PROBABILITY AND STATISTICS
FOR ENGINEERING
Functions of a Random Variable
Hossein Sameti
Department of Computer Engineering
Sharif University of Technology
Functions of a Random Variable
X:
g(X):
a r.v defined on the model (, F , P ),
a function of the variable x, Y g ( X ).
Is Y necessarily a r.v?
If so what is its PDF
FY ( y), pdf fY ( y ) ?
2
Functions of a Random Variable
With Y ( ) B , In particular
FY ( y ) P (Y ( ) y ) P g ( X ( )) y
For a specific 𝑦, the values of 𝑥 such that 𝑔(𝑥) ≤ 𝑦 form a set on the
𝑥 axis denoted by 𝑅𝑦 . Clearly, g(X ξ ) ≤ 𝑦 if 𝑋(𝜉) is a number in the
set 𝑅𝑦 . Hence
𝐹𝑌 𝑦 = 𝑃(𝑋𝜖𝑅𝑦 )
3
For 𝑔(𝑋) to be a random variable, the function 𝑔(𝑥) must
have these properties:
– Its domain must include the range of the random variable 𝑋.
– It must be a Borel function, that is, for every 𝑦, the set 𝑅𝑦 such
that 𝑔 𝑥 ≤ 𝑦 must consist of the union and intersection of a
countable number of intervals. Only then {𝑌 ≤ 𝑦} is an event.
– The events {𝑔 𝑋 = ±∞} must have zero probability.
4
Example: Y aX b
For a 0 :
For a 0,
FY ( y ) PY ( ) y
FY ( y ) PY ( ) y
PaX ( ) b y
PaX ( ) b y
y b
P X ( )
a
y b
1 FX
,
a
y b
P X ( )
a
y b
FX
.
a
And fY ( y )
1 y b
fX
.
a a
We conclude:
and hence
fY ( y )
fY ( y )
1
y b
fX
.
|a | a
1 y b
fX
.
a a
5
Example: Y X 2
FY ( y ) PY ( ) y PX 2 ( ) y .
y 0,
For
X
2
( ) y ,
FY ( y ) 0, y 0.
For
y 0,
Y X2
y
according to the figure,
2
the event {Y ( ) y} { X ( ) y}
is equivalent to {x1 X ( ) x2 }.
x1
x2
X
6
Example: Y X 2
- continued
FY ( y ) Px1 X ( ) x2 FX ( x2 ) FX ( x1 )
FX ( y ) FX ( y ),
y 0.
1
f ( y ) f X ( y ) ,
y 0,
fY ( y ) 2 y X
0,
otherwise .
If f X (x ) represents an even function,
fY ( y )
1
fX
y
y U ( y ).
7
Example: Y X 2
- continued
If X ~ N (0,1), so that f X ( x )
1
x2 / 2
e
,
2
We obtain the p.d.f of Y X 2 to be
fY ( y )
1
e y / 2U ( y ).
2y
which represents a Chi-square r.v with n = 1, since (1 / 2) .
Thus, if X is a Gaussian r.v with 0, then
Y X2
represents a
Chi-square r.v with one degree of freedom (n = 1).
8
Example
For:
X c,
X c,
Y g ( X ) 0,
c X c,
X c,
X c.
g( X )
c
X
c
We have P(Y 0) P(c X ( ) c) FX (c) FX (c).
For y 0, we have x c, and Y ( ) X ( ) c so that
FY ( y ) P Y ( ) y P( X ( ) c y )
P X ( ) y c FX ( y c),
For y 0, we have x c, and
y 0.
Y ( ) X ( ) c
so that
FY ( y ) P Y ( ) y P( X ( ) c y )
P X ( ) y c FX ( y c),
y 0.
9
Example – continued
Thus,
f X ( y c ), y 0,
fY ( y ) [ FX ( c ) FX ( c)] ( y ),
f ( y c ), y 0.
X
FX (x)
FY ( y )
g( X )
c
c
X
x
y
10
Example: Half-wave Rectifier
Consider Y g ( X ); g ( x ) x, x 0,
Y
0, x 0.
X
In this case P(Y 0) P( X ( ) 0) FX (0).
For
y 0,
Thus,
Y X,
FY ( y ) PY ( ) y P X ( ) y FX ( y).
since
y 0,
f X ( y ),
fY ( y ) FX (0) ( y ) y 0,
0,
y 0,
f X ( y )U ( y ) FX (0) ( y ).
11
Continuous Functions of a Random Variable
A continuous function g(x)
g (x ) nonzero at all but a finite number of points
has only a finite number of maxima and minima
eventually becomes monotonic as | x | .
