺮاﻣﻮش ﺷﺪه و ﻳﺎ ﺑﻲارزش ﺗﻠﻘﻲ‬
‫ﺷﻮد‪.‬‬
‫‪ 5-1‬ﻣﻘﺮرات آزﻣﺎﻳﺸﮕﺎه‬
‫ﻣﻘﺮرات اﻳﻦ آزﻣﺎﻳﺸﮕﺎه ﻧﻴﺰ ﻣﺸﺎﺑﻪ دﻳﮕﺮ آزﻣﺎﻳﺸﮕﺎﻫﻬﺎي داﻧﺸﻜﺪه اﺳﺖ ﻛﻪ ﺑﺮاي ﻳﺎدآوري ﺑﻪ اﺧﺘﺼﺎر در زﻳﺮ‬
‫ﺑﻴﺎن ﺷﺪهاﻧﺪ‪ .‬رﻋﺎﻳﺖ ﻛﻠﻴﻪ ﻣﻘﺮرات آزﻣﺎﻳﺸﮕﺎه ﺑﺮاي ﺷﻤﺎ اﻟﺰاﻣﻲ اﺳﺖ و ﺗﺨﻄﻲ از آﻧﻬﺎ ﻣﻮﺟﺐ ﻛﺴﺮﻧﻤﺮه و ﺣﺘﻲ‬
‫ﻋﺪم ﻛﺴﺐ ﻧﻤﺮه ﻗﺒﻮﻟﻲ در آزﻣﺎﻳﺸﮕﺎه ﺧﻮاﻫﺪ ﺷﺪ‪.‬‬
‫• ﺣﻀﻮر در ﺗﻤﺎﻣﻲ ﺟﻠﺴﺎت آزﻣﺎﻳﺸﮕﺎه‬
‫)ﻋﺪم ﺣﻀﻮر در ﻳﻚ ﻳﺎ دو ﺟﻠﺴﻪ ﺟﻠﺴﻪ ﻣﻮﺟﺐ ﻛﺴﺮﻧﻤﺮه و ﻋﺪمﺣﻀﻮر در ﺑﻴﺶ از دو ﺟﻠﺴﻪ ﻣﻮﺟﺐ‬
‫ﻛﺴﺐ ﻧﻤﺮه ﻣﺮدودي ﺧﻮاﻫﺪ ﺷﺪ‪(.‬‬
‫• ﺣﻀﻮر ﺑﻪﻣﻮﻗﻊ در ﻣﺤﻞ آزﻣﺎﻳﺸﮕﺎه و ﻣﻌﺮﻓﻲ ﺧﻮد ﺑﻪ دﺳﺘﻴﺎر آﻣﻮزﺷﻲ‬
‫• ﺧﺎرجﻧﺸﺪن از آزﻣﺎﻳﺸﮕﺎه ﺑﺪون اﺟﺰاي دﺳﺘﻴﺎر آﻣﻮزﺷﻲ‬
‫• رﻋﺎﻳﺖ ﻧﻈﻢ‪ ،‬ﺳﻜﻮت و ﻧﻈﺎﻓﺖ‬
‫• ﻋﺪم دﺧﺎﻟﺖ در ﻛﺎر ﮔﺮوﻫﻬﺎي دﻳﮕﺮ‬
‫• ﺑﺬل ﺗﻮﺟﻪ و دﻗﺖ ﻛﺎﻓﻲ در اﺳﺘﻔﺎده از ﺗﺠﻬﻴﺰات و ﻗﻄﻌﺎت‬
‫• ﻣﺮﺗﺐ ﻛﺮدن ﻣﻴﺰ ﻛﺎر و ﺻﻨﺪﻟﻲﻫﺎ‬
‫• ﻗﺮاردادن ﺗﻤﺎﻣﻲ ﺗﺠﻬﻴﺰات اﺳﺘﻔﺎدهﺷﺪه در ﻣﺤﻞ ﺧﻮد‬
‫• ﺑﺎزﮔﺮداﻧﺪن ﺗﻤﺎﻣﻲ ﻗﻄﻌﺎت اﺳﺘﻔﺎدهﺷﺪه ﺑﻪ ﺟﻌﺒﻪﻫﺎي ﻣﺮﺑﻮﻃﻪ‬
‫)اﮔﺮ ﺑﻪ ﺳﻼﻣﺖ ﻗﻄﻌﺎت اﺳﺘﻔﺎدهﺷﺪه ﻣﻄﻤﺌﻦ ﻧﻴﺴﺘﻴﺪ‪ ،‬ﻣﻮﺿﻮع را ﺑﺎ دﺳﺘﻴﺎر آﻣﻮزﺳﻲ درﻣﻴﺎن ﮔﺬاﺷﺘﻪ و‬
‫از ﻗﺮاردادن ﻗﻄﻌﺎت ﻣﺸﻜﻮك در ﺟﻌﺒﻪﻫﺎ اﺟﺘﻨﺎب ﻛﻨﻴﺪ‪(.‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪ ‬ﺻﻔﺤﻪ ‪6‬‬
‫‪ 2‬آزﻣﺎﻳﺶﻫﺎ‬
‫‪ 1-2‬ﻣﻘﺪﻣﻪ‬
‫در ﺑﺮﺧﻲ آزﻣﺎﻳﺶﻫﺎ اﺑﺘﺪا ﻣﺪار ﺗﺮاﻧﺰﻳﺴﺘﻮري ﻣﻮرد ﺑﺤﺚ ﻗﺮار ﮔﺮﻓﺘﻪ اﺳﺖ ﺗﺎ ﻣﻔﺎﻫﻴﻢ اﺻﻠﻲ ﻣﻮرد ﺗﺄﻛﻴﺪ ﻗﺮار‬
‫ﮔﻴﺮﻧﺪ‪ .‬ﺳﭙﺲ ﻣﺪارﻫﺎي دﻳﮕﺮي ﺑﺎ ﻣﺪارﻫﺎي ﻣﺠﺘﻤﻊ ﻣﻌﺮﻓﻲ ﺷﺪهاﻧﺪ ﺗﺎ ﻋﻼوه ﺑﺮ ﮔﺴﺘﺮش دﻳﺪ ﻃﺮاﺣﻲ‪ ،‬ﺑﺮاي‬
‫ﭘﺮوژهﻫﺎي ﺑﺰرﮔﺘﺮ ﻧﻴﺰ ﻗﺎﺑﻠﻴﺖ اﻧﺘﺨﺎب ﻣﻨﺎﺳﺐﺗﺮ ﻓﺮاﻫﻢ ﺷﻮد‪.‬‬
‫ﻋﻨﻮان‪ ،‬ﻫﺪف و ﻣﺮاﺣﻞ آزﻣﺎﻳﺶﻫﺎي ﻃﺮاﺣﻲﺷﺪه ﺑﺮاي اﻳﻦ آزﻣﺎﻳﺸﮕﺎه ﺑﻪ ﻗﺮار زﻳﺮاﺳﺖ‪:‬‬
‫آزﻣﺎﻳﺶ اول‪ :‬ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ‬
‫ﻫﺪف‪ :‬آﺷﻨﺎﻳﻲ ﺑﺎ ﻣﻨﻄﻖ ﻣﺜﺒﺖ و ﻣﻨﻄﻖ ﻣﻨﻔﻲ‪ ،‬ﺗﻮان ﻣﺼﺮﻓﻲ‪ ،‬ﺗﺄﺧﻴﺮ اﻧﺘﺸﺎر‪ ،‬ﺣﺪ ﭘﺎرازﻳﺖ‪ ،‬ﺑﺮوندﻫﻲ و‬
‫روشﻫﺎي ﺳﺎﺧﺖ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ‬
‫ﻣﺮاﺣﻞ‪ :‬آﺷﻨﺎﻳﻲ ﺑﺎ ﺧﺎﻧﻮاده ‪ ،RTL‬ﻣﻨﻄﻖ ﻣﺜﺒﺖ و ﻣﻨﻔﻲ‪ ،‬ﺧﺎﻧﻮاده ‪ ،DTL‬ﺧﺎﻧﻮاده ‪ HTL‬و ﺧﺎﻧﻮاده ‪TTL‬‬
‫آزﻣﺎﻳﺶ دوم‪ :‬ﻣﺪارﻫﺎي اﺷﻤﻴﺖﺗﺮﻳﮕﺮ‬
‫ﻫﺪف‪ :‬ﺑﺮرﺳﻲ اﻧﻮاع ﻣﺪارﻫﺎي اﺷﻤﻴﺖﺗﺮﻳﮕﺮ و ﻋﻤﻠﻜﺮد آﻧﻬﺎ‬
‫ﻣﺮاﺣﻞ‪ :‬اﺷﻤﻴﺖﺗﺮﻳﮕﺮ ﺗﺮاﻧﺰﻳﺴﺘﻮري‪ ،‬اﺷﻤﻴﺖﺗﺮﻳﮕﺮ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‪ ،‬اﺷﻤﻴﺖﺗﺮﻳﮕﺮ ﺑﺎ ﻣﺪارات‬
‫ﻣﺠﺘﻤﻊ‬
‫آزﻣﺎﻳﺶ ﺳﻮم‪ :‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ‬
‫ﻫﺪف‪ :‬ﺑﺮرﺳﻲ اﻧﻮاع ﻣﺪارﻫﺎي ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ و ﻋﻤﻠﻜﺮد آﻧﻬﺎ‬
‫ﻣﺮاﺣﻞ‪ :‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري و ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ ﺑﺎ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ‬
‫آزﻣﺎﻳﺶ ﭼﻬﺎرم‪ :‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ‬
‫ﻫﺪف‪ :‬ﺑﺮرﺳﻲ اﻧﻮاع ﻣﺪارﻫﺎي ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ و ﻋﻤﻠﻜﺮد آﻧﻬﺎ‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪ ‬ﺻﻔﺤﻪ ‪7‬‬
‫ﻣﺮاﺣﻞ‪ :‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺑﺎ ﺗﺮاﻧﺰﻳﺴﺘﻮر‪ ،‬ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‪ ،‬ﺑﺎ ﺗﺎﻳﻤﺮ ‪ 555‬و ﺑﺎ ﮔﻴﺖﻫﺎي‬
‫ﻣﻨﻄﻘﻲ‬
‫آزﻣﺎﻳﺶ ﭘﻨﺠﻢ‪ :‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ‬
‫ﻫﺪف‪ :‬ﺑﺮرﺳﻲ اﻧﻮاع ﻣﺪارﻫﺎي ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ و ﻋﻤﻠﻜﺮد آﻧﻬﺎ‬
‫ﻣﺮاﺣﻞ‪ :‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري ﺑﺎ ﻛﻮﭘﻼژ ﻛﻠﻜﺘﻮر‪ ،‬ﺗﺮاﻧﺰﻳﺴﺘﻮري ﺑﺎ ﻛﻮﭘﻼژ اﻣﻴﺘﺮ‪ ،‬آﺳﺘﺎﺑﻞ ﺑﺎ‬
‫ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‪ ،‬ﺑﺎ ﺗﺎﻳﻤﺮ ‪ 555‬و ﺑﺎ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ‬
‫آزﻣﺎﻳﺶ ﺷﺸﻢ‪ :‬ﻣﺪار ﻧﻤﻮﻧﻪﺑﺮدار و ﻣﺒﺪلﻫﺎي دﻳﺠﻴﺘﺎلﺑﻪآﻧﺎﻟﻮك و آﻧﺎﻟﻮگﺑﻪدﻳﺠﻴﺘﺎل‬
‫ﻫﺪف‪ :‬ﺑﺮرﺳﻲ ﻋﻤﻠﻜﺮد ﻣﺪارﻫﺎي ﻧﻤﻮﻧﻪﺑﺮدار و ﻣﺒﺪلﻫﺎي دﻳﺠﻴﺘﺎلﺑﻪآﻧﺎﻟﻮگ و آﻧﺎﻟﻮگﺑﻪدﻳﺠﻴﺘﺎل‬
‫ﻣﺮاﺣﻞ‪ :‬ﻣﺪار ﻧﻤﻮﻧﻪﺑﺮدار‪ ،‬ﻣﺒﺪل دﻳﺠﻴﺘﺎلﺑﻪآﻧﺎﻟﻮگ و ﻣﺒﺪل آﻧﺎﻟﻮگﺑﻪدﻳﺠﻴﺘﺎل‬
‫آزﻣﺎﻳﺶ ﻫﻔﺘﻢ‪ :‬ﻣﺪارﻫﺎي ﻛﺎرﺑﺮدي ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‬
‫ﻫﺪف‪ :‬ﺑﺮرﺳﻲ ﺑﺮﺧﻲ ﻛﺎرﺑﺮدﻫﺎي ﺧﻄﻲ و ﻏﻴﺮﺧﻄﻲ ﺗﻘﻮﻳﺖﻛﻨﻨﺪهﻫﺎي ﻋﻤﻠﻴﺎﺗﻲ‬
‫ﻣﺮاﺣﻞ‪ :‬ﻣﺪارﻫﺎي ﺟﻤﻊﻛﻨﻨﺪه‪ ،‬اﻧﺘﮕﺮالﮔﻴﺮ‪ ،‬ﻣﺸﺘﻖﮔﻴﺮ‪،‬ﻳﻜﺴﻮﺳﺎز ﻧﻴﻢﻣﻮج‪ ،‬ﻳﻜﺴﻮﺳﺎز ﺗﻤﺎمﻣﻮج‪ ،‬ﻗﺪرﻣﻄﻠﻖﮔﻴﺮ‪،‬‬
‫ﻣﺤﺪودﻛﻨﻨﺪه‪ ،‬ﺑﺎﻧﺪ ﺑﻲواﻛﻨﺶ و آﺷﻜﺎرﺳﺎز داﻣﻨﻪ‬
‫‪ ‬ﺻﻔﺤﻪ ‪8‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪ 2-2‬آزﻣﺎﻳﺶ او‪‬ل‪ :‬ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ‬
‫‪1-2-2‬‬
‫ﻫﺪف‬
‫آﺷﻨﺎﻳﻲ ﺑﺎ ﻣﻨﻄﻖ ﻣﺜﺒﺖ و ﻣﻨﻄﻖ ﻣﻨﻔﻲ‪ ،‬ﺗﻮان ﻣﺼﺮﻓﻲ )‪ ،(Power Dissipation‬ﺗﺄﺧﻴﺮ اﻧﺘﺸﺎر ‪(Propagation‬‬
‫)‪ ،Delay‬ﺣﺪ ﭘﺎرازﻳﺖ )‪ ،(Noise Margin‬ﺑﺮوندﻫﻲ )‪ (Fan Out‬و روشﻫﺎي ﺳﺎﺧﺖ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ‬
‫‪2-2-2‬‬
‫ﺧﺎﻧﻮاده ‪RTL‬‬
‫• ﺑﺎ اﺳﺘﻔﺎده از ﻳﻚ ﺗﺮاﻧﺰﻳﺴﺘﻮر و ﺗﻌﺪادي ﻣﻘﺎوﻣﺖ‪ ،‬ﻣﺪار ﻳﻚ ﮔﻴﺖ ‪ NOT‬را ﻃﺮاﺣﻲ ﻛﻨﻴﺪ‪.‬‬
‫• ﻣﺪار را ﺑﺒﻨﺪﻳﺪ و ﻣﺸﺨﺼﻪ )‪ Vo = f(Vi‬آن را اﻧﺪازهﮔﻴﺮي ﻛﺮده و رﺳﻢ ﻛﻨﻴﺪ‪.‬‬
‫‪3-2-2‬‬
‫ﻣﻨﻄﻖ ﻣﺜﺒﺖ و ﻣﻨﻄﻖ ﻣﻨﻔﻲ‬
‫• ﻣﺪار ﺷﻜﻞ)‪ (1-1‬را ﺑﺒﻨﺪﻳﺪ و ﺑﺎ در ﻧﻈﺮ ﮔﺮﻓﺘﻦ وﻟﺘﺎژﻫﺎي ﺻﻔﺮ و ‪ 12‬وﻟﺖ ﺑﺮاي ﺻﻔﺮ و ﻳﻚ ﻣﻨﻄﻘﻲ‪،‬‬
‫ﺟﺪول درﺳﺘﻲ را ﺑﺮاي دو ﺣﺎﻟﺖ ﻣﻨﻄﻖ ﻣﺜﺒﺖ و ﻣﻨﻄﻖ ﻣﻨﻔﻲ ﺑﻪدﺳﺖ آورﻳﺪ‪.‬‬
‫• در ﻫﺮ ﺣﺎﻟﺖ‪ ،‬ﻣﺪار ﭼﻪ ﮔﻴﺘﻲ را ﺗﺤﻘﻖ داده اﺳﺖ؟‬
‫‪D1‬‬
‫‪A‬‬
‫‪D2‬‬
‫‪B‬‬
‫‪D3‬‬
‫‪C‬‬
‫‪Y‬‬
‫‪R‬‬
‫‪4.7K‬‬
‫ﺷﻜﻞ)‪ (1-1‬ﮔﻴﺖ ‪ RDL‬ﺑﺎ ﺳﻪ ورودي‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪4-2-2‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪9‬‬
‫ﺧﺎﻧﻮاده ‪DTL‬‬
‫• ﻣﺪار ﺷﻜﻞ)‪ (2-1‬را ﺑﺒﻨﺪﻳﺪ و ﺑﺎ ﻓﺮض ﻣﻨﻄﻖ ﻣﺜﺒﺖ و اﺳﺘﻔﺎده از وﻟﺘﺎژﻫﺎي ﺻﻔﺮ وﻟﺖ و ‪ 12‬وﻟﺖ‪ ،‬ﺟﺪول‬
‫درﺳﺘﻲ را ﺑﻪدﺳﺖ آورﻳﺪ‪.‬‬
‫• اﻳﻦ ﻣﺪار ﭼﻪ ﻧﻮع ﮔﻴﺘﻲ را ﺗﺤﻘﻖ داده اﺳﺖ؟‬
‫• ﺑﺎ وﺻﻞﻛﺮدن دو ﺗﺎ از وروديﻫﺎ ﺑﻪ ‪12‬وﻟﺖ و ورودي ﺳﻮم ﺑﻪ ﻣﻮج ﻣﺮﺑﻌﻲ ﺑﺎ داﻣﻨﻪ ﺑﻴﻦ ﺻﻔﺮ ﺗﺎ ‪12‬وﻟﺖ ‪،‬‬
‫‪ TPHL، TPLH ،VOL ، VOH‬ﺣﺪ ﭘﺎرازﻳﺖ )‪ (Noise Margin‬و ﺗﻮان ﻣﺼﺮﻓﻲ ﮔﻴﺖ را ﺑﻪﻃﻮر ﻋﻤﻠﻲ ﺑﻪدﺳﺖ‬
‫آورﻳﺪ‪.‬‬
‫• ﺑﺮوندﻫﻲ )‪ (Fan Out‬را ﺑﺮاي اﻳﻦ ﻣﺪار ﻣﺤﺎﺳﺒﻪ ﻛﻨﻴﺪ‪.‬‬
‫‪+12V‬‬
‫‪+12V‬‬
‫‪R1‬‬
‫‪15K‬‬
‫‪R4‬‬
‫‪2.2K‬‬
‫‪D1‬‬
‫‪A‬‬
‫‪Y‬‬
‫‪R2‬‬
‫‪Q‬‬
‫‪NPN‬‬
‫‪15K‬‬
‫‪R3‬‬
‫‪100K‬‬
‫‪D2‬‬
‫‪B‬‬
‫‪D3‬‬
‫‪C‬‬
‫‪-12V‬‬
‫ﺷﻜﻞ)‪ (2-1‬ﮔﻴﺖ ‪ DTL‬ﺑﺎ ﺳﻪ ورودي‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪5-2-2‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪10‬‬
‫ﺧﺎﻧﻮاده ‪HTL‬‬
‫• آزﻣﺎﻳﺶ ﻗﺒﻞ را ﺑﺮاي ﻣﺪار ﺷﻜﻞ)‪ (3-1‬ﺗﻜﺮار ﻛﻨﻴﺪ‪ .‬داﻣﻨﻪ وﻟﺘﺎژ ورودي را ﺑﻪﺟﺎي ‪12‬وﻟﺖ‪15 ،‬وﻟﺖ در‬
‫ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ‪.‬‬
