Assignment 20

Mathematics G4403. Modern Geometry
Spring 2016
Assignment 20
Due Wednesday, March 30, 2016
(1) Let (M , g) be a Riemannian manifold of dimension n. Given
any smooth curve α : (−, ) → M , let p = α(0), and let v ∈
Tp M be any tangent vector at p. Let V (t) be the unique parallel
vector field along α(t) with V (0) = v. Let α̃ : (−, ) → T M
be the smooth curve in T M defined by α̃(t) = (α(t), V (t)). We
call α̃ the horizontal lift of α through (p, v). We define a linear
map L(p,v) : Tp M → T(p,v) (T M ) as follows. Given w ∈ Tp M ,
let α : (−, ) → M be a smooth curve with α0 (0) = w, and
let α̃ : (−, ) → T M be the horizontal lift of α through (p, v).
Define L(p,v) (w) = α̃0 (0).
(a) Let (x1 , . . . , xn ) be local coordinates on an open set U ⊂
M , and let (x1 , . . . , xn , y1 , . . . , yn ) be coordinates on T U
defined as on page 62 of do Carmo. Define vector fields
X̃1 , . . . , X̃n on T U by
∂ X̃i (p, v) = L(p,v)
.
∂xi p
n
Write X̃i in terms of the following local frame of the rank
2n vector bundle T (T M ):
∂
,
∂xj
∂
,
∂yj
j = 1, . . . , n.
(You answer should involve the Christoffel symbols Γljk of
the Riemannian metric g.)
(b) Given any (p, v) ∈ T M , define the horizontal space H(p,v)
and the vertical space V(p,v) by
H(p,v) = L(p,v) (Tp M ),
V(p,v) = (dip )v (Tv (Tp M )),
where ip : Tp M → T M is the inclusion. Show that H(p,v)
and V(p,v) form rank n subbundles of T (T M ), and that
T (T M ) = H ⊕ V, H ∼
= π ∗ T M, V ∼
= π ∗ T M,
where π : T M → M is the projection.
(c) The projection T (T M ) = H ⊕ V → V defines a V -valued
1-form ω on T M . Express ω in terms of the following local
frame of the rank 2n2 vector bundle T ∗ (T M ) ⊗ V :
∂
⊗ dxj ,
∂yi
∂
⊗ dyj ,
∂yi
i, j = 1, . . . , n.
2
(2) Let (M n , g) be a Riemannian manifold of dimension n. Given
any smooth curve α : (−, ) → M , let p = α(0), and let
(e1 , . . . , en ) be an ordered basis of Tp M . Then (e1 , . . . , en ) is a
point in GL(T M )p , the fibre of the frame bundle GL(T M ) →
M . Let Ei (t) be the unique parallel vector field along α(t) with
Ei (0) = ei . Let α̃ : (−, ) → GL(T M ) be the smooth curve in
GL(T M ) defined by α̃(t) = (α(t), E1 (t), . . . , En (t)). We call α̃
the horizontal lift of α through (p, (e1 , . . . , en )). We define a linear map L(p,(e1 ,...,en )) : Tp M → T(p,(e1 ,...,en )) GL(T M ) as follows.
Given w ∈ Tp M , let α : (−, ) → M be a smooth curve with
α0 (0) = w, and let α̃ : (−, ) → T M be the horizontal lift of α
through (p, (e1 , . . . , en )). Define
L(p,(e1 ,...,en )) (w) = α̃0 (0).
(a) Let (x1 , . . . , xn ) be local coordinates on an open set U ⊂
M . Given A = (aij ) ∈ GL(n, R),
n
n
X
X
∂ ∂ aj1
,
.
.
.
,
a
jn
∂xj p
∂xj p
j=1
j=1
is a point in GL(T M )p . Then xi and ajk , where i, j, k =
1, . . . , n, are coordinates on GL(T U ) = GL(T M )|U . Define the horizontal X̃i of ∂x∂ i similar to the definition in
(1)(a), so that X̃1 , . . . , X̃n are vector fields on GL(T U ).
Express X̃i in terms of the following local frame of the
rank (n + n2 ) vector bundle T (GL(T M )):
∂
∂
,
, j, k, l = 1, . . . , n.
∂xj
∂akl
(b) Given any (p, (e1 , . . . , en )) ∈ GL(T M ), define the horizontal space H(p,(e1 ,...,en )) to be the image of the linear map
L(p,(e1 ,...,en )) : Tp M → T(p,(e1 ,...,en )) GL(T M ).
This defines a connection on the principal GL(n, R)-bundle
GL(T M ) → M . Let ω be the connection 1-form, which is
a gl(n, R)-valued 1-form on GL(T M ). Write ω as an n × n
matrix (ωαβ ) whose entries ωαβ are 1-forms on GL(T M ).
Express ωαβ in terms of the following local frame of T ∗ (GL(T M )):
dxj ,
dakl ,
j, k, l = 1, . . . , n.