Russian

1978
.
—
. XXXIII,
.
28
1.
.
.
. 2 (200$
.
1977 .
.
«
—
».
.
—
,
.
.
.
,
—
-
.
(0,
,
+ 1)
.
,
.
.
;
,
.
(
,
)
—
,
,
.
,—
5
1.
.
.
,
-
.
1977 .
.
,
.
.
«
».
1°.
:
(1)
(2)
hPNijuj + LUUJ = Kut
1± | = / 2 | =
\
(i, ] = 1, 2, 3),
= n2\v = 0.
Ltj —
, Ntj —
.
.
[3] (
(1), (2)
(3)
,
.
(1), (2)
: 0 <! k^h) <; ^2( ) < . . .,
.
[2], [4])
h -> 0
(X)=
2
.
,
+< >
[2].
—
h
0.
( )
:
^ t $ $ (1 R e ^X~Q ( ' ' ) ^ ) d S + 0 {hy)\j
' "G
1/2 15
, [1]
, h—
. XXXIII,
0
. 2
(2)
-
226
Q(6, , ) —
= |£ | (cos 9, sin 8).
L = (Ltj),
0-
(3)
( ) h'1/2.
(
(1); (£ t , | 2 ) =
[2] ( . 37, 137).
(3),
[5]
(3)
)
€
2°.
.
h -*- 0
,
,
(1)
(2) (
.
(2)
. [2]
(1), (2)
h = 0
,
[6]).
)
(
.
X,
-
.
(
.
,
)
[2],
-
,
.
3°.
X(h)
,
X(h) ->- 0
[6]
[7].
h ->• 0.
.
4°.
(
.,
, [2], [8]).
-
[9]
[10].
(
)
[11]
[12].
[13].
-
(
)
.
[1]
[2]
.
.
.
.
[3]
.
.
,
,
,
,
,
. .
., «
. .
,
208:4 (1973), 801—804.
,
. .
,
.
,
J4]
.
J5]
.
.
,
.
, 3.
.
, 37:4 (1973), 604—617.
,
.
.
.
.
.
.
.
230:3 (1976), 505—507.
,
5 (1977), 118—124.
,
5 (1977), 106—117.
,
.
. 8:8 (1977), 1355—1365.
,
.
,
.
-
.
,
. .
(1977).
[10] . .
[9]
,
,
.
. X
,
,
.
.
,
.
.
97,
., 1977, 1—52.
,
,
83—84.
237:4
,
,
£11]
,
-
-
,
18]
.
,
,
[7]
», 1976.
-
,
,
(6]
., «
,
», 1974.
.
11:1 (1977),
227
[12]
.
.
,
[13]
.
.
,
.
.
,
-
-
1 (1977), 1 1 4 - 1 1 9 .
,
,
231:1 (1976), 68—70.
.
1977
.
.
,
,
12
1.
».
.
.
.
«
2
3
4
,
2
I(
, 1 /(
.
—
-
—
-
\\
^
( ,
/, t),
->
—
±= 2 ui ( » » *) 7
=0
. .
[
2
—
L2
— = 0.
ot J
~~*
,
3
L 1 = = -T-J+U
3
, t), a L 2 = - g - - l - y M - — I - ® ( »
( ,
3
3
" " ( M j/H~ w ocx) == 2co x , coy — ^^ = (0^.^.
—
1.
#
Li
» ^ — 2 Vi ^ ' ' ^
=0
,.
( ,
,
|) (*,
, *, ft)= ( 1 + 2
,
.
,
—
/, /)
~^~>
(1)
—
0
» *)>
(
-
,
N
= — 2 ^\ ( —XJ
,
;
-
( ,
, 0 ( * - * , (z/, t))"i)
(J/, £))~2
ekx+h2y+hH
,
1 ±— -^— )i|? =
= ( 2 -^
=0
'
iv
©(*,
, 0 = 2 [3( -^(^0
3
+ ^ ^ ( ^ t){x-xj(y,
)" 2 ].
i=l
(1)
1.
7=1
xj(y,
t)
i<j
[1]
.
.
,
N
2.
,
Hk
2
=
.
t
.
,
15*
228
,
Xj(y, t)
.
N
,
N —
,
XJ(0, 0)
— Xj(0, 0).
2N
,
( , , t)
-
.
[2].
|)( ,
, t,
),
1,
* ( , , t, ) = (1 +
qx(k)
—
q(x,
.
( ,
q ( X
^
k )
, t, ) —
N
( ,
k)\h=yis
) .**+* V » «
N —1
, t)
N
= 0.
q-^k)
( ,
( ,
,
«
,
-
,
-
, t)
+
»
,
^+ ^
,
^
^ - ^ -
! ^ ) ^ ) .
2N:
=
7-,
,
—
-
*
= 2 —2 In det 6,
^^ +
Q(k)
.
ty(x, , t, k)
, t).
2.
->-
.
,
%s
|
i
/.
/
3
R(k),
-
1] J. M s e r, Three integrable hamiltonian systems connected with isospectrum deformations, Adv. Math. 16 (1976), 354.
2] H. A i r a u l t , H. M
e a n, J. M s e r, Rational and elliptic solutions of the
Korteweg de Vries equation and a related many body problem, preprint of Kurant ins.
1976.
19
1977 r.
1. A. H.
«
».
-
f eixf(x^ ( ) dx
->
f(x).
26
1.
.
1977 .
.
«
».
.
.
,
)
-
( . .
.