‫• ﻣﺰﻳﺖ ﻣﺪار ﺷﻜﻞ)‪ (3-1‬ﺑﺮ ﻣﺪار ﺷﻜﻞ)‪ (2-1‬ﭼﻴﺴﺖ؟‬
‫‪+15V‬‬
‫‪+15V‬‬
‫‪R1‬‬
‫‪3K‬‬
‫‪R4‬‬
‫‪15K‬‬
‫‪R2‬‬
‫‪12K‬‬
‫‪Y‬‬
‫‪D4‬‬
‫‪Q2‬‬
‫‪NPN‬‬
‫‪Q1‬‬
‫‪NPN‬‬
‫‪D1‬‬
‫‪A‬‬
‫‪D2‬‬
‫‪B‬‬
‫‪R3‬‬
‫‪5K‬‬
‫‪6.9V‬‬
‫‪D3‬‬
‫‪C‬‬
‫ﺷﻜﻞ)‪ (3-1‬ﮔﻴﺖ ‪ HTL‬ﺑﺎ ﺳﻪ ورودي‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪6-2-2‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪11‬‬
‫ﺧﺎﻧﻮاده ‪TTL‬‬
‫• ﻣﺪار ﺷﻜﻞ)‪ (4-1‬را ﺑﺒﻨﺪﻳﺪ و ﻣﺸﺨﺼﻪ )‪ Vo = f(Vi‬آن را اﻧﺪازهﮔﻴﺮي ﻛﺮده و رﺳﻢ ﻛﻨﻴﺪ‪.‬‬
‫• ﻣﺸﺨﺼﻪ ﻣﺪار ﺷﻜﻞ)‪ (4-1‬را ﺑﺎ ﻣﺸﺨﺼﻪ ﻣﺪار آزﻣﺎﻳﺶ‪ RTL‬ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ‪.‬‬
‫• ﻣﺰاﻳﺎي ﺧﺎﻧﻮاده ‪ TTL‬ﺑﺮ ﺧﺎﻧﻮاده ﻫﺎي ‪ RTL‬و ‪ DTL‬ﭼﻴﺴﺖ؟‬
‫• ﺣﺪ ﭘﺎرازﻳﺖ‪ ،‬ﺗﻮان ﻣﺼﺮﻓﻲ و ﺗﺄﺧﻴﺮ اﻧﺘﺸﺎر را ﺑﺮاي اﻳﻦ ﻣﺪار ﺑﻪدﺳﺖ آورﻳﺪ‪.‬‬
‫• ﺑﺮوندﻫﻲ اﻳﻦ ﻣﺪار ﭼﻘﺪر اﺳﺖ؟‬
‫‪+5V‬‬
‫‪R4‬‬
‫‪120‬‬
‫‪R2‬‬
‫‪1.5K‬‬
‫‪R1‬‬
‫‪3.9K‬‬
‫‪Q3‬‬
‫‪NPN‬‬
‫‪D2‬‬
‫‪Q2‬‬
‫‪NPN‬‬
‫‪Vo‬‬
‫‪Vi‬‬
‫‪Q1‬‬
‫‪NPN‬‬
‫‪D1‬‬
‫‪Q4‬‬
‫‪NPN‬‬
‫‪R3‬‬
‫‪1K‬‬
‫ﺷﻜﻞ)‪ (4-1‬ﮔﻴﺖ ‪TTL NOT‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪7-2-2‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪12‬‬
‫ﺷﺒﻴﻪﺳﺎزي‬
‫• ﻣﺪار ﺷﻜﻞﻫﺎي )‪ (2-1‬و )‪ (4-1‬را ﺑﺎ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺷﺒﻴﻪﺳﺎزي ﻛﻨﻴﺪ و ﺗﻮان ﻣﺼﺮﻓﻲ‪ ،‬ﺗﺄﺧﻴﺮ اﻧﺘﺸﺎر‪،‬‬
‫ﺣﺪﭘﺎرازﻳﺖ و ﺑﺮوندﻫﻲ را ﺑﺮاي آﻧﻬﺎ ﺑﻪدﺳﺖ آورﻳﺪ‪.‬‬
‫• اﻣﺮوزه ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ را ﺑﻴﺸﺘﺮ ﺑﺎ ﺗﻜﻨﻮﻟﻮژي ‪ CMOS‬ﻣﻲﺳﺎزﻧﺪ‪ .‬ﺷﻜﻞﻫﺎي )‪ (5-1‬و )‪ (6-1‬دو ﻧﻤﻮﻧﻪ‬
‫از ﻣﺪارﻫﺎي ﻃﺮاﺣﻲﺷﺪه ﺑﺎ ﺗﺮاﻧﺰﻳﺴﺘﻮرﻫﺎي ‪ NMOS‬و ‪ PMOS‬را ﻧﺸﺎن ﻣﻲدﻫﻨﺪ‪ .‬اﻳﻦ ﻣﺪارﻫﺎ را ﺑﺎ‬
‫ﻛﺎﻣﭙﻴﻮﺗﺮ ﺷﺒﻴﻪﺳﺎزي ﻛﻨﻴﺪ و ﺗﺎﺑﻊ ﻣﻨﻄﻘﻲ ﺧﺮوﺟﻲ آﻧﻬﺎ را ﺑﻪدﺳﺖ آورﻳﺪ‪.‬‬
‫ﺷﻜﻞ)‪ (5-1‬ﮔﻴﺖ ‪CMOS NOR‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫ﺷﻜﻞ)‪ (6-1‬ﮔﻴﺖ ‪ CMOS‬ﺑﺎ ﺳﻪ ورودي‬
‫‪ ‬ﺻﻔﺤﻪ ‪13‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪14‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪ 3-2‬آزﻣﺎﻳﺶ دو‪‬م‪ :‬ﻣﺪارﻫﺎي اﺷﻤﻴﺖ ﺗﺮﻳﮕﺮ‬
‫‪1-3-2‬‬
‫ﻫﺪف‬
‫ﺑﺮرﺳﻲ اﻧﻮاع ﻣﺪارﻫﺎي اﺷﻤﻴﺖﺗﺮﻳﮕﺮ و ﻋﻤﻠﻜﺮد آﻧﻬﺎ‬
‫‪2-3-2‬‬
‫اﺷﻤﻴﺖﺗﺮﻳﮕﺮ ﺗﺮاﻧﺰﻳﺴﺘﻮري‬
‫• ﻣﺪار ﺷﻜﻞ)‪ (1-2‬را ﺑﺮاي ﺣﺼﻮل ﻣﺸﺨﺼﺎت زﻳﺮ ﻃﺮاﺣﻲ ﻛﻨﻴﺪ‪:‬‬
‫‪Vomax = 12 V,‬‬
‫‪Vomin = 6 V‬‬
‫‪LTP = 3 V,‬‬
‫‪UTP = 5 V,‬‬
‫در ﻣﺤﺎﺳﺒﺎت ﺧﻮد از ﻓﺮﺿﻴﺎت زﻳﺮ اﺳﺘﻔﺎده ﻛﻨﻴﺪ‪:‬‬
‫‪VBE active = VBE sat = 0.7 V,‬‬
‫‪βmin = 100‬‬
‫‪VBE cut-in = 0.5 V,‬‬
‫• ﻣﺪار ﻃﺮاﺣﻲﺷﺪه را ﺑﺒﻨﺪﻳﺪ و ﻣﺸﺨﺼﺎت ﻣﻮرد ﻧﻈﺮ را اﻧﺪازهﮔﻴﺮي ﻛﻨﻴﺪ‪.‬‬
‫• رﻓﺘﺎر ﻣﺪار را ﺑﺎ اﻋﻤﺎل ﺷﻜﻞﻣﻮجﻫﺎي ﺳﻴﻨﻮﺳﻲ و ﻣﺜﻠﺜﻲ ﺑﺎ ﻓﺮﻛﺎﻧﺲ ﻳﻚ ﻛﻴﻠﻮﻫﺮﺗﺰ ﺑﺮرﺳﻲ ﻛﻨﻴﺪ‪.‬‬
‫‪+VCC‬‬
‫‪RC1‬‬
‫‪RC2‬‬
‫‪Vo‬‬
‫‪R1‬‬
‫‪Q2‬‬
‫‪NPN‬‬
‫‪Q1‬‬
‫‪NPN‬‬
‫‪R2‬‬
‫‪RE‬‬
‫ﺷﻜﻞ)‪ (1-2‬اﺷﻤﻴﺖﺗﺮﻳﮕﺮ ﺗﺮاﻧﺰﻳﺴﺘﻮري‬
‫‪Vi‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪15‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫• داﻣﻨﻪ ﻣﻮج ورودي را اﻓﺰاﻳﺶ داده و ﺗﻐﻴﻴﺮات ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ را ﻣﺸﺎﻫﺪه ﻛﻨﻴﺪ‪ .‬دﻟﻴﻞ ﺗﻐﻴﻴﺮ ﺷﻜﻞﻣﻮج‬
‫را ﺗﻮﺿﻴﺢ دﻫﻴﺪ‪.‬‬
‫• ﻓﺮﻛﺎﻧﺲ ﻣﻮج ورودي را اﻓﺰاﻳﺶ داده و ﺗﻐﻴﻴﺮات ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ را ﻣﺸﺎﻫﺪه ﻛﻨﻴﺪ‪ .‬دﻟﻴﻞ ﺗﻐﻴﻴﺮ‬
‫ﺷﻜﻞﻣﻮج را ﺗﻮﺿﻴﺢ داده و راهﺣﻠﻲ ﺑﺮاي ﺟﻠﻮﮔﻴﺮي از آن ﭘﻴﺸﻨﻬﺎد دﻫﻴﺪ‪ .‬ﭘﻴﺸﻨﻬﺎد ﺧﻮد را در ﻋﻤﻞ ﻧﻴﺰ‬
‫ﻣﻮرد ﺑﺮرﺳﻲ ﻗﺮار دﻫﻴﺪ‪.‬‬
‫• ﺑﺎ ﺑﺮداﺷﺘﻦ ‪ R2‬ﭼﻪ ﺗﻐﻴﻴﺮي در ﻣﺪار ﺑﻪ وﺟﻮد ﻣﻲآﻳﺪ؟ آﻳﺎ وﺿﻌﻴﺖ ﺗﺮاﻧﺰﻳﺴﺘﻮرﻫﺎ ﺗﻐﻴﻴﺮ ﺧﻮاﻫﺪ ﻛﺮد؟‬
‫• در اﻳﻦ ﺣﺎﻟﺖ ﻛﺎﻫﺶ ‪ RE‬ﭼﻪ اﺛﺮي روي ﻣﺪار دارد؟‬
‫‪3-3-2‬‬
‫اﺷﻤﻴﺖﺗﺮﻳﮕﺮ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‬
‫• ﻣﺪار ﺷﻜﻞ)‪ (2-2‬را ﺑﺮاي وﻟﺘﺎژ آﺳﺘﺎﻧﻪ ﺑﺎﻻي )‪ 2 (UTP‬وﻟﺖ و وﻟﺘﺎژ ﭘﺴﻤﺎﻧﺪ ‪ 0/5‬وﻟﺖ ﻃﺮاﺣﻲ ﻛﻨﻴﺪ‪.‬‬
‫• ﻣﺪار را ﺑﺒﻨﺪﻳﺪ و ﺑﺎ ﻗﺮار دادن اﺳﻴﻠﻮﺳﻜﻮپ در ﺣﺎﻟﺖ ‪ ،X-Y‬ﻣﺸﺨﺼﻪ )‪ Vo = f(Vi‬آن را ﻣﺸﺎﻫﺪه ﻛﺮده و‬
‫ﺳﭙﺲ ﺑﺮ روي ﻛﺎﻏﺬ رﺳﻢ ﻛﻨﻴﺪ‪.‬‬
‫• اﺷﻤﻴﺖﺗﺮﻳﮕﺮ ﺷﻜﻞ)‪ (2-2‬از ﻧﻮع ﻣﻌﻜﻮسﻛﻨﻨﺪه )‪ (Inverting‬اﺳﺖ‪ .‬ﭼﻪ ﺗﻐﻴﻴﺮي در ﻣﺪار اﻧﺠﺎم دﻫﻴﻢ ﺗﺎ‬
‫اﺷﻤﻴﺖ ﺗﺮﻳﮕﺮي از ﻧﻮع ﻏﻴﺮﻣﻌﻜﻮسﻛﻨﻨﺪه )‪ (Non- Inverting‬داﺷﺘﻪ ﺑﺎﺷﻴﻢ؟‬
‫‪+15V‬‬
‫‪7‬‬
‫‪R2‬‬
‫‪Vo‬‬
‫‪LM741‬‬
‫‪V+‬‬
‫‪OFS NULL‬‬
‫‪OFS NULL‬‬
‫‪1‬‬
‫‪5‬‬
‫‪2‬‬
‫‪6‬‬
‫‪3‬‬
‫‪4‬‬
‫‪D1‬‬
‫‪6.2V‬‬
‫‪R3‬‬
‫‪D2‬‬
‫‪6.2V‬‬
‫‪R4‬‬
‫‪V-‬‬
‫‪NC‬‬
‫‪8‬‬
‫‪-15V‬‬
‫‪VR‬‬
‫ﺷﻜﻞ)‪ (2-2‬اﺷﻤﻴﺖﺗﺮﻳﮕﺮ ﻣﻌﻜﻮسﻛﻨﻨﺪه ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‬
‫‪R1‬‬
‫‪Vi‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪4-3-2‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪16‬‬
‫اﺷﻤﻴﺖ ﺗﺮﻳﮕﺮ ﺑﺎ ﻣﺪارات ﻣﺠﺘﻤﻊ‬
‫• ﻫﺮ ﻳﻚ از ﻣﺪارات ﻣﺠﺘﻤﻊ ‪ 7414‬و ‪ 4584‬داراي ﺷﺶ ﮔﻴﺖ ‪ NOT‬اﺷﻤﻴﺖﺗﺮﻳﮕﺮ اﺳﺖ‪ .‬ﺑﺎ ﻣﺮاﺟﻌﻪ ﺑﻪ‬
‫ﻛﺎﺗﺎﻟﻮگﻫﺎي ﻣﺮﺑﻮﻃﻪ‪ ،‬ﻣﺸﺨﺼﺎت آﻧﻬﺎ را ﺑﺮرﺳﻲ ﻛﻨﻴﺪ‪ .‬ﺳﭙﺲ ﺑﺎ ﺗﺮﺗﻴﺐدادن ﻳﻚ آزﻣﺎﻳﺶ‪،‬‬
‫ﻣﺸﺨﺼﻪ )‪ Vo = f(Vi‬آﻧﻬﺎ را اﻧﺪازهﮔﻴﺮي ﻛﺮده و رﺳﻢ ﻛﻨﻴﺪ‪.‬‬
‫‪5-3-2‬‬
‫ﺷﺒﻴﻪﺳﺎزي‬
‫• ﻣﺪار ﺷﻜﻞﻫﺎي )‪ (2-2) ، (1-2‬و دو ﻣﺪار آزﻣﺎﻳﺶ )‪ (3-2‬را ﺑﺎ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺷﺒﻴﻪﺳﺎزي ﻛﻨﻴﺪ‪.‬‬
‫• در ﻫﺮ ﺣﺎﻟﺖ‪ UTP ،‬و ‪ LTP‬را ﺑﻪدﺳﺖ آورﻳﺪ و ﺑﺎ ﻣﻘﺎدﻳﺮ ﺣﺎﺻﻞ از آزﻣﺎﻳﺶ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ‪.‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪17‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪ 4-2‬آزﻣﺎﻳﺶ ﺳﻮ‪‬م‪ :‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ‬
‫‪1-4-2‬‬
‫ﻫﺪف‬
‫ﺑﺮرﺳﻲ اﻧﻮاع ﻣﺪارﻫﺎي ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ و ﻋﻤﻠﻜﺮد آﻧﻬﺎ‬
‫‪2-4-2‬‬
‫ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري‬
‫ﺷﻜﻞ)‪ (1-3‬ﻳﻚ ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري ﻳﺎ ﻓﻠﻴﭗ ﻓﻼپ ‪ RS‬را ﻧﺸﺎن ﻣﻲدﻫﺪ‪.‬‬
‫‪+VCC‬‬
‫‪R3‬‬
‫‪R3‬‬
‫‪R1‬‬
‫‪R1‬‬
‫‪Vo1‬‬
‫‪Vo2‬‬
‫‪Q1‬‬
‫‪NPN‬‬
‫‪Q2‬‬
‫‪NPN‬‬
‫‪R2‬‬
‫‪D2‬‬
‫‪R2‬‬
‫‪R‬‬
‫‪D1‬‬
‫‪R‬‬
‫‪SET‬‬
‫‪RESET‬‬
‫ﺷﻜﻞ)‪ (1-3‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري‬
‫• ﻃﺮز ﻛﺎر ﻣﺪار را ﺗﻮﺿﻴﺢ دﻫﻴﺪ و ﺑﮕﻮﻳﻴﺪ ﻛﺪاﻣﻴﻚ از ﺧﺮوﺟﻲﻫﺎي‪ Vo1‬و ‪ Vo2‬ﻣﻌﺎدل ﺧﺮوﺟﻲ ‪Q‬ي‬
‫ﻓﻠﻴﭗﻓﻼپ ‪ RS‬اﺳﺖ‪.‬‬
‫• ﻣﺪار را ﺑﺮاي ﺣﺼﻮل ﻣﺸﺨﺼﺎت زﻳﺮ ﻃﺮاﺣﻲ ﻛﻨﻴﺪ‪:‬‬
‫‪IOL = 16 mA‬‬
‫‪Æ‬‬
‫‪Vo < 0.4 V‬‬
‫‪,‬‬
‫‪IOH = -400 mA‬‬
‫‪Æ‬‬
‫‪Vo > 2.4 V‬‬
‫در ﻣﺤﺎﺳﺒﺎت ﺧﻮد از ﻓﺮﺿﻴﺎت زﻳﺮ اﺳﺘﻔﺎده ﻛﻨﻴﺪ‪:‬‬
‫‪VBE cut-off = -0.2 V, VBE cut-in = 0.2 V, VBE active = 0.6 V, VBE sat = 0.7 V, VCE sat = 0.2 V‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪ ‬ﺻﻔﺤﻪ ‪18‬‬
