PDF

Risk Aversion Asymptotics for Power Utility
Maximization
Marcel Nutz
ETH Zurich, Department of Mathematics, 8092 Zurich, Switzerland
[email protected]
This Version: March 16, 2010.
Abstract
We consider the economic problem of optimal consumption and investment with power utility. We study the optimal strategy as the
relative risk aversion tends to innity or to one. The convergence of
the optimal consumption is obtained for general semimartingale models while the convergence of the optimal trading strategy is obtained
for continuous models. The limits are related to exponential and logarithmic utility. To derive these results, we combine approaches from
optimal control, convex analysis and backward stochastic dierential
equations (BSDEs).
Keywords power utility, risk aversion asymptotics, opportunity process, BSDE.
AMS 2000 Subject Classications Primary 91B28; secondary 93E20, 60G44.
JEL Classication G11, C61.
Acknowledgements.
Financial support by Swiss National Science Founda-
tion Grant PDFM2-120424/1 is gratefully acknowledged. The author thanks
Freddy Delbaen and Semyon Malamud for discussions and Martin Schweizer
for comments on the draft.
1
Introduction
This paper considers the maximization of expected utility, a classical problem of mathematical nance. The agent obtains utility from the wealth he
possesses at some given time horizon
๐‘‡ โˆˆ (0, โˆž) and, in an alternative case,
๐‘‡ . More specically, we study
also from intermediate consumption before
preferences given by power utility random elds for an agent who can invest
in a nancial market which is modeled by a general semimartingale. We defer
the precise formulation to the next section to allow for a brief presentation
๐‘ˆ (๐‘) (๐‘ฅ) = ๐‘1 ๐‘ฅ๐‘ , where
there exists for each ๐‘
of the contents and focus on the power utility function
๐‘ โˆˆ (โˆ’โˆž, 0) โˆช (0, 1).
Under standard assumptions,
an optimal trading and consumption strategy that maximizes the expected
1
๐‘ˆ (๐‘) . Our main interest concerns the behavior of
these strategies in the limits ๐‘ โ†’ โˆ’โˆž and ๐‘ โ†’ 0.
(๐‘) tends to innity for ๐‘ โ†’ โˆ’โˆž. Hence
The relative risk aversion of ๐‘ˆ
utility corresponding to
economic intuition suggests that the agent should become reluctant to take
risks and, in the limit, not invest in the risky assets. Our rst main result
conrms this intuition. More precisely, we prove in a general semimartingale
model that the optimal consumption, expressed as a proportion of current
wealth, converges pointwise to a deterministic function. This function corresponds to the consumption which would be optimal in the case where
trading is not allowed. In the continuous semimartingale case, we show that
the optimal trading strategy tends to zero in a local
๐ฟ2 -sense
and that the
corresponding wealth process converges in the semimartingale topology.
Our second result pertains to the same limit
๐‘ โ†’ โˆ’โˆž
but concerns the
problem without intermediate consumption. In the continuous case, we show
that the optimal trading strategy scaled by
1โˆ’๐‘ converges to a strategy which
is optimal for exponential utility. We provide economic intuition for this fact
via a sequence of auxiliary power utility functions with shifted domains.
The limit
๐‘โ†’0
is related to the logarithmic utility function. Our third
main result is the convergence of the corresponding optimal consumption for
the general semimartingale case, and the convergence of the trading strategy
and the wealth process in the continuous case.
All these results are readily observed for special models where the optimal
strategies can be calculated explicitly.
While the corresponding economic
intuition extends to general models, it is
a priori unclear how to go about
get our hands on the optimal
proving the results. Indeed, the problem is to
controls, which is a notorious question in stochastic optimal control.
Our main tool is the so-called opportunity process, a reduced form of
the value process in the sense of dynamic programming. We prove its convergence using control-theoretic arguments and convex analysis. On the one
hand, this yields the convergence of the value function. On the other hand,
we deduce the convergence of the optimal consumption, which is directly related to the opportunity process. The optimal trading strategy is also linked
to this process, by the so-called Bellman equation.
We study the asymp-
totics of this backward stochastic dierential equation (BSDE) to obtain the
convergence of the strategy. This involves nonstandard arguments to deal
with nonuniform quadratic growth in the driver and solutions that are not
locally bounded.
To derive the results in the stated generality, it is important to
combine
ideas from optimal control, convex analysis and BSDE theory rather than to
rely on only one of these ingredients; and one may see the problem at hand
as a
model problem of control
in a semimartingale setting.
The paper is organized as follows.
In the next section, we specify the
optimization problem in detail. Section 3 summarizes the main results on
the risk aversion asymptotics of the optimal strategies and indicates connec-
2
tions to the literature. Section 4 introduces the main tools, the opportunity
process and the Bellman equation, and explains the general approach for the
proofs.
In Section 5 we study the dependence of the opportunity process
๐‘ and establish some related estimates. Sections 6 deals with the limit
๐‘ โ†’ โˆ’โˆž; we prove the main results stated in Section 3 and, in addition, the
on
convergence of the opportunity process and the solution to the dual problem
(in the sense of convex duality). Similarly, Section 7 contains the proof of
the main theorem for
2
๐‘โ†’0
and additional renements.
Preliminaries
๐‘ฅ, ๐‘ฆ โˆˆ โ„ are reals, ๐‘ฅ โˆง ๐‘ฆ = min{๐‘ฅ, ๐‘ฆ}
๐‘‘
and ๐‘ฅ โˆจ ๐‘ฆ = max{๐‘ฅ, ๐‘ฆ}. We use 1/0 := โˆž where necessary. If ๐‘ง โˆˆ โ„
๐‘–
โŠค
is a ๐‘‘-dimensional vector, ๐‘ง is its ๐‘–th coordinate, ๐‘ง
its transpose, and
โˆฃ๐‘งโˆฃ = (๐‘ง โŠค ๐‘ง)1/2 the Euclidean norm. If ๐‘‹ is an โ„๐‘‘ -valued semimartingale
๐‘‘
and ๐œ‹ is an โ„ -valued predictable integrand, the vector stochastic integral,
โˆซ
denoted by
๐œ‹ ๐‘‘๐‘‹ or ๐œ‹ โˆ™ ๐‘‹ , is a scalar semimartingale with initial value
The following notation is used.
If
zero. Relations between measurable functions hold almost everywhere unless
otherwise mentioned. Dellacherie and Meyer [8] and Jacod and Shiryaev [17]
are references for unexplained notions from stochastic calculus.
2.1
The Optimization Problem
We consider a xed time horizon ๐‘‡ โˆˆ (0, โˆž) and a ltered probability space
(ฮฉ, โ„ฑ, ๐”ฝ = (โ„ฑ๐‘ก )๐‘กโˆˆ[0,๐‘‡ ] , ๐‘ƒ ) satisfying the usual assumptions of right-continuity
๐‘‘
and completeness, as well as โ„ฑ0 = {โˆ…, ฮฉ} ๐‘ƒ -a.s. Let ๐‘… be an โ„ -valued càdlàg
semimartingale with ๐‘…0 = 0. Its components are interpreted as the returns
1
๐‘‘
of ๐‘‘ risky assets and the stochastic exponential ๐‘† = (โ„ฐ(๐‘… ), . . . , โ„ฐ(๐‘… ))
represents their prices. Let M be the set of equivalent ๐œŽ -martingale measures
for ๐‘† . We assume
M โˆ•= โˆ…,
(2.1)
so that arbitrage is excluded in the sense of the NFLVR condition (see Delbaen and Schachermayer [7]).
Our agent also has a bank account at his
disposal. As usual in mathematical nance, the interest rate is assumed to
be zero.
The agent is endowed with a deterministic initial capital
ing strategy
๐‘ฅ0 > 0. A trad๐œ‹ , where ๐œ‹ ๐‘– is
๐‘‘
is a predictable ๐‘…-integrable โ„ -valued process
interpreted as the fraction of the current wealth (or the portfolio proportion)
invested in the
๐‘โ‰ฅ0
such that
๐‘–โˆซth
๐‘‡
0
risky asset. A
consumption rate
๐‘๐‘ก ๐‘‘๐‘ก < โˆž ๐‘ƒ -a.s.
is an optional process
We want to consider two cases simulta-
neously: Either consumption occurs only at the terminal time
๐‘‡
(utility from
terminal wealth only); or there is intermediate and a bulk consumption at
3
the time horizon. To unify the notation, we dene the measure
{
0
๐œ‡(๐‘‘๐‘ก) :=
๐‘‘๐‘ก
๐œ‡
on
[0, ๐‘‡ ],
in the case without intermediate consumption,
in the case with intermediate consumption.
๐œ‡โˆ˜ := ๐œ‡ + ๐›ฟ{๐‘‡ } , where ๐›ฟ{๐‘‡ } is the unit Dirac measure at ๐‘‡ .
process ๐‘‹(๐œ‹, ๐‘) of a pair (๐œ‹, ๐‘) is dened by the linear equation
Moreover, let
The
wealth
๐‘ก
โˆซ
โˆซ
๐‘‹๐‘ โˆ’ (๐œ‹, ๐‘)๐œ‹๐‘  ๐‘‘๐‘…๐‘  โˆ’
๐‘‹๐‘ก (๐œ‹, ๐‘) = ๐‘ฅ0 +
0
The set of
admissible
๐‘๐‘  ๐œ‡(๐‘‘๐‘ ),
0 โ‰ค ๐‘ก โ‰ค ๐‘‡.
0
trading and consumption pairs is
{
๐’œ(๐‘ฅ0 ) = (๐œ‹, ๐‘) : ๐‘‹(๐œ‹, ๐‘) > 0
The convention
๐‘ก
๐‘๐‘‡ = ๐‘‹๐‘‡ (๐œ‹, ๐‘)
and
}
๐‘๐‘‡ = ๐‘‹๐‘‡ (๐œ‹, ๐‘) .
is merely for notational convenience and
๐‘‡ . We x the
๐’œ for ๐’œ(๐‘ฅ0 ). Moreover, ๐‘ โˆˆ ๐’œ indicates
(๐œ‹, ๐‘) โˆˆ ๐’œ; an analogous convention is used for
means that all the remaining wealth is consumed at time
initial capital
๐‘ฅ0
that there exists
and usually write
๐œ‹
such that
similar expressions.
It will be convenient to parametrize the consumption strategies as fractions of the wealth. Let
(๐œ‹, ๐‘) โˆˆ ๐’œ and let ๐‘‹ = ๐‘‹(๐œ‹, ๐‘) be the corresponding
wealth process. Then
๐œ… :=
propensity to consume
is called the
๐‘
๐‘‹
(๐œ‹, ๐‘). In general, a
โˆซ๐‘‡
๐œ… โ‰ฅ 0 such that 0 ๐œ…๐‘  ๐‘‘๐‘  < โˆž
parametrizations by ๐‘ and by ๐œ… are equivalent (see
and we abuse the notation by identifying ๐‘ and ๐œ…
corresponding to
propensity to consume is an optional process
๐‘ƒ -a.s.
and
๐œ…๐‘‡ = 1.
The
Nutz [27, Remark 2.1])
when
๐œ‹
is given. Note that the wealth process can be expressed as
(
)
๐‘‹(๐œ‹, ๐œ…) = ๐‘ฅ0 โ„ฐ ๐œ‹ โˆ™ ๐‘… โˆ’ ๐œ… โˆ™ ๐œ‡ .
(2.2)
The preferences of the agent are modeled by a random utility function with constant relative risk aversion. More precisely, let
adapted positive process and x
๐‘ โˆˆ (โˆ’โˆž, 0) โˆช (0, 1).
๐ท
be a càdlàg
We dene the utility
random eld
(๐‘)
๐‘ˆ๐‘ก (๐‘ฅ) := ๐‘ˆ๐‘ก (๐‘ฅ) := ๐ท๐‘ก ๐‘1 ๐‘ฅ๐‘ ,
๐‘ฅ โˆˆ (0, โˆž), ๐‘ก โˆˆ [0, ๐‘‡ ],
where we assume that there are constants
๐‘˜1 โ‰ค ๐ท๐‘ก โ‰ค ๐‘˜2 ,
The process
๐ท
0 < ๐‘˜1 โ‰ค ๐‘˜2 < โˆž
0 โ‰ค ๐‘ก โ‰ค ๐‘‡.
๐‘
4
in
such that
(2.4)
๐‘; interpretations are discussed
๐‘ˆ (๐‘) will sometimes be suppressed
is taken to be independent of
in [27, Remark 2.2]. The parameter
(2.3)
in the notation and made explicit when we want to recall the dependence.
The same applies to other quantities in this paper.
The constant
expected
utility
[โˆซ
๐‘‡
0
๐ธ
1โˆ’๐‘ > 0
is called the
relative risk aversion
of ๐‘ˆ . The
๐‘
โˆˆ
๐’œ
is given by
โˆซ๐‘‡
๐ธ[ 0 ๐‘ˆ๐‘ก (๐‘๐‘ก ) ๐‘‘๐‘ก + ๐‘ˆ๐‘‡ (๐‘๐‘‡ )].
corresponding to a consumption rate
๐‘ˆ๐‘ก (๐‘๐‘ก ) ๐œ‡โˆ˜ (๐‘‘๐‘ก)
]
๐ธ[๐‘ˆ๐‘‡ (๐‘๐‘‡ )]
, which is either
or
We will always assume that the optimization problem is nondegenerate, i.e.,
๐‘ข๐‘ (๐‘ฅ0 ) := sup ๐ธ
๐‘โˆˆ๐’œ(๐‘ฅ0 )
๐‘‡
[โˆซ
0
]
(๐‘)
๐‘ˆ๐‘ก (๐‘๐‘ก ) ๐œ‡โˆ˜ (๐‘‘๐‘ก) < โˆž.
(2.5)
๐‘, but not on ๐‘ฅ0 . Note that
๐‘ข๐‘ (๐‘ฅ0 ) < โˆž for any ๐‘ < ๐‘0 ; and for ๐‘ < 0 the condi(๐‘) < 0. A strategy (๐œ‹, ๐‘) โˆˆ ๐’œ(๐‘ฅ ) is optimal if
tion (2.5) is void since then ๐‘ˆ
0
[โˆซ๐‘‡
]
โˆ˜
๐ธ 0 ๐‘ˆ๐‘ก (๐‘๐‘ก ) ๐œ‡ (๐‘‘๐‘ก) = ๐‘ข(๐‘ฅ0 ). Note that ๐‘ˆ๐‘ก is irrelevant for ๐‘ก < ๐‘‡ when there
This condition depends on the choice of
๐‘ข๐‘0 (๐‘ฅ0 ) < โˆž
implies
is no intermediate consumption. We recall the following existence result.
For each ๐‘, if ๐‘ข๐‘ (๐‘ฅ0 ) < โˆž,
there exists an optimal strategy (ห†๐œ‹, ๐‘ห†) โˆˆ ๐’œ. The corresponding wealth process
ห† = ๐‘‹(ห†
๐‘‹
๐œ‹ , ๐‘ห†) is unique. The consumption rate ๐‘ห† can be chosen to be càdlàg
and is unique ๐‘ƒ โŠ— ๐œ‡โˆ˜ -a.e.
Proposition 2.1 (Karatzas and ยšitkovi¢ [20]).
ห† = ๐‘‹(ห†
๐‘ห† denotes this càdlàg version, ๐‘‹
๐œ‹ , ๐‘ห†) is the
ห† is the optimal propensity to consume.
and ๐œ…
ห† = ๐‘ห†/๐‘‹
In the sequel,
wealth process
2.2
Decompositions and Spaces of Processes
In some of the statements, we will assume that the price process
alently
that
optimal
๐‘…
๐‘…) is continuous.
satises the
๐‘†
(or equiv-
In this case, it follows from (2.1) and Schweizer [31]
structure condition, i.e.,
โˆซ
๐‘…=๐‘€+
๐‘€
Let ๐œ‰
where
is a continuous local martingale with
(2.6)
๐‘€0 = 0
and
๐œ† โˆˆ ๐ฟ2๐‘™๐‘œ๐‘ (๐‘€ ).
be a scalar special semimartingale, i.e., there exists a (unique)
canonical decomposition
martingale,
continuous,
to
๐‘‘โŸจ๐‘€ โŸฉ๐œ†,
๐œ‰ = ๐œ‰0 + ๐‘€ ๐œ‰ + ๐ด๐œ‰ ,
where
๐ด๐œ‰ is predictable of nite variation,
๐‘€ ๐œ‰ has a Kunita-Watanabe (KW)
and
๐œ‰0 โˆˆ โ„, ๐‘€ ๐œ‰ is a local
๐‘€0๐œ‰ = ๐ด๐œ‰0 = 0. As ๐‘€ is
decomposition with respect
๐‘€,
๐œ‰ = ๐œ‰0 + ๐‘ ๐œ‰ โˆ™ ๐‘€ + ๐‘ ๐œ‰ + ๐ด๐œ‰ ,
where
[๐‘€ ๐‘– , ๐‘ ๐œ‰ ] = 0
Stricker [1,
cas
for
1 โ‰ค ๐‘– โ‰ค ๐‘‘
and
๐‘ ๐œ‰ โˆˆ ๐ฟ2๐‘™๐‘œ๐‘ (๐‘€ );
(2.7)
see Ansel and
3]. Analogous notation will be used for other special semi-
martingales and, with a slight abuse of terminology, we will refer to (2.7) as
the KW decomposition of
๐œ‰.
5
๐’ฎ
๐‘ƒ -semimartingales and ๐‘Ÿ โˆˆ [1, โˆž). If
๐‘‹ = ๐‘‹0 + ๐‘€ ๐‘‹ + ๐ด๐‘‹ , we dene
โˆซ ๐‘‡
1/2 โˆฅ๐‘‹โˆฅโ„‹๐‘Ÿ := โˆฃ๐‘‹0 โˆฃ + 0 โˆฃ๐‘‘๐ด๐‘‹ โˆฃ๐ฟ๐‘Ÿ + [๐‘€ ๐‘‹ ]๐‘‡ ๐ฟ๐‘Ÿ .
