Homework 4.pdf

Probability and Stochastic
Homework 4
(Papoulis Chapter 5)
1. Suppose π‘Œ = π‘₯ 2 βˆ’ 3π‘₯ + 1 and:
X
p
-2
1
5
-1
1
10
0
1
5
1
1
10
2
2
5
(a) Find 𝐸 (π‘Œ).
(b) Find π‘‰π‘Žπ‘Ÿ(π‘₯ ).
2. The RV π‘₯ is a uniform in the interval (0, 1). Find the
density of the 𝑦 = βˆ’ ln π‘₯.
[Problem 5-6 of Papoulis]
3. Prove: 𝜎 2 = 𝐸 (π‘₯ 2 ) βˆ’ πœ‡2 .
4. For Bernoulli trial, prove: 𝜎 2 = π‘›π‘π‘ž (Hint: Use previous
question)
5. Show that, if the RV π‘₯ has a Cauchy density with 𝛼 = 1
and 𝑦 = tanβˆ’1 π‘₯, then 𝑦 is uniform in the interval (
βˆ’πœ‹ πœ‹
2
, 2 ).
[Problem 5-11 of Papoulis]
6. Given that RV π‘₯ of continuous type, we form the RV 𝑦 =
𝑔(π‘₯ ). Find 𝑓𝑦 (𝑦) if 𝑔(π‘₯ ) = 2𝐹π‘₯ (π‘₯ ) + 4.
[Problem 5-14 of Papoulis]
7. We place at random 200 points in the interval (0, 100).
The distance from 0 to the first random point is an RV 𝑧.
Find 𝐹𝑧 (𝑧) exactly.
[Problem 5-7 of Papoulis]
8. We place at random 200 points in the interval (0, 100).
The distance from 0 to the first random point is an RV 𝑧.
Find 𝐹𝑧 (𝑧) using the Poisson approximation.
[Problem 5-7 of Papoulis]
9. The random variable π‘₯ is uniform in the interval
(βˆ’2πœ‹, 2πœ‹). Find 𝑓𝑦 (𝑦) if 𝑦 = π‘₯ 3 .
[Problem 5-12 of Papoulis]
10. The random variable π‘₯ is uniform in the interval
(βˆ’2πœ‹, 2πœ‹). Find 𝑓𝑦 (𝑦) if 𝑦 = 2 sin(3π‘₯ + 40°).
[Problem 5-12 of Papoulis]
11. For 𝑏(𝑛, 𝑝), determine Probability-generating function.
12. Determine Probability-generating function for Poisson
distribution (with πœ† parameter).