‫• ﻣﺪار را ﺑﺒﻨﺪﻳﺪ و ﻋﻤﻠﻜﺮد آن را ﻣﺸﺎﻫﺪه ﻛﻨﻴﺪ‪ .‬ﺟﺪول ﻣﺸﺨﺼﻪ ﻓﻠﻴﭗ ﻓﻼپ را ﺑﺎ آزﻣﺎﻳﺶ ﺑﻪدﺳﺖ آورﻳﺪ‪.‬‬
‫ﺗﻮﺟﻪ داﺷﺘﻪ ﺑﺎﺷﻴﺪ ﻛﻪ ﺑﺮاي ‪ Set‬ﻳﺎ ‪ Reset‬ﻛﺮدن ﻓﻠﻴﭗ ﻓﻼپ ﺑﺎﻳﺪ ﻳﻜﻲ از دو ورودي ‪ SET‬ﻳﺎ ‪RESET‬‬
‫را ﺑﻪ ﻳﻚ ﻣﻨﻄﻘﻲ وﺻﻞ ﻛﺮد‪.‬‬
‫• ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻣﺪار‪ ،‬ﻋﻠﺖ اﺳﺘﻔﺎده از دﻳﻮدﻫﺎ را ﺗﻮﺿﻴﺢ دﻫﻴﺪ‪.‬‬
‫• ﺑﻪ ﻧﻈﺮ ﺷﻤﺎ ﭼﻪ روشﻫﺎي دﻳﮕﺮي ﺑﺮاي ﺗﻐﻴﻴﺮ ﺣﺎﻟﺖ ﻳﻚ ﻓﻠﻴﭗ ﻓﻼپ وﺟﻮد دارد؟‬
‫• ﻋﻠﺖ اﺳﺘﻔﺎده از ﻣﻘﺎوﻣﺖﻫﺎي ‪ R2‬را ﺗﻮﺿﻴﺢ دﻫﻴﺪ‪.‬‬
‫• اﻓﺰاﻳﺶ ﻳﺎ ﻛﺎﻫﺶ ﻣﻘﺪار اﻳﻦ ﻣﻘﺎوﻣﺖﻫﺎ ﭼﻪ ﺗﺄﺛﻴﺮي ﺑﺮ روي ﻋﻤﻠﻜﺮد ﻣﺪار ﻣﻲﮔﺬارد؟‬
‫• ورودي ﻫﺎي ‪ SET‬و ‪ RESET‬را ﺑﻪ ﻳﻜﺪﻳﮕﺮ و ﺑﻪ ورودي ﻣﺮﺑﻌﻲ ﺑﺎ داﻣﻨﻪ ﺑﻴﻦ ﺻﻔﺮ و ‪ +Vcc‬وﺻﻞ ﻛﻨﻴﺪ‪.‬‬
‫ﻫﺮ ﻳﻚ از ﺧﺮوﺟﻲﻫﺎ ﭼﻪ وﺿﻌﻲ ﺧﻮاﻫﻨﺪ داﺷﺖ؟ ﭼﺮا؟‬
‫• ﺑﺎ ﻗﺮار دادن ﺧﺎزن ﻛﻮﭼﻜﻲ روي ﻣﻘﺎوﻣﺖ ﻫﺎي ‪ ،R1‬ﺧﺮوﺟﻲﻫﺎ ﭼﻪ ﺗﻐﻴﻴﺮي ﻣﻲﻛﻨﻨﺪ؟ ﭼﺮا؟‬
‫‪3-4-2‬‬
‫ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ ﺑﺎ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ‬
‫• ﺑﺎ اﺳﺘﻔﺎده از ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ ﻳﻚ ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﺎياﺳﺘﺎﺑﻞ ﻃﺮاﺣﻲ ﻛﺮده و ﭘﺲ از ﺑﺴﺘﻦ ﻣﺪار ﻣﺮﺑﻮﻃﻪ‪،‬‬
‫آن را آزﻣﺎﻳﺶ ﻛﻨﻴﺪ‪.‬‬
‫‪4-4-2‬‬
‫ﺷﺒﻴﻪﺳﺎزي‬
‫• ﻣﺪار آزﻣﺎﻳﺶﻫﺎي )‪ (1-3‬و )‪ (2-3‬را ﺑﺎ اﺳﺘﻔﺎده از ﻛﺎﻣﭙﻴﻮﺗﺮ ﺷﺒﻴﻪﺳﺎزي ﻛﺮده و ﻋﻤﻠﻜﺮد آﻧﻬﺎ را ﻣﻮرد‬
‫ﺑﺮرﺳﻲ ﻗﺮار دﻫﻴﺪ‪ .‬ﺳﭙﺲ ﻧﺘﺎﻳﺞ ﺷﺒﻴﻪﺳﺎزي را ﺑﺎ ﻧﺘﺎﻳﺞ ﺑﻪدﺳﺖآﻣﺪه از آزﻣﺎﻳﺶﻫﺎ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ‪.‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪19‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪ 5-2‬آزﻣﺎﻳﺶ ﭼﻬﺎرم‪ :‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ‬
‫‪1-5-2‬‬
‫ﻫﺪف‬
‫ﺑﺮرﺳﻲ اﻧﻮاع ﻣﺪارﻫﺎي ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ و ﻋﻤﻠﻜﺮد آﻧﻬﺎ‬
‫‪2-5-2‬‬
‫ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري‬
‫ﺷﻜﻞ)‪ (1-4‬ﻳﻚ ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري را ﻧﺸﺎن ﻣﻲدﻫﺪ ﻛﻪ از ﻧﻮع ﻛﻮﭘﻼژ اﻣﻴﺘﺮ اﺳﺖ‪.‬‬
‫• ﻣﺪار را ﺑﺮاي ﺣﺼﻮل ﻣﺸﺨﺼﺎت زﻳﺮ ﻃﺮاﺣﻲ ﻛﻨﻴﺪ‪:‬‬
‫‪T0 = 1 mSec‬‬
‫‪VOL = 2 V,‬‬
‫‪VOH = 10 V,‬‬
‫در ﻣﺤﺎﺳﺒﺎت ﺧﻮد از ﻓﺮﺿﻴﺎت زﻳﺮ اﺳﺘﻔﺎده ﻛﻨﻴﺪ‪:‬‬
‫‪βmin = 100‬‬
‫‪VBE active = VBE sat = 0.7 V,‬‬
‫‪VBE cut-in = 0.5 V,‬‬
‫‪+VCC‬‬
‫‪RB‬‬
‫‪Rc2‬‬
‫‪R1‬‬
‫‪R‬‬
‫‪Rc1‬‬
‫‪D1‬‬
‫‪C‬‬
‫‪Vo‬‬
‫‪C1‬‬
‫‪Trigger‬‬
‫‪Q1‬‬
‫‪NPN‬‬
‫‪Q2‬‬
‫‪NPN‬‬
‫‪R2‬‬
‫‪RE‬‬
‫ﺷﻜﻞ)‪ (1-4‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري‬
‫‪ ‬ﺻﻔﺤﻪ ‪20‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫• ﻣﺪار را ﺑﺒﻨﺪﻳﺪ‪ .‬از ﻣﻮج ﻣﺮﺑﻌﻲ ﺑﺎ ﻓﺮﻛﺎﻧﺲ‪ 500‬ﻫﺮﺗﺰ ﺑﻪ ﻋﻨﻮان ﺗﺮﻳﮕﺮ ورودي اﺳﺘﻔﺎده ﻛﻨﻴﺪ‪ T0 .‬را‬
‫اﻧﺪازهﮔﻴﺮي ﻛﻨﻴﺪ و ﺑﺎ ﻣﻘﺪار ﻣﻮرد ﻧﻈﺮ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ‪.‬‬
‫• ﺑﺎ ﺗﻐﻴﻴﺮ ﻓﺮﻛﺎﻧﺲ ﻳﺎ ‪ Duty Cycle‬ورودي ﺗﺮﻳﮕﺮ‪ T0 ،‬ﭼﻪ ﺗﻐﻴﻴﺮي ﻣﻲﻛﻨﺪ؟‬
‫• ﺑﺮاي ﻛﺎﻫﺶ زﻣﺎن ﺑﺮﮔﺸﺖ ﻣﻮج )‪ (Recovery Time‬ﭼﻪ ﻣﺪاري ﭘﻴﺸﻨﻬﺎد ﻣﻲﻛﻨﻴﺪ؟ ﻣﺪار ﭘﻴﺸﻨﻬﺎدي را در‬
‫آزﻣﺎﻳﺸﮕﺎه ﺑﺒﻨﺪﻳﺪ و آن را ﺑﺮرﺳﻲ ﻛﻨﻴﺪ‪.‬‬
‫• ﻣﺪار ﺗﺎ ﭼﻪ ﻓﺮﻛﺎﻧﺴﻲ ﺑﻪﺧﻮﺑﻲ ﻋﻤﻞ ﻣﻲﻛﻨﺪ؟‬
‫• در ﭼﻪ ﻣﺤﺪودهاي از ﻓﺮﻛﺎﻧﺲ‪ ،‬ﻣﺪار ﺑﻪ ﺻﻮرت ﻳﻚ ﺗﻘﺴﻴﻢﻛﻨﻨﺪه ﻓﺮﻛﺎﻧﺲ ﺑﺮ ‪ 2‬ﻳﺎ ‪ 3‬ﻋﻤﻞ ﻣﻲﻛﻨﺪ؟‬
‫• ﺣﺪاﻗﻞ داﻣﻨﻪ ﺗﺮﻳﮕﺮ در دو ﻣﺪار ﭼﻘﺪر اﺳﺖ؟‬
‫• ﺑﺮداﺷﺘﻦ ﻣﻘﺎوﻣﺖ ‪ R2‬ﭼﻪ اﺛﺮي در ﻣﺪار ﻣﻲﮔﺬارد؟‬
‫‪3-5-2‬‬
‫•‬
‫ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‬
‫ﻣﺪار ﺷﻜﻞ)‪ (2-4‬را ﺑﺮاي ﺣﺼﻮل ﻣﺸﺨﺼﺎت ‪ Vtrigger = 2 V‬و ‪ T0 = 2 mSec‬ﻃﺮاﺣﻲ ﻛﻨﻴﺪ‪.‬‬
‫• ﻣﺪار را ﺑﺒﻨﺪﻳﺪ‪ T0 .‬را اﻧﺪازه ﺑﮕﻴﺮﻳﺪ و ﻧﺘﻴﺠﻪ را ﺑﺎ ﻣﻘﺪار ﻣﻮرد ﻧﻈﺮ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ‪.‬‬
‫‪+15V‬‬
‫‪R3‬‬
‫‪C2‬‬
‫‪+15V‬‬
‫‪7‬‬
‫‪Vo‬‬
‫‪U1‬‬
‫‪V+‬‬
‫‪OFS NULL‬‬
‫‪OFS NULL‬‬
‫‪-15V‬‬
‫‪D1‬‬
‫‪C1‬‬
‫‪2‬‬
‫‪6‬‬
‫‪4‬‬
‫‪1‬‬
‫‪5‬‬
‫‪Trigger‬‬
‫‪3‬‬
‫‪V-‬‬
‫‪NC‬‬
‫‪LM741‬‬
‫‪8‬‬
‫‪R2‬‬
‫‪R1‬‬
‫ﺷﻜﻞ)‪ (2-4‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‬
‫‪ ‬ﺻﻔﺤﻪ ‪21‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫• ﻣﺪار ﺗﺎ ﭼﻪ ﻓﺮﻛﺎﻧﺴﻲ ﺑﻪﺧﻮﺑﻲ ﻋﻤﻞ ﻣﻲﻛﻨﺪ؟‬
‫• در ﭼﻪ ﻣﺤﺪودهاي از ﻓﺮﻛﺎﻧﺲ‪ ،‬ﻣﺪار ﺑﻪ ﺻﻮرت ﻳﻚ ﺗﻘﺴﻴﻢﻛﻨﻨﺪه ﻓﺮﻛﺎﻧﺲ ﺑﺮ ‪ 2‬ﻳﺎ ‪ 3‬ﻋﻤﻞ ﻣﻲﻛﻨﺪ؟‬
‫• ﺣﺪاﻗﻞ داﻣﻨﻪ ﺗﺮﻳﮕﺮ ورودي در ﺗﺌﻮري و در ﻋﻤﻞ را ﺑﺎ ﻳﻜﺪﻳﮕﺮ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ‪.‬‬
‫‪4-5-2‬‬
‫ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺑﺎ ﺗﺎﻳﻤﺮ ‪555‬‬
‫• ﻣﺪار ﺷﻜﻞ)‪ (3-4‬را ﺑﺮاي ﺣﺼﻮل ‪ T0 = 2 mSec‬ﻃﺮاﺣﻲ ﻛﻨﻴﺪ‪ .‬ﺑﺮاي ورودي ﺗﺮﻳﮕﺮ از ﻣﻮج ﻣﺮﺑﻌﻲ ﺑﻪ‬
‫ﻓﺮﻛﺎﻧﺲ ‪ 100‬ﻫﺮﺗﺰ و ﺑﺎ داﻣﻨﻪ ﺑﻴﻦ ﺻﻔﺮ و ‪ 5‬وﻟﺖ اﺳﺘﻔﺎده ﻛﻨﻴﺪ‪.‬‬
‫• ‪ T0‬را اﻧﺪازه ﺑﮕﻴﺮﻳﺪ و آن را ﺑﺎ ﻣﻘﺪار ﻣﻮرد ﻧﻈﺮ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ‪.‬‬
‫• ﺑﺮاي ﺑﻬﺒﻮد ﺗﺮﻳﮕﺮﻛﺮدن ﻣﺪار ﺷﻜﻞ)‪ (3-4‬ﭼﻪ ﻣﺪاري را ﭘﻴﺸﻨﻬﺎد ﻣﻲﻛﻨﻴﺪ؟‬
‫• ﻣﺪار را ﺑﺒﻨﺪﻳﺪ و ﻧﺘﻴﺠﻪ را ﺑﺮرﺳﻲ ﻛﻨﻴﺪ‪.‬‬
‫‪+VCC‬‬
‫‪8‬‬
‫‪R‬‬
‫‪4‬‬
‫‪7‬‬
‫‪Vo‬‬
‫‪555‬‬
‫‪3‬‬
‫‪6‬‬
‫‪2‬‬
‫‪1‬‬
‫‪Trigger‬‬
‫‪5‬‬
‫‪C2‬‬
‫‪C1‬‬
‫ﺷﻜﻞ)‪ (3-4‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺑﺎ ﺗﺎﻳﻤﺮ ‪555‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪5-5-2‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪22‬‬
‫ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺑﺎ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ‬
‫• ﻣﺪار ﺷﻜﻞ)‪ (4-4‬را ﺑﺮاي ‪ T0 = 100 µSec‬ﻃﺮاﺣﻲ ﻛﻨﻴﺪ‪.‬‬
‫• ﻣﺪار را ﺑﺒﻨﺪﻳﺪ و ‪ T0‬را اﻧﺪازه ﮔﺮﻓﺘﻪ‪ ،‬ﺑﺎ ﻣﻘﺪار ﻣﻮرد اﻧﺘﻈﺎر ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ‪.‬‬
‫• ﻣﺪار ﺑﺎ ﻟﺒﻪ ﻣﺜﺒﺖ ﻛﺎر ﻣﻲﻛﻨﺪ ﻳﺎ ﺑﺎ ﻟﺒﻪ ﻣﻨﻔﻲ؟‬
‫• اﻓﺰاﻳﺶ ﻳﺎ ﻛﺎﻫﺶ ﺷﺪﻳﺪ ‪ R‬ﭼﻪ ﺗﺄﺛﻴﺮي در ﻣﺪار دارد؟ ﭼﺮا؟‬
‫• ﺑﺎ ﻣﺮاﺟﻌﻪ ﺑﻪ ﻛﺎﺗﺎﻟﻮگ ﻣﺪارات ﻣﺠﺘﻤﻊ ‪ ،TTL‬ﻣﺸﺨﺼﺎت ﻣﺪار ﻣﺠﺘﻤﻊ ‪ 74121‬را ﻣﻮرد ﺑﺮرﺳﻲ ﻗﺮار دﻫﻴﺪ‪.‬‬
‫ﺳﭙﺲ ﺑﺎ اﺳﺘﻔﺎده از آن ﻣﺪار ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺑﺎ ‪ T0 = 1 Sec‬ﺑﺴﺎزﻳﺪ‪.‬‬
‫‪G2‬‬
‫‪C‬‬
‫‪G1‬‬
‫‪Trigger‬‬
‫‪Vo‬‬
‫‪R‬‬
‫ﺷﻜﻞ)‪ (4-4‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﻣﻮﻧﻮﺳﺘﺎﺑﻞ ﺑﺎ ﮔﻴﺖﻫﺎي ‪TTL‬‬
‫‪6-5-2‬‬
‫ﺷﺒﻴﻪﺳﺎزي‬
‫• ﻣﺪار ﺷﻜﻞﻫﺎي )‪ (1-4‬ﺗﺎ )‪ (4-4‬را ﺑﺎ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺷﺒﻴﻪﺳﺎزي ﻛﻨﻴﺪ‪ .‬در ﻫﺮ ﻣﻮرد ﻣﻘﺪار ‪ T0‬ﺣﺎﺻﻞ از‬