[
]
2
In particular, we will often use that โˆฅ๐‘ โˆฅ 2 = ๐ธ [๐‘ ]๐‘‡ for a local martingale
โ„‹
๐‘ with ๐‘0 = 0. If ๐‘‹ is a non-special semimartingale, โˆฅ๐‘‹โˆฅโ„‹๐‘Ÿ := โˆž. We
๐‘Ÿ
can now dene โ„‹ := {๐‘‹ โˆˆ ๐’ฎ : โˆฅ๐‘‹โˆฅโ„‹๐‘Ÿ < โˆž}. The same space is some๐‘Ÿ
times denoted by ๐’ฎ in the literature; moreover, there are many equivalent
๐‘Ÿ
๐‘Ÿ
denitions for โ„‹ (see [8, VII.98]). The localized spaces โ„‹๐‘™๐‘œ๐‘ are dened in
๐‘›
๐‘Ÿ
the usual way. In particular, if ๐‘‹, ๐‘‹
โˆˆ ๐’ฎ we say that ๐‘‹ ๐‘› โ†’ ๐‘‹ in โ„‹๐‘™๐‘œ๐‘
if there exists a localizing sequence of stopping times (๐œ๐‘š )๐‘šโ‰ฅ1 such that
lim๐‘› โˆฅ(๐‘‹ ๐‘› โˆ’ ๐‘‹)๐œ๐‘š โˆฅโ„‹๐‘Ÿ = 0 for all ๐‘š. The localizing sequence may depend
๐‘›
on the sequence (๐‘‹ ), causing this convergence to be non-metrizable. On
๐’ฎ , the Émery distance is dened by
[
]
๐‘‘(๐‘‹, ๐‘Œ ) := โˆฃ๐‘‹0 โˆ’ ๐‘Œ0 โˆฃ + sup ๐ธ sup 1 โˆง โˆฃ๐ป โˆ™ (๐‘‹ โˆ’ ๐‘Œ )๐‘ก โˆฃ ,
Let
๐‘‹โˆˆ๐’ฎ
be the space of all càdlàg
has the canonical decomposition
โˆฃ๐ปโˆฃโ‰ค1
๐‘กโˆˆ[0,๐‘‡ ]
where the supremum is taken over all predictable processes bounded by one
in absolute value.
topology
๐’ฎ
This complete metric induces on
(cf. Émery [9]).
An optional process
๐‘‹
satises a certain property
the
semimartingale
prelocally
if there ex-
๐œ๐‘š such that ๐‘‹ ๐œ๐‘š โˆ’ := ๐‘‹1[0,๐œ๐‘š ) +
each ๐‘š. When ๐‘‹ is continuous, pre-
ists a localizing sequence of stopping times
๐‘‹๐œ๐‘š โˆ’ 1[๐œ๐‘š ,๐‘‡ ]
satises this property for
local simply means local.
Let ๐‘‹, ๐‘‹ ๐‘› โˆˆ ๐’ฎ and ๐‘Ÿ โˆˆ [1, โˆž). Then ๐‘‹ ๐‘› โ†’ ๐‘‹ in
the semimartingale topology if and only if every subsequence of (๐‘‹ ๐‘› ) has a
subsequence which converges to ๐‘‹ prelocally in โ„‹๐‘Ÿ .
Proposition 2.2 ([9]).
We denote by
๐ต๐‘€ ๐‘‚
โˆฅ๐‘ โˆฅ2๐ต๐‘€ ๐‘‚
where
๐œ
norm).
๐‘ with ๐‘0 = 0
]
[
:= sup ๐ธ [๐‘ ]๐‘‡ โˆ’ [๐‘ ]๐œ โˆ’ โ„ฑ๐œ โˆž < โˆž,
the space of martingales
satisfying
๐ฟ
๐œ
๐ต๐‘€ ๐‘‚2 โ„‹๐œ” be the
๐‘‹0 = 0 and
ranges over all stopping times (more precisely, this is the
There exists a similar notion for semimartingales:
โ„‹1 consisting of all special semimartingales ๐‘‹ with
]
[(
)1/2 โˆซ ๐‘‡
:= sup ๐ธ [๐‘€ ๐‘‹ ]๐‘‡ โˆ’ [๐‘€ ๐‘‹ ]๐œ โˆ’
+ ๐œ โˆ’ โˆฃ๐‘‘๐ด๐‘‹ โˆฃ โ„ฑ๐œ subspace of
โˆฅ๐‘‹โˆฅ2โ„‹๐œ”
let
Finally, let
๐ฟโˆž
๐œ
โ„›๐‘Ÿ
< โˆž.
be the space of scalar adapted processes which are right-
continuous and such that
โˆฅ๐‘‹โˆฅโ„›๐‘Ÿ := sup โˆฃ๐‘‹๐‘ก โˆฃ
0โ‰ค๐‘กโ‰ค๐‘‡
๐ฟ๐‘Ÿ
< โˆž.
With a mild abuse of notation, we will use the same norm also for leftcontinuous processes.
6
3
Main Results
In this section we present the main results about the limits of the optimal
strategies. To state an assumption in the results, we rst have to introduce
opportunity process ๐ฟ(๐‘);
the
this is a reduced form of the value process in
the language of dynamic programming. Fix
๐‘
such that
๐‘ข๐‘ (๐‘ฅ0 ) < โˆž.
Using
the scaling properties of our utility function, we can show that there exists
a unique càdlàg semimartingale
๐ฟ๐‘ก (๐‘)
for all
1
๐‘
(
๐ฟ(๐‘)
[
)๐‘
๐‘‹๐‘ก (๐œ‹, ๐‘) = ess sup ๐ธ
(๐œ‹, ๐‘) โˆˆ ๐’œ,
where
๐‘‡
โˆซ
๐‘หœโˆˆ๐’œ(๐œ‹,๐‘,๐‘ก)
such that
๐‘ก
]
๐‘ˆ๐‘  (หœ
๐‘๐‘  ) ๐œ‡โˆ˜ (๐‘‘๐‘ )โ„ฑ๐‘ก ,
0โ‰ค๐‘กโ‰ค๐‘‡
{
๐’œ(๐œ‹, ๐‘, ๐‘ก) := (หœ
๐œ‹ , ๐‘หœ) โˆˆ ๐’œ : (หœ
๐œ‹ , ๐‘หœ) = (๐œ‹, ๐‘)
on
(3.1)
[0, ๐‘ก]
}
.
While we refer to [27, Proposition 3.1] for the proof, we shall have more to
say about
๐ฟ(๐‘)
later since it will be an important tool in our analysis.
We can now proceed to state the main results. The proofs are postponed
to Sections 6 and 7. Those sections also contain statements about the convergence of the opportunity processes and the solutions to the dual problems,
as well as some renements of the results below.
3.1
The Limit
๐‘ โ†’ โˆ’โˆž
The relative risk aversion
1โˆ’๐‘
of
๐‘ˆ (๐‘)
increases to innity as
๐‘ โ†’ โˆ’โˆž.
Therefore we expect that in the limit, the agent does not invest at all. In
that situation the optimal propensity to consume is
๐œ…๐‘ก = (1 + ๐‘‡ โˆ’ ๐‘ก)โˆ’1
since
this corresponds to a constant consumption rate. Our rst result shows that
this coincides with the limit of the
๐‘ˆ (๐‘) -optimal
propensities to consume.
The following convergences hold as ๐‘ โ†’ โˆ’โˆž.
(i) Let ๐‘ก โˆˆ [0, ๐‘‡ ]. In the case with intermediate consumption,
Theorem 3.1.
๐œ…
ห† ๐‘ก (๐‘) โ†’
1
1+๐‘‡ โˆ’๐‘ก
๐‘ƒ -a.s.
If ๐”ฝ is continuous, the convergence is uniform in ๐‘ก, ๐‘ƒ -a.s.; and holds
also in โ„›๐‘Ÿ๐‘™๐‘œ๐‘ for all ๐‘Ÿ โˆˆ [1, โˆž).
(ii) If ๐‘† is continuous and ๐ฟ(๐‘) is continuous for all ๐‘ < 0, then
๐œ‹
ห† (๐‘) โ†’ 0
ห†
and ๐‘‹(๐‘)
โ†’ ๐‘ฅ0 exp โˆ’
(
โˆซโ‹…
๐œ‡(๐‘‘๐‘ ) )
0 1+๐‘‡ โˆ’๐‘ 
in ๐ฟ2๐‘™๐‘œ๐‘ (๐‘€ )
in the semimartingale topology.
The continuity assumptions in (ii) are always satised if the ltration
is generated by a Brownian motion; see also Remark 4.2.
7
๐”ฝ
Literature.
We are not aware of a similar result in the continuous-time litera-
ture, with the exception that when the strategies can be calculated explicitly,
the convergences mentioned in this section are often straightforward to obtain. E.g., Grasselli [16] carries out such a construction in a complete market
model. There are also related systematic results. Carassus and Rásonyi [5]
and Grandits and Summer [15] study convergence to the superreplication
problem for increasing (absolute) risk aversion of general utility functions
in discrete models. Note that superreplicating the contingent claim
๐ต โ‰ก0
corresponds to not trading at all. For the maximization of exponential utility
โˆ’ exp(โˆ’๐›ผ๐‘ฅ)
without claim, the optimal strategy is proportional to the
inverse of the absolute risk aversion
in the limit
๐›ผ โ†’ โˆž.
๐›ผ
and hence trivially converges to zero
The case with claim is also studied. See, e.g., Mania
and Schweizer [24] for a continuous model, and Becherer [2] for a related
result. The references given here and later in this section do not consider
intermediate consumption.
We continue with our second main result, which concerns only the case
without intermediate consumption.
We rst introduce in detail the expo-
๐ต โˆˆ ๐ฟโˆž (โ„ฑ๐‘‡ )
nential hedging problem already mentioned above. Let
contingent claim.
utility (here with
๐›ผ = 1)
of the terminal wealth including the claim,
[
(
)]
max ๐ธ โˆ’ exp ๐ต โˆ’ ๐‘ฅ0 โˆ’ (๐œ— โˆ™ ๐‘…)๐‘‡ ,
(3.2)
๐œ—โˆˆฮ˜
where
๐œ—
is the trading strategy parametrized by the
๐‘–
๐œ— :=
vested in the assets (setting
To describe the set
ฮ˜,
๐œ—
โˆ™
๐‘† =๐œ—
โˆ™
๐‘…
[ ๐‘‘๐‘„
๐‘‘๐‘ƒ
log
( ๐‘‘๐‘„ )]
๐‘‘๐‘ƒ
in-
and
number of shares of the assets).
entropy of ๐‘„ โˆˆ M relative to ๐‘ƒ
we dene the
๐ป(๐‘„โˆฃ๐‘ƒ ) := ๐ธ
Now
monetary amounts
๐‘– yields
1{๐‘† ๐‘– โˆ•=0} ๐œ—๐‘– /๐‘†โˆ’
โˆ’
corresponds to the more customary
and let
be a
Then the aim is to maximize the expected exponential
by
[
( ๐‘‘๐‘„ )]
= ๐ธ ๐‘„ log
๐‘‘๐‘ƒ
}
M ๐‘’๐‘›๐‘ก = ๐‘„ โˆˆ M : ๐ป(๐‘„โˆฃ๐‘ƒ ) < โˆž .
We assume in the following that
M ๐‘’๐‘›๐‘ก โˆ•= โˆ….
(3.3)
{
}
๐‘„-supermartingale for all ๐‘„ โˆˆ M ๐‘’๐‘›๐‘ก is
of admissible strategies for (3.2). If ๐‘† is locally bounded, there
ห† โˆˆ ฮ˜ for (3.2) by Kabanov and Stricker [19,
optimal strategy ๐œ—
{
ฮ˜ := ๐œ— โˆˆ ๐ฟ(๐‘…) : ๐œ—
the class
exists an
โˆ™
๐‘…
is a
Theorem 2.1]. (See Biagini and Fritelli [3, 4] for the unbounded case.)
As there is no intermediate consumption, the process
to a random variable
๐ท๐‘‡ โˆˆ
๐ฟโˆž (โ„ฑ
๐ท
in (2.3) reduces
๐‘‡ ). If we choose
๐ต := log(๐ท๐‘‡ ),
we have the following result.
8
(3.4)
Theorem 3.2. Let ๐‘† be continuous and assume that ๐ฟ(๐‘) is continuous for
all ๐‘ < 0. Under (3.3) and (3.4),
in ๐ฟ2๐‘™๐‘œ๐‘ (๐‘€ ).
(1 โˆ’ ๐‘) ๐œ‹
ห† (๐‘) โ†’ ๐œ—ห†
Here ๐œ‹ห† (๐‘) is in the fractions of wealth parametrization, while ๐œ—ห† denotes the
monetary amounts invested for the exponential utility.
As this convergence may seem surprising at rst glance, we give the
following heuristics.
๐ต = log(๐ท๐‘‡ ) = 0 for simplicity. The preferences
=
โ„+ are not directly comparable to the ones
exponential utility, which are dened on โ„. We consider the
Remark 3.3. Assume
(๐‘) (๐‘ฅ)
induced by ๐‘ˆ
given by the
1 ๐‘
๐‘ ๐‘ฅ on
shifted power utility functions
(
)
หœ (๐‘) (๐‘ฅ) := ๐‘ˆ (๐‘) ๐‘ฅ + 1 โˆ’ ๐‘ ,
๐‘ˆ
Then
หœ (๐‘)
๐‘ˆ
๐‘ฅ โˆˆ (๐‘ โˆ’ 1, โˆž).
again has relative risk aversion
denition increases to
โ„
as
หœ (๐‘) (๐‘ฅ) =
(1 โˆ’ ๐‘)1โˆ’๐‘ ๐‘ˆ
๐‘ โ†’ โˆ’โˆž.
( ๐‘ฅ
1โˆ’๐‘
๐‘
1โˆ’๐‘
1โˆ’๐‘ > 0
and its domain of
Moreover,
+1
)๐‘
โ†’ โˆ’๐‘’โˆ’๐‘ฅ ,
๐‘ โ†’ โˆ’โˆž,
(3.5)
and the multiplicative constant does not aect the preferences.
Let the agent with utility function
โˆ—
capital ๐‘ฅ0
หœ (๐‘) be
๐‘ˆ
๐‘ฅโˆ—0 < 0,
endowed with some initial
โˆˆ โ„ independent of ๐‘. (If
we consider only values of
โˆ—
๐‘ such that ๐‘ โˆ’ 1 < ๐‘ฅ0 .) The change of variables ๐‘ฅ = ๐‘ฅ
หœ + 1 โˆ’ ๐‘ yields
หœ (๐‘) (หœ
ห†
๐‘ˆ (๐‘) (๐‘ฅ) = ๐‘ˆ
๐‘ฅ). Hence the corresponding optimal wealth processes ๐‘‹(๐‘)
หœ
หœ
ห†
and ๐‘‹(๐‘) are related by ๐‘‹(๐‘) = ๐‘‹(๐‘) โˆ’ 1 + ๐‘ if we choose the initial capital
๐‘ฅ0 := ๐‘ฅโˆ—0 + 1 โˆ’ ๐‘ > 0 for the agent with ๐‘ˆ (๐‘) . We conclude
(
)
หœ
ห†
ห† ๐œ‹ (๐‘) ๐‘‘๐‘… = ๐‘‹(๐‘)
หœ
๐‘‘๐‘‹(๐‘)
= ๐‘‘๐‘‹(๐‘)
= ๐‘‹(๐‘)ห†
+1โˆ’๐‘ ๐œ‹
ห† (๐‘) ๐‘‘๐‘…,
i.e., the optimal monetary investment
หœ
๐œ—(๐‘)
for
หœ (๐‘)
๐‘ˆ
is given by
(
)
หœ
หœ
๐œ—(๐‘)
= ๐‘‹(๐‘)
ห† (๐‘).
+1โˆ’๐‘ ๐œ‹
In view of (3.5), it is reasonable that
หœ
๐œ—(๐‘)
monetary investment for the exponential utility.
fractions of wealth) does not depend on
conditions of Theorem 3.1.
๐œ—ห†,
should converge to
๐‘ฅ0
the optimal
We recall that
๐œ‹
ห† (๐‘)
(in
and converges to zero under the
Thus, loosely speaking,
หœ ๐œ‹ (๐‘) โ‰ˆ 0
๐‘‹(๐‘)ห†
for
โˆ’๐‘
large, and hence
More precisely, one can
หœ
๐œ—(๐‘)
โ‰ˆ (1 โˆ’ ๐‘)ห†
๐œ‹ (๐‘).
(
)
หœ ๐œ‹ (๐‘)
show that lim๐‘โ†’โˆ’โˆž ๐‘‹(๐‘)ห†
โˆ™
๐‘… = 0
semimartingale topology, using arguments as in Appendix A.
9
in the
Literature.
To the best of our knowledge, the statement of Theorem 3.2
is new in the systematic literature.
๐ต = 0.
the dual side for the case
However, there are known results on
The problem dual to exponential utility
maximization is the minimization of
๐‘„๐ธ
โˆˆ
๐ป(๐‘„โˆฃ๐‘ƒ )
over to
M ๐‘’๐‘›๐‘ก
and the optimal
M ๐‘’๐‘›๐‘ก is called minimal entropy martingale measure.
tional assumptions on the model, the solution
๐‘Œห† (๐‘)
Under addi-
of the dual problem for
power utility (4.3) introduced below is a martingale and then the measure
๐‘„๐‘ž
๐‘‘๐‘„๐‘ž /๐‘‘๐‘ƒ = ๐‘Œห†๐‘‡ (๐‘)/๐‘Œห†0 (๐‘) is called ๐‘ž -optimal martingale measure,
where ๐‘ž < 1 is conjugate to ๐‘. This measure can be dened also for ๐‘ž > 1,
๐‘ž
in which case it is not connected to power utility. The convergence of ๐‘„ to
๐‘„๐ธ for ๐‘ž โ†’ 1+ was proved by Grandits and Rheinländer [14] for continuous
dened by
semimartingale models satisfying a reverse Hölder inequality. Under the additional assumption that
๐‘žโ†’1
๐”ฝ
is continuous, the convergence of
and more generally the continuity of
๐‘„๐‘ž for
๐‘ž 7โ†’
๐‘žโ‰ฅ0
๐‘„๐‘ž
to
๐‘„๐ธ
for
were obtained
by Mania and Tevzadze [25] (see also Santacroce [29]) using BSDE convergence together with
๐ต๐‘€ ๐‘‚
arguments.
The latter are possible due to the
reverse Hölder inequality; an assumption which is not present in our results.
3.2
As
The Limit
๐‘
๐‘โ†’0
tends to zero, the relative risk aversion of the power utility tends to
log(๐‘ฅ).
which corresponds to the utility function
๐‘ขlog (๐‘ฅ0 ) := sup ๐ธ
โˆ’โˆž
]
log(๐‘๐‘ก ) ๐œ‡โˆ˜ (๐‘‘๐‘ก) ;
0
๐‘โˆˆ๐’œ(๐‘ฅ0 )
here integrals are set to
๐‘‡
[โˆซ
1,
Hence we consider
if they are not well dened in
โ„.
