MIDTERM EXAM REVIEW PROBLEMS DUE NEVER. 1. Equations of first order Solve the following initial value problems. If no initial value is given, find the general solution. If you feel like it, draw a direction field and plot some of the solutions. (1) ty 0 + 2y = sin(t), y(π/2) = 1, (2) ty 0 + (t + 1)y = t, t>0 y(ln(2)) = 1, (3) y 0 (3 + 4y) = e−x − ex , t>0 y(0) = 1 (4) (2xy 2 + 2y) + (2x2 y + 2x)y 0 = 0 (5) t3 y 0 + 4t2 y = e−t , y(−1) = 0, t<0 (6) (3x2 − 2xy + 2)dx + (6y 2 − x2 + 3)dy = 0 (7) y 0 = (ay + b)/(cy + d), a, b, c, d constants. (8) sin(t)y 0 + cost(t)y = et , y(1) = a, (9) y 0 − y = 1 + 3 sin(t), (10) y 0 = x(x2 + 1)/4y 3 , 0<t<π y(0) = 0, √ y(0) = −1/ 2 (11) (ex sin(y) − 2y sin(x))dx + (ex cos(y) + 2 cos(x))dy = 0 2 (12) y 0 + 2ty = 2te−t (13) y 0 = 2x/(y + x2 y), y(0) = −2 (14) (3x2 y + 2xy + y 3 )dx + (x2 + y 2 )dy = 0 (15) y 0 = e2x + y − 1 1 2 DUE NEVER. 2. Equations of second order Solve the following initial value problems. If no initial value is given, find the general solution. When solutions are given, they are solutions to the associated homogeneous equation. (1) y 00 − 2y 0 − 8y = 0 (2) t2 y 00 − t(t + 2)y 0 + (t + 2)y = 0, (3) y 00 − 6y 0 + 82y = 0, t > 0, y(0) = −1, y1 (t) = t y 0 (0) = 2 (4) 9y 00 + 9y 0 − 4y = 0 (5) xy 00 − y 0 + 4x3 y = 0 x > 0, y1 (x) = sin(x) (6) y 00 + 2y 0 + 5y = 4e−t cos(2t), (7) y 00 + 4y 0 + 5y = 0, y(0) = 1, y(0) = 1, y 0 (0) = 0 y 0 (0) = 0 (8) y 00 − 2y 0 + y = et /(1 + t2 ) (9) 2y 00 + y 0 − 4y = 0, (10) y 00 + y = tan(t), y(0) = 0, y 0 (0) = 1 0 < t < π/2 (11) y 00 + y = 3 sin(2t) + t cos(2t) (12) y 00 − 2y 0 − 3y = 3te2t , y(0) = 1, (13) ty 00 − (1 + t)y 0 + y = t2 e2t , y 0 (0) = 0 t > 0, y1 (t) = (1 + t), y2 (t) = et 3. Series solutions Use power series techniques to solve the following second order equations by providing a recurrence relation to determine all the coefficients of the power series near zero. When possible, find the general term. Classify any singular points as regular or irregular. (1) (2 + x2 )y 00 − xy 0 + 4y = 0 (2) x2 y 00 − 5xy 0 + 9y = 0 (3) (1 + x2 )y 00 − 4xy 0 + 6y = 0 MIDTERM EXAM REVIEW PROBLEMS (4) 2x2 y 00 + 3xy 0 + (2x2 − 1)y = 0 (5) (1 − x)y 00 + xy 0 − y = 0 (6) x2 y 00 − x(3 + x)y 0 + (x + 3)y = 0 (7) x(x − 1)y 00 + 6x2 y 0 + 3y = 0 3
© Copyright 2026 Paperzz