‫ﺷﺒﻴﻪﺳﺎزي را ﺑﺎ ﻣﻘﺪار ﺑﻪدﺳﺖ آﻣﺪه در آزﻣﺎﻳﺶ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ‪.‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪23‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪ 6-2‬آزﻣﺎﻳﺶ ﭘﻨﺠﻢ‪ :‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ‬
‫‪1-6-2‬‬
‫ﻫﺪف‬
‫ﺑﺮرﺳﻲ اﻧﻮاع ﻣﺪارﻫﺎي ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ و ﻋﻤﻠﻜﺮد آﻧﻬﺎ‬
‫‪2-6-2‬‬
‫ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري از ﻧﻮع ﻛﻮﭘﻼژ ﻛﻠﻜﺘﻮر‬
‫• ﻣﺪار ﺷﻜﻞ)‪ (1-5‬را ﺑﺮاي ‪ T1 = 10 µSec‬و ‪ T2 = 20 µSec‬ﻃﺮاﺣﻲ ﻛﻨﻴﺪ‪.‬‬
‫• ﻣﺪار را ﺑﺒﻨﺪﻳﺪ‪ T1 .‬و ‪ T2‬را ﺑﺎ آزﻣﺎﻳﺶ ﺑﻪدﺳﺖ آورﻳﺪ و ﺑﺎ ﻣﻘﺎدﻳﺮ ﻣﻮرد ﻧﻈﺮ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ‪.‬‬
‫• ﺑﺮاي ﻧﺰدﻳﻚ ﺷﺪن ﺷﻜﻞ ﭘﺎﻟﺲ ﺧﺮوﺟﻲ ﺑﻪ ﺣﺎﻟﺖ اﻳﺪهآل آن ﭼﻪ ﻣﺪاري را ﭘﻴﺸﻨﻬﺎد ﻣﻲ ﻛﻨﻴﺪ؟‬
‫• ﻣﺪار ﭘﻴﺸﻨﻬﺎدي را ﺑﺒﻨﺪﻳﺪ و ﻋﻤﻠﻜﺮد آن را ﺑﺮرﺳﻲ ﻛﻨﻴﺪ‪.‬‬
‫‪+5V‬‬
‫‪RC2‬‬
‫‪RB1‬‬
‫‪RB2‬‬
‫‪RC1‬‬
‫‪Vo1‬‬
‫‪Vo2‬‬
‫‪Q2‬‬
‫‪NPN‬‬
‫‪C2‬‬
‫‪C1‬‬
‫‪Q1‬‬
‫‪NPN‬‬
‫ﺷﻜﻞ)‪ (1-5‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري از ﻧﻮع ﻛﻮﭘﻼژ ﻛﻠﻜﺘﻮر‬
‫• ﺑﺮاي ﻛﻨﺘﺮل ‪ T1‬و ‪ T2‬ﻣﻲﺗﻮان از ﻣﺪار ﺷﻜﻞ)‪ (2-5‬اﺳﺘﻔﺎده ﻛﺮد‪ .‬ﺑﺎ ﺗﺌﻮري و آزﻣﺎﻳﺶ ﻧﺸﺎن دﻫﻴﺪ ﻛﻪ دوره‬
‫ﺗﻨﺎوب ﻣﻮج ﺑﻪ دﺳﺖ آﻣﺪه ﺑﺎ ‪ Vt‬ﻧﺴﺒﺖ ﻋﻜﺲ دارد‪ .‬ﺣﺪاﻗﻞ وﻟﺘﺎژ ‪ Vt‬ﭼﻘﺪر ﻣﻲﺗﻮاﻧﺪ ﺑﺎﺷﺪ؟‬
‫• ﺑﻪﺟﺎي ﻣﻘﺎوﻣﺖﻫﺎي ‪ RB1‬و ‪ ،RB2‬ﻣﻲﺗﻮان ﻣﻄﺎﺑﻖ ﺷﻜﻞ)‪ (3-5‬از ﻣﻨﺎﺑﻊ ﺟﺮﻳﺎن اﺳﺘﻔﺎده ﻛﺮد‪.‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪24‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫ﺑﺪﻳﻦ ﺗﺮﺗﻴﺐ ﻳﻚ ﻣﺒﺪل وﻟﺘﺎژ ﺑﻪ ﻓﺮﻛﺎﻧﺲ )‪ (Voltage to Frequency Converter‬ﺳﺎﺧﺘﻪ ﻣﻲﺷﻮد‪.‬‬
‫• ﻣﺪار ﺷﻜﻞ)‪ (3-5‬را ﺑﺮاي ﻣﺸﺨﺼﺎت ‪ T1 = 10 µSec‬و ‪ T2 = 20 µSec‬و ‪ Vt = +3V‬ﻃﺮاﺣﻲ ﻛﻨﻴﺪ‪.‬‬
‫• ﻣﺪار را ﺑﺒﻨﺪﻳﺪ‪ T1 .‬و ‪ T2‬را ﺑﻪدﺳﺖ آورﻳﺪ و ﺑﺎ ﻣﻘﺎدﻳﺮ ﻣﻮرد ﻧﻈﺮ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ‪.‬‬
‫• ﭼﻪ ﻋﻮاﻣﻠﻲ وﻟﺘﺎژ ‪ Vt‬را ﻣﺤﺪود ﻣﻲﻛﻨﺪ؟ ﺣﺪاﻗﻞ ﻣﻘﺪار ‪ Vt‬ﭼﻘﺪر اﺳﺖ؟‬
‫‪+5V‬‬
‫‪Vt‬‬
‫‪RC2‬‬
‫‪RB2‬‬
‫‪RC1‬‬
‫‪RB1‬‬
‫‪Vo1‬‬
‫‪Vo2‬‬
‫‪C2‬‬
‫‪Q2‬‬
‫‪NPN‬‬
‫‪C1‬‬
‫‪Q1‬‬
‫‪NPN‬‬
‫ﺷﻜﻞ)‪ (2-5‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري از ﻧﻮع ﻛﻮﭘﻼژ ﻛﻠﻜﺘﻮر ﺑﺎ ﺗﻨﻈﻴﻢ ﻓﺮﻛﺎﻧﺲ‬
‫‪+5V‬‬
‫‪Vt‬‬
‫‪Q3‬‬
‫‪PNP‬‬
‫‪Q4‬‬
‫‪PNP‬‬
‫‪R‬‬
‫‪RC2‬‬
‫‪RC1‬‬
‫‪Vo1‬‬
‫‪Vo2‬‬
‫‪Q2‬‬
‫‪NPN‬‬
‫‪C2‬‬
‫‪C1‬‬
‫‪Q1‬‬
‫‪NPN‬‬
‫ﺷﻜﻞ)‪ (3-5‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري از ﻧﻮع ﻛﻮﭘﻼژ ﻛﻠﻜﺘﻮر ﺑﺎ ﺗﻨﻈﻴﻢ ﻓﺮﻛﺎﻧﺲ‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪3-6-2‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪25‬‬
‫ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري از ﻧﻮع ﻛﻮﭘﻼژ اﻣﻴﺘﺮ‬
‫• ﻣﺪار ﺷﻜﻞ)‪ (4-5‬را ﺑﺮاي ﻣﺸﺨﺼﺎت ‪ T1 = 10 µSec‬و ‪ T2 = 20 µSec‬و‪ VOH = +3 V‬ﻃﺮاﺣﻲ ﻛﻨﻴﺪ‪.‬‬
‫‪+VCC‬‬
‫‪RC1‬‬
‫‪D1‬‬
‫‪Q2‬‬
‫‪NPN‬‬
‫‪Vt‬‬
‫‪Vo‬‬
‫‪Q1‬‬
‫‪NPN‬‬
‫‪C‬‬
‫‪RE1‬‬
‫‪RE2‬‬
‫‪-VEE‬‬
‫ﺷﻜﻞ)‪ (4-5‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮري از ﻧﻮع ﻛﻮﭘﻼژ اﻣﻴﺘﺮ‬
‫• از ﻣﻌﺎﻳﺐ اﻳﻦ ﻣﺪار ﻧﺴﺒﺖ ﺑﻪ ﻣﺪارﻫﺎي ﻗﺒﻠﻲ‪ ،‬وﺟﻮد دو ﻣﻨﺒﻊ ﺗﻐﺬﻳﻪ اﺳﺖ‪ .‬ﺑﺮاي ﺣﺬف ﻣﻨﺒﻊ ‪ –VEE‬ﭼﻪ‬
‫ﭘﻴﺸﻨﻬﺎدي دارﻳﺪ؟ ﻣﻌﺎﻳﺐ ﻣﺪار ﺟﺪﻳﺪ ﻧﺴﺒﺖ ﺑﻪ ﻣﺪار ﺷﻜﻞ)‪ (4-5‬ﭼﻴﺴﺖ؟‬
‫•‬
‫ﺑﺎ ﺗﻐﻴﻴﺮ ‪ Vt‬ﻓﺮﻛﺎﻧﺲ ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺗﻐﻴﻴﺮ ﻣﻲﻛﻨﺪ‪ .‬ﺑﻨﺎﺑﺮاﻳﻦ از ﻣﺪار ﺷﻜﻞ)‪ (4-5‬ﻣﻲﺗﻮان ﺑﻪﻋﻨﻮان ‪VCO‬‬
‫اﺳﺘﻔﺎده ﻛﺮد‪ .‬ﺳﻴﮕﻨﺎﻟﻲ ﺑﺎ ﻓﺮﻛﺎﻧﺲ ﺑﺴﻴﺎر ﻛﻤﺘﺮ از ﻓﺮﻛﺎﻧﺲ ﻛﺎر ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ﺑﻪ اﺿﺎﻓﻪ وﻟﺘﺎژ ‪ DC‬ﻻزم ﺑﻪ‬
‫‪ Vt‬اﻋﻤﺎل ﻛﻨﻴﺪ‪ .‬ﻧﺘﻴﺠﻪ ﭼﻴﺴﺖ؟‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪4-6-2‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪26‬‬
‫ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‬
‫• ﻣﺪار ﺷﻜﻞ)‪ (5-5‬را ﺑﺮاي ﻓﺮﻛﺎﻧﺲ ‪ 3‬ﻛﻴﻠﻮﻫﺮﺗﺰ ﻃﺮاﺣﻲ ﻛﻨﻴﺪ‪.‬‬
‫• ﻣﺪار را ﺑﺒﻨﺪﻳﺪ و ﻓﺮﻛﺎﻧﺲ ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ آن را اﻧﺪازه ﺑﮕﻴﺮﻳﺪ‪.‬‬
‫• دﻳﻮدﻫﺎي زﻧﺮ را از ﻣﺪار ﺣﺬف ﻛﻨﻴﺪ‪ .‬ﭼﻪ اﺗﻔﺎﻗﻲ ﻣﻲاﻓﺘﺪ؟ ﭼﺮا؟‬
‫‪R1‬‬
‫‪+12V‬‬
‫‪7‬‬
‫‪U1‬‬
‫‪V+‬‬
‫‪OFS NULL‬‬
‫‪OFS NULL‬‬
‫‪2‬‬
‫‪6‬‬
‫‪Vo‬‬
‫‪4‬‬
‫‪D1‬‬
‫‪6.2V‬‬
‫‪R2‬‬
‫‪D2‬‬
‫‪6.2V‬‬
‫‪R3‬‬
‫‪-12V‬‬
‫‪1‬‬
‫‪5‬‬
‫‪3‬‬
‫‪V-‬‬
‫‪NC‬‬
‫‪8‬‬
‫‪LM741‬‬
‫‪C‬‬
‫‪VR‬‬
‫ﺷﻜﻞ)‪ (5-5‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪5-6-2‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪27‬‬
‫ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺑﺎ ﺗﺎﻳﻤﺮ ‪555‬‬
‫• ﻣﺪار ﺷﻜﻞ)‪ (6-5‬را ﺑﺮاي ﻣﺸﺨﺼﺎت ‪ f = 1 KHz‬و ‪ Duty Cycle = 66%‬ﻃﺮاﺣﻲ ﻛﻨﻴﺪ‪.‬‬
‫• ﻣﺪار را ﺑﺒﻨﺪﻳﺪ و ﻧﺘﺎﻳﺞ آزﻣﺎﻳﺶ را ﺑﺎ ﻣﻘﺎدﻳﺮ ﻣﻮرد ﻧﻈﺮ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ‪.‬‬
‫• ﺑﺮاي ﺑﻪدﺳﺖ آوردن ﺷﻜﻞﻣﻮﺟﻲ ﺑﺎ ‪ Duty Cycle = 50%‬ﭼﻪ ﻣﺪاري را ﭘﻴﺸﻨﻬﺎد ﻣﻲﻛﻨﻴﺪ؟‬
‫• ﻣﺪار ﭘﻴﺸﻨﻬﺎدي را ﺑﺒﻨﺪﻳﺪ و ﻧﺘﻴﺠﻪ را ﻣﺸﺎﻫﺪه ﻛﻨﻴﺪ‪.‬‬
‫• ﺑﺮاي ﺑﻪدﺳﺖ آوردن ﻣﻮﺟﻲ ﺑﺎ ‪ Duty Cycle‬ﻗﺎﺑﻞﺗﻨﻈﻴﻢ ﭼﻪ ﻣﺪاري را ﭘﻴﺸﻨﻬﺎد ﻣﻲﻛﻨﻴﺪ؟‬
‫• ﻣﺪار ﭘﻴﺸﻨﻬﺎدي را ﺑﺒﻨﺪﻳﺪ و ﻧﺘﻴﺠﻪ را ﻣﺸﺎﻫﺪه ﻛﻨﻴﺪ‪.‬‬
‫‪+15V‬‬
‫‪8‬‬
‫‪+VCC‬‬
‫‪Vo‬‬
‫‪3‬‬
‫‪4‬‬
‫‪RST‬‬
‫‪555‬‬
‫‪R1‬‬
‫‪7 DIS‬‬
‫‪OUT‬‬
‫‪R2‬‬
‫‪6 THR‬‬
‫‪2 TRIG‬‬
‫‪GND‬‬
‫‪1‬‬
‫‪CVOLT‬‬
‫‪5‬‬
‫‪C2‬‬
‫ﺷﻜﻞ)‪ (6-5‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺑﺎ ﺗﺎﻳﻤﺮ ‪555‬‬
‫‪C1‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪6-6-2‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪28‬‬
‫ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺑﺎ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ‬
‫• ﻣﺪار ﺷﻜﻞ)‪ (7-5‬را ﺑﺮاي دوره ﺗﻨﺎوب ‪ T = 30 µSec‬ﻃﺮاﺣﻲ ﻛﻨﻴﺪ‪.‬‬
‫• ﻣﺪار را ﺑﺒﻨﺪﻳﺪ و ﺷﻜﻞ ﻣﻮج ﺧﺮوﺟﻲ را ﻣﺸﺎﻫﺪه ﻛﺮده‪ ،‬رﺳﻢ ﻛﻨﻴﺪ‪.‬‬
‫• ﻗﺮار دادن ﻣﻘﺎوﻣﺖ ﺑﺴﻴﺎر ﺑﺰرﮔﻲ ﺑﻴﻦ ﻣﺤﻞ اﺗﺼﺎل ﺧﺎزن و ﻣﻘﺎوﻣﺖ و ورودي ﮔﻴﺖ ‪ G1‬ﭼﻪ اﺛﺮي در ﻣﺪار‬
‫دارد؟‬
‫‪G1‬‬
‫‪G2‬‬
‫‪Vo‬‬
‫‪R‬‬
‫‪C‬‬
‫ﺷﻜﻞ)‪ (7-5‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺑﺎ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ‬
‫ﺑﺎ اﺳﺘﻔﺎده از ﮔﻴﺖﻫﺎي اﺷﻤﻴﺖ ﺗﺮﻳﮕﺮ ﻣﻲﺗﻮان ﻣﻮﻟﺘﻲ وﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺳﺎﺧﺖ‪ .‬ﺷﻜﻞ)‪ (8-5‬ﭼﻨﻴﻦ ﻣﺪاري را ﺑﺎ‬
‫ﻣﺪار ﻣﺠﺘﻤﻊ ‪ 7414‬ﻳﺎ ‪ 4584‬ﻧﺸﺎن ﻣﻲدﻫﺪ‪.‬‬
‫• ﻣﺪار را ﺑﺎ ﻓﺮض ‪ VH = 1V‬ﺑﺮاي دوره ﺗﻨﺎوب ‪ T = 2 µSec‬ﻃﺮاﺣﻲ ﻛﻨﻴﺪ‪.‬‬
‫‪R‬‬
‫‪Vo1‬‬
‫‪GS2‬‬
‫‪GS1‬‬
‫‪Vo2‬‬
‫‪C‬‬
‫ﺷﻜﻞ)‪ (8-5‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺑﺎ ﮔﻴﺖﻫﺎي ﻣﻨﻄﻘﻲ اﺷﻤﻴﺖﺗﺮﻳﮕﺮ‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪ ‬ﺻﻔﺤﻪ ‪29‬‬