A
log-utility
agent exhibits a very special (myopic) behavior, which allows for an explicit
solution of the utility maximization problem (cf. Goll and Kallsen [11, 12]).
If in particular
๐‘†
is continuous, the
๐œ‹๐‘ก = ๐œ†๐‘ก ,
by [11, Theorem 3.1], where
๐œ†
log-optimal
๐œ…๐‘ก =
strategy is
1
1+๐‘‡ โˆ’๐‘ก
is dened by (2.6). Our result below shows
๐ท โ‰ก 1 converges to the logoptimal one as ๐‘ โ†’ 0. In general, the randomness of ๐ท is an additional source
that the optimal strategy for power utility with
of risk and will cause an excess hedging demand.
Consider the bounded
semimartingale
๐œ‚๐‘ก := ๐ธ
[โˆซ
๐‘ก
๐‘‡
]
๐ท๐‘  ๐œ‡ (๐‘‘๐‘ )โ„ฑ๐‘ก .
โˆ˜
๐œ‚ = ๐œ‚0
๐‘€ + ๐‘ ๐œ‚ + ๐ด๐œ‚ denotes the Kunita-Watanabe
decomposition of ๐œ‚ with respect to ๐‘€ and the standard case ๐ท โ‰ก 1 correโˆ˜
๐œ‚
sponds to ๐œ‚๐‘ก = ๐œ‡ [๐‘ก, ๐‘‡ ] and ๐‘ = 0.
If
๐‘†
is continuous,
+ ๐‘๐œ‚
โˆ™
10
Assume ๐‘ข๐‘0 (๐‘ฅ0 ) < โˆž for some ๐‘0 โˆˆ (0, 1). As ๐‘ โ†’ 0,
(i) in the case with intermediate consumption,
Theorem 3.4.
๐œ…
ห† ๐‘ก (๐‘) โ†’
๐ท๐‘ก
๐œ‚๐‘ก
uniformly in ๐‘ก, ๐‘ƒ -a.s.
(ii) if ๐‘† is continuous,
๐œ‹
ห† (๐‘) โ†’ ๐œ† +
๐‘๐œ‚
๐œ‚โˆ’
in ๐ฟ2๐‘™๐‘œ๐‘ (๐‘€ )
and the corresponding wealth processes converge in the semimartingale
topology.
Remark 3.5. If we consider the limit
that
๐‘ข๐‘0 (๐‘ฅ0 ) < โˆž
for some
๐‘ 0 > 0.
๐‘ โ†’ 0โˆ’,
we need not
a priori
assume
Without that condition, the assertions
of Theorem 3.4 remain valid if (i) is replaced by the weaker statement that
lim๐‘โ†’0โˆ’ ๐œ…
ห† ๐‘ก (๐‘) โ†’ ๐ท๐‘ก /๐œ‚๐‘ก ๐‘ƒ -a.s.
๐‘ก.
for all
If
๐”ฝ
is continuous, (i) remains valid
without changes. In particular, these convergences hold even if
Literature.
In the following discussion we assume
๐ท โ‰ก1
๐‘ขlog (๐‘ฅ0 ) = โˆž.
for simplicity. It
log-optimal strategy can be obtained
๐‘ = 0. Initiated by Jouini and Napp [18],
is part of the folklore that the
from
๐œ‹
ห† (๐‘)
a re-
by formally setting
cent branch of the literature studies the stability of the utility maximization
problem under perturbations of the utility function (with respect to pointwise convergence) and other ingredients of the problem. To the best of our
knowledge, intermediate consumption was not considered so far and the results for continuous time concern continuous semimartingale models.
log(๐‘ฅ) = lim๐‘โ†’0 (๐‘ˆ (๐‘) (๐‘ฅ) โˆ’ ๐‘โˆ’1 )
We note that
and here the additive con-
stant does not inuence the optimal strategy, i.e., we have pointwise conver-
๐‘ˆ (๐‘) . Now Larsen [23, Theorem 2.2]
ห†๐‘‡ for ๐‘ˆ (๐‘) converges in probabilwealth ๐‘‹
gence of utility functions equivalent to
implies that the optimal terminal
ity to the
log-optimal one and that the value functions at time zero converge
pointwise (in the continuous case without consumption). We use the specic
form of our utility functions and obtain a stronger result. Finally, we can
mention that on the dual side and for
the continuity of
For general
of
๐ท
๐‘ž -optimal
๐ท
and
๐‘,
๐‘ โ†’ 0โˆ’,
measures as mentioned after Remark 3.3.
it seems dicult to determine the precise inuence
on the optimal trading strategy
๐œ‹
ห† (๐‘).
We can read Theorem 3.4(ii) as
a partial result on the excess hedging demand
๐œ‹
ห† (๐‘, 1)
the convergence is related to
๐œ‹
ห† (๐‘) โˆ’ ๐œ‹
ห† (๐‘, 1)
๐ท โ‰ก 1.
due to
๐ท;
here
denotes the optimal strategy for the case
Corollary 3.6.
Suppose that the conditions of Theorem 3.4(ii) hold. Then
in ๐ฟ2๐‘™๐‘œ๐‘ (๐‘€ ); i.e., the asymptotic excess hedging
by ๐‘ ๐œ‚ /๐œ‚โˆ’ .
๐œ‹
ห† (๐‘) โˆ’ ๐œ‹
ห† (๐‘, 1) โ†’ ๐‘ ๐œ‚ /๐œ‚โˆ’
demand due to ๐ท is given
11
The stability theory mentioned above considers also perturbations of the
probability measure
๐‘ƒ
(see Kardaras and ยšitkovi¢ [21]) and our corollary
can be related as follows. In the special case when
under
๐‘ƒ
๐‘ˆ (๐‘)
is a martingale,
corresponds to the standard power utility function optimized under
the measure
demand due
4
๐ท
๐‘‘๐‘ƒหœ = (๐ท๐‘‡ /๐ท0 ) ๐‘‘๐‘ƒ (see [27, Remark
to ๐ท then represents the inuence of
2.2]). The excess hedging
the subjective beliefs
๐‘ƒหœ.
Tools and Ideas for the Proofs
In this section we introduce our main tools and then present the basic ideas
how to apply them for the proofs of the theorems.
4.1
Opportunity Processes
We x
๐‘
and assume
๐‘ข๐‘ (๐‘ฅ0 ) < โˆž
throughout this section. We rst discuss
the properties of the (primal) opportunity process
in (3.1).
๐ฟ = ๐ฟ(๐‘) as introduced
๐ฟ๐‘‡ = ๐ท๐‘‡ and that
Moreover, ๐ฟ has the fol-
Directly from that equation we have that
๐‘ข๐‘ (๐‘ฅ0 ) = ๐ฟ0 ๐‘1 ๐‘ฅ๐‘0
is the value function from (2.5).
lowing properties by [27, Lemma 3.5] in view of (2.4).
The opportunity process satises ๐ฟ, ๐ฟโˆ’ > 0.
(i) If ๐‘ โˆˆ (0, 1), ๐ฟ is a supermartingale satisfying
Lemma 4.1.
(
)โˆ’๐‘ [
๐ฟ๐‘ก โ‰ฅ ๐œ‡โˆ˜ [๐‘ก, ๐‘‡ ]
๐ธ
โˆซ
๐‘ก
๐‘‡
]
๐ท๐‘  ๐œ‡โˆ˜ (๐‘‘๐‘ )โ„ฑ๐‘ก โ‰ฅ ๐‘˜1 .
(ii) If ๐‘ < 0, ๐ฟ is a bounded semimartingale satisfying
(
โˆ˜
0 < ๐ฟ๐‘ก โ‰ค ๐œ‡ [๐‘ก, ๐‘‡ ]
)โˆ’๐‘
๐ธ
๐‘‡
[โˆซ
๐‘ก
]
(
)1โˆ’๐‘
๐ท๐‘  ๐œ‡โˆ˜ (๐‘‘๐‘ )โ„ฑ๐‘ก โ‰ค ๐‘˜2 ๐œ‡โˆ˜ [๐‘ก, ๐‘‡ ]
.
If in addition there is no intermediate consumption, then ๐ฟ is a submartingale.
In particular,
๐ฟ
๐›ฝ :=
is always a special semimartingale. We denote by
1
> 0,
1โˆ’๐‘
๐‘ž :=
๐‘
โˆˆ (โˆ’โˆž, 0) โˆช (0, 1)
๐‘โˆ’1
the relative risk tolerance and the exponent conjugate to
These constants are of course redundant given
๐‘,
๐‘,
(4.1)
respectively.
but turn out to simplify
the notation.
In the case with intermediate consumption, the opportunity process and
the optimal consumption are related by
๐‘ห†๐‘ก =
( ๐ท )๐›ฝ
๐‘ก
๐ฟ๐‘ก
ห†๐‘ก
๐‘‹
and hence
12
๐œ…
ห†๐‘ก =
( ๐ท )๐›ฝ
๐‘ก
๐ฟ๐‘ก
(4.2)
according to [27, Theorem 5.1]. Next, we introduce the convex-dual analogue
of
๐ฟ;
cf. [27, ยŸ4] for the following notions and results. The
inf ๐ธ
๐‘Œ โˆˆY
[โˆซ
๐‘‡
dual problem
]
๐‘ˆ๐‘กโˆ— (๐‘Œ๐‘ก ) ๐œ‡โˆ˜ (๐‘‘๐‘ก) ,
is
(4.3)
0
{
}
๐‘ˆ๐‘กโˆ— (๐‘ฆ) = sup๐‘ฅ>0 ๐‘ˆ๐‘ก (๐‘ฅ) โˆ’ ๐‘ฅ๐‘ฆ = โˆ’ 1๐‘ž ๐‘ฆ ๐‘ž ๐ท๐‘ก๐›ฝ is the conjugate of ๐‘ˆ๐‘ก .
Only three properties of the domain Y = Y (๐‘) are relevant for us. First,
each element ๐‘Œ โˆˆ Y is a positive càdlàg supermartingale. Second, the set Y
๐‘โˆ’1
depends on ๐‘ only by a normalization: with the constant ๐‘ฆ0 (๐‘) := ๐ฟ0 (๐‘)๐‘ฅ0
,
โ€ฒ
โˆ’1 Y (๐‘) does not depend on ๐‘. As the elements of Y will
the set Y := ๐‘ฆ0 (๐‘)
where
occur only in terms of certain fractions, the constant plays no role. Third,
๐‘ƒ -density
the
The
process of any
๐‘„โˆˆM
is contained in
Y
(modulo scaling).
dual opportunity process ๐ฟโˆ— is the analogue of ๐ฟ for the dual problem
and can be dened by
โŽง
]
[โˆซ
๏ฃด
โŽจess sup๐‘Œ โˆˆY ๐ธ ๐‘‡ ๐ท๐‘ ๐›ฝ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž ๐œ‡โˆ˜ (๐‘‘๐‘ )โ„ฑ๐‘ก
๐‘ก
๐ฟโˆ—๐‘ก :=
]
[โˆซ
๏ฃด
โŽฉess inf ๐‘Œ โˆˆY ๐ธ ๐‘‡ ๐ท๐‘ ๐›ฝ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž ๐œ‡โˆ˜ (๐‘‘๐‘ )โ„ฑ๐‘ก
๐‘ก
Here the extremum is attained at the minimizer
denote by
๐‘Œห† = ๐‘Œห† (๐‘).
if
๐‘<0,
(4.4)
if
๐‘Œ โˆˆY
๐‘ โˆˆ (0, 1).
for (4.3), which we
Finally, we shall use that the primal and the dual
opportunity process are related by the power
๐ฟโˆ— = ๐ฟ๐›ฝ .
4.2
(4.5)
Bellman BSDE
We continue with a xed
๐‘
such that
๐‘ข๐‘ (๐‘ฅ0 ) < โˆž.
We recall the Bellman
equation, which in the present paper will be used only for continuous
๐‘๐ฟ
๐‘†.
In this case, recall (2.6) and let ๐ฟ = ๐ฟ0 +
๐‘€+
+ ๐ด๐ฟ be the KW
๐ฟ
๐ฟ
decomposition of ๐ฟ with respect to ๐‘€ . Then the triplet (๐ฟ, ๐‘ , ๐‘ ) satises
โˆ™
๐‘๐ฟ
the Bellman BSDE
๐‘‘๐ฟ๐‘ก =
(
(
๐‘ž
๐‘ ๐ฟ )โŠค
๐‘๐ฟ )
๐ฟ๐‘กโˆ’ ๐œ†๐‘ก + ๐‘ก
๐‘‘โŸจ๐‘€ โŸฉ๐‘ก ๐œ†๐‘ก + ๐‘ก
โˆ’ ๐‘๐‘ˆ๐‘กโˆ— (๐ฟ๐‘กโˆ’ ) ๐œ‡(๐‘‘๐‘ก)
2
๐ฟ๐‘กโˆ’
๐ฟ๐‘กโˆ’
+ ๐‘๐‘ก๐ฟ ๐‘‘๐‘€๐‘ก + ๐‘‘๐‘๐‘ก๐ฟ ;
(4.6)
๐ฟ๐‘‡ = ๐ท๐‘‡ .
Put dierently, the nite variation part of
๐ด๐ฟ
๐‘ก
๐‘ž
=
2
โˆซ
๐‘ก
๐ฟ๐‘ โˆ’
0
(
๐ฟ
satises
(
๐‘๐ฟ )
๐‘ ๐ฟ )โŠค
๐œ†๐‘  + ๐‘ 
๐‘‘โŸจ๐‘€ โŸฉ๐‘  ๐œ†๐‘  + ๐‘ 
โˆ’๐‘
๐ฟ๐‘ โˆ’
๐ฟ๐‘ โˆ’
โˆซ
๐‘ก
๐‘ˆ๐‘ โˆ— (๐ฟ๐‘ โˆ’ ) ๐œ‡(๐‘‘๐‘ ).
0
(4.7)
13
๐‘ˆโˆ—
Here
is dened as in (4.3). Moreover, the optimal trading strategy
๐œ‹
ห†
can
be described by
(
๐‘๐ฟ )
๐œ‹
ห† ๐‘ก = ๐›ฝ ๐œ†๐‘ก + ๐‘ก .
๐ฟ๐‘กโˆ’
(4.8)
See Nutz [26, Corollary 3.12] for these results.
Finally, still under the as-
sumption of continuity, the solution to the dual problem (4.3) is given by
the local martingale
(
1
๐‘Œห† = ๐‘ฆ0 โ„ฐ โˆ’ ๐œ† โˆ™ ๐‘€ +
๐ฟโˆ’
with the constant
๐‘ฆ0 = ๐‘ขโ€ฒ๐‘ (๐‘ฅ0 ) = ๐ฟ0 ๐‘ฅ0๐‘โˆ’1
Remark 4.2. Continuity of
๐‘†
โˆ™
)
๐‘๐ฟ ,
(4.9)
(cf. [26, Remark 5.18]).
does not imply that
๐ฟ is continuous; the local
๐ฟ may still have jumps (see also [26, Remark 3.13(i)]). If the
martingale ๐‘
ltration
๐”ฝ
follows that
is continuous (i.e., all
๐ฟ and ๐‘†
๐”ฝ-martingales
are continuous), it clearly
are continuous. The most important example with this
property is the Brownian ltration.
4.3
The Strategy for the Proofs
We can now summarize the basic scheme that is common for the proofs of
the three theorems.
The rst step is to prove the
process
๐ฟ
pointwise convergence
or of the dual opportunity process
๐ฟโˆ— ;
of the opportunity
the choice of the process
depends on the theorem. The convergence of the optimal propensity to consume
of
๐ฟ
๐œ…
ห†
then follows in view of the feedback formula (4.2). The denitions
and
๐ฟโˆ—
via the value processes lend themselves to control-theoretic ar-
guments and of course Jensen's inequality will be the basic tool to derive
๐ฟโˆ— = ๐ฟ๐›ฝ from (4.5), it is essentially equiv๐ฟ or ๐ฟโˆ— , as long as ๐‘ is xed. However, the
estimates. In view of the relation
alent whether one works with
dual problem has the advantage of being dened over a set of supermartingales, which are easier to handle than consumption and wealth processes.
This is particularly useful when passing to the limit.
The second step is the convergence of the trading strategy
๐œ‹
ห†.
Note that
๐ฟ from the KW decomposition
its formula (4.8) contains the integrand ๐‘
of
๐ฟ
with respect to
๐‘€.
Therefore, the convergence of
convergence of the martingale part
๐‘€ ๐ฟ (resp.
๐œ‹
ห†
is related to the
โˆ—
๐‘€ ๐ฟ ). In general, the pointwise
convergence of a semimartingale is not enough to conclude the convergence
of its martingale part; this requires some control over the semimartingale
decomposition. In our case, this control is given by the Bellman BSDE (4.6),
which can be seen as a description for the dependence of the nite variation
part
๐ด๐ฟ
on the martingale part
๐‘€ ๐ฟ.
As we use the BSDE to show the
๐ฟ
convergence of ๐‘€ , we benet from techniques from the theory of quadratic
14
BSDEs. However, we cannot apply standard results from that theory since
our assumptions are not strong enough.
In general, our approach is to extract as much information as possible
by basic control arguments and convex analysis
before
tackling the BSDE,
rather than to rely exclusively on (typically delicate) BSDE arguments. For
instance, we use the BSDE only after establishing the pointwise convergence
of its left hand side, i.e., the opportunity process. This essentially eliminates
the need for an
a priori
estimate or a comparison principle and constitutes
a key reason for the generality of our results.
Our procedure shares basic
features of the viscosity approach to Markovian control problems, where one
also works directly with the value function before tackling the HamiltonJacobi-Bellman equation.
5
Auxiliary Results
We start by collecting inequalities for the dependence of the opportunity
processes on
๐‘.
The precise formulations are motivated by the applications
in the proofs of the previous theorems, but the comparison results are also
of independent interest.
5.1
Comparison Results
๐‘ข๐‘0 (๐‘ฅ0 ) < โˆž for a given exponent ๐‘0 . For
๐‘
convenience, we restate the quantities ๐›ฝ = 1/(1โˆ’๐‘) > 0 and ๐‘ž =
๐‘โˆ’1 dened
in (4.1). It is useful to note that ๐‘ž โˆˆ (โˆ’โˆž, 0) for ๐‘ โˆˆ (0, 1) and vice versa.
When there is a second exponent ๐‘0 under consideration, ๐›ฝ0 and ๐‘ž0 have the
obvious denition. We also recall from (2.4) the bounds ๐‘˜1 and ๐‘˜2 for ๐ท .
We assume the entire section that
Proposition 5.1.