Consider a specific y on the y-axis, and a positive increment
y
g (x )
y y
y
x1 x1 x1
x2 x2 x2
x3 x3 x3
x
12
Continuous Functions of a Random Variable
For fY ( y ) Y g (X ) where g () is of continuous type,
Py Y ( ) y y
y y
y
y g (x ) has three solutions
x1 , x2 , x3
fY (u )du fY ( y ) y.
when
y Y ( ) y y,
X could be in any one of three disjoint intervals:
g ( x)
{x1 X ( ) x1 x1},
y y
{x2 x2 X ( ) x2 }
or {x3 X ( ) x3 x3} .
y
x1 x1 x1
x2 x2 x2
x
x3 x3 x3
So,
Py Y ( ) y y P{x1 X ( ) x1 x1}
P{x2 x2 X ( ) x2 } P{x3 X ( ) x3 x3} .
13
Continuous Functions of a Random Variable
For small y, xi , we get
fY ( y )y f X ( x1 )x1 f X ( x2 )( x2 ) f X ( x3 )x3.
Here, x1 0, x2 0 and x3 0, so
| xi |
1
fY ( y ) f X ( xi )
f X ( xi )
y
i
i y / xi
As y 0,
1
1
fY ( y )
f X ( xi )
f X ( xi ).
i dy / dx x
i g ( xi )
i
If the solutions are all in terms of y, the right side is only a function of y.
14
Example
YX
2
Revisited
For all y 0, x1 y and x2 y
Y X2
y
fY ( y ) 0 for y 0 .
x1
Moreover
dy
2 x so that
dx
and using fY ( y )
i
X
x2
dy
2 y
dx x xi
1
f X ( xi ) ,
g ( xi )
1
f ( y ) f X ( y ) ,
y 0,
fY ( y ) 2 y X
0,
otherwise ,
which agrees with previous solution.
15
1
Example: Y
X
Find
fY ( y ).
Here for every
y, x1 1 / y
is the only solution, and
dy
1
2 so that
dx
x
and substituting this into
dy
dx
fY ( y )
i
x x1
1
2
y
,
2
1/ y
1
f X ( xi ) , we obtain
g ( xi )
1
1
fY ( y ) 2 f X .
y
y
16
Example
Suppose f X ( x) 2 x / 2 , 0 x , and Y sin X . Determine fY ( y ).
X has zero probability of falling outside the interval (0, ).
y sin x has zero probability of falling outside (0,1).
fY ( y) 0 outside this interval.
For any 0 y 1, the equation y sin x
solutions
, x1 , x2 , x3 ,,
where x1 sin 1
using the symmetry we also get
so that
x2 x1
has an infinite number of
y is the principal solution.
etc. Further,
dy
cos x 1 sin 2 x 1 y 2
dx
dy
dx
1 y2 .
x xi
17
Example – continued
f X ( x)
(a)
y sin x
x3
x
y
x1
x1
x2
x3
x
(b)
for 0 y 1,
fY ( y )
i
i 0
1
1 y
2
f X ( xi ).
In this case f X ( x1 ) f X ( x3 ) f X ( x4 ) 0
(Except for f X ( x1 ) and f X ( x2 ) the rest are all zeros).
18
Example – continued
Thus,
fY ( y )
1
1 y
f X ( x1 ) f X ( x2 )
2
2 x1 2 x2
2 2
2
1 y
1
2
, 0 y 1,
2( x1 x1 )
1 y 2
2 1 y2
0,
otherwise.
fY ( y )
2
1
y
19
Example:
Y tan X , X / 2, / 2 .
As x moves in / 2, / 2 , y moves in , .
The function Y tan X is one-to-one for / 2 x / 2 .
f X (x )
1
For any y, x1 tan y is the principal solution.
/ 2
/2
dy d tan x
sec 2 x 1 tan 2 x 1 y 2
dx dx
y tan x
/ 2
1
1/
fY ( y )
f X ( x1 )
,
2
| dy / dx | x x1
1 y
y
x
y
x
x1 / 2
(Cauchy density function with parameter equal to unity)
fY ( y )
1
1 y2
y
20
Functions of a Discrete-type R.V
Suppose X is a discrete-type r.v with
P( X xi ) pi , x x1, x2 ,, xi ,
and Y g ( X ).
Clearly Y is also of discrete-type, and when x xi , yi g ( xi ),
and for those
yi s,
P(Y yi ) P( X xi ) pi , y y1, y2 ,, yi ,
21
Example
Suppose X ~ P( ), so that
P( X k ) e
k
k!
,
k 0,1,2,
Define Y X 2 1. Find the p.m.f of Y.
Solution: X takes the values 0,1,2,, k ,
Y only takes the values 1, 2, 5, , k 2 1,
P(Y k 2 1) P( X k )
so that for j k 2 1
P(Y j ) P X
j 1
j 1 e
, j 1, 2,5, , k 2 1, .
( j 1)!
22
© Copyright 2026 Paperzz