‫• ﻣﺪار ﺑﺒﻨﺪﻳﺪ و ﻧﺘﺎﻳﺞ ﻋﻤﻠﻲ را ﺑﺎ ﺗﺌﻮري ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ‪.‬‬
‫• ﺑﺎ ﻣﻘﺎﻳﺴﻪ ‪ Vo1‬و ‪ Vo2‬ﺑﮕﻮﻳﻴﺪ ﮔﻴﺖ ‪ GS2‬ﺑﻪ ﭼﻪ دﻟﻴﻞ در ﻣﺪار ﻗﺮار ﮔﺮﻓﺘﻪ اﺳﺖ؟‬
‫• ﻣﺪار ﺷﻜﻞ)‪ (9-5‬را ﺑﺮاي ‪ T1 = T2 = 1 Sec‬ﻃﺮاﺣﻲ ﻛﻨﻴﺪ‪.‬‬
‫• ﻣﺪار را ﺑﺒﻨﺪﻳﺪ و ﻧﺘﺎﻳﺞ ﻋﻤﻠﻲ را ﺑﺎ ﺗﺌﻮري ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ‪.‬‬
‫ﺷﻜﻞ)‪ (9-5‬ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر آﺳﺘﺎﺑﻞ ﺑﺎ ﮔﻴﺖﻫﺎي ‪NAND‬‬
‫• ﭼﮕﻮﻧﻪ ﺑﺎ اﺳﺘﻔﺎده از ﮔﻴﺖﻫﺎي ‪ NOR‬ﻣﻲﺗﻮان ﻣﺪاري ﺑﺎ ﻋﻤﻠﻜﺮد ﻣﺸﺎﺑﻪ ﻣﺪار ﺷﻜﻞ )‪ (9-5‬ﺳﺎﺧﺖ؟‬
‫‪7-6-2‬‬
‫ﺷﺒﻴﻪﺳﺎزي‬
‫• ﻣﺪار آزﻣﺎﻳﺶﻫﺎﻳﻲ را ﻛﻪ اﻧﺠﺎم دادهاﻳﺪ ﺑﺎ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺷﺒﻴﻪﺳﺎزي ﻛﻨﻴﺪ‪ .‬در ﻫﺮ ﻣﻮرد ﻧﺘﺎﻳﺞ ﺷﺒﻴﻪﺳﺎزي را ﺑﺎ‬
‫ﻧﺘﺎﻳﺞ ﻋﻤﻠﻲ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ‪.‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪30‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪ 7-2‬آزﻣﺎﻳﺶ ﺷﺸﻢ‪ :‬ﻣﺪار ﻧﻤﻮﻧﻪﺑﺮدار و ﻣﺒﺪلﻫﺎي دﻳﺠﻴﺘﺎلﺑﻪآﻧﺎﻟﻮگ و آﻧﺎﻟﻮگﺑﻪدﻳﺠﻴﺘﺎل‬
‫‪1-7-2‬‬
‫ﻫﺪف‬
‫ﺑﺮرﺳﻲ ﻋﻤﻠﻜﺮد ﻣﺪارﻫﺎي ﻧﻤﻮﻧﻪﺑﺮدار‪ ،‬ﻣﺒﺪل دﻳﺠﻴﺘﺎلﺑﻪآﻧﺎﻟﻮگ و ﻣﺒﺪل آﻧﺎﻟﻮگﺑﻪدﻳﺠﻴﺘﺎل‬
‫‪2-7-2‬‬
‫ﻣﺪار ﻧﻤﻮﻧﻪﺑﺮدار‬
‫• ﺑﺘﺪا ﺑﺎ ﻣﺮاﺟﻌﻪ ﺑﻪ ﻛﺎﺗﺎﻟﻮگ ﻣﺪارات ﻣﺠﺘﻤﻊ ﺧﻄﻲ‪ ،‬ﻋﻤﻠﻜﺮد ﻣﺪار ﻣﺠﺘﻤﻊ ‪ LF398‬و ﻧﻘﺶ ﻫﺮ ﻳﻚ از‬
‫وروديﻫﺎي آن را ﺷﺮح دﻫﻴﺪ؛ و ﺳﭙﺲ ﻣﺪار ﺷﻜﻞ)‪ (1-6‬را ﺑﺒﻨﺪﻳﺪ‪.‬‬
‫• ﻳﻚ ﻣﻮجﺳﻴﻨﻮﺳﻲ ﺑﺎ داﻣﻨﻪ ‪ 12‬وﻟﺖ و ﻓﺮﻛﺎﻧﺲ ﻳﻚ ﻛﻴﻠﻮﻫﺮﺗﺰ را ﺑﻪ ورودي آﻧﺎﻟﻮگ و ﻣﻮجﻣﺮﺑﻌﻲ ﺑﺎ داﻣﻨﻪ‬
‫ﺑﻴﻦ ﺻﻔﺮ ﺗﺎ ‪ +5‬وﻟﺖ و ﻓﺮﻛﺎﻧﺲ ‪ 20‬ﻛﻴﻠﻮﻫﺮﺗﺰ و ‪ Duty Cycle= 5%‬را ﺑﻪ ورودي ﻧﻤﻮﻧﻪﺑﺮداري ﻣﺘﺼﻞ‬
‫ﻛﻨﻴﺪ‪.‬‬
‫• ﺷﻜﻞﻣﻮج وروديﻫﺎي آﻧﺎﻟﻮگ و ﻧﻤﻮﻧﻪﺑﺮداري و ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ را روي ﻳﻚ ﻧﻤﻮدار ﻧﺸﺎن دﻫﻴﺪ‪.‬‬
‫• در اداﻣﻪ آزﻣﺎﻳﺶ ﻗﺒﻞ ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪﺑﺮداري را از ‪ 20‬ﻛﻴﻠﻮﻫﺮﺗﺰ ﺑﻪ ‪ 2‬ﻛﻴﻠﻮﻫﺮﺗﺰ ﻛﺎﻫﺶ دﻫﻴﺪ‪ .‬ﺷﻜﻞﻣﻮج‬
‫ﺧﺮوﺟﻲ ﭼﻪ ﺗﻐﻴﻴﺮي ﻣﻲﻛﻨﺪ؟ ﭼﺮا؟‬
‫‪5‬‬
‫‪Sampled Output‬‬
‫‪6‬‬
‫‪C‬‬
‫‪LF398‬‬
‫‪OUT‬‬
‫‪CH‬‬
‫‪IN‬‬
‫‪LOGIC REF‬‬
‫‪LOGIC‬‬
‫‪OFFSET ADJ‬‬
‫‪4‬‬
‫‪V-‬‬
‫‪V+‬‬
‫‪-15V‬‬
‫ﺷﻜﻞ)‪ (1-6‬ﻣﺪار ﻧﻤﻮﻧﻪﺑﺮدار‬
‫‪3‬‬
‫‪7‬‬
‫‪8‬‬
‫‪2‬‬
‫‪1‬‬
‫‪+15V‬‬
‫‪Analog Input‬‬
‫‪Sampling Input‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪ ‬ﺻﻔﺤﻪ ‪31‬‬
‫• اﻛﻨﻮن ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪﺑﺮداري را ﺑﻪﺗﺪرﻳﺞ از ‪ 5‬ﻛﻴﻠﻮﻫﺮﺗﺰ ﺗﺎ ‪ 500‬ﻫﺮﺗﺰ و ﺑﺎ ﮔﺎمﻫﺎي ‪ 500‬ﻫﺮﺗﺰي ﻛﺎﻫﺶ‬
‫دﻫﻴﺪ‪ .‬در ﻫﺮ ﻣﺮﺣﻠﻪ ﻓﺮﻛﺎﻧﺲ ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ را ﻳﺎدداﺷﺖ ﻛﻨﻴﺪ‪.‬‬
‫• ﻣﻨﺤﻨﻲ ﺗﻐﻴﻴﺮات ﻓﺮﻛﺎﻧﺲ ﺧﺮوﺟﻲ را ﺑﺮﺣﺴﺐ ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪﺑﺮداري رﺳﻢ ﻛﻨﻴﺪ‪.‬‬
‫‪3-7-2‬‬
‫ﻣﺒﺪل دﻳﺠﻴﺘﺎلﺑﻪآﻧﺎﻟﻮگ )‪(D/A‬‬
‫• ﻣﺪار ﺷﻜﻞ)‪ (2-6‬را ﺑﺎ اﻧﺘﺨﺎب ﻳﻚ ﻣﻘﺪار ﻣﻨﺎﺳﺐ ﺑﺮاي ‪ R‬ﺑﺒﻨﺪﻳﺪ‪.‬‬
‫• ﺑﺎ اﻋﻤﺎل ﺗﻤﺎم ﺣﺎﻟﺖﻫﺎي وروديﻫﺎي ‪ D3D2D1D0‬از ‪ 0000‬ﺗﺎ ‪ ،1111‬ﺧﺮوﺟﻲ را اﻧﺪازه ﺑﮕﻴﺮﻳﺪ و ﻧﺘﻴﺠﻪ‬
‫را روي ﻧﻤﻮدار رﺳﻢ ﻛﻨﻴﺪ‪.‬‬
‫• ﻋﻤﻠﻜﺮد ﻣﺪار را ﺗﻮﺿﻴﺢ دﻫﻴﺪ‪.‬‬
‫• ﻣﺪار را ﺑﻪﮔﻮﻧﻪاي ﺗﻐﻴﻴﺮ دﻫﻴﺪ ﻛﻪ ﺧﺮوﺟﻲ ﺑﺎ وﻟﺘﺎژﻫﺎي ﻣﺜﺒﺖ ﺑﻪدﺳﺖ آﻳﺪ‪ .‬ﺳﭙﺲ ﻗﺴﻤﺖ ﻗﺒﻠﻲ آزﻣﺎﻳﺶ را‬
‫دوﺑﺎره ﺗﻜﺮار ﻛﻨﻴﺪ‪.‬‬
‫• ﺑﺎ ﻣﺮاﺟﻌﻪ ﺑﻪ ﻛﺎﺗﺎﻟﻮگ ﻣﺪارات ﻣﺠﺘﻤﻊ ﺧﻄﻲ‪ ،‬ﻣﺪار داﺧﻠﻲ ‪ DAC08‬را ﺑﺮرﺳﻲ ﻛﻨﻴﺪ‪ .‬ﺗﻔﺎوتﻫﺎي ﻣﺪار‬
‫داﺧﻠﻲ اﻳﻦ ﻣﺒﺪل ﺑﺎ ﻣﺪار ﺷﻜﻞ)‪ (2-6‬ﭼﻴﺴﺖ؟ ﻣﺪار ﺷﻜﻞ)‪ (2-6‬را ﺑﺎ ‪ DAC08‬ﭘﻴﺎده ﺳﺎزي ﻛﻨﻴﺪ‪.‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪32‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪+5V‬‬
‫‪2R‬‬
‫‪+15V‬‬
‫‪7‬‬
‫‪2R‬‬
‫‪R‬‬
‫‪LM741‬‬
‫‪V+‬‬
‫‪OFS NULL‬‬
‫‪OFS NULL‬‬
‫‪4‬‬
‫‪2‬‬
‫‪3‬‬
‫‪D2‬‬
‫‪1‬‬
‫‪3‬‬
‫‪2‬‬
‫‪6‬‬
‫‪Analog Output‬‬
‫‪1‬‬
‫‪5‬‬
‫‪2R‬‬
‫‪2‬‬
‫‪D3‬‬
‫‪1‬‬
‫‪R‬‬
‫‪3‬‬
‫‪V-‬‬
‫‪-15V‬‬
‫‪NC‬‬
‫‪8‬‬
‫‪2R‬‬
‫‪2‬‬
‫‪D1‬‬
‫‪1‬‬
‫‪3‬‬
‫‪2R‬‬
‫‪R‬‬
‫‪2R‬‬
‫‪2‬‬
‫‪D0‬‬
‫‪1‬‬
‫‪3‬‬
‫‪R‬‬
‫ﺷﻜﻞ)‪ (2-6‬ﻳﻚ ﻧﻤﻮﻧﻪ ﻣﺪار ﻣﺒﺪل دﻳﺠﻴﺘﺎلﺑﻪآﻧﺎﻟﻮگ‬
‫‪4-7-2‬‬
‫ﻣﺒﺪل آﻧﺎﻟﻮگﺑﻪدﻳﺠﻴﺘﺎل )‪(A/D‬‬
‫• ﺑﺎ ﻣﺮاﺟﻌﻪ ﺑﻪ ﻛﺎﺗﺎﻟﻮگ ﻣﺪارات ﻣﺠﺘﻤﻊ ﺧﻄﻲ‪ ،‬ﻋﻤﻠﻜﺮد ﻣﺪار ﻣﺠﺘﻤﻊ ‪ ADC0804‬و ﻫﺮﻳﻚ از ﭘﺎﻳﻪﻫﺎي آن‬
‫را ﺑﺮرﺳﻲ ﻛﻨﻴﺪ‪.‬‬
‫• ﻣﺪار ﺷﻜﻞ)‪ (3-6‬را ﺑﺒﻨﺪﻳﺪ‪.‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪LED‬‬
‫‪1K‬‬
‫‪LED‬‬
‫‪1K‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪33‬‬
‫‪18‬‬
‫‪17‬‬
‫‪16‬‬
‫‪15‬‬
‫‪14‬‬
‫‪13‬‬
‫‪12‬‬
‫‪11‬‬
‫‪5‬‬
‫‪8‬‬
‫‪10‬‬
‫‪ADC0804‬‬
‫‪DB0‬‬
‫‪DB1‬‬
‫‪DB2‬‬
‫‪DB3‬‬
‫‪DB4‬‬
‫‪DB5‬‬
‫‪DB6‬‬
‫‪DB7‬‬
‫‪INTR‬‬
‫‪VIN+‬‬
‫‪VIN‬‬‫‪CLKIN‬‬
‫‪CLKR‬‬
‫‪CS‬‬
‫‪RD‬‬
‫‪WR‬‬
‫‪AGND‬‬
‫‪VREF/2‬‬
‫‪DGND‬‬
‫‪VCC‬‬
‫‪6‬‬
‫‪7‬‬
‫‪5K‬‬
‫‪4‬‬
‫‪19‬‬
‫‪10K‬‬
‫‪1‬‬
‫‪2‬‬
‫‪3‬‬
‫‪9‬‬
‫‪150pF‬‬
‫‪+15V‬‬
‫‪20‬‬
‫‪Start‬‬
‫‪10uF‬‬
‫ﺷﻜﻞ)‪ (3-6‬ﻳﻚ ﻧﻤﻮﻧﻪ ﻣﺪار ﻣﺒﺪل آﻧﺎﻟﻮگﺑﻪدﻳﺠﻴﺘﺎل‬
‫• ﺑﺎ ﺗﻐﻴﻴﺮ ﭘﺘﺎﻧﺴﻴﻮﻣﺘﺮ‪ ،‬وﻟﺘﺎژ ﭘﺎﻳﻪ ‪ Vin+‬را از ﺻﻔﺮ ﺗﺎ ‪ 5‬وﻟﺖ و ﺑﺎ ﮔﺎمﻫﺎي ‪ 0/2‬وﻟﺖ ﺗﻐﻴﻴﺮ دﻫﻴﺪ‪ .‬در ﻫﺮ‬
‫ﺣﺎﻟﺖ ﺑﻪوﺳﻴﻠﻪ دﻳﻮدﻫﺎي ﻧﻮراﻧﻲ‪ ،‬ﻋﺪد ﻫﺸﺖ ﺑﻴﺘﻲ ﺧﺮوﺟﻲ را ﻳﺎدداﺷﺖ ﻛﻨﻴﺪ‪ .‬ﺑﺮاي ﺷﺮوع اﻧﺠﺎم ﺗﺒﺪﻳﻞ‬
‫آﻧﺎﻟﻮگ ﺑﻪ دﻳﺠﻴﺘﺎل‪ ،‬از ﻛﻠﻴﺪ ﻓﺸﺎري ‪ Start‬اﺳﺘﻔﺎده ﻛﻨﻴﺪ‪.‬‬
‫• ﭼﮕﻮﻧﻪ ﻣﻲﺗﻮان اﻳﻦ ﻣﺪار ﻣﺠﺘﻤﻊ را ﺑﻪ ﻳﻚ ﻣﻴﻜﺮوﭘﺮوﺳﺴﻮر ﻣﺘﺼﻞ ﻛﺮد؟ ﻣﻴﻜﺮوﭘﺮوﺳﺴﻮر دﻟﺨﻮاﻫﻲ را‬
‫اﻧﺘﺨﺎب ﻛﻨﻴﺪ و ﻧﻘﺸﻪ ﻣﺪار ﻣﺮﺑﻮﻃﻪ را رﺳﻢ ﻛﻨﻴﺪ‪.‬‬
‫‪5-7-2‬‬
‫ﺷﺒﻴﻪﺳﺎزي‬
‫• ﻣﺪار ﺷﻜﻞ)‪ (2-6‬را ﺑﺎ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺷﺒﻴﻪﺳﺎزي ﻛﺮده و ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ را ﺑﺎ ﻧﺘﺎﻳﺞ آزﻣﺎﻳﺶ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ‪.‬‬
‫‪ 8-2‬آزﻣﺎﻳﺶ ﻫﻔﺘﻢ‪ :‬ﻣﺪارﻫﺎي ﻛﺎرﺑﺮدي ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‬
‫‪1-8-2‬‬
‫ﻫﺪف‬
‫ﺑﺮرﺳﻲ ﺑﺮﺧﻲ ﻛﺎرﺑﺮدﻫﺎي ﺧﻄﻲ و ﻏﻴﺮﺧﻄﻲ ﺗﻘﻮﻳﺖﻛﻨﻨﺪهﻫﺎي ﻋﻤﻠﻴﺎﺗﻲ‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪2-8-2‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪34‬‬
‫ﺟﻤﻊﻛﻨﻨﺪه‬
‫• ﻣﺪار ﺟﻤﻊﻛﻨﻨﺪه ﺷﻜﻞ)‪ (1-7‬را ﺑﺒﻨﺪﻳﺪ‪ .‬ﺳﻴﮕﻨﺎلﻫﺎي ‪ Vi1‬و‪ Vi2‬ﻣﻲﺗﻮاﻧﻨﺪ ‪ DC‬ﻳﺎ ‪ AC‬ﺑﺎﺷﻨﺪ‪.‬‬
‫‪2R‬‬
‫‪+15V‬‬
‫‪7‬‬
‫‪LM741‬‬
‫‪V+‬‬
‫‪OFS NULL‬‬
‫‪OFS NULL‬‬
‫‪2R‬‬
‫‪1‬‬
‫‪5‬‬
‫‪Vi1‬‬
‫‪2‬‬
‫‪Vi2‬‬
‫‪6‬‬
‫‪Vo‬‬
‫‪3‬‬
‫‪4‬‬
‫‪V-‬‬
‫‪NC‬‬
‫‪2R‬‬
‫‪8‬‬
‫‪-15V‬‬
‫‪R‬‬
‫ﺷﻜﻞ)‪ (1-7‬ﻣﺪار ﺟﻤﻊﻛﻨﻨﺪه ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‬
‫• دو ﺳﻴﮕﻨﺎل ‪ Vi1‬و‪ Vi2‬را ﻛﻪ ﻳﻜﻲ ﻣﺮﺑﻌﻲ و دﻳﮕﺮي ﺳﻴﻨﻮﺳﻲ ﺑﺎﺷﺪ ﺑﺎ ﻫﻢ ﺟﻤﻊ ﻛﻨﻴﺪ‪ .‬ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ‬