๐ฟโˆ—๐‘ก (๐‘)
โ‰ค ๐ธ
๐ฟ๐‘ก (๐‘) โ‰ค
(
Let 0 < ๐‘ < ๐‘0 < 1. For each ๐‘ก โˆˆ [0, ๐‘‡ ],
[โˆซ
๐‘ก
โˆ˜
๐‘‡
๐ท๐‘ ๐›ฝ
]1โˆ’๐‘ž/๐‘ž0 (
)๐‘ž/๐‘ž0
๐œ‡ (๐‘‘๐‘ )โ„ฑ๐‘ก
๐‘˜1๐›ฝโˆ’๐›ฝ0 ๐ฟโˆ—๐‘ก (๐‘0 )
,
โˆ˜
)1โˆ’๐‘/๐‘0
๐‘˜2 ๐œ‡ [๐‘ก, ๐‘‡ ]
๐ฟ๐‘ก (๐‘0 )๐‘/๐‘0 .
(5.1)
(5.2)
If ๐‘ < ๐‘0 < 0, the converse inequalities hold, if in (5.1) ๐‘˜1 is replaced by ๐‘˜2 .
If ๐‘ < 0 < ๐‘0 < 1, the converse inequalities hold, if in (5.2) ๐‘˜2 is replaced by
๐‘˜1 .
Proof.
We x
๐‘ก
and begin with (5.1). To unify the proofs, we rst argue a
Jensen's inequality: if
๐ธ
[โˆซ
๐‘ก
๐‘‹ = (๐‘‹๐‘  )๐‘ โˆˆ[๐‘ก,๐‘‡ ] > 0
is optional and
๐›ผ โˆˆ (0, 1),
then
๐‘‡
]๐›ผ
]
]1โˆ’๐›ผ [ โˆซ ๐‘‡
[โˆซ ๐‘‡
๐ท๐‘ ๐›ฝ ๐‘‹๐‘  ๐œ‡โˆ˜ (๐‘‘๐‘ )โ„ฑ๐‘ก .
๐ท๐‘ ๐›ฝ ๐‘‹๐‘ ๐›ผ ๐œ‡โˆ˜ (๐‘‘๐‘ )โ„ฑ๐‘ก โ‰ค ๐ธ
๐ท๐‘ ๐›ฝ ๐œ‡โˆ˜ (๐‘‘๐‘ )โ„ฑ๐‘ก
๐ธ
๐‘ก
๐‘ก
(5.3)
15
To see this, introduce the probability space
[
๐œˆ(๐ผ × ๐บ) := ๐ธ ๐œ‰ โˆ’1
โˆซ
(
[๐‘ก, ๐‘‡ ]×ฮฉ, โ„ฌ([๐‘ก, ๐‘‡ ])โŠ—โ„ฑ, ๐œˆ
]
1๐บ ๐ท๐‘ ๐›ฝ ๐œ‡โˆ˜ (๐‘‘๐‘ ) ,
)
, where
๐บ โˆˆ โ„ฑ, ๐ผ โˆˆ โ„ฌ([๐‘ก, ๐‘‡ ]),
๐ผ
๐œ‰ := ๐ธ[
with the normalizing factor
โˆซ๐‘‡
๐‘ก
๐ท๐‘ ๐›ฝ ๐œ‡โˆ˜ (๐‘‘๐‘ )โˆฃโ„ฑ๐‘ก ].
On this space,
๐‘‹
is a
random variable and we have the conditional Jensen's inequality
]๐›ผ
]
[ [ ๐ธ ๐œˆ ๐‘‹ ๐›ผ [๐‘ก, ๐‘‡ ] × โ„ฑ๐‘ก โ‰ค ๐ธ ๐œˆ ๐‘‹ [๐‘ก, ๐‘‡ ] × โ„ฑ๐‘ก
๐œŽ -eld [๐‘ก, ๐‘‡ ] × โ„ฑ๐‘ก := {[๐‘ก, ๐‘‡ ] × ๐ด : ๐ด โˆˆ โ„ฑ๐‘ก }. But this inequality
0
0
coincides with (5.3) if we identify ๐ฟ ([๐‘ก, ๐‘‡ ] × ฮฉ, [๐‘ก, ๐‘‡ ] × โ„ฑ๐‘ก ) and ๐ฟ (ฮฉ, โ„ฑ๐‘ก ) by
for the
using that an element of the rst space is necessarily constant in its time
variable.
0 < ๐‘ โ‰ค ๐‘0 < 1 and let ๐‘Œห† := ๐‘Œห† (๐‘0 ) be the solution of the dual
problem for ๐‘0 . Using (4.4) and then (5.3) with ๐›ผ := ๐‘ž/๐‘ž0 โˆˆ (0, 1) and
(
)๐›ผ
๐‘‹๐‘ ๐›ผ := (๐‘Œห†๐‘  /๐‘Œห†๐‘ก )๐‘ž0 = (๐‘Œห†๐‘  /๐‘Œห†๐‘ก )๐‘ž ,
]
[โˆซ ๐‘‡
(
)๐‘ž
๐ฟโˆ—๐‘ก (๐‘) โ‰ค ๐ธ
๐ท๐‘ ๐›ฝ ๐‘Œห†๐‘  /๐‘Œห†๐‘ก ๐œ‡โˆ˜ (๐‘‘๐‘ )โ„ฑ๐‘ก
๐‘ก
]1โˆ’๐‘ž/๐‘ž0 [ โˆซ ๐‘‡
]๐‘ž/๐‘ž0
[โˆซ ๐‘‡
๐›ฝ โˆ˜
โ‰ค๐ธ
๐ท๐‘  ๐œ‡ (๐‘‘๐‘ )โ„ฑ๐‘ก
๐ธ
๐ท๐‘ ๐›ฝ (๐‘Œห†๐‘  /๐‘Œห†๐‘ก )๐‘ž0 ๐œ‡โˆ˜ (๐‘‘๐‘ )โ„ฑ๐‘ก
.
Let
๐‘ก
๐›ฝ
Now ๐ท๐‘ 
โ‰ค
๐‘ก
๐‘˜1๐›ฝโˆ’๐›ฝ0 ๐ท๐‘ ๐›ฝ0 since
๐›ฝ โˆ’ ๐›ฝ 0 < 0,
which completes the proof of the
rst claim in view of (4.4). In the cases with
replaced by a supremum and
๐›ผ = ๐‘ž/๐‘ž0
๐‘ < 0, the inmum in (4.4) is
> 1 or < 0, reversing the
is either
direction of Jensen's inequality.
We turn to (5.2).
Let
0 < ๐‘ โ‰ค ๐‘0 < 1
and
ห† = ๐‘‹(๐‘)
ห† , ๐‘ห† = ๐‘ห†(๐‘).
๐‘‹
Using (3.1) and (the usual) Jensen's inequality twice,
๐‘‡
[โˆซ
]
๐ท๐‘  ๐‘ห†๐‘๐‘  0 ๐œ‡โˆ˜ (๐‘‘๐‘ )โ„ฑ๐‘ก
๐‘ก
]๐‘0 /๐‘
[โˆซ ๐‘‡
โˆ˜
1โˆ’๐‘0 /๐‘
โ‰ฅ ๐œ‡ [๐‘ก, ๐‘‡ ]
๐ธ
๐ท๐‘ ๐‘/๐‘0 ๐‘ห†๐‘๐‘  ๐œ‡โˆ˜ (๐‘‘๐‘ )โ„ฑ๐‘ก
ห† ๐‘0 โ‰ฅ ๐ธ
๐ฟ๐‘ก (๐‘0 )๐‘‹
๐‘ก
๐‘ก
)1โˆ’๐‘0 /๐‘ (
)
ห† ๐‘ ๐‘0 /๐‘
โ‰ฅ ๐‘˜2 ๐œ‡ [๐‘ก, ๐‘‡ ]
๐ฟ๐‘ก (๐‘)๐‘‹
๐‘ก
(
โˆ˜
and the claim follows. The other cases are similar.
A useful consequence is that
the possibly critical exponent
Corollary 5.2.
๐ฟ(๐‘)
gains moments as
๐‘
moves away from
๐‘0 .
(i) Let 0 < ๐‘ < ๐‘0 < 1. Then
๐ฟ(๐‘) โ‰ค ๐ถ๐ฟ(๐‘0 )
(5.4)
with a constant ๐ถ independent of ๐‘0 and ๐‘. In the case without intermediate consumption we can take ๐ถ = 1.
16
(ii) Let ๐‘Ÿ โ‰ฅ 1 and 0 < ๐‘ โ‰ค ๐‘0 /๐‘Ÿ. Then
[
]
๐ธ (๐ฟ๐œ (๐‘))๐‘Ÿ โ‰ค ๐ถ๐‘Ÿ
for all stopping times ๐œ , with a constant ๐ถ๐‘Ÿ independent of ๐‘0 , ๐‘, ๐œ . In
particular, ๐ฟ(๐‘) is of class (D) for all ๐‘ โˆˆ (0, ๐‘0 ).
Proof.
๐ฟ = ๐ฟ(๐‘0 ). By Lemma 4.1, ๐ฟ/๐‘˜1 โ‰ฅ 1, hence ๐ฟ๐‘/๐‘0 =
๐‘/๐‘
โ‰ค ๐‘˜1 0 (๐ฟ/๐‘˜1 ) as ๐‘/๐‘0 โˆˆ (0, 1). Proposition 5.1 yields the
( โˆ˜
)1โˆ’๐‘/๐‘0
result with ๐ถ = ๐œ‡ [0, ๐‘‡ ]๐‘˜2 /๐‘˜1
; note that ๐ถ โ‰ค 1 โˆจ (1 + ๐‘‡ )๐‘˜2 /๐‘˜1 . In
the absence of intermediate consumption we may assume ๐‘˜1 = ๐‘˜2 = 1 by the
subsequent Remark 5.3 and then ๐ถ = 1.
(ii) Let ๐‘Ÿ โ‰ฅ 1, 0 < ๐‘ โ‰ค ๐‘0 /๐‘Ÿ , and ๐ฟ = ๐ฟ(๐‘0 ). Proposition 5.1 shows
(i)
Denote
๐‘/๐‘
๐‘˜1 0 (๐ฟ/๐‘˜1 )๐‘/๐‘0
(
)๐‘Ÿ(1โˆ’๐‘/๐‘0 ) ๐‘Ÿ๐‘/๐‘0 (
)๐‘Ÿ ๐‘Ÿ๐‘/๐‘
๐ฟ๐‘ก (๐‘)๐‘Ÿ โ‰ค ๐‘˜2 ๐œ‡โˆ˜ [๐‘ก, ๐‘‡ ]
๐ฟ๐‘ก
โ‰ค (1 โˆจ ๐‘˜2 )(1 + ๐‘‡ ) ๐ฟ๐‘ก 0 .
๐‘Ÿ๐‘/๐‘0 โˆˆ (0, 1), thus ๐ฟ๐‘Ÿ๐‘/๐‘0
๐‘Ÿ๐‘/๐‘
๐‘Ÿ๐‘/๐‘
๐ธ[๐ฟ๐œ 0 ] โ‰ค ๐ฟ0 0 โ‰ค 1 โˆจ ๐‘˜2 .
Note
is a supermartingale by Lemma 4.1 and
Remark 5.3. In the case without intermediate consumption we may assume
๐ท โ‰ก 1
Indeed, ๐ท reduces to the random
๐ท๐‘‡ and can be absorbed into the measure ๐‘ƒ as follows. Under the
หœ with ๐‘ƒ -density process ๐œ‰๐‘ก = ๐ธ[๐ท๐‘‡ โˆฃโ„ฑ๐‘ก ]/๐ธ[๐ท๐‘‡ ], the opportunity
measure ๐‘ƒ
หœ (๐‘ฅ) = 1 ๐‘ฅ๐‘ is ๐ฟ
หœ = ๐ฟ/๐œ‰ by [27, Remark 3.2].
process for the utility function ๐‘ˆ
๐‘
หœ
หœ 0 ) and then
If Corollary 5.2(i) is proved for ๐ท โ‰ก 1, we conclude ๐ฟ(๐‘)
โ‰ค ๐ฟ(๐‘
the inequality for ๐ฟ follows.
in the proof of Corollary 5.2(i).
variable
Inequality (5.4) is stated for reference as it has a simple form; however,
note that it was deduced using the very poor estimate
the pure investment case, we have
๐ถ=1
๐‘Ž๐‘ โ‰ฅ ๐‘Ž for ๐‘Ž, ๐‘ โ‰ฅ 1.
In
and so (5.4) is a direct comparison
result. Intermediate consumption destroys this monotonicity property: (5.4)
fails for
๐ถ = 1
๐ท โ‰ก1
๐‘ = 0.1
in that case, e.g., if
a standard Brownian motion, and
by explicit calculation.
and
and
๐‘…๐‘ก = ๐‘ก + ๐‘Š๐‘ก , where ๐‘Š is
๐‘0 = 0.2, as can be seen
This is not surprising from a BSDE perspective,
because the driver of (4.6) is not monotone with respect to
of the
๐‘‘๐œ‡-term.
๐‘ in the presence
In the pure investment case, the driver is monotone and so
the comparison result can be expected, even for the entire parameter range.
This is conrmed by the next result; note that the inequality is
to (5.2) for the considered parameters.
Proposition 5.4.
Let ๐‘ < ๐‘0 < 0, then
๐ฟ๐‘ก (๐‘) โ‰ค
)๐‘ โˆ’๐‘
๐‘˜2 ( โˆ˜
๐œ‡ [๐‘ก, ๐‘‡ ] 0 ๐ฟ๐‘ก (๐‘0 ).
๐‘˜1
In the case without intermediate consumption, ๐ฟ(๐‘) โ‰ค ๐ฟ(๐‘0 ).
17
converse
The proof is based on the following auxiliary statement.
Let ๐‘Œ > 0 be a supermartingale. For xed 0 โ‰ค ๐‘ก โ‰ค ๐‘  โ‰ค ๐‘‡ ,
Lemma 5.5.
1
( [
]) 1โˆ’๐‘ž
๐‘ž
๐‘ž 7โ†’ ๐œ™(๐‘ž) := ๐ธ (๐‘Œ๐‘  /๐‘Œ๐‘ก ) โ„ฑ๐‘ก
๐œ™ : (0, 1) โ†’ โ„+ ,
is a monotone decreasing function
we have
(
[ ๐‘ƒ -a.s. If ๐‘Œ is a martingale,
])
๐œ™(1) := lim๐‘žโ†’1โˆ’ ๐œ™(๐‘ž) = exp โˆ’ ๐ธ (๐‘Œ๐‘  /๐‘Œ๐‘ก ) log(๐‘Œ๐‘  /๐‘Œ๐‘ก ) โ„ฑ๐‘ก ๐‘ƒ -a.s., where the
conditional expectation has values in โ„ โˆช {+โˆž}.
Lemma 5.5 can be obtained using Jensen's inequality and a suitable
change of measure; we refer to [27, Lemma 4.10] for details.
Proof of Proposition 5.4.
Let 0 < ๐‘ž0 < ๐‘ž < 1 be the dual exponents and
1โˆ’๐‘ž
๐‘Œห† := ๐‘Œห† (๐‘). By Lemma 5.5 and Jensen's inequality for 1โˆ’๐‘ž
โˆˆ (0, 1),
0
โˆซ ๐‘‡(
โˆซ ๐‘‡
1โˆ’๐‘ž
] โˆ˜
]) 1โˆ’๐‘ž
[
[
๐‘ž
0
ห†
ห†
๐ธ (๐‘Œห†๐‘  /๐‘Œห†๐‘ก )๐‘ž0 โ„ฑ๐‘ก
๐œ‡โˆ˜ (๐‘‘๐‘ )
๐ธ (๐‘Œ๐‘  /๐‘Œ๐‘ก ) โ„ฑ๐‘ก ๐œ‡ (๐‘‘๐‘ ) โ‰ค
denote
๐‘ก
๐‘ก
( 1โˆ’๐‘ž )( โˆซ
1โˆ’ 1โˆ’๐‘ž
0
โ‰ค ๐œ‡โˆ˜ [๐‘ก, ๐‘‡ ]
๐‘‡
]
[
๐ธ (๐‘Œห†๐‘  /๐‘Œห†๐‘ก )๐‘ž0 โ„ฑ๐‘ก ๐œ‡โˆ˜ (๐‘‘๐‘ )
) 1โˆ’๐‘ž
1โˆ’๐‘ž0
.
๐‘ก
Using (2.4) and (4.4) twice, we conclude that
๐ฟโˆ—๐‘ก (๐‘)
โˆซ
๐‘‡
โ‰ค
๐‘˜2๐›ฝ
)( โˆซ
โ‰ค
1โˆ’๐‘ž
1โˆ’๐‘ž
1โˆ’ 1โˆ’๐‘ž
๐›ฝ โˆ’๐›ฝ0 1โˆ’๐‘ž0 โˆ˜
0
๐œ‡ [๐‘ก, ๐‘‡ ]
๐‘˜2 ๐‘˜1
)
โ‰ค
1โˆ’๐‘ž
1โˆ’๐‘ž
โˆ’๐›ฝ0 1โˆ’๐‘ž
1โˆ’ 1โˆ’๐‘ž
0 โˆ˜
0
๐‘˜2๐›ฝ ๐‘˜1
๐œ‡ [๐‘ก, ๐‘‡ ]
]
[
๐ธ (๐‘Œห†๐‘  /๐‘Œห†๐‘ก )๐‘ž โ„ฑ๐‘ก ๐œ‡โˆ˜ (๐‘‘๐‘ )
๐‘ก
(
(
Now (4.5) and
๐›ฝ = 1โˆ’๐‘ž
๐‘‡
) 1โˆ’๐‘ž
1โˆ’๐‘ž0
] โˆ˜
[ ๐›ฝ0
๐‘ž
๐ธ ๐ท๐‘  (๐‘Œห†๐‘  /๐‘Œห†๐‘ก ) 0 โ„ฑ๐‘ก ๐œ‡ (๐‘‘๐‘ )
๐‘ก
1โˆ’๐‘ž
๐ฟโˆ—๐‘ก (๐‘0 ) 1โˆ’๐‘ž0 .
yield the rst result. In the case without inter-
mediate consumption, we may assume
๐ทโ‰ก1
and hence
๐‘˜1 = ๐‘˜2 = 1,
as in
Remark 5.3.
Remark 5.6. Our argument for Proposition 5.4 extends to
๐‘ = โˆ’โˆž
(cf.