‫را ﻣﺸﺎﻫﺪه ﻛﺮده ﺑﺎ ﺷﻜﻞﻣﻮج وروديﻫﺎ در ﻳﻚ ﻣﺤﻮر ﻣﺨﺘﺼﺎت رﺳﻢ ﻛﻨﻴﺪ‪.‬‬
‫• ﺳﭙﺲ دو ﺳﻴﮕﻨﺎل ﺳﻴﻨﻮﺳﻲ ﺑﻪ ﻓﺮﻛﺎﻧﺲﻫﺎي ‪ f1‬و ‪ f2‬را ﺑﺎ ﻫﻢ ﺟﻤﻊ ﻛﻨﻴﺪ‪.‬‬
‫• ﺑﺎ ﻧﺰدﻳﻚﻛﺮدن ‪ f2‬ﺑﻪ ‪ ،f1‬اﺛﺮ ﺗﺪاﺧﻞ دو ﻣﻮج و ﭘﺪﻳﺪه ﺿﺮﺑﺎن را ﻣﺸﺎﻫﺪه ﻛﻨﻴﺪ‪ .‬ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ و‬
‫ﺷﻜﻞﻣﻮجﻫﺎي ورودي را روي ﻳﻚ ﻣﺤﻮر ﻣﺨﺘﺼﺎت رﺳﻢ ﻛﻨﻴﺪ‪.‬‬
‫• ﭼﺮا ﻣﻮج ﺧﺮوﺟﻲ در اﻳﻦ ﺣﺎﻟﺖ از ﻧﻮع ﻣﺪوﻻﺳﻴﻮن داﻣﻨﻪ ﻧﻴﺴﺖ؟‬
‫‪3-8-2‬‬
‫اﻧﺘﮕﺮالﮔﻴﺮ‬
‫• ﻣﺪار اﻧﺘﮕﺮالﮔﻴﺮ ﺷﻜﻞ)‪ (2-7‬را ﺑﺒﻨﺪﻳﺪ‪.‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪35‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪C‬‬
‫‪+15V‬‬
‫‪7‬‬
‫‪Vo‬‬
‫‪LM741‬‬
‫‪V+‬‬
‫‪OFS NULL‬‬
‫‪OFS NULL‬‬
‫‪R‬‬
‫‪2‬‬
‫‪6‬‬
‫‪4‬‬
‫‪1‬‬
‫‪5‬‬
‫‪Vi‬‬
‫‪3‬‬
‫‪V-‬‬
‫‪NC‬‬
‫‪-15V‬‬
‫‪8‬‬
‫‪R‬‬
‫ﺷﻜﻞ)‪ (2-7‬ﻣﺪار اﻧﺘﺮالﮔﻴﺮ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‬
‫• ﺑﺎ اﻋﻤﺎل ﻳﻚ ﻣﻮج ﺳﻴﻨﻮﺳﻲ ﺑﻪ ورودي ﻣﺪار‪ ،‬ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ را ﻣﺸﺎﻫﺪه ﻛﺮده و ﻫﻤﺮاه ﺑﺎ ﺷﻜﻞﻣﻮج‬
‫ورودي در ﻳﻚ ﻣﺤﻮر ﻣﺨﺘﺼﺎت رﺳﻢ ﻛﻨﻴﺪ‪.‬‬
‫• ﺑﺎ اﻋﻤﺎل ﻳﻚ ﻣﻮج ﻣﺮﺑﻌﻲ ﺑﻪ ورودي ﻣﺪار‪ ،‬ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ را ﻣﺸﺎﻫﺪه ﻛﺮده و ﻫﻤﺮاه ﺑﺎ ﺷﻜﻞﻣﻮج‬
‫ورودي در ﻳﻚ ﻣﺤﻮر ﻣﺨﺘﺼﺎت رﺳﻢ ﻛﻨﻴﺪ‪.‬‬
‫• ﺷﻜﻞﻣﻮجﻫﺎي ﺧﺮوﺟﻲ ﺑﻪدﺳﺖ آﻣﺪه را ﺗﻔﺴﻴﺮ ﻛﻨﻴﺪ‪.‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪4-8-2‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪36‬‬
‫ﻣﺸﺘﻖﮔﻴﺮ‬
‫• ﻣﺪار ﻣﺸﺘﻖﮔﻴﺮ ﺷﻜﻞ)‪ (3-7‬را ﺑﺒﻨﺪﻳﺪ‪.‬‬
‫‪R‬‬
‫‪+15V‬‬
‫‪7‬‬
‫‪LM741‬‬
‫‪V+‬‬
‫‪OFS NULL‬‬
‫‪OFS NULL‬‬
‫‪1‬‬
‫‪5‬‬
‫‪C‬‬
‫‪2‬‬
‫‪Vo‬‬
‫‪Vi‬‬
‫‪6‬‬
‫‪3‬‬
‫‪4‬‬
‫‪V-‬‬
‫‪NC‬‬
‫‪-15V‬‬
‫‪8‬‬
‫‪R‬‬
‫ﺷﻜﻞ)‪ (3-7‬ﻣﺪار ﻣﺸﺘﻖﮔﻴﺮ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‬
‫• ﻣﺸﺎﺑﻪ آزﻣﺎﻳﺶ ﻗﺒﻞ ﺑﺎ اﻋﻤﺎل ﺷﻜﻞﻣﻮجﻫﺎي ﺳﻴﻨﻮﺳﻲ و ﻣﺮﺑﻌﻲ ﺑﻪ ورودي ﻣﺪار‪ ،‬ﺷﻜﻞﻣﻮج ﺧﺮوﺟﻲ را در‬
‫ﻫﺮ ﺣﺎﻟﺖ ﻣﺸﺎﻫﺪه ﻛﺮده و ﻫﻤﺮاه ﺑﺎ ﺷﻜﻞﻣﻮج ورودي ﻣﺮﺑﻮﻃﻪ در ﻳﻚ ﻣﺤﻮر ﻣﺨﺘﺼﺎت رﺳﻢ ﻛﻨﻴﺪ‪.‬‬
‫• ﺷﻜﻞﻣﻮجﻫﺎي ﺧﺮوﺟﻲ ﺑﻪدﺳﺖ آﻣﺪه را ﺗﻔﺴﻴﺮ ﻛﻨﻴﺪ‪.‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪5-8-2‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪37‬‬
‫ﻳﻜﺴﻮﺳﺎز ﻧﻴﻢﻣﻮج‬
‫• ﻃﺮز ﻛﺎر ﻣﺪار ﻳﻜﺴﻮﺳﺎز ﻧﻴﻢﻣﻮج ﺷﻜﻞ)‪ (4-7‬را ﺗﻮﺿﻴﺢ دﻫﻴﺪ‪.‬‬
‫• ﭘﺲ از ﺑﺴﺘﻦ ﻣﺪار‪ ،‬ﺑﺎ ﺗﻐﻴﻴﺮ وﻟﺘﺎژ ورودي ‪ ،Vi‬ﺗﻐﻴﻴﺮات وﻟﺘﺎژﻫﺎي ﺧﺮوﺟﻲ ‪ Vo1‬و ‪ Vo2‬را ﺑﺮرﺳﻲ ﻛﺮده‬
‫و ﻣﺸﺨﺼﻪﻫﺎي اﻧﺘﻘﺎﻟﻲ )‪ Vo1 = f1(Vi‬و )‪ Vo2 = f2(Vi‬را رﺳﻢ ﻛﻨﻴﺪ‪.‬‬
‫• ﺑﺎ اﻋﻤﺎل ورودي ﺳﻴﻨﻮﺳﻲ‪ ،‬ﻋﻤﻠﻜﺮد ﻳﻜﺴﻮﺳﺎزي ﻣﺪار را ﺑﺮرﺳﻲ ﻛﺮده و ﺷﻜﻞﻣﻮجﻫﺎي ‪ Vo1‬و ‪ Vo2‬را‬
‫رﺳﻢ ﻛﻨﻴﺪ‪.‬‬
‫• ﺣﺪاﻗﻞ ﻣﻘﺪار داﻣﻨﻪ ﺳﻴﮕﻨﺎل ورودي ﭼﻘﺪر ﻣﻲﺗﻮاﻧﺪ ﺑﺎﺷﺪ ﺗﺎ ﻋﻤﻞ ﻳﻜﺴﻮﺳﺎزي ﺑﻪدرﺳﺘﻲ اﻧﺠﺎم ﺷﻮد؟‬
‫• ﻣﺰﻳﺖ اﻳﻦ ﻣﺪار ﻧﺴﺒﺖ ﺑﻪ ﻳﻜﺴﻮﺳﺎز ﻧﻴﻢﻣﻮج ﻣﻌﻤﻮﻟﻲ )ﺑﺪون اﺳﺘﻔﺎده از ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ( ﭼﻴﺴﺖ؟‬
‫‪R‬‬
‫‪D‬‬
‫‪+15V‬‬
‫‪Vo2‬‬
‫‪7‬‬
‫‪LM741‬‬
‫‪V+‬‬
‫‪D‬‬
‫‪OFS NULL‬‬
‫‪OFS NULL‬‬
‫‪4‬‬
‫‪R‬‬
‫‪-15V‬‬
‫‪R‬‬
‫‪2‬‬
‫‪6‬‬
‫‪Vo1‬‬
‫‪1‬‬
‫‪5‬‬
‫‪Vi‬‬
‫‪3‬‬
‫‪V-‬‬
‫‪NC‬‬
‫‪8‬‬
‫‪R/2‬‬
‫ﺷﻜﻞ)‪ (4-7‬ﻣﺪار ﻳﻜﺴﻮﺳﺎز ﻧﻴﻢﻣﻮج ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪6-8-2‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪38‬‬
‫ﻳﻜﺴﻮﺳﺎز ﺗﻤﺎمﻣﻮج‬
‫• ﻃﺮز ﻛﺎر ﻣﺪار ﻳﻜﺴﻮﺳﺎز ﺗﻤﺎمﻣﻮج ﺷﻜﻞ)‪ (5-7‬را ﺗﻮﺿﻴﺢ دﻫﻴﺪ‪.‬‬
‫• ﭘﺲ از ﺑﺴﺘﻦ ﻣﺪار‪ ،‬ﺑﺎ ﺗﻐﻴﻴﺮ وﻟﺘﺎژ ورودي ‪ ،Vi‬ﺗﻐﻴﻴﺮات ﺧﺮوﺟﻲ ‪ Vo‬را ﺑﺮرﺳﻲ ﻛﺮده و ﻣﺸﺨﺼﻪ اﻧﺘﻘﺎﻟﻲ‬
‫)‪ Vo = f (Vi‬ﻣﺪار را رﺳﻢ ﻛﻨﻴﺪ‪.‬‬
‫• ﺑﺎ اﻋﻤﺎل ورودي ﺳﻴﻨﻮﺳﻲ‪ ،‬ﻋﻤﻠﻜﺮد ﻳﻜﺴﻮﺳﺎزي ﻣﺪار را ﺑﺮرﺳﻲ ﻛﺮده و ﺷﻜﻞﻣﻮج ‪ Vo‬را رﺳﻢ ﻛﻨﻴﺪ‪.‬‬
‫‪R‬‬
‫‪+15V‬‬
‫‪7‬‬
‫‪R‬‬
‫‪+15V‬‬
‫‪LM741‬‬
‫‪V+‬‬
‫‪R‬‬
‫‪OFS NULL‬‬
‫‪OFS NULL‬‬
‫‪1‬‬
‫‪5‬‬
‫‪D‬‬
‫‪7‬‬
‫‪LM741‬‬
‫‪V+‬‬
‫‪OFS NULL‬‬
‫‪OFS NULL‬‬
‫‪2‬‬
‫‪Vo‬‬
‫‪2‬‬
‫‪6‬‬
‫‪6‬‬
‫‪3‬‬
‫‪4‬‬
‫‪-15V‬‬
‫‪1‬‬
‫‪5‬‬
‫‪V-‬‬
‫‪NC‬‬
‫‪3‬‬
‫‪4‬‬
‫‪8‬‬
‫‪D‬‬
‫‪NC‬‬
‫‪V-‬‬
‫‪8‬‬
‫‪-15V‬‬
‫‪R‬‬
‫ﺷﻜﻞ)‪ (5-7‬ﻣﺪار ﻳﻜﺴﻮﺳﺎز ﺗﻤﺎمﻣﻮج ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‬
‫‪R‬‬
‫‪Vi‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪7-8-2‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪39‬‬
‫ﻗﺪرﻣﻄﻠﻖﮔﻴﺮ‬
‫• ﻣﺪار ﻗﺪرﻣﻄﻠﻖﮔﻴﺮ ﺷﻜﻞ)‪ (6-7‬را ﺑﺒﻨﺪﻳﺪ‪.‬‬
‫•‬
‫ﻧﺤﻮه ﻋﻤﻠﻜﺮد ﻣﺪار را ﺑﻪازاي وﻟﺘﺎژﻫﺎي ورودي ‪ DC‬و ‪ AC‬را ﺑﺮرﺳﻲ ﻛﺮده و ﻣﺸﺨﺼﻪ )‪Vo = f(Vi‬‬
‫ﻣﺪار را رﺳﻢ ﻛﻨﻴﺪ‪.‬‬
‫ﺷﻜﻞ)‪ (6-7‬ﻣﺪار ﻗﺪرﻣﻄﻠﻖﮔﻴﺮ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪8-8-2‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪40‬‬
‫ﻣﺤﺪودﻛﻨﻨﺪه‬
‫• ﻣﺪار ﻣﺤﺪودﻛﻨﻨﺪه ﺷﻜﻞ)‪ (7-7‬را ﺑﺒﻨﺪﻳﺪ‪.‬‬
‫• ﻧﺤﻮه ﻋﻤﻠﻜﺮد ﻣﺪار را ﺑﻪازاي ﺗﻐﻴﻴﺮات وﻟﺘﺎژ ورودي ﺑﺮرﺳﻲ ﻛﺮده و ﻣﺸﺨﺼﻪ )‪ Vo = f(Vi‬ﻣﺪار را رﺳﻢ‬
‫ﻛﻨﻴﺪ‪.‬‬
‫‪6.2V‬‬
‫‪6.2V‬‬
‫‪10K‬‬
‫‪+15V‬‬
‫‪7‬‬
‫‪Vo‬‬
‫‪LM741‬‬
‫‪V+‬‬
‫‪OFS NULL‬‬
‫‪OFS NULL‬‬
‫‪1‬‬
‫‪5‬‬
‫‪10K‬‬
‫‪2‬‬
‫‪6‬‬
‫‪Vi‬‬
‫‪3‬‬
‫‪4‬‬
‫‪-15V‬‬
‫‪V-‬‬
‫‪NC‬‬
‫‪8‬‬
‫‪5K‬‬
‫ﺷﻜﻞ)‪ (7-7‬ﻣﺪار ﻣﺤﺪودﻛﻨﻨﺪه ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪9-8-2‬‬
‫ﺑﺎﻧﺪ ﺑﻲواﻛﻨﺶ )‪(Dead Band‬‬
‫• ﻣﺪاري ﻃﺮاﺣﻲ ﻛﻨﻴﺪ ﻛﻪ ﻣﺸﺨﺼﻪ اﻧﺘﻘﺎﻟﻲ آن ﻣﻄﺎﺑﻖ ﺷﻜﻞ)‪ (8-7‬ﺑﺎﺷﺪ‪.‬‬
‫• ﻣﺪار ﻃﺮاﺣﻲﺷﺪه را ﺑﺒﻨﺪﻳﺪ و ﻣﺸﺨﺼﻪ اﻧﺘﻘﺎﻟﻲ آن را ﺑﻪدﺳﺖ آورﻳﺪ‪.‬‬
‫• ﻣﺸﺨﺼﻪ اﻧﺘﻘﺎﻟﻲ ﺑﻪدﺳﺖ آﻣﺪه را ﺑﺎ ﻣﺸﺨﺼﻪ ﻣﻮرد اﻧﺘﻈﺎر ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ‪.‬‬
‫ﺷﻜﻞ)‪ (8-7‬ﻣﺸﺨﺼﻪ اﻧﺘﻘﺎﻟﻲ ﺑﺎﻧﺪ ﺑﻲواﻛﻨﺶ‬
‫‪ ‬ﺻﻔﺤﻪ ‪41‬‬
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪10-8-2‬‬
‫‪ ‬ﺻﻔﺤﻪ ‪42‬‬
‫آﺷﻜﺎرﺳﺎز داﻣﻨﻪ‬
‫• ﻣﺪار ﺷﻜﻞ)‪ (9-7‬را ﺑﺒﻨﺪﻳﺪ و ﻋﻤﻠﻜﺮد آن را ﺑﺮرﺳﻲ ﻛﻨﻴﺪ‪.‬‬
‫• ﻣﺪاري ﺑﺮاي ﺗﺨﻠﻴﻪ ﺧﺎزن ‪ C‬ﭘﻴﺸﻨﻬﺎد ﻛﻨﻴﺪ‪.‬‬
‫‪+15V‬‬
‫‪7‬‬
‫‪D‬‬
‫‪LM741‬‬
‫‪V+‬‬
‫‪OFS NULL‬‬
‫‪OFS NULL‬‬
‫‪2‬‬
‫‪6‬‬
‫‪Vo1‬‬
‫‪4‬‬
‫‪C = 100uF‬‬
‫‪1‬‬
‫‪5‬‬
‫‪3‬‬
‫‪V-‬‬
‫‪NC‬‬
‫‪Vi‬‬
‫‪8‬‬
‫‪-15V‬‬
‫ﺷﻜﻞ )‪ (9-7‬ﻣﺪار آﺷﻜﺎرﺳﺎز داﻣﻨﻪ ﺑﺎ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ‬
‫‪11-8-2‬‬
‫ﺷﺒﻴﻪﺳﺎزي‬
‫* ﻣﺪارﻫﺎي آزﻣﺎﻳﺶﻫﺎﻳﻲ را ﻛﻪ اﻧﺠﺎم دادهاﻳﺪ‪ ،‬ﺑﺎ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺷﺒﻴﻪﺳﺎزي ﻛﻨﻴﺪ‪ .‬در ﻫﺮ ﻣﻮرد ﻧﺘﺎﻳﺢ ﺷﺒﻴﻪﺳﺎزي را ﺑﺎ‬
‫ﻧﺘﺎﻳﺞ ﻋﻤﻠﻲ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ‪.‬‬
43 ‫ ﺻﻔﺤﻪ‬ ‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫ ﻣﺮاﺟﻊ‬3
1) T. A. DeMassa and Z. Ciccone, Digital Integrated Circuits, John Wiley & Sons, 1996.