Lemma 6.7 below). The proposition generalizes [25, Proposition 2.2], where
the result is proved for the case without intermediate consumption and under
the additional condition that
๐‘ž0 -optimal
๐‘Œห† (๐‘0 ) is a martingale (or equivalently, that the
equivalent martingale measure exists).
Propositions 5.1 and 5.4 combine to the following continuity property of
๐‘ 7โ†’ ๐ฟ(๐‘)
at interior points of
(โˆ’โˆž, 0).
We will not pursue this further as
we are interested mainly in the boundary points of this interval.
Corollary 5.7.
1โˆ’๐‘/๐‘0
๐ถ๐‘ก
Assume ๐ท โ‰ก 1 and let ๐ถ๐‘ก := ๐œ‡โˆ˜ [๐‘ก, ๐‘‡ ]. If ๐‘ โ‰ค ๐‘0 < 0,
1โˆ’๐‘0 /๐‘+๐‘0 โˆ’๐‘
๐ฟ(๐‘0 )๐‘/๐‘0 โ‰ค ๐ฟ(๐‘) โ‰ค ๐ถ๐‘ก๐‘0 โˆ’๐‘ ๐ฟ(๐‘0 ) โ‰ค ๐ถ๐‘ก
๐ฟ(๐‘)๐‘0 /๐‘ .
In particular, ๐‘ 7โ†’ ๐ฟ๐‘ก (๐‘) is continuous on (โˆ’โˆž, 0) uniformly in ๐‘ก, ๐‘ƒ -a.s.
18
๐œ…
ห† (๐‘) is not monotone with
๐ท โ‰ก 1 and ๐‘…๐‘ก =
motion, and ๐‘ โˆˆ {โˆ’1/2, โˆ’1, โˆ’2}.
Remark 5.8. The optimal propensity to consume
respect to
๐‘ก + ๐‘Š๐‘ก ,
๐‘
in general. For instance, monotonicity fails for
๐‘Š
where
is a standard Brownian
One can note that
๐‘
determines both the risk aversion and the elasticity of
intertemporal substitution (see, e.g., Gollier [13, ยŸ15]). As with any timeadditive utility specication, it is not possible in our setting to study the
dependence on each of these quantities in an isolated way.
๐ต๐‘€ ๐‘‚
5.2
Estimate
In this section we give
๐ต๐‘€ ๐‘‚
estimates for the martingale part of
๐ฟ.
The
following lemma is well known; we state the proof since the argument will
be used also later on.
Let ๐‘‹ be a submartingale satisfying 0 โ‰ค ๐‘‹ โ‰ค ๐›ผ for some
constant ๐›ผ > 0. Then for all stopping times 0 โ‰ค ๐œŽ โ‰ค ๐œ โ‰ค ๐‘‡ ,
Lemma 5.9.
]
]
[
[
๐ธ [๐‘‹]๐œ โˆ’ [๐‘‹]๐œŽ โ„ฑ๐œŽ โ‰ค ๐ธ ๐‘‹๐œ2 โˆ’ ๐‘‹๐œŽ2 โ„ฑ๐œŽ .
Proof.
๐‘‹๐‘ก2
=
๐‘‹ โˆซ= ๐‘‹0 + ๐‘€ ๐‘‹ + ๐ด๐‘‹ be the Doob-Meyer
decomposition.
โˆซ๐œ
๐‘ก
๐‘‹
๐‘‹
)
+
[๐‘‹]
and
2
+ 2 0 ๐‘‹๐‘ โˆ’ (๐‘‘๐‘€๐‘ ๐‘‹ + ๐‘‘๐ด๐‘‹
๐‘ โˆ’ ๐‘‘๐ด๐‘  โ‰ฅ 0,
๐‘ก
๐‘ 
๐œŽ
โˆซ ๐œ
2
2
[๐‘‹]๐œ โˆ’ [๐‘‹]๐œŽ โ‰ค ๐‘‹๐œ โˆ’ ๐‘‹๐œŽ โˆ’ 2
๐‘‹๐‘ โˆ’ ๐‘‘๐‘€๐‘ ๐‘‹ .
Let
๐‘‹02
As
๐œŽ
๐‘‹โˆ’ โˆ™ ๐‘€ ๐‘‹ is a
๐‘‹
๐‘‹
1
martingale. Indeed, ๐‘‹ is bounded and sup๐‘ก โˆฃ๐‘€๐‘ก โˆฃ โ‰ค 2๐›ผ + ๐ด๐‘‡ โˆˆ ๐ฟ , so the
๐‘‹ 1/2 โˆˆ ๐ฟ1 , hence [๐‘‹ โˆ™ ๐‘€ ๐‘‹ ]1/2 โˆˆ ๐ฟ1 ,
BDG inequalities [8, VII.92] show [๐‘€ ]๐‘‡
โˆ’
๐‘‡
๐‘‹
1
which by the BDG inequalities implies that sup๐‘ก โˆฃ๐‘‹โˆ’ โˆ™ ๐‘€๐‘ก โˆฃ โˆˆ ๐ฟ .
The claim follows by taking conditional expectations because
๐ฟ(๐‘)
We wish to apply Lemma 5.9 to
in the case
๐‘ < 0.
However,
the submartingale property fails in general for the case with intermediate
consumption (cf. Lemma 4.1). We introduce instead a closely related process
having this property.
Lemma 5.10.
tion. Then
Let ๐‘ < 0 and consider the case with intermediate consumpโˆซ ๐‘ก
( 1 + ๐‘‡ โˆ’ ๐‘ก )๐‘
1
๐ต๐‘ก :=
๐ฟ๐‘ก +
๐ท๐‘  ๐‘‘๐‘ 
1+๐‘‡
(1 + ๐‘‡ )๐‘ 0
is a submartingale satisfying 0 < ๐ต๐‘ก โ‰ค ๐‘˜2 (1 + ๐‘‡ )1โˆ’๐‘ .
Proof.
Choose
(๐œ‹, ๐‘) โ‰ก (0, ๐‘ฅ0 /(1 + ๐‘‡ ))
in [27, Proposition 3.4] to see that
is a submartingale. The bound follows from Lemma 4.1.
We are now in the position to exploit Lemma 5.9.
19
๐ต
(i) Let ๐‘1 < 0. There exists a constant ๐ถ = ๐ถ(๐‘1 ) such
that โˆฅ๐‘€ ๐ฟ(๐‘) โˆฅ๐ต๐‘€ ๐‘‚ โ‰ค ๐ถ for all ๐‘ โˆˆ (๐‘1 , 0). In the case without intermediate consumption one can take ๐‘1 = โˆ’โˆž.
(ii) Assume ๐‘ข๐‘0 (๐‘ฅ0 ) < โˆž for some ๐‘0 โˆˆ (0, 1) and let ๐œŽ be a stopping
time such that ๐ฟ(๐‘0 )๐œŽ โ‰ค ๐›ผ for a constant ๐›ผ > 0. Then there exists
๐ถ โ€ฒ = ๐ถ โ€ฒ (๐›ผ) such that โˆฅ(๐‘€ ๐ฟ(๐‘) )๐œŽ โˆฅ๐ต๐‘€ ๐‘‚ โ‰ค ๐ถ โ€ฒ for all ๐‘ โˆˆ (0, ๐‘0 ].
Lemma 5.11.
Proof.
(i) Let
๐‘1 < ๐‘ < 0 and let ๐œ be a stopping time.
]
[
๐ธ [๐ฟ(๐‘)]๐‘‡ โˆ’ [๐ฟ(๐‘)]๐œ โ„ฑ๐œ โ‰ค ๐ถ.
In the case without intermediate consumption,
martingale with
๐ฟ โ‰ค ๐‘˜2
We rst show that
๐ฟ = ๐ฟ(๐‘)
(5.5)
is a positive sub-
(Lemma 4.1), so Lemma 5.9 implies (5.5) with
โˆ’๐‘ก ๐‘
๐ถ = ๐‘˜22 . In the other case, dene ๐ต as in Lemma 5.10 and ๐‘“ (๐‘ก) := ( 1+๐‘‡
1+๐‘‡ ) .
โˆซ ๐‘ก โˆ’2
Then [๐ฟ]๐‘ก โˆ’ [๐ฟ]0 =
(๐‘ ) ๐‘‘[๐ต]๐‘  and ๐‘“ โˆ’2 (๐‘ ) โ‰ค 1 as ๐‘“ is increasing with
0 ๐‘“
โˆซ๐‘‡
๐‘“ (0) = 1. Thus [๐ฟ]๐‘‡ โˆ’ [๐ฟ]๐œ = ๐œ ๐‘“ โˆ’2 (๐‘ ) ๐‘‘[๐ต]๐‘  โ‰ค [๐ต]๐‘‡ โˆ’ [๐ต]๐œ . Now (5.5)
1โˆ’๐‘ and Lemma 5.9 imply
follows since ๐ต โ‰ค ๐‘˜2 (1 + ๐‘‡ )
]
[
๐ธ [๐ต]๐‘‡ โˆ’ [๐ต]๐œ โ„ฑ๐œ โ‰ค ๐‘˜22 (1 + ๐‘‡ )2โˆ’2๐‘ โ‰ค ๐‘˜22 (1 + ๐‘‡ )2โˆ’2๐‘1 =: ๐ถ(๐‘1 ).
[๐ฟ] = ๐ฟ20 + [๐‘€ ๐ฟ ] + [๐ด๐ฟ ] + 2[๐‘€ ๐ฟ , ๐ด๐ฟ ]. Since ๐ด๐ฟ is predictable,
๐‘ := 2[๐‘€ ๐ฟ , ๐ด๐ฟ ] is a local martingale with some localizing sequence (๐œŽ๐‘› ).
๐ฟ
๐ฟ
Moreover, [๐‘€ ]๐‘ก โˆ’ [๐‘€ ]๐‘  = [๐ฟ]๐‘ก โˆ’ [๐ฟ]๐‘  โˆ’ ([๐ด]๐‘ก โˆ’ [๐ด]๐‘  ) โˆ’ (๐‘๐‘ก โˆ’ ๐‘๐‘  ) and (5.5)
We have
imply
[
]
๐ธ [๐‘€ ๐ฟ ]๐‘‡ โˆง๐œŽ๐‘› โˆ’ [๐‘€ ๐ฟ ]๐œ โˆง๐œŽ๐‘› โ„ฑ๐œ โˆง๐œŽ๐‘› โ‰ค ๐ถ.
Choosing
๐œ = 0
and
๐‘› โ†’ โˆž
we see that
[๐‘€ ]๐‘‡ โˆˆ ๐ฟ1 (๐‘ƒ )
and thus Hunt's
Lemma [8, V.45] shows the a.s.-convergence in this inequality; i.e., we have
]
[
๐ธ [๐‘€ ๐ฟ ]๐‘‡ โˆ’ [๐‘€ ๐ฟ ]๐œ โ„ฑ๐œ โ‰ค ๐ถ . If ๐ฟ is bounded by ๐›ผ, the jumps
bounded by 2๐›ผ (cf. [17, I.4.24]), therefore
]
[
sup ๐ธ [๐‘€ ๐ฟ ]๐‘‡ โˆ’ [๐‘€ ๐ฟ ]๐œ โˆ’ โ„ฑ๐œ โ‰ค ๐ถ + 4๐›ผ2 .
of
๐‘€๐ฟ
are
๐œ
By Lemma 4.1 we can take
๐›ผ = ๐‘˜2 (1 + ๐‘‡ )1โˆ’๐‘1 ,
and
๐›ผ = ๐‘˜2
when there is no
intermediate consumption.
0 < ๐‘ โ‰ค ๐‘0 < 1. The assumption and Corollary 5.2(i) show
โ‰ค ๐ถ๐›ผ for a constant ๐ถ๐›ผ independent of ๐‘ and ๐‘0 . We ap๐œŽ
ply Lemma 5.9 to the nonnegative process ๐‘‹(๐‘) := ๐ถ๐›ผ โˆ’ ๐ฟ(๐‘) , which is
]
[
๐œŽ
๐œŽ
a submartingale by Lemma 4.1, and obtain ๐ธ [๐ฟ(๐‘) ]๐‘‡ โˆ’ [๐ฟ(๐‘) ]๐œ โ„ฑ๐œ
=
[
]
2
๐ธ [๐‘‹(๐‘)]๐‘‡ โˆ’ [๐‘‹(๐‘)]๐œ โ„ฑ๐œ โ‰ค ๐ถ๐›ผ . Now the rest of the proof is as in (i).
(ii)
Let
๐œŽ
that ๐ฟ(๐‘)
Let ๐‘† be continuous and assume that either ๐‘ โˆˆ (0, 1)
and ๐ฟ is bounded or that ๐‘ < 0 and ๐ฟ is bounded away from zero. Then
๐œ† โˆ™ ๐‘€ โˆˆ ๐ต๐‘€ ๐‘‚, where ๐œ† and ๐‘€ are dened by (2.6).
Corollary 5.12.
20
Proof.
In both cases, the assumed bound and Lemma 4.1 imply that
is bounded away from zero and innity.
in (4.6), we obtain a constant
[โˆซ
๐ธ
๐‘ก
๐‘‡
๐ถ>0
such that
]
(
(
๐‘ ๐ฟ )
๐‘ ๐ฟ )โŠค
๐‘‘โŸจ๐‘€ โŸฉ ๐œ† +
๐ฟโˆ’ ๐œ† +
โ„ฑ๐‘ก โ‰ค ๐ถ,
๐ฟโˆ’
๐ฟโˆ’ ๐‘€ ๐ฟ โˆˆ ๐ต๐‘€ ๐‘‚
Moreover, we have
and the Cauchy-Schwarz inequality, it follows that
We remark that uniform bounds for
๐ฟ
๐ธ[
โˆซ๐‘‡
index
๐‘ž
๐‘ก
๐œ†โŠค ๐‘‘โŸจ๐‘€ โŸฉ ๐œ†โˆฃโ„ฑ
๐ฟ
๐‘ก] โ‰ค
๐ถ โ€ฒ > 0.
for a constant
(as in the condition of Corol-
lary 5.12) are equivalent to a reverse Hölder inequality
Y;
0 โ‰ค ๐‘ก โ‰ค ๐‘‡.
by Lemma 5.11. Using the bounds for
๐ถ โ€ฒ (1 + โˆฅ๐‘ ๐ฟ โˆ™ ๐‘€ โˆฅ๐ต๐‘€ ๐‘‚ ) โ‰ค ๐ถ โ€ฒ (1 + โˆฅ๐‘€ ๐ฟ โˆฅ๐ต๐‘€ ๐‘‚ )
ment of the dual domain
๐ฟ
Taking conditional expectations
R๐‘ž (๐‘ƒ )
for some ele-
see [27, Proposition 4.5] for details. Here the
๐‘ž < 1. Therefore, our corollary complements well known
R๐‘ž (๐‘ƒ ) with ๐‘ž > 1 implies ๐œ† โˆ™ ๐‘€ โˆˆ ๐ต๐‘€ ๐‘‚ (in a suitable
satises
results stating that
setting); see, e.g., Delbaen et al. [6, Theorems A,B].
6
The Limit
๐‘ โ†’ โˆ’โˆž
The rst goal of this section is to prove Theorem 3.1. Recall that the consumption strategy is related to the opportunity processes via (4.2) and (4.5).
From these relations and the intuition mentioned before Theorem 3.1, we
๐ฟโˆ—๐‘ก = ๐ฟ๐›ฝ๐‘ก converges to ๐œ‡โˆ˜ [๐‘ก, ๐‘‡ ] as
๐›ฝ = 1/(1 โˆ’ ๐‘) โ†’ 0, this implies that
expect that the dual opportunity process
๐‘ โ†’ โˆ’โˆž. Noting that the exponent
๐ฟ๐‘ก (๐‘) โ†’ โˆž for all ๐‘ก < ๐‘‡ , in the case with intermediate consumption. Thereโˆ—
fore, we shall work here with ๐ฟ rather than ๐ฟ. In the pure investment case,
the situation is dierent as then ๐ฟ โ‰ค ๐‘˜2 (Lemma 4.1). There, the limit of ๐ฟ
yields additional information; this is examined in Section 6.1 below.
Proposition 6.1.
For each ๐‘ก โˆˆ [0, ๐‘‡ ],
lim ๐ฟโˆ—๐‘ก (๐‘) = ๐œ‡โˆ˜ [๐‘ก, ๐‘‡ ]
๐‘โ†’โˆ’โˆž
๐‘ƒ -a.s.
and in ๐ฟ๐‘Ÿ (๐‘ƒ ), ๐‘Ÿ โˆˆ [1, โˆž),
with a uniform bound. If ๐”ฝ is continuous, the convergences are uniform in ๐‘ก.
Remark 6.2. We will use later that the same convergences hold if
๐‘ก
is
replaced by a stopping time, which is an immediate consequence in view
of the uniform bound. Of course, we mean by uniform bound that there
exists a constant
๐ถ > 0,
independent of
๐‘
and
๐‘ก,
such that
0 โ‰ค ๐ฟโˆ—๐‘ก (๐‘) โ‰ค ๐ถ .
Analogous terminology will be used in the sequel.
Proof.
We consider
0 > ๐‘ โ†’ โˆ’โˆž
and note that
๐‘ž โ†’ 1โˆ’
and
๐›ฝ โ†’ 0+.
From
Lemma 4.1 we have
0 โ‰ค ๐ฟโˆ—๐‘ก (๐‘) = ๐ฟ๐›ฝ๐‘ก (๐‘) โ‰ค ๐‘˜2๐›ฝ ๐œ‡โˆ˜ [๐‘ก, ๐‘‡ ] โ†’ ๐œ‡โˆ˜ [๐‘ก, ๐‘‡ ],
21
(6.1)
๐‘ก. To obtain a lower bound, we consider the density process ๐‘Œ
๐‘„ โˆˆ M , which exists by assumption (2.1). From (4.4) we have
uniformly in
of some
๐ฟโˆ—๐‘ก (๐‘)
โ‰ฅ
๐‘˜1๐›ฝ
โˆซ
๐‘‡
]
[
๐ธ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก ๐œ‡โˆ˜ (๐‘‘๐‘ ).
๐‘ก
๐‘  โ‰ฅ ๐‘ก, clearly (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ†’ ๐‘Œ๐‘  /๐‘Œ๐‘ก ๐‘ƒ -a.s. as ๐‘ž โ†’ 1, and noting
๐‘ž
1
bound 0 โ‰ค (๐‘Œ๐‘  /๐‘Œ๐‘ก ) โ‰ค 1 + ๐‘Œ๐‘  /๐‘Œ๐‘ก โˆˆ ๐ฟ (๐‘ƒ ) we conclude by dominated
For xed
the
convergence that
Since
]
]
[
[
๐ธ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก โ†’ ๐ธ ๐‘Œ๐‘  /๐‘Œ๐‘ก โ„ฑ๐‘ก โ‰ก 1 ๐‘ƒ -a.s., for all ๐‘  โ‰ฅ ๐‘ก.