2) A. S. Sedra and K. C. Swith, Microelectrronic Circuitrs (4th edition), Oxford
University Press,1993.
3) L. O. Chua, C. A. Desoer and E.S. Kuh, Linear and Nonlinear Circuits, McGraw Hill,
1987.
4) A. Agarwal and J. H. Lang, Foundations of Analog and Digital Electronic Circuits,
Morgan Kaufmann, 2005.
،‫ ﻧﺸﺮ ﻋﻠﻮم داﻧﺸﮕﺎﻫﻲ‬،(‫ ﻣﺪارﻫﺎي ﻣﻴﻜﺮواﻟﻜﺘﺮوﻧﻴﻚ )وﻳﺮاﺳﺖ ﭼﻬﺎرم‬،‫( ﻋﺎدل ﺻﺪره و ﻛﻨﺖ اﺳﻤﻴﺖ‬5
.1381
.National Semicoductors ‫( ﻛﺎﺗﺎﻟﻮگ آيﺳﻲﻫﺎي آﻧﺎﻟﻮگ ﺷﺮﻛﺖ‬6
‫دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎه اﻟﻜﺘﺮوﻧﻴﻚ دﻳﺠﻴﺘﺎل‬
‫‪ ‬ﺻﻔﺤﻪ ‪44‬‬
‫‪ 4‬ﭘﻴﻮﺳﺖﻫﺎ‬
‫ﺑﺮﮔﻪﻫﺎي ﻣﺸﺨﺼﺎت ﻓﻨﻲ ﺑﺮﺧﻲ ﻗﻄﻌﺎت ﻣﻮرد اﺳﺘﻔﺎده در آزﻣﺎﻳﺶﻫﺎ‪ ،‬ﻧﻈﻴﺮ ﺗﻘﻮﻳﺖﻛﻨﻨﺪه ﻋﻤﻠﻴﺎﺗﻲ ‪،LM741‬‬
‫ﻣﺪارﻣﺠﺘﻤﻊ ﺗﺎﻳﻤﺮ ‪ LM555‬و ﻣﻮﻟﺘﻲوﻳﺒﺮاﺗﻮر ‪ ،DM74121‬ﺑﻪ ﭘﻴﻮﺳﺖ اﻳﻦ دﺳﺘﻮر ﻛﺎر اراﺋﻪ ﺷﺪهاﻧﺪ‪.‬‬
LM741
Operational Amplifier
General Description
The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements
for the 709C, LM201, MC1439 and 748 in most applications.
The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and
output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.
The LM741C is identical to the LM741/LM741A except that
the LM741C has their performance guaranteed over a 0˚C to
+70˚C temperature range, instead of −55˚C to +125˚C.
Features
Connection Diagrams
Metal Can Package
Dual-In-Line or S.O. Package
00934103
00934102
Note 1: LM741H is available per JM38510/10101
Order Number LM741H, LM741H/883 (Note 1),
LM741AH/883 or LM741CH
See NS Package Number H08C
Order Number LM741J, LM741J/883, LM741CN
See NS Package Number J08A, M08A or N08E
Ceramic Flatpak
00934106
Order Number LM741W/883
See NS Package Number W10A
Typical Application
Offset Nulling Circuit
00934107
© 2004 National Semiconductor Corporation
DS009341
www.national.com
LM741 Operational Amplifier
August 2000
LM741
Absolute Maximum Ratings (Note 2)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
(Note 7)
LM741A
LM741
± 22V
± 22V
± 18V
500 mW
500 mW
500 mW
± 30V
± 15V
± 30V
± 15V
± 30V
± 15V
Output Short Circuit Duration
Continuous
Continuous
Continuous
Operating Temperature Range
−55˚C to +125˚C
−55˚C to +125˚C
0˚C to +70˚C
Storage Temperature Range
−65˚C to +150˚C
−65˚C to +150˚C
−65˚C to +150˚C
150˚C
150˚C
100˚C
N-Package (10 seconds)
260˚C
260˚C
260˚C
J- or H-Package (10 seconds)
300˚C
300˚C
300˚C
Vapor Phase (60 seconds)
215˚C
215˚C
215˚C
Infrared (15 seconds)
215˚C
215˚C
215˚C
Supply Voltage
Power Dissipation (Note 3)
Differential Input Voltage
Input Voltage (Note 4)
Junction Temperature
LM741C
Soldering Information
M-Package
See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of
soldering
surface mount devices.
ESD Tolerance (Note 8)
400V
400V
400V
Electrical Characteristics (Note 5)
Parameter
Conditions
LM741A
Min
Input Offset Voltage
LM741
Min
LM741C
Typ
Max
1.0
5.0
Min
Units
Typ
Max
Typ
Max
0.8
3.0
2.0
6.0
mV
4.0
mV
TA = 25˚C
RS ≤ 10 kΩ
RS ≤ 50Ω
mV
TAMIN ≤ TA ≤ TAMAX
RS ≤ 50Ω
RS ≤ 10 kΩ
6.0
Average Input Offset
7.5
15
mV
µV/˚C
Voltage Drift
Input Offset Voltage
TA = 25˚C, VS = ± 20V
± 10
± 15
± 15
mV
Adjustment Range
Input Offset Current
TA = 25˚C
3.0
TAMIN ≤ TA ≤ TAMAX
Average Input Offset
30
20
200
70
85
500
20
200
nA
300
nA
0.5
nA/˚C
Current Drift
Input Bias Current
TA = 25˚C
Input Resistance
TA = 25˚C, VS = ± 20V
1.0
TAMIN ≤ TA ≤ TAMAX,
0.5
30
TAMIN ≤ TA ≤ TAMAX
80
80
0.210
6.0
500
80
1.5
0.3
2.0
500
0.8
0.3
2.0
nA
µA
MΩ
MΩ
VS = ± 20V
Input Voltage Range
± 12
TA = 25˚C
TAMIN ≤ TA ≤ TAMAX
www.national.com
± 12
2
± 13
± 13
V
V
Parameter
(Continued)
Conditions
LM741A
Min
Large Signal Voltage Gain
Typ
LM741
Max
Min
Typ
50
200
LM741C
Max
Min
Typ
20
200
Units
Max
TA = 25˚C, RL ≥ 2 kΩ
VS = ± 20V, VO = ± 15V
50
V/mV
VS = ± 15V, VO = ± 10V
V/mV
TAMIN ≤ TA ≤ TAMAX,
RL ≥ 2 kΩ,
VS = ± 20V, VO = ± 15V
32
V/mV
VS = ± 15V, VO = ± 10V
VS = ± 5V, VO = ± 2V
Output Voltage Swing
25
15
V/mV
10
V/mV
± 16
± 15
V
VS = ± 20V
RL ≥ 10 kΩ
RL ≥ 2 kΩ
V
VS = ± 15V
RL ≥ 10 kΩ
± 12
± 10
RL ≥ 2 kΩ
Output Short Circuit
TA = 25˚C
10
Current
TAMIN ≤ TA ≤ TAMAX
10
Common-Mode
TAMIN ≤ TA ≤ TAMAX
Rejection Ratio
25
35
Supply Voltage Rejection
TAMIN ≤ TA ≤ TAMAX,
Ratio
VS = ± 20V to VS = ± 5V
RS ≤ 50Ω
25
± 14
± 13
V
25
mA
95
86
96
90
70
90
dB
77
96
77
96
dB
µs
TA = 25˚C, Unity Gain
0.25
0.8
0.3
0.3
Overshoot
6.0
20
5
5
TA = 25˚C
Slew Rate
TA = 25˚C, Unity Gain
Supply Current
TA = 25˚C
Power Consumption
TA = 25˚C
0.437
1.5
0.3
0.7
VS = ± 20V
80
LM741
%
MHz
0.5
0.5
V/µs
1.7
2.8
1.7
2.8
mA
50
85
50
85
mW
150
VS = ± 15V
LM741A
dB
dB
Rise Time
Bandwidth (Note 6)
V
mA
70
80
RS ≤ 10 kΩ
Transient Response
± 12
± 10
40
RS ≤ 10 kΩ, VCM = ± 12V
RS ≤ 50Ω, VCM = ± 12V
± 14
± 13
mW
VS = ± 20V
TA = TAMIN
165
mW
TA = TAMAX
135
mW
VS = ± 15V
TA = TAMIN
60
100
mW
TA = TAMAX
45
75
mW
Note 2: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is
functional, but do not guarantee specific performance limits.
3
www.national.com
LM741
Electrical Characteristics (Note 5)
LM741
Electrical Characteristics (Note 5)
(Continued)
Note 3: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and Tj max. (listed under “Absolute Maximum
Ratings”). Tj = TA + (θjA PD).
Thermal Resistance
θjA (Junction to Ambient)
θjC (Junction to Case)
Cerdip (J)
DIP (N)
HO8 (H)
SO-8 (M)
100˚C/W
100˚C/W
170˚C/W
195˚C/W
N/A
N/A
25˚C/W
N/A
Note 4: For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply voltage.
Note 5: Unless otherwise specified, these specifications apply for VS = ± 15V, −55˚C ≤ TA ≤ +125˚C (LM741/LM741A). For the LM741C/LM741E, these
specifications are limited to 0˚C ≤ TA ≤ +70˚C.
Note 6: Calculated value from: BW (MHz) = 0.35/Rise Time(µs).
Note 7: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.
Note 8: Human body model, 1.5 kΩ in series with 100 pF.
Schematic Diagram
00934101
www.national.com
4
LM741
Physical Dimensions
inches (millimeters)
unless otherwise noted
Metal Can Package (H)
Order Number LM741H, LM741H/883, LM741AH/883, LM741AH-MIL or LM741CH
NS Package Number H08C
5
www.national.com
LM741
Physical Dimensions
inches (millimeters) unless otherwise noted (Continued)
Ceramic Dual-In-Line Package (J)
Order Number LM741J/883
NS Package Number J08A
Dual-In-Line Package (N)
Order Number LM741CN
NS Package Number N08E
www.national.com
6
LM741 Operational Amplifier
Physical Dimensions
inches (millimeters) unless otherwise noted (Continued)
10-Lead Ceramic Flatpak (W)
Order Number LM741W/883, LM741WG-MPR or LM741WG/883
NS Package Number W10A
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves
the right at any time without notice to change said circuitry and specifications.
For the most current product information visit us at www.national.com.
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, and whose failure to perform when
properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result
in a significant injury to the user.
2. A critical component is any component of a life support
device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or
system, or to affect its safety or effectiveness.
BANNED SUBSTANCE COMPLIANCE
National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship
Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no ‘‘Banned
Substances’’ as defined in CSP-9-111S2.
National Semiconductor
Americas Customer
Support Center
Email: [email protected]
Tel: 1-800-272-9959
www.national.com
National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: [email protected]
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790
National Semiconductor
Asia Pacific Customer
Support Center
Email: [email protected]
National Semiconductor
Japan Customer Support Center
Fax: 81-3-5639-7507
Email: [email protected]
Tel: 81-3-5639-7560
LM555
Timer
General Description
Features
The LM555 is a highly stable device for generating accurate
time delays or oscillation. Additional terminals are provided
for triggering or resetting if desired. In the time delay mode of
operation, the time is precisely controlled by one external
resistor and capacitor. For astable operation as an oscillator,
the free running frequency and duty cycle are accurately
controlled with two external resistors and one capacitor. The
circuit may be triggered and reset on falling waveforms, and
the output circuit can source or sink up to 200mA or drive
TTL circuits.
n
n
n
n
n
n
n
n
n
Direct replacement for SE555/NE555
Timing from microseconds through hours
Operates in both astable and monostable modes
Adjustable duty cycle
Output can source or sink 200 mA
Output and supply TTL compatible
Temperature stability better than 0.005% per ˚C
Normally on and normally off output
Available in 8-pin MSOP package
Applications
n
n
n
n
n
n
n
Precision timing
Pulse generation
Sequential timing
Time delay generation
Pulse width modulation
Pulse position modulation
Linear ramp generator
Schematic Diagram
00785101
© 2006 National Semiconductor Corporation
DS007851
www.national.com
LM555 Timer
July 2006
LM555
Connection Diagram
Dual-In-Line, Small Outline
and Molded Mini Small Outline Packages
00785103
Top View
Ordering Information
Package
8-Pin SOIC
8-Pin MSOP
8-Pin MDIP
www.national.com
Part Number
Package Marking
Media Transport
LM555CM
LM555CM
Rails
LM555CMX
LM555CM
2.5k Units Tape and Reel
LM555CMM
Z55
1k Units Tape and Reel
LM555CMMX
Z55
3.5k Units Tape and Reel
LM555CN
LM555CN
Rails
2
NSC Drawing
M08A
MUA08A
N08E
Soldering Information
Dual-In-Line Package
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Supply Voltage
Soldering (10 Seconds)
+18V
(SOIC and MSOP)
1180 mW
LM555CMM
613 mW
Storage Temperature Range
Vapor Phase (60 Seconds)
215˚C
Infrared (15 Seconds)
220˚C
See AN-450 “Surface Mounting Methods and Their Effect
on Product Reliability” for other methods of soldering
surface mount devices.
Operating Temperature Ranges
LM555C
260˚C
Small Outline Packages
Power Dissipation (Note 3)
LM555CM, LM555CN
LM555
Absolute Maximum Ratings (Note 2)
0˚C to +70˚C
−65˚C to +150˚C
Electrical Characteristics (Notes 1, 2)
(TA = 25˚C, VCC = +5V to +15V, unless othewise specified)
Parameter
Conditions
Limits
Units
LM555C
Min
Supply Voltage
Supply Current
Typ
4.5
Max
16
V
6
15
mA
VCC = 5V, RL = ∞
VCC = 15V, RL = ∞
(Low State) (Note 4)
3
10
1
%
RA = 1k to 100kΩ,
50
ppm/˚C
Timing Error, Monostable
Initial Accuracy
Drift with Temperature
C = 0.1µF, (Note 5)
Accuracy over Temperature
1.5
%
Drift with Supply
0.1
%/V
2.25
%
150
ppm/˚C
3.0
%
Timing Error, Astable
Initial Accuracy
Drift with Temperature
RA, RB = 1k to 100kΩ,
C = 0.1µF, (Note 5)
Accuracy over Temperature
Drift with Supply
0.30
%/V
Threshold Voltage
0.667
x VCC
VCC = 15V
5
V
VCC = 5V
1.67
Trigger Voltage
Trigger Current
0.5
Reset Voltage
0.4
Reset Current
Threshold Current
Control Voltage Level
(Note 6)
VCC = 15V
VCC = 5V
9
2.6
Pin 7 Leakage Output High
V
0.9
µA
0.5
1
V
0.1
0.4
mA
0.1
0.25
µA
10
3.33
11
4
V
1
100
nA
Pin 7 Sat (Note 7)
Output Low
VCC = 15V, I7 = 15mA
180
Output Low
VCC = 4.5V, I7 = 4.5mA
80
3
mV
200
mV
www.national.com
LM555
Electrical Characteristics (Notes 1, 2)
(Continued)
(TA = 25˚C, VCC = +5V to +15V, unless othewise specified)
Parameter
Conditions
Limits
Units
LM555C
Min
Output Voltage Drop (Low)
Typ
Max
ISINK = 10mA
0.1
0.25
V
ISINK = 50mA
0.4
0.75
V
ISINK = 100mA
2
2.5
V
ISINK = 200mA
2.5
VCC = 15V
V
VCC = 5V
ISINK = 8mA
V
ISINK = 5mA
0.25
ISOURCE = 200mA, VCC = 15V
12.5
V
12.75
13.3
V
2.75
3.3
V
Rise Time of Output
100
ns
Fall Time of Output
100
ns
Output Voltage Drop (High)
ISOURCE = 100mA, VCC = 15V
VCC = 5V
0.35
V
Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified.
Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is
functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which
guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit
is given, however, the typical value is a good indication of device performance.
Note 3: For operating at elevated temperatures the device must be derated above 25˚C based on a +150˚C maximum junction temperature and a thermal
resistance of 106˚C/W (DIP), 170˚C/W (S0-8), and 204˚C/W (MSOP) junction to ambient.
Note 4: Supply current when output high typically 1 mA less at VCC = 5V.
Note 5: Tested at VCC = 5V and VCC = 15V.
Note 6: This will determine the maximum value of RA + RB for 15V operation. The maximum total (RA + RB) is 20MΩ.
Note 7: No protection against excessive pin 7 current is necessary providing the package dissipation rating will not be exceeded.
Note 8: Refer to RETS555X drawing of military LM555H and LM555J versions for specifications.
www.national.com
4
LM555
Typical Performance Characteristics
Minimuim Pulse Width
Required for Triggering
Supply Current vs.