]
[
๐‘Œ ๐‘ž is a supermartingale, 0 โ‰ค ๐ธ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก โ‰ค 1. Hence, for
each
๐‘ก,
dominated convergence shows
โˆซ
๐‘‡
]
[
๐ธ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก ๐œ‡โˆ˜ (๐‘‘๐‘ ) โ†’ ๐œ‡โˆ˜ [๐‘ก, ๐‘‡ ] ๐‘ƒ -a.s.
๐‘ก
This ends the proof of the rst claim. The convergence in
๐ฟ๐‘Ÿ (๐‘ƒ )
follows by
the bound (6.1).
Assume that
xed
๐”ฝ is continuous; then
(๐‘ , ๐œ”) โˆˆ [0, ๐‘‡ ] × ฮฉ we consider (a
the martingale
๐‘Œ
is continuous. For
version of )
]1/๐‘ž
[
๐‘“๐‘ž (๐‘ก) := ๐ธ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก
(๐œ”),
๐‘ก โˆˆ [0, ๐‘ ].
๐‘ก and increasing in ๐‘ž by Jensen's inequality,
๐‘“๐‘ž โ†’ 1 uniformly[ in ๐‘ก on the
]compact
[0, ๐‘ ], by Dini's lemma. The same holds for ๐‘“๐‘ž (๐‘ก)๐‘ž = ๐ธ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก (๐œ”).
โ€ฒ
Fix ๐œ” โˆˆ ฮฉ and let ๐œ€, ๐œ€ > 0. By Egorov's theorem there exist a measurable
โˆ˜
set ๐ผ = ๐ผ(๐œ”) โІ [0, ๐‘‡ ] and ๐›ฟ = ๐›ฟ(๐œ”) โˆˆ (0, 1) such that ๐œ‡ ([0, ๐‘‡ ] โˆ– ๐ผ) < ๐œ€ and
]
[
๐‘ž
โ€ฒ
sup๐‘กโˆˆ[0,๐‘ ] โˆฃ๐ธ (๐‘Œ๐‘  /๐‘Œ๐‘ก ) โ„ฑ๐‘ก โˆ’ 1โˆฃ < ๐œ€ for all ๐‘ž > 1 โˆ’ ๐›ฟ and all ๐‘  โˆˆ ๐ผ . For
๐‘ž > 1 โˆ’ ๐›ฟ and ๐‘ก โˆˆ [0, ๐‘‡ ] we have
These functions are continuous in
and converge to
โˆซ
๐‘‡
1
for each
๐‘ก.
Hence
[
]
๐ธ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก โˆ’ 1 ๐œ‡โˆ˜ (๐‘‘๐‘ )
๐‘ก
โˆซ
โ‰ค
[
]
๐ธ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก โˆ’ 1 ๐œ‡โˆ˜ (๐‘‘๐‘ ) +
โˆซ
[
]
๐ธ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก โˆ’ 1 ๐œ‡โˆ˜ (๐‘‘๐‘ )
[๐‘ก,๐‘‡ ]โˆ–๐ผ
๐ผ
โ€ฒ
โ‰ค ๐œ€ (1 + ๐‘‡ ) + ๐œ€.
We have shown that
sup๐‘กโˆˆ[0,๐‘‡ ] โˆฃ๐ฟโˆ—๐‘ก (๐‘)โˆ’๐œ‡โˆ˜ [๐‘ก, ๐‘‡ ]โˆฃ โ†’ 0 ๐‘ƒ -a.s., and also in ๐ฟ๐‘Ÿ (๐‘ƒ )
by dominated convergence and the uniform bound resulting from (6.1) in
view of
๐‘˜2๐›ฝ ๐œ‡โˆ˜ [๐‘ก, ๐‘‡ ] โ‰ค (1 โˆจ ๐‘˜2 )(1 + ๐‘‡ ).
Under additional continuity assumptions, we will prove that the martingale part of
For each
๐ฟโˆ—
converges to zero in
2 .
โ„‹๐‘™๐‘œ๐‘
We rst need some preparations.
๐‘, it follows from Lemma 4.1 that ๐ฟโˆ—
22
has a canonical decomposition
โˆ—
โˆ—
๐ฟโˆ— = ๐ฟโˆ—0 + ๐‘€ ๐ฟ + ๐ด๐ฟ
. When
sition with respect to
๐‘€
๐ฟ
๐‘† is continuous, we denote the KW decompoโˆ—
โˆ—
โˆ—
๐ฟโˆ— = ๐ฟโˆ—0 + ๐‘ ๐ฟ โˆ™ ๐‘€ + ๐‘ ๐ฟ + ๐ด๐ฟ . If in addition
โˆ—
๐›ฝ
from ๐ฟ = ๐ฟ and (4.7) by Itô's formula that
by
is continuous, we obtain
โˆ—
โˆ—
โˆ—
๐‘€ ๐ฟ = ๐›ฝ๐ฟ๐›ฝโˆ’1 โˆ™ ๐‘€ ๐ฟ ; ๐‘ ๐ฟ /๐ฟโˆ— = ๐›ฝ๐‘ ๐ฟ /๐ฟ; ๐‘ ๐ฟ = ๐›ฝ๐ฟ๐›ฝโˆ’1 โˆ™ ๐‘ ๐ฟ ; (6.2)
โˆซ
โˆซ
โˆซ
(
( โˆ— )โˆ’1
โˆ— )โŠค
โˆ—
โˆ—
๐›ฝ๐œ†๐ฟโˆ— + 2๐‘ ๐ฟ
๐‘‘โŸจ๐‘€ โŸฉ ๐œ† + ๐‘2
๐ฟ
๐‘‘โŸจ๐‘ ๐ฟ โŸฉ โˆ’ ๐ท๐›ฝ ๐‘‘๐œ‡.
๐ด๐ฟ = 2๐‘ž
Here
๐‘‘๐œ‡
is a shorthand for
Lemma 6.3.
(
๐œ‡(๐‘‘๐‘ ).
Let ๐‘0 < 0. There exists a localizing sequence (๐œŽ๐‘› ) such that
๐ฟโˆ— (๐‘)
)๐œŽ๐‘›
โˆ’
> 1/๐‘›
simultaneously for all ๐‘ โˆˆ (โˆ’โˆž, ๐‘0 ];
and moreover, if ๐‘† and ๐ฟ(๐‘) are continuous, (๐‘€ ๐ฟ
โˆ— (๐‘)
)๐œŽ๐‘› โˆˆ ๐ต๐‘€ ๐‘‚
for ๐‘ โ‰ค ๐‘0 .
Proof.
Fix ๐‘0 < 0 (and corresponding ๐‘ž0 ) and a sequence ๐œ€๐‘› โ†“ 0 in (0, 1). Set
๐œŽ๐‘› = inf{๐‘ก โ‰ฅ 0 : ๐ฟโˆ—๐‘ก (๐‘0 ) โ‰ค ๐œ€๐‘› } โˆง ๐‘‡ . Then ๐œŽ๐‘› โ†’ ๐‘‡ stationarily because each
โˆ—
path of ๐ฟ (๐‘0 ) is bounded away from zero (Lemma 4.1). Proposition 5.1 im( โˆ—
)๐‘ž/๐‘ž0
โˆ—
plies that there is a constant ๐›ผ = ๐›ผ(๐‘0 ) > 0 such that ๐ฟ๐‘ก (๐‘) โ‰ฅ ๐›ผ ๐ฟ๐‘ก (๐‘0 )
for all
๐‘ โ‰ค ๐‘0 .
It follows that
1/๐‘ž0
๐ฟโˆ—(๐œŽ๐‘› โˆง๐‘ก)โˆ’ (๐‘) โ‰ฅ ๐›ผ๐œ€๐‘›
for all
๐‘ โ‰ค ๐‘0
and we
have proved the rst claim.
๐‘ โˆˆ (โˆ’โˆž, ๐‘0 ], let ๐‘† and ๐ฟ = ๐ฟ(๐‘) be continuous and recall that
= ๐›ฝ๐ฟ๐›ฝโˆ’1 โˆ™ ๐‘€ ๐ฟ from (6.2). Noting that ๐›ฝ โˆ’ 1 < 0, we have just shown
๐›ฝโˆ’1 is bounded on [0, ๐œŽ ]. Since ๐‘€ ๐ฟ โˆˆ ๐ต๐‘€ ๐‘‚ by
that the integrand ๐›ฝ๐ฟ
๐‘›
๐ฟโˆ— )๐œŽ๐‘› โˆˆ ๐ต๐‘€ ๐‘‚ .
Lemma 5.11(i), we conclude that (๐‘€
Fix
โˆ—
๐‘€๐ฟ
Proposition 6.4.
๐‘ โ†’ โˆ’โˆž,
โˆ— (๐‘)
๐‘๐ฟ
Proof.
Assume that ๐‘† and ๐ฟ(๐‘) are continuous for all ๐‘ < 0. As
โ†’0
in ๐ฟ2๐‘™๐‘œ๐‘ (๐‘€ ) and ๐‘ ๐ฟ
โˆ— (๐‘)
โ†’0
2
.
in โ„‹๐‘™๐‘œ๐‘
๐‘0 < 0 and consider ๐‘ โˆˆ (โˆ’โˆž, ๐‘0 ]. Using Lemma 6.3, we
โˆ—
๐‘€ ๐ฟ (๐‘) โˆˆ โ„‹2 and ๐œ† โˆˆ ๐ฟ2 (๐‘€ ). Dene the
processes ๐‘‹ = ๐‘‹(๐‘) by
We x some
may assume by localization that
continuous
๐‘‹๐‘ก (๐‘) := ๐‘˜2๐›ฝ ๐œ‡โˆ˜ [๐‘ก, ๐‘‡ ] โˆ’ ๐ฟโˆ—๐‘ก (๐‘),
0 โ‰ค ๐‘‹(๐‘) โ‰ค (1โˆจ๐‘˜2 )(1+๐‘‡ ) by (6.1). Fix ๐‘. We shall apply Itô's formula
ฮฆ(๐‘‹), where
ฮฆ(๐‘ฅ) := exp(๐‘ฅ) โˆ’ ๐‘ฅ.
then
to
For
๐‘ฅ โ‰ฅ 0, ฮฆ
ฮฆ(๐‘ฅ) โ‰ฅ 1,
satises
ฮฆโ€ฒ (0) = 0,
ฮฆโ€ฒ (๐‘ฅ) โ‰ฅ 0,
23
ฮฆโ€ฒโ€ฒ (๐‘ฅ) โ‰ฅ 1,
ฮฆโ€ฒโ€ฒ (๐‘ฅ) โˆ’ ฮฆโ€ฒ (๐‘ฅ) = 1.
โˆซ๐‘‡
ฮฆโ€ฒโ€ฒ (๐‘‹) ๐‘‘โŸจ๐‘‹โŸฉ = ฮฆ(๐‘‹๐‘‡ ) โˆ’ ฮฆ(๐‘‹0 ) โˆ’ 0 ฮฆโ€ฒ (๐‘‹) ( ๐‘‘๐‘€ ๐‘‹ + ๐‘‘๐ด๐‘‹ ). As
โˆ—
ฮฆโ€ฒ (๐‘‹) is like ๐‘‹ uniformly bounded and ๐‘€ ๐‘‹ = โˆ’๐‘€ ๐ฟ โˆˆ โ„‹2 , the stochastic
๐‘‹ is a true martingale and
integral wrt. ๐‘€
]
]
[โˆซ ๐‘‡
[โˆซ ๐‘‡
[
]
ฮฆโ€ฒ (๐‘‹) ๐‘‘๐ด๐‘‹ .
ฮฆโ€ฒโ€ฒ (๐‘‹) ๐‘‘โŸจ๐‘‹โŸฉ = 2๐ธ ฮฆ(๐‘‹๐‘‡ ) โˆ’ ฮฆ(๐‘‹0 ) โˆ’ 2๐ธ
๐ธ
1
2
We have
โˆซ๐‘‡
0
0
0
Note that
โˆ—
๐‘‘๐ด๐‘‹ = โˆ’๐‘˜2๐›ฝ ๐‘‘๐œ‡ โˆ’ ๐‘‘๐ด๐ฟ
, so that (6.2) yields
(
( )โˆ’1
(
)
โˆ— )โŠค
โˆ—
2 ๐‘‘๐ด๐‘‹ = โˆ’๐‘ž ๐›ฝ๐œ†๐ฟโˆ— + 2๐‘ ๐ฟ
๐‘‘โŸจ๐‘€ โŸฉ ๐œ† โˆ’ ๐‘ ๐ฟโˆ—
๐‘‘โŸจ๐‘ ๐ฟ โŸฉ + 2 ๐ท๐›ฝ โˆ’ ๐‘˜2๐›ฝ ๐‘‘๐œ‡.
Letting
๐ฟโˆ—
๐‘ โ†’ โˆ’โˆž,
๐‘ž โ†’ 1โˆ’
๐‘,
we have
and
๐›ฝ โ†’ 0+.
Hence, using that
๐‘‹
and
are bounded uniformly in
โˆ’๐‘ž๐›ฝ๐ธ
[โˆซ
๐‘‡
]
ฮฆโ€ฒ (๐‘‹)(๐œ†๐ฟโˆ— )โŠค ๐‘‘โŸจ๐‘€ โŸฉ ๐œ† โ†’ 0,
0
[โˆซ
๐‘‡
(
) ]
ฮฆโ€ฒ (๐‘‹) ๐ท๐›ฝ โˆ’ ๐‘˜2๐›ฝ ๐‘‘๐œ‡ โ†’ 0,
[ 0
]
๐ธ ฮฆ(๐‘‹๐‘‡ ) โˆ’ ฮฆ(๐‘‹0 ) โ†’ 0,
๐ธ
where the last convergence is due to Proposition 6.1 (and the subsequent
remark). If
๐‘‡
[โˆซ
๐ธ
0
๐‘œ
denotes the sum of these three expectations tending to zero,
]
ฮฆ (๐‘‹) ๐‘‘โŸจ๐‘‹โŸฉ
[โˆซ ๐‘‡
}]
{ ( โˆ—)
( โˆ— )โˆ’1
๐ฟโˆ—
โ€ฒ
๐ฟ โŠค
๐‘‘โŸจ๐‘ โŸฉ + ๐‘œ.
=๐ธ
ฮฆ (๐‘‹) 2๐‘ž ๐‘
๐‘‘โŸจ๐‘€ โŸฉ ๐œ† + ๐‘ ๐ฟ
โ€ฒโ€ฒ
0
( โˆ— )โŠค
โˆ—
โˆ—
๐‘‘โŸจ๐‘‹โŸฉ = ๐‘‘โŸจ๐ฟโˆ— โŸฉ = ๐‘ ๐ฟ
๐‘‘โŸจ๐‘€ โŸฉ ๐‘ ๐ฟ + ๐‘‘โŸจ๐‘ ๐ฟ โŸฉ. For the right hand side,
โ€ฒ
we use ฮฆ (๐‘‹) โ‰ฅ 0 and โˆฃ๐‘žโˆฃ < 1 and the Cauchy-Schwarz inequality to obtain
[โˆซ ๐‘‡
{( โˆ— )
}]
โ€ฒโ€ฒ
๐ฟ โŠค
๐ฟโˆ—
๐ฟโˆ—
๐ธ
ฮฆ (๐‘‹) ๐‘
๐‘‘โŸจ๐‘€ โŸฉ ๐‘ + ๐‘‘โŸจ๐‘ โŸฉ
0
[โˆซ ๐‘‡
{( โˆ— )
}]
( โˆ— )โˆ’1
โ€ฒ
๐ฟ โŠค
๐ฟโˆ—
โŠค
๐ฟโˆ—
โ‰ค๐ธ
ฮฆ (๐‘‹) ๐‘
๐‘‘โŸจ๐‘€ โŸฉ ๐‘ + ๐œ† ๐‘‘โŸจ๐‘€ โŸฉ ๐œ† + ๐‘ ๐ฟ
๐‘‘โŸจ๐‘ โŸฉ + ๐‘œ.
Note
0
We bring the terms with
๐‘‡
๐‘๐ฟ
โˆ—
and
โˆ—
๐‘๐ฟ
to the left hand side, then
]
}( ๐ฟโˆ— )โŠค
๐ฟโˆ—
๐ธ
ฮฆ (๐‘‹) โˆ’ ฮฆ (๐‘‹) ๐‘
๐‘‘โŸจ๐‘€ โŸฉ ๐‘
0
]
[โˆซ ๐‘‡
]
[โˆซ ๐‘‡
{ โ€ฒโ€ฒ
( โˆ— )โˆ’1 }
โ€ฒ
๐ฟโˆ—
โ€ฒ
โŠค
+๐ธ
ฮฆ (๐‘‹) โˆ’ ๐‘ฮฆ (๐‘‹) ๐ฟ
๐‘‘โŸจ๐‘ โŸฉ โ‰ค ๐ธ
ฮฆ (๐‘‹)๐œ† ๐‘‘โŸจ๐‘€ โŸฉ ๐œ† + ๐‘œ.
[โˆซ
{
โ€ฒโ€ฒ
โ€ฒ
0
As
ฮฆโ€ฒ (0) = 0,
bound, hence
0
lim๐‘โ†’โˆ’โˆž ฮฆโ€ฒ (๐‘‹๐‘ก ) โ†’ 0 ๐‘ƒ -a.s.
๐œ† โˆˆ ๐ฟ2 (๐‘€ ) implies that the right
we have
24
for all
๐‘ก,
with a uniform
hand side converges to
zero.
We recall
ฮฆโ€ฒโ€ฒ โˆ’ ฮฆโ€ฒ โ‰ก 1
and
( )โˆ’1
ฮฆโ€ฒโ€ฒ (๐‘‹) โˆ’ ๐‘ฮฆโ€ฒ (๐‘‹) ๐ฟโˆ—
โ‰ฅ ฮฆโ€ฒโ€ฒ (0) = 1.
Whence both expectations on the left hand side are nonnegative and we can
conclude that they converge to zero; therefore,
and
๐ธ[โŸจ๐‘
๐ฟโˆ—
โŸฉ๐‘‡ ] โ†’ 0.
Proof of Theorem 3.1.
๐‘
[โˆซ๐‘‡
0
โˆ—
โˆ—
(๐‘ ๐ฟ )โŠค ๐‘‘โŸจ๐‘€ โŸฉ ๐‘ ๐ฟ
]
โ†’0
In view of (4.2), part (i) follows from Proposition 6.1;
note that the convergence in
uniformly in
๐ธ
โ„›๐‘Ÿ๐‘™๐‘œ๐‘
is immediate as
by Lemma 6.3 and (4.2).
and (6.2) that
๐œ…
ห† (๐‘)
is locally bounded
For part (ii), recall from (4.8)
โˆ—
๐œ‹
ห† = ๐›ฝ(๐œ† + ๐‘ ๐ฟ /๐ฟ) = ๐›ฝ๐œ† + ๐‘ ๐ฟ /๐ฟโˆ—
๐›ฝ๐œ† โ†’ 0 in ๐ฟ2๐‘™๐‘œ๐‘ (๐‘€ ). By Lemma 6.3, 1/๐ฟโˆ—
is locally bounded uniformly in ๐‘, hence ๐œ‹
ห† (๐‘) โ†’ 0 in ๐ฟ2๐‘™๐‘œ๐‘ (๐‘€ ) follows from
Proposition 6.4. As ๐œ…
ห† (๐‘) is locally bounded uniformly in ๐‘, Corollary A.4(i)
ห† .
from the Appendix yields the convergence of the wealth processes ๐‘‹(๐‘)
for each
6.1
๐‘.
As
๐›ฝ โ†’ 0,
clearly
Convergence to the Exponential Problem
In this section, we prove Theorem 3.2 and establish the convergence of the
corresponding opportunity processes. We assume that there is no intermediate consumption, that
๐ต
๐‘†
is locally bounded and satises (3.3), and that the
๐ต later). Hence
ห†
there exists an (essentially unique) optimal strategy ๐œ— โˆˆ ฮ˜ for (3.2). It is
ห† does not depend on the initial capital ๐‘ฅ0 . If ๐œ— โˆˆ ฮ˜,
easy to see that ๐œ—
we denote by ๐บ(๐œ—) = ๐œ— โˆ™ ๐‘… the corresponding gains process and dene
หœ = ๐บ๐‘ก (๐œ—)}. We consider the value process (from
ฮ˜(๐œ—, ๐‘ก) = {๐œ—หœ โˆˆ ฮ˜ : ๐บ๐‘ก (๐œ—)
contingent claim
is bounded (we will choose a specic
initial wealth zero) of (3.2),
[
(
) ]
หœ โ„ฑ๐‘ก ,
๐‘‰๐‘ก (๐œ—) := ess sup๐œ—โˆˆฮ˜(๐œ—,๐‘ก)
๐ธ โˆ’ exp ๐ต โˆ’ ๐บ๐‘‡ (๐œ—)
หœ
0 โ‰ค ๐‘ก โ‰ค ๐‘‡.
๐œ—1 , ๐œ—2 โˆˆ ฮ˜ โ‡’ ๐œ—1 1[0,๐‘ก] + ๐œ—2 1(๐‘ก,๐‘‡ ] โˆˆ ฮ˜. With
หœ = ๐บ๐‘ก (๐œ—) + ๐บ๐‘ก,๐‘‡ (๐œ—1
หœ (๐‘ก,๐‘‡ ] ) for ๐œ—หœ โˆˆ ฮ˜(๐œ—, ๐‘ก).
๐บ๐‘‡ (๐œ—)
Note the concatenation property
๐บ๐‘ก,๐‘‡ (๐œ—) :=
โˆซ๐‘‡
๐‘ก
๐œ— ๐‘‘๐‘…,
we have
Therefore, if we dene the exponential opportunity process
[
(
) ]
หœ โ„ฑ๐‘ก ,
๐ฟexp
:= ess inf ๐œ—โˆˆฮ˜
๐ธ exp ๐ต โˆ’ ๐บ๐‘ก,๐‘‡ (๐œ—)
หœ
๐‘ก
0 โ‰ค ๐‘ก โ‰ค ๐‘‡,
(6.3)
then using standard properties of the essential inmum one can check that
๐‘‰๐‘ก (๐œ—) = โˆ’ exp(โˆ’๐บ๐‘ก (๐œ—)) ๐ฟexp
๐‘ก .
๐ฟexp is a reduced form of the value process, analogous to ๐ฟ(๐‘) for power
exp
utility. We also note that ๐ฟ๐‘‡
= exp(๐ต).
Thus
Lemma 6.5.
satisfying
๐ฟexp
The exponential opportunity process ๐ฟexp is a submartingale
โ‰ค โˆฅ exp(๐ต)โˆฅ๐ฟโˆž (๐‘ƒ ) and ๐ฟexp , ๐ฟexp
โˆ’ > 0.
25
Proof.
The martingale optimality principle of dynamic programming is proved
here exactly as, e.g., in [27, Proposition A.2], and yields that
supermartingale for every
tingale if and only if
๐œ—
๐œ— โˆˆ ฮ˜
๐‘‰ (๐œ—)
is a
๐ธ[๐‘‰โ‹… (๐œ—)] > โˆ’โˆž and a mar๐‘‰ (๐œ—) = โˆ’ exp(โˆ’๐บ(๐œ—)) ๐ฟexp , we
the choice ๐œ— โ‰ก 0. It follows that
such that
is optimal.
As
obtain the submartingale property by
โˆž
โˆž
๐ฟexp โ‰ค โˆฅ๐ฟexp
๐‘‡ โˆฅ๐ฟ = โˆฅ exp(๐ต)โˆฅ๐ฟ .
ห†
The optimal strategy ๐œ— is optimal for all the conditional problems (6.3),
[
(
) ]
exp
ห† ๐ฟexp
ห† โ„ฑ๐‘ก > 0. Thus ๐œ‰ := exp(โˆ’๐บ(๐œ—))
hence ๐ฟ๐‘ก
= ๐ธ exp ๐ต โˆ’ ๐บ๐‘ก,๐‘‡ (๐œ—)
is a positive martingale, by the optimality principle. In particular, we have
๐‘ƒ [inf 0โ‰ค๐‘กโ‰ค๐‘‡ ๐œ‰๐‘ก > 0] = 1,
and now the same property for
๐ฟexp
follows.
๐‘† is continuous and denote the KW decomposition of ๐ฟexp
exp = ๐ฟexp + ๐‘ ๐ฟexp โˆ™ ๐‘€ + ๐‘ ๐ฟexp + ๐ด๐ฟexp . Then the
with respect to ๐‘€ by ๐ฟ
0 exp )
( exp ๐ฟexp
triplet (โ„“, ๐‘ง, ๐‘›) := ๐ฟ
,๐‘
, ๐‘๐ฟ
satises the BSDE
Assume that
๐‘‘โ„“๐‘ก =
(
(
๐‘ง๐‘ก ) โŠค
๐‘ง๐‘ก )
1
โ„“๐‘กโˆ’ ๐œ†๐‘ก +
+ ๐‘ง๐‘ก ๐‘‘๐‘€๐‘ก + ๐‘‘๐‘›๐‘ก
๐‘‘โŸจ๐‘€ โŸฉ๐‘ก ๐œ†๐‘ก +
2
โ„“๐‘กโˆ’
โ„“๐‘กโˆ’
with terminal condition
โ„“๐‘‡ = exp(๐ต),
and the optimal strategy
(6.4)
๐œ—ห† is
exp
๐‘๐ฟ
๐œ—ห† = ๐œ† + exp .
๐ฟโˆ’
(6.5)
This can be derived directly by dynamic programming or inferred, e.g., from
Frei and Schweizer [10, Proposition 1]. We will actually reprove the BSDE
later, but present it already at this stage for the following motivation.
We observe that (6.4) coincides with the BSDE (4.6), except that ๐‘ž is
replaced by 1 and the terminal condition is exp(๐ต) instead of ๐ท๐‘‡ . From now
on we assume exp(๐ต) = ๐ท๐‘‡ , then one can guess that the solutions ๐ฟ(๐‘)
should converge to
๐ฟexp
as
๐‘ž โ†’ 1โˆ’,
or equivalently
๐‘ โ†’ โˆ’โˆž.
Let ๐‘† be continuous.
(i) As ๐‘ โ†“ โˆ’โˆž, ๐ฟ๐‘ก (๐‘) โ†“ ๐ฟexp
๐‘ƒ -a.s. for all ๐‘ก, with a uniform bound.
๐‘ก
(ii) If ๐ฟ(๐‘) is continuous for each ๐‘ < 0, then ๐ฟexp is also continuous and
the convergence ๐ฟ(๐‘) โ†“ ๐ฟexp is uniform in ๐‘ก, ๐‘ƒ -a.s. Moreover,
Theorem 6.6.
(1 โˆ’ ๐‘) ๐œ‹
ห† (๐‘) โ†’ ๐œ—ห†
in ๐ฟ2๐‘™๐‘œ๐‘ (๐‘€ ).
We note that (ii) is also a statement about the rate of convergence for
๐œ‹
ห† (๐‘) โ†’ 0 in Theorem 3.1(ii) for the case without intermediate consumption.
The proof occupies most of the remainder of the section. Part (i) follows from
the next two lemmata; recall that the monotonicity of
๐‘ 7โ†’ ๐ฟ๐‘ก (๐‘) was already
established in Proposition 5.4 while the uniform bound is from Lemma 4.1.
Lemma 6.7.
We have ๐ฟ(๐‘) โ‰ฅ ๐ฟexp for all ๐‘ < 0.
26
Proof.
๐ต = 0 by a change of measure
๐‘‘๐‘ƒ (๐ต) = (๐‘’๐ต /๐ธ[๐‘’๐ต ]) ๐‘‘๐‘ƒ . Let ๐‘„๐ธ โˆˆ M ๐‘’๐‘›๐‘ก be the measure with
minimal entropy ๐ป(๐‘„โˆฃ๐‘ƒ ); see, e.g., [19, Theorem 3.5]. Let ๐‘Œ be its ๐‘ƒ -density
from
As is well-known, we may assume that
๐‘ƒ
to
process, then
๐ธ
๐‘„
โˆ’ log(๐ฟexp
๐‘ก )=๐ธ
[
]
]
[
log(๐‘Œ๐‘‡ /๐‘Œ๐‘ก )โ„ฑ๐‘ก = ๐ธ (๐‘Œ๐‘‡ /๐‘Œ๐‘ก ) log(๐‘Œ๐‘‡ /๐‘Œ๐‘ก )โ„ฑ๐‘ก .
(6.6)
This is merely a dynamic version of the well-known duality relation stated,
e.g., in [19, Theorem 2.1] and one can retrieve this version, e.g., from [10,
Eq. (8),(10)]. Using the decreasing function
๐œ™
from Lemma 5.5,
(
])
[
โ„ฑ๐‘ก = ๐œ™(1)
๐ฟexp
=
exp
โˆ’
๐ธ
(๐‘Œ
/๐‘Œ
)
log(๐‘Œ
/๐‘Œ
)
๐‘ก
๐‘ก
๐‘‡
๐‘‡
๐‘ก
]1/๐›ฝ
[
โ‰ค ๐œ™(๐‘ž) = ๐ธ (๐‘Œ๐‘‡ /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก
โ‰ค ๐ฟโˆ— (๐‘)1/๐›ฝ = ๐ฟ(๐‘),
where (4.4) was used for the second inequality.
Lemma 6.8.
Proof.
Fix
Let ๐‘† be continuous. Then lim sup๐‘โ†’โˆ’โˆž ๐ฟ๐‘ก (๐‘) โ‰ค ๐ฟexp
๐‘ก .
๐‘ก โˆˆ [0, ๐‘‡ ].
We denote
โ„ฐ๐‘ก๐‘‡ (๐‘‹) := โ„ฐ(๐‘‹)๐‘‡ /โ„ฐ(๐‘‹)๐‘ก
and
๐‘‹๐‘ก๐‘‡ :=
๐‘‹๐‘‡ โˆ’ ๐‘‹๐‘ก .
๐œ— โˆˆ ๐ฟ(๐‘…) be such that โˆฃ๐œ— โˆ™ ๐‘…โˆฃ + โŸจ๐œ— โˆ™ ๐‘…โŸฉ is bounded by a constant.
Noting that ๐ฟ(๐‘…) โІ ๐’œ because ๐‘… is continuous, we have from (3.1) that
]
]
[
[
๐‘
๐‘
๐ฟ๐‘ก (๐‘) = ess inf ๐œ‹โˆˆ๐’œ ๐ธ ๐ท๐‘‡ โ„ฐ๐‘ก๐‘‡
(๐œ‹ โˆ™ ๐‘…)โ„ฑ๐‘ก โ‰ค ๐ธ ๐ท๐‘‡ โ„ฐ๐‘ก๐‘‡
(โˆฃ๐‘โˆฃโˆ’1 ๐œ— โˆ™ ๐‘…)โ„ฑ๐‘ก
[
(
) ]
= ๐ธ ๐ท๐‘‡ exp โˆ’ (๐œ— โˆ™ ๐‘…)๐‘ก๐‘‡ + 1 โŸจ๐œ— โˆ™ ๐‘…โŸฉ๐‘ก๐‘‡ โ„ฑ๐‘ก .
(i) Let
2โˆฃ๐‘โˆฃ
The expression under the last conditional expectation is bounded uniformly
[
(
) ]
๐‘, so the last line converges to ๐ธ exp ๐ต โˆ’ (๐œ— โˆ™ ๐‘…)๐‘ก๐‘‡ โ„ฑ๐‘ก ๐‘ƒ -a.s.
๐‘ โ†’ โˆ’โˆž; recall ๐ท๐‘‡ = exp(๐ต). We have shown
[
(
) ]
lim sup ๐ฟ๐‘ก (๐‘) โ‰ค ๐ธ exp ๐ต โˆ’ (๐œ— โˆ™ ๐‘…)๐‘ก๐‘‡ โ„ฑ๐‘ก ๐‘ƒ -a.s.
in
when
(6.7)
๐‘โ†’โˆ’โˆž
๐œ— โˆˆ ๐ฟ(๐‘…) be such that exp(โˆ’๐œ— โˆ™ ๐‘…) is of class (D). Dening
times ๐œ๐‘› = inf{๐‘  > 0 : โˆฃ๐œ— โˆ™ ๐‘…๐‘  โˆฃ + โŸจ๐œ— โˆ™ ๐‘…โŸฉ๐‘  โ‰ฅ ๐‘›}, we have
[
(
) ]
lim sup ๐ฟ๐‘ก (๐‘) โ‰ค ๐ธ exp ๐ต โˆ’ (๐œ— โˆ™ ๐‘…)๐œ๐‘ก๐‘‡๐‘› โ„ฑ๐‘ก ๐‘ƒ -a.s.
(ii) Let
stopping
the
๐‘โ†’โˆ’โˆž
for each
๐‘›,
and also
(iii)
] (D) property, the
[ ๐œ—1((0,๐œ๐‘› ] . Using the
) class
๐ธ exp ๐ต โˆ’ (๐œ— โˆ™ ๐‘…)๐‘ก๐‘‡ โ„ฑ๐‘ก in ๐ฟ1 (๐‘ƒ ) as ๐‘› โ†’ โˆž,
by step (i) applied to
right hand side converges to
๐‘ƒ -a.s.
along a subsequence. Hence (6.7) again holds.
The previous step has a trivial extension: Let
๐‘”๐‘ก๐‘‡ โˆˆ ๐ฟ0 (โ„ฑ๐‘‡ )
๐‘”๐‘ก๐‘‡ โ‰ค (๐œ— โˆ™ ๐‘…)๐‘ก๐‘‡ for some ๐œ— as in (ii).
]
[
lim sup ๐ฟ๐‘ก (๐‘) โ‰ค ๐ธ exp(๐ต โˆ’ ๐‘”๐‘ก๐‘‡ )โ„ฑ๐‘ก ๐‘ƒ -a.s.
random variable such that
๐‘โ†’โˆ’โˆž
27
Then
be a
(iv)
Let
๐‘›
sequence ๐‘”๐‘ก๐‘‡
๐œ—ห† โˆˆ ฮ˜ be the optimal strategy. We claim that there
โˆˆ ๐ฟ0 (โ„ฑ๐‘‡ ) of random variables as in (iii) such that
(
)
(
)
๐‘›
ห† in ๐ฟ1 (๐‘ƒ ).
exp ๐ต โˆ’ ๐‘”๐‘ก๐‘‡
โ†’ exp ๐ต โˆ’ ๐บ๐‘ก,๐‘‡ (๐œ—)
Indeed, we may assume
๐ต = 0,
as in the previous proof.
exists a
Then our claim
follows by the construction of Schachermayer [30, Theorem 2.2] applied to
[๐‘ก, ๐‘‡ ]; recall[the denitions
[30, Eq. (4),(5)]. We conclude
(
) ]
ห† โ„ฑ๐‘ก = ๐ฟexp ๐‘ƒ -a.s. by the
lim sup๐‘โ†’โˆ’โˆž ๐ฟ๐‘ก (๐‘) โ‰ค ๐ธ exp ๐ต โˆ’ ๐บ๐‘ก,๐‘‡ (๐œ—)
๐‘ก
๐ฟ1 (๐‘ƒ )-continuity of the conditional expectation.
the time interval
that
ห† exp is a martingale, hence of class (D).
exp(โˆ’๐บ(๐œ—))๐ฟ
ห† is
bounded away from zero, it follows that exp(โˆ’๐บ(๐œ—))
Remark 6.9. Recall that
If
๐ฟexp
is uniformly
already of class (D) and the last two steps in the previous proof are unnecessary. This situation occurs precisely when the right hand side of (6.6) is
bounded uniformly in ๐‘ก. In standard terminology, the latter condition states
that the reverse Hölder inequality R๐ฟ log(๐ฟ) (๐‘ƒ ) is satised by the density
process of the minimal entropy martingale measure.
Let ๐‘† be continuous and assume that ๐ฟ(๐‘) is continuous for
all ๐‘ < 0. Then ๐ฟexp is continuous and ๐ฟ๐‘ก (๐‘) โ†’ ๐ฟexp
uniformly in ๐‘ก, ๐‘ƒ -a.s.
๐‘ก
2 .
Moreover, ๐‘ ๐ฟ(๐‘) โ†’ ๐‘ exp in ๐ฟ2๐‘™๐‘œ๐‘ (๐‘€ ) and ๐‘ (๐‘) โ†’ ๐‘ exp in โ„‹๐‘™๐‘œ๐‘
Lemma 6.10.
We have already identied the monotone limit
๐ฟexp
= lim ๐ฟ๐‘ก (๐‘).