Supply Voltage
00785119
00785104
High Output Voltage vs.
Output Source Current
Low Output Voltage vs.
Output Sink Current
00785121
00785120
Low Output Voltage vs.
Output Sink Current
Low Output Voltage vs.
Output Sink Current
00785123
00785122
5
www.national.com
LM555
Typical Performance Characteristics
(Continued)
Output Propagation Delay vs.
Voltage Level of Trigger Pulse
Output Propagation Delay vs.
Voltage Level of Trigger Pulse
00785125
00785124
Discharge Transistor (Pin 7)
Voltage vs. Sink Current
Discharge Transistor (Pin 7)
Voltage vs. Sink Current
00785127
00785126
www.national.com
6
MONOSTABLE OPERATION
When the reset function is not in use, it is recommended that
it be connected to VCC to avoid any possibility of false
triggering.
In this mode of operation, the timer functions as a one-shot
(Figure 1). The external capacitor is initially held discharged
by a transistor inside the timer. Upon application of a negative trigger pulse of less than 1/3 VCC to pin 2, the flip-flop is
set which both releases the short circuit across the capacitor
and drives the output high.
Figure 3 is a nomograph for easy determination of R, C
values for various time delays.
NOTE: In monostable operation, the trigger should be driven
high before the end of timing cycle.
00785105
00785107
FIGURE 1. Monostable
FIGURE 3. Time Delay
The voltage across the capacitor then increases exponentially for a period of t = 1.1 RA C, at the end of which time the
voltage equals 2/3 VCC. The comparator then resets the
flip-flop which in turn discharges the capacitor and drives the
output to its low state. Figure 2 shows the waveforms generated in this mode of operation. Since the charge and the
threshold level of the comparator are both directly proportional to supply voltage, the timing interval is independent of
supply.
ASTABLE OPERATION
If the circuit is connected as shown in Figure 4 (pins 2 and 6
connected) it will trigger itself and free run as a multivibrator.
The external capacitor charges through RA + RB and discharges through RB. Thus the duty cycle may be precisely
set by the ratio of these two resistors.
00785106
VCC = 5V
Top Trace: Input 5V/Div.
TIME = 0.1 ms/DIV.
RA = 9.1kΩ
Middle Trace: Output 5V/Div.
Bottom Trace: Capacitor Voltage 2V/Div.
C = 0.01µF
00785108
FIGURE 2. Monostable Waveforms
FIGURE 4. Astable
During the timing cycle when the output is high, the further
application of a trigger pulse will not effect the circuit so long
as the trigger input is returned high at least 10µs before the
end of the timing interval. However the circuit can be reset
In this mode of operation, the capacitor charges and discharges between 1/3 VCC and 2/3 VCC. As in the triggered
mode, the charge and discharge times, and therefore the
frequency are independent of the supply voltage.
7
www.national.com
LM555
during this time by the application of a negative pulse to the
reset terminal (pin 4). The output will then remain in the low
state until a trigger pulse is again applied.
Applications Information
LM555
Applications Information
FREQUENCY DIVIDER
(Continued)
The monostable circuit of Figure 1 can be used as a frequency divider by adjusting the length of the timing cycle.
Figure 7 shows the waveforms generated in a divide by three
circuit.
Figure 5 shows the waveforms generated in this mode of
operation.
00785109
VCC = 5V
Top Trace: Output 5V/Div.
TIME = 20µs/DIV.
Bottom Trace: Capacitor Voltage 1V/Div.
00785111
VCC = 5V
Top Trace: Input 4V/Div.
RA = 3.9kΩ
TIME = 20µs/DIV.
Middle Trace: Output 2V/Div.
RB = 3kΩ
RA = 9.1kΩ
Bottom Trace: Capacitor 2V/Div.
C = 0.01µF
C = 0.01µF
FIGURE 5. Astable Waveforms
FIGURE 7. Frequency Divider
The charge time (output high) is given by:
t1 = 0.693 (RA + RB) C
And the discharge time (output low) by:
t2 = 0.693 (RB) C
Thus the total period is:
T = t1 + t2 = 0.693 (RA +2RB) C
The frequency of oscillation is:
PULSE WIDTH MODULATOR
When the timer is connected in the monostable mode and
triggered with a continuous pulse train, the output pulse
width can be modulated by a signal applied to pin 5. Figure
8 shows the circuit, and in Figure 9 are some waveform
examples.
Figure 6 may be used for quick determination of these RC
values.
The duty cycle is:
00785112
FIGURE 8. Pulse Width Modulator
00785110
FIGURE 6. Free Running Frequency
www.national.com
8
LM555
Applications Information
(Continued)
00785113
VCC = 5V
00785115
Top Trace: Modulation 1V/Div.
TIME = 0.2 ms/DIV.
VCC = 5V
Bottom Trace: Output Voltage 2V/Div.
Top Trace: Modulation Input 1V/Div.
TIME = 0.1 ms/DIV.
RA = 9.1kΩ
Bottom Trace: Output 2V/Div.
RA = 3.9kΩ
C = 0.01µF
RB = 3kΩ
C = 0.01µF
FIGURE 9. Pulse Width Modulator
FIGURE 11. Pulse Position Modulator
PULSE POSITION MODULATOR
This application uses the timer connected for astable operation, as in Figure 10, with a modulating signal again applied
to the control voltage terminal. The pulse position varies with
the modulating signal, since the threshold voltage and hence
the time delay is varied. Figure 11 shows the waveforms
generated for a triangle wave modulation signal.
LINEAR RAMP
When the pullup resistor, RA, in the monostable circuit is
replaced by a constant current source, a linear ramp is
generated. Figure 12 shows a circuit configuration that will
perform this function.
00785116
00785114
FIGURE 12.
FIGURE 10. Pulse Position Modulator
Figure 13 shows waveforms generated by the linear ramp.
The time interval is given by:
VBE . 0.6V
9
www.national.com
LM555
Applications Information
(Continued)
00785117
VCC = 5V
Top Trace: Input 3V/Div.
TIME = 20µs/DIV.
Middle Trace: Output 5V/Div.
R1 = 47kΩ
Bottom Trace: Capacitor Voltage 1V/Div.
00785118
R2 = 100kΩ
RE = 2.7 kΩ
FIGURE 14. 50% Duty Cycle Oscillator
C = 0.01 µF
Note that this circuit will not oscillate if RB is greater than 1/2
RA because the junction of RA and RB cannot bring pin 2
down to 1/3 VCC and trigger the lower comparator.
FIGURE 13. Linear Ramp
50% DUTY CYCLE OSCILLATOR
For a 50% duty cycle, the resistors RA and RB may be
connected as in Figure 14. The time period for the output
high is the same as previous, t1 = 0.693 RA C. For the output
low it is t2 =
ADDITIONAL INFORMATION
Adequate power supply bypassing is necessary to protect
associated circuitry. Minimum recommended is 0.1µF in parallel with 1µF electrolytic.
Lower comparator storage time can be as long as 10µs
when pin 2 is driven fully to ground for triggering. This limits
the monostable pulse width to 10µs minimum.
Delay time reset to output is 0.47µs typical. Minimum reset
pulse width must be 0.3µs, typical.
Thus the frequency of oscillation is
Pin 7 current switches within 30ns of the output (pin 3)
voltage.
www.national.com
10
LM555
Physical Dimensions
inches (millimeters) unless otherwise noted
Small Outline Package (M)
NS Package Number M08A
8-Lead (0.118” Wide) Molded Mini Small Outline Package
NS Package Number MUA08A
11
www.national.com
LM555 Timer
Physical Dimensions
inches (millimeters) unless otherwise noted (Continued)
Molded Dual-In-Line Package (N)
NS Package Number N08E
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves
the right at any time without notice to change said circuitry and specifications.
For the most current product information visit us at www.national.com.
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, and whose failure to perform when
properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result
in a significant injury to the user.
2. A critical component is any component of a life support
device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or
system, or to affect its safety or effectiveness.
BANNED SUBSTANCE COMPLIANCE
National Semiconductor follows the provisions of the Product Stewardship Guide for Customers (CSP-9-111C2) and Banned Substances
and Materials of Interest Specification (CSP-9-111S2) for regulatory environmental compliance. Details may be found at:
www.national.com/quality/green.
Lead free products are RoHS compliant.
National Semiconductor
Americas Customer
Support Center
Email: [email protected]
Tel: 1-800-272-9959
www.national.com
National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: [email protected]
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790
National Semiconductor
Asia Pacific Customer
Support Center
Email: [email protected]
National Semiconductor
Japan Customer Support Center
Fax: 81-3-5639-7507
Email: [email protected]
Tel: 81-3-5639-7560
Revised November 1999
DM74121
One-Shot with Clear and Complementary Outputs
General Description
Features
The DM74121 is a monostable multivibrator featuring both
positive and negative edge triggering with complementary
outputs. An internal 2kΩ timing resistor is provided for
design convenience minimizing component count and layout problems. this device can be used with a single external capacitor. Inputs (A) are active-LOW trigger transition
inputs and input (B) is and active-HIGH transition Schmitttrigger input that allows jitter-free triggering from inputs with
transition rates as slow as 1 volt/second. A high immunity
to VCC noise of typically 1.5V is also provided by internal
circuitry at the input stage.
■ Triggered from active-HIGH transition or active-LOW
transition inputs
■ Variable pulse width from 30 ns to 28 seconds
■ Jitter free Schmitt-trigger input
■ Excellent noise immunity typically 1.2V
■ Stable pulse width up to 90% duty cycle
■ TTL, DTL compatible
■ Compensated for VCC and temperature variations
■ Input clamp diodes
To obtain optimum and trouble free operation please read
operating rules and one-shot application notes carefully
and observe recommendations.
Ordering Code:
Order Number
DM74121N
Package Number
N14A
Package Description
14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Connection Diagram
Function Table
Inputs
A2
B
Q
Q
L
X
H
L
H
X
L
H
L
H
X
X
L
L
H
H
H
X
H
↓
H
↓
H
H
↓
↓
H
L
X
↑
X
L
H = HIGH Logic Level
L = LOW Logic Level
X = Can Be Either LOW or HIGH
= A Positive Pulse
= A Negative Pulse
Outputs
A1
↑
L
H
↑ = Positive Going Transition
↓ = Negative Going Transition
Functional Description
The basic output pulse width is determined by selection of
an internal resistor RINT or an external resistor (RX) and
capacitor (CX). Once triggered the output pulse width is
independent of further transitions of the inputs and is function of the timing components. Pulse width can vary from a
© 1999 Fairchild Semiconductor Corporation
DS006538
few nano-seconds to 28 seconds by choosing appropriate
RX and CX combinations. There are three trigger inputs
from the device, two negative edge-triggering (A) inputs,
one positive edge Schmitt-triggering (B) input.
www.fairchildsemi.com
DM74121 One-Shot with Clear and Complementary Outputs
June 1989
DM74121
Operating Rules
1. To use the internal 2 kΩ timing resistor, connect the
RINT pin to VCC.
2. An external resistor (RX) or the internal resistor (2 kΩ)
and an external capacitor (CX) are required for proper
operation. The value of CX may vary from 0 to any necessary value. For small time constants use high-quality
mica, glass, polypropylene, polycarbonate, or polystyrene capacitors. For large time constants use solid tantalum or special aluminum capacitors. If the timing
capacitors have leakages approaching 100 nA or if
stray capacitance from either terminal to ground is
greater than 50 pF the timing equations may not represent the pulse width the device generates.
FIGURE 1.
3. The pulse width is essentially determined by external
timing components RX and CX. For CX < 1000 pF see
Figure 1 design curves on tW as function of timing components value. For CX > 1000 pF the output is defined
as:
t W = K RX CX
FIGURE 2.
where [RX is in Kilo-ohm]
[CX is in pico Farad]
[tW is in nano second]
[K ≈ 0.7]
4. If CX is an electrolytic capacitor a switching diode is
often required for standard TTL one-shots to prevent
high inverse leakage current Figure 2.
5. Output pulse width versus VCC and operation temperatures: Figure 3 depicts the relationship between pulse
width variation versus VCC. Figure 4 depicts pulse
width variation versus ambient temperature.
FIGURE 3.
6. The “K” coefficient is not a constant, but varies as a
function of the timing capacitor CX. Figure 5 details this
characteristic.
7. Under any operating condition CX and RX must be kept
as close to the one-shot device pins as possible to minimize stray capacitance, to reduce noise pick-up, and
to reduce I X R and Ldi/dt voltage developed along
their connecting paths. If the lead length from CX to
pins (10) and (11) is greater than 3 cm, for example,
the output pulse width might be quite different from values predicted from the appropriate equations. A noninductive and low capacitive path is necessary to
ensure complete discharge of CX in each cycle of its
operation so that the output pulse width will be accurate.
FIGURE 4.
8. VCC and ground wiring should conform to good highfrequency standards and practices so that switching
transients on the VCC and ground return leads do not
cause interaction between one-shots. A 0.01 µF to 0.10
µF bypass capacitor (disk ceramic or monolithic type)
from VCC to ground is necessary on each device. Furthermore, the bypass capacitor should be located as
close to the VCC-pin as space permits.
For further detailed device characteristics and output performance please refer to the one-shot application note, AN366.
FIGURE 5.
www.fairchildsemi.com
2
Supply Voltage
7V
Input Voltage
Note 1: The Absolute Maximum Ratings are those values beyond which
the safety of the device cannot be guaranteed. The device should not be
operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the absolute maximum ratings.
The Recommended Operating Conditions table will define the conditions
for actual device operation.
5.5V
0°C to +70°C
Operating Free Air Temperature Range
Storage Temperature Range
−65°C to +150°C
Recommended Operating Conditions
Symbol
Parameter
VCC
Supply Voltage
VT+
Positive-Going Input Threshold Voltage
Min
Nom
Max
Units
4.75
5
5.25
V
1.4
2
V
at the A Input (VCC = Min)
VT−
Negative-Going Input Threshold Voltage
0.8
at the A Input (VCC = Min)
VT+
Positive-Going Input Threshold Voltage
1.5
at the B Input (VCC = Min)
VT−
1.4
Negative-Going Input Threshold Voltage
0.8
at the B Input (VCC = Min)
V
2
1.3
V
V
IOH
HIGH Level Output Current
−0.4
mA
IOL
LOW Level Output Current
16
mA
tW
Input Pulse Width (Note 2)
dV/dt
Rate of Rise or Fall of
40
ns
1
V/s
1
V/µs
1.4
40
kΩ
0
1000
µF
Schmidt Input (B) (Note 2)
dV/dt
Rate of Rise or Fall of
Schmidt Input (A) (Note 2)
REXT
External Timing Resistor (Note 2)
CEXT
External Timing Capacitance (Note 2)
DC
Duty Cycle (Note 2)
TA
RT = 2 kΩ
67
RT = REXT (Max)
90
Free Air Operating Temperature
0
%
70
°C
Max
Units
−1.5
V
Note 2: TA = 25°C and VCC = 5V
Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)
Symbol
Parameter
Conditions
VI
Input Clamp Voltage
VCC = Min, II = −12 mA
VOH
HIGH Level Output
VCC = Min, IOH = Max,
Voltage
VIL = Max, VIH = Min
LOW Level Output
VCC = Min, IOL = Max,
Voltage
VIH = Max, VIL = Min
VOL
II
Input Current @
Max Input Voltage
IIH
IIL
Min
2.4
Typ
(Note 3)
3.4
0.2
VCC = Max, VI = 5.5V
HIGH Level
VCC = Max,
A1, A2
Input Current
VI = 2.4V
B
LOW Level
VCC = Max,
A1, A2
B
Input Current
VI = 0.4V
IOS
Short Circuit Output Current
VCC = Max (Note 4)
ICC
Supply Current
VCC = Max
V
0.4
V
1
mA
40
80
−1.6
−3.2
−18
−55
Quiescent
13
25
Triggered
23
40
µA
mA
mA
mA
Note 3: All typicals are at VCC = 5V, TA = 25°C.
Note 4: Not more than one output should be shorted at a time.
3
www.fairchildsemi.com
DM74121
Absolute Maximum Ratings(Note 1)
DM74121
Switching Characteristics
At VCC = 5V and TA = 25°C (See Test Waveforms and Output Load Section)
Symbol
tPLH
tPLH
Parameter
Propagation Delay Time
CL = 15 pF
Q
RL = 400Ω
Propagation Delay Time
Output Pulse
Width Using the
Max
Units
70
ns
55
ns
80
ns
65
ns
150
ns
50
ns
600
800
ns
6
8
ms
RINT to VCC
B to
Propagation Delay Time
Min
CEXT = 80 pF
A1, A2
Propagation Delay Time
HIGH-to-LOW Level Output
tW(OUT)
Conditions
to Q
HIGH-to-LOW Level Output
tPHL
To (Output)
LOW-to-HIGH Level Output
LOW-to-HIGH Level Output
tPHL
From (Input)
A1, A2
to Q
B
to Q
CEXT = 80 pF
A1, A2 or B
RINT to VCC
to Q, Q
RL = 400Ω
Internal Timing Resistor
70
CL = 15 pF
tW(OUT)
Output Pulse
A1, A2
CEXT = 0 pF
Width Using Zero
to Q, Q
RINT to VCC
RL = 400Ω
Timing Capacitance
CL = 15 pF
tW(OUT)
Output Pulse
A1, A2
CEXT = 100pF
Width Using External
to Q, Q
RINT = 10 kΩ
RL = 400Ω
Timing Resistor
CL = 15pF
A1, A2
CEXT = 1 µF
to Q, Q
RINT = 10 kΩ
RL = 400Ω
CL = 15 pF
www.fairchildsemi.com
4
DM74121 One-Shot with Clear and Complementary Outputs
Physical Dimensions inches (millimeters) unless otherwise noted
14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Package Number N14A
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and
Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD
SEMICONDUCTOR CORPORATION. As used herein:
2. A critical component in any component of a life support
device or system whose failure to perform can be reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the
body, or (b) support or sustain life, and (c) whose failure
to perform when properly used in accordance with
instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
user.
www.fairchildsemi.com
5
www.fairchildsemi.com
This datasheet has been downloaded from:
www.DatasheetCatalog.com
Datasheets for electronic components.