๐‘ก
Hence,
by uniqueness of the KW decomposition, the above lemma follows from the
subsequent one, which we state separately to clarify the argument. The most
important input from the control problems is that by stopping, we can bound
๐ฟ(๐‘)
away from zero simultaneously for all
๐‘
(cf. Lemma 6.3).
Let
( ๐‘† be continuous
) and assume that ๐ฟ(๐‘) is continuous for
๐ฟ(๐‘)
หœ ๐‘,
หœ ๐‘
หœ ) of the
all ๐‘ < 0. Then ๐ฟ(๐‘), ๐‘ , ๐‘ (๐‘) converge to a solution (๐ฟ,
BSDE (6.4) as ๐‘ โ†’ โˆ’โˆž: ๐ฟหœ is continuous and ๐ฟ๐‘ก (๐‘) โ†’ ๐ฟหœ๐‘ก uniformly in ๐‘ก,
หœ in ๐ฟ2 (๐‘€ ) and ๐‘ (๐‘) โ†’ ๐‘
หœ in โ„‹2 .
๐‘ƒ -a.s.; while ๐‘ ๐ฟ(๐‘) โ†’ ๐‘
๐‘™๐‘œ๐‘
๐‘™๐‘œ๐‘
Lemma 6.11.
Proof.
For notational simplicity, we write the proof for the one-dimensional
= 1). We x a sequence ๐‘๐‘› โ†“ โˆ’โˆž and corresponding ๐‘ž๐‘› โ†‘ 1. As
หœ ๐‘ก := lim๐‘› ๐ฟ๐‘ก (๐‘๐‘› ) exists.
๐‘ 7โ†’ ๐ฟ๐‘ก (๐‘) is monotone and positive, the ๐‘ƒ -a.s. limit ๐ฟ
๐ฟ(๐‘
)
๐‘› of martingales is bounded in the Hilbert space โ„‹2
The sequence ๐‘€
๐ฟ(๐‘๐‘› ) ,
by Lemma 5.11(i). Hence it has a subsequence, still denoted by ๐‘€
หœ โˆˆ โ„‹2 in the weak topology of โ„‹2 . If we denote
which converges to some ๐‘€
หœ , we have by orthogonality that
หœ=๐‘
หœ โˆ™๐‘€ +๐‘
the KW decomposition by ๐‘€
๐ฟ(๐‘
)
2
๐ฟ(๐‘
)
หœ weakly in ๐ฟ (๐‘€ ) and ๐‘ ๐‘› โ†’ ๐‘
หœ weakly in โ„‹2 . We shall use
๐‘ ๐‘› โ†’๐‘
case (๐‘‘
the BSDE to deduce a strong convergence.
๐‘๐‘› and in (6.4)
1 (
๐‘ง )2
๐‘“ (๐‘ก, ๐‘™, ๐‘ง) := ๐‘™ ๐œ†๐‘ก +
2
๐‘™
The drivers in the BSDE (4.6) corresponding to
๐‘“ ๐‘› (๐‘ก, ๐‘™, ๐‘ง) := ๐‘ž๐‘› ๐‘“ (๐‘ก, ๐‘™, ๐‘ง),
28
are
for (๐‘ก, ๐‘™, ๐‘ง) โˆˆ [0, ๐‘‡ ] × (0, โˆž) × โ„.
(๐‘™๐‘š , ๐‘ง๐‘š ) โ†’ (๐‘™, ๐‘ง) โˆˆ (0, โˆž) × โ„, we
For xed
๐‘ก
and any convergent sequence
have
๐‘“ ๐‘š (๐‘ก, ๐‘™๐‘š , ๐‘ง๐‘š ) โ†’ ๐‘“ (๐‘ก, ๐‘™, ๐‘ง) ๐‘ƒ -a.s.
By Lemmata 6.7 and 6.5 we can nd a localizing sequence
1/๐‘˜ < ๐ฟ(๐‘)๐œ๐‘˜ โ‰ค ๐‘˜2
(๐œ๐‘˜ )
such that
๐‘ < 0,
for all
where the upper bound is from Lemma 4.1. For the processes from (2.6) we
๐œ†๐œ๐‘˜ โˆˆ ๐ฟ2 (๐‘€ ) and ๐‘€ ๐œ๐‘˜ โˆˆ โ„‹2 for each ๐‘˜ .
๐‘›
๐‘›
๐ฟ(๐‘๐‘› ) , ๐‘ ๐‘› = ๐‘ ๐ฟ(๐‘๐‘› ) , and
To relax the notation, let ๐ฟ = ๐ฟ(๐‘๐‘› ), ๐‘ = ๐‘
๐‘€ ๐‘› = ๐‘€ ๐ฟ(๐‘๐‘› ) = ๐‘ ๐‘› โˆ™ ๐‘€ + ๐‘ ๐‘› . The purpose of the localization is that (๐‘“ ๐‘› )
๐‘›
๐‘› ๐œ
are uniformly quadratic in the relevant domain: As (๐ฟ , ๐‘ ) ๐‘˜ takes values
in [1/๐‘˜, ๐‘˜2 ] × โ„ and
โˆฃ๐‘“ ๐‘› (๐‘ก, ๐‘™, ๐‘ง)โˆฃ โ‰ค ๐‘™๐œ†2๐‘ก + ๐œ†๐‘ก ๐‘ง + ๐‘ง 2 /๐‘™ โ‰ค (1 + ๐‘™)๐œ†2๐‘ก + (1 + 1/๐‘™)๐‘ง 2 ,
may assume that
we have for all
๐‘š, ๐‘› โˆˆ โ„•
that
๐‘›
โˆฃ๐‘“ ๐‘š (๐‘ก, ๐ฟ๐‘›๐‘ก , ๐‘๐‘ก๐‘› )โˆฃ๐œ๐‘˜ โ‰ค ๐œ‰๐‘ก + ๐ถ๐‘˜ (๐‘๐‘กโˆง๐œ
)2 ,
๐‘˜
( )2
๐œ‰ := (1 + ๐‘˜2 ) ๐œ†๐œ๐‘˜ โˆˆ ๐ฟ1๐œ๐‘˜ (๐‘€ ),
where
(6.8)
๐ถ๐‘˜ := 1 + ๐‘˜.
๐ฟ๐‘Ÿ๐œ (๐‘€ ) := {๐ป โˆˆ ๐ฟ2๐‘™๐‘œ๐‘ (๐‘€ ) : ๐ป1[0,๐œ ] โˆˆ ๐ฟ๐‘Ÿ (๐‘€ )} for a stopping time ๐œ and
๐‘Ÿ โ‰ฅ 1. Similarly, we set โ„‹๐œ2 = {๐‘‹ โˆˆ ๐’ฎ : ๐‘‹ ๐œ โˆˆ โ„‹2 }. Now the following can
Here
be shown using a technique of Kobylanski [22].
For xed ๐‘˜,
หœ in โ„‹๐œ2 ,
หœ in ๐ฟ2๐œ (๐‘€ ) and ๐‘ ๐‘› โ†’ ๐‘
(i)
โ†’๐‘
๐‘˜
๐‘˜
(ii) sup๐‘กโ‰ค๐‘‡ โˆฃ๐ฟ๐‘›๐‘กโˆง๐œ๐‘˜ โˆ’ ๐ฟหœ๐‘กโˆง๐œ๐‘˜ โˆฃ โ†’ 0 ๐‘ƒ -a.s.
Lemma 6.12.
๐‘๐‘›
๐‘˜ , it follows
หœ ๐‘ก โˆฃ โ†’ 0 ๐‘ƒ -a.s.
sup๐‘กโ‰ค๐‘‡ โˆฃ๐ฟ๐‘›๐‘ก โˆ’ ๐ฟ
หœ ๐‘,
หœ ๐‘
หœ ) satises the
limit (๐ฟ,
The proof is deferred to Appendix B. Since (ii) holds for all
that
หœ
๐ฟ
is continuous. Now Dini's Lemma shows
as claimed.
Lemma 6.12 also implies that the
[0, ๐œ๐‘˜ ] for all ๐‘˜ , hence on [0, ๐‘‡ ].
๐ฟ๐‘›๐‘‡ = ๐ท๐‘‡ = exp(๐ต) for all ๐‘›.
BSDE (6.4) on
satised as
The terminal condition is
To end the proof, note that the convergences hold for the original sequence
(๐‘๐‘› ),
rather than just for a subsequence, since
and since our choice of
(๐œ๐‘˜ )
๐‘ 7โ†’ ๐ฟ(๐‘) is monotone
does not depend on the subsequence.
We can now nish the proof of Theorem 6.6 (and Theorem 3.2).
Proof of Theorem 6.6.
Part (i) was already proved. For (ii), uniform conver-
gence and continuity were shown in Lemma 6.10. In view of (4.8) and (6.5),
the claim for the strategies is that
exp
(1 โˆ’ ๐‘) ๐œ‹
ห† (๐‘) = ๐œ† +
๐‘ ๐ฟ(๐‘)
๐‘๐ฟ
โ†’ ๐œ† + exp = ๐œ—ห†
๐ฟ(๐‘)
๐ฟ
29
in
๐ฟ2๐‘™๐‘œ๐‘ (๐‘€ ).
By a localization as in the previous proof, we may assume that ๐ฟ(๐‘) +
(๐ฟ(๐‘))โˆ’1 + ๐ฟexp + (๐ฟexp )โˆ’1 is bounded uniformly in ๐‘, and, by Lemma 6.10,
๐ฟ(๐‘) โˆ™ ๐‘€ โ†’ ๐‘ exp โˆ™ ๐‘€ in โ„‹2 . We have
that ๐‘
๐ฟ(๐‘)
๐ฟexp
๐‘
๐ฟ(๐‘) โˆ™ ๐‘€ โˆ’ ๐‘๐ฟexp โˆ™ ๐‘€ 2
โ„‹
(
) exp
exp )
1 ( ๐ฟ(๐‘)
1
๐ฟ
1
โˆ™ ๐‘€
โˆ™ ๐‘€
โ‰ค ๐ฟ(๐‘) ๐‘
โˆ’ ๐‘๐ฟ
+
โˆ’
๐‘
.
exp
๐ฟ
๐ฟ(๐‘)
2
2
โ„‹
โ„‹
๐ฟexp
Clearly the rst norm converges to zero. Noting that ๐‘
๐ต๐‘€ ๐‘‚)
โˆ™
๐‘€โˆˆ
โ„‹2 (even
due to Lemma 5.9, the second norm tends to zero by dominated
convergence for stochastic integrals.
The last result of this section concerns the convergence of the (normalized) solution
๐‘Œห† (๐‘)
after Remark 3.3.
of the dual problem (4.3); see also the comment
We recall the assumption (3.3) and that there is no
intermediate consumption.
measure which minimizes the relative entropy
๐‘‘๐‘ƒ (๐ต) := (๐‘’๐ต /๐ธ[๐‘’๐ต ]) ๐‘‘๐‘ƒ .
๐‘„๐ธ (๐ต) โˆˆ M be the
๐ป( โ‹… โˆฃ๐‘ƒ (๐ต)) over M , where
To state the result, let
For
๐ต = 0
this is simply the minimal entropy
martingale measure, and the existence of
๐‘„๐ธ (๐ต)
follows from the latter by
a change of measure.
Let ๐‘† be continuous and assume that ๐ฟ(๐‘) is
ห†
for all ๐‘ < 0. Then ๐‘Œ (๐‘)/๐‘Œห†0 (๐‘) converges in the semimartingale
the density process of ๐‘„๐ธ (๐ต) as ๐‘ โ†’ โˆ’โˆž.
Proposition 6.13.
Proof.
continuous
topology to
๐ฟโˆ’1 โˆ™ ๐‘ โ†’ (๐ฟexp )โˆ’1 โˆ™ ๐‘ exp in
๐‘Œห† /๐‘Œห†0 = โ„ฐ(โˆ’๐œ† โˆ™ ๐‘€ + ๐ฟโˆ’1 โˆ™ ๐‘ ) by (4.9),
(
)
๐‘Œห† /๐‘Œห†0 โ†’ โ„ฐ โˆ’ ๐œ† โˆ™ ๐‘€ + (๐ฟexp )โˆ’1 โˆ™ ๐‘ exp in
We deduce from Lemma 6.10 that
2 , as in the previous proof. Since
โ„‹๐‘™๐‘œ๐‘
Lemma A.2(ii) shows that
the semimartingale topology. The right hand side is the density process of
๐‘„๐ธ (๐ต);
7
this follows, e.g., from [10, Proposition 1].
The Limit
๐‘โ†’0
In this section we prove Theorem 3.4, some renements of that result, as well
as the corresponding convergence for the opportunity processes and the dual
problem.
Due to substantial technical dierences, we consider separately
and from above. Recall the semimartingale
below
[ โˆซ ๐‘‡ ๐‘ โ†’ โˆ˜0 from
]
โ„ฑ๐‘ก with canonical decomposition
๐ท
๐œ‡
(๐‘‘๐‘ )
๐‘ 
๐‘ก
] โˆซ ๐‘ก
[โˆซ ๐‘‡
๐œ‚๐‘ก = (๐œ‚0 + ๐‘€๐‘ก๐œ‚ ) + ๐ด๐œ‚๐‘ก = ๐ธ
๐ท๐‘  ๐œ‡โˆ˜ (๐‘‘๐‘ )โ„ฑ๐‘ก โˆ’
๐ท๐‘  ๐œ‡(๐‘‘๐‘ ).
(7.1)
the limits
๐œ‚๐‘ก = ๐ธ
0
Clearly
๐œ‚
0
is a supermartingale with continuous nite variation part, and a
martingale in the case without intermediate consumption (๐œ‡
= 0).
From (2.4)
we have the uniform bounds
0 < ๐‘˜1 โ‰ค ๐œ‚ โ‰ค (1 + ๐‘‡ )๐‘˜2 .
30
(7.2)
7.1
The Limit
๐‘ โ†’ 0โˆ’
We start with the convergence of the opportunity processes.
As ๐‘ โ†’ 0โˆ’,
(i) for each ๐‘ก โˆˆ [0, ๐‘‡ ], ๐ฟโˆ—๐‘ก (๐‘) โ†’ ๐œ‚๐‘ก ๐‘ƒ -a.s. and in ๐ฟ๐‘Ÿ (๐‘ƒ ) for ๐‘Ÿ โˆˆ [1, โˆž),
with a uniform bound.
(ii) if ๐”ฝ is continuous, then ๐ฟโˆ—๐‘ก (๐‘) โ†’ ๐œ‚๐‘ก uniformly in ๐‘ก, ๐‘ƒ -a.s.; and in โ„›๐‘Ÿ
for ๐‘Ÿ โˆˆ [1, โˆž).
(iii) if ๐‘ข๐‘0 (๐‘ฅ0 ) < โˆž for some ๐‘0 โˆˆ (0, 1), then ๐ฟโˆ—๐‘ก (๐‘) โ†’ ๐œ‚๐‘ก uniformly in ๐‘ก,
๐‘ƒ -a.s.; in โ„›๐‘Ÿ for ๐‘Ÿ โˆˆ [1, โˆž); and prelocally in โ„›โˆž .
The same assertions hold for ๐ฟโˆ— replaced by ๐ฟ.
Proposition 7.1.
Proof.
We note that
๐ฟ = (๐ฟโˆ— )1/๐›ฝ ,
๐‘ โ†’ 0โˆ’
๐‘ž โ†’ 0+ and ๐›ฝ โ†’ 1โˆ’. In view
๐ฟโˆ— . From Lemma 4.1,
implies
of
it suces to prove the claims for
0 โ‰ค ๐ฟโˆ—๐‘ก (๐‘) โ‰ค ๐œ‡โˆ˜ [๐‘ก, ๐‘‡ ]โˆ’๐›ฝ๐‘ ๐ธ
[โˆซ
๐‘ก
๐‘‡
]๐›ฝ
๐ท๐‘  ๐œ‡โˆ˜ (๐‘‘๐‘ )โ„ฑ๐‘ก โ†’ ๐œ‚๐‘ก
To obtain a lower bound, we consider the density process
in
๐‘Œ
โ„›โˆž .
of some
(7.3)
๐‘„ โˆˆ M.
(i) Using (4.4) we obtain
๐ฟโˆ—๐‘ก (๐‘)
๐‘‡
โˆซ
โ‰ฅ
]
[
๐ธ ๐ท๐‘ ๐›ฝ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก ๐œ‡โˆ˜ (๐‘‘๐‘ ).
๐‘ก
๐ท๐‘ ๐›ฝ โ†’ ๐ท๐‘ 
โ„›โˆž
(๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ†’ 1 ๐‘ƒ -a.s. for ๐‘ž โ†’ 0. We can argue
๐‘ž
1
as in Proposition 6.1: For ๐‘  โ‰ฅ ๐‘ก xed, 0 โ‰ค (๐‘Œ๐‘  /๐‘Œ๐‘ก ) โ‰ค 1 + ๐‘Œ๐‘  /๐‘Œ๐‘ก โˆˆ ๐ฟ (๐‘ƒ )
]
[ ๐›ฝ
๐‘ž
๐‘ž
yields ๐ธ ๐ท๐‘  (๐‘Œ๐‘  /๐‘Œ๐‘ก ) โ„ฑ๐‘ก โ†’ ๐ธ[๐ท๐‘  โˆฃโ„ฑ๐‘ก ] ๐‘ƒ -a.s. Since ๐‘Œ is a supermartingale,
]
[
0 โ‰ค ๐ธ ๐ท๐‘ ๐›ฝ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก โ‰ค 1 โˆจ ๐‘˜2 , and we conclude for each ๐‘ก that
Clearly
โˆซ
๐‘‡
in
and
]
[
๐ธ ๐ท๐‘ ๐›ฝ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก ๐œ‡โˆ˜ (๐‘‘๐‘ ) โ†’
โˆซ
๐‘ก
[ ]
๐ธ ๐ท๐‘  โ„ฑ๐‘ก ๐œ‡โˆ˜ (๐‘‘๐‘ ) = ๐œ‚๐‘ก ๐‘ƒ -a.s.
๐‘ก
๐ฟโˆ—๐‘ก (๐‘) โ†’ ๐œ‚๐‘ก ๐‘ƒ -a.s.
Hence
๐‘‡
and the convergence in
๐ฟ๐‘Ÿ (๐‘ƒ )
follows by the
bound (7.3).
(ii)
Assume that
๐”ฝ
is continuous.
Our argument will be similar to
Proposition 6.1, but the source of monotonicity is dierent.
[0, ๐‘‡ ] × ฮฉ
(๐‘ , ๐œ”) โˆˆ
and consider
] 1
[
๐‘”๐‘ž (๐‘ก) := ๐ธ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก 1โˆ’๐‘ž (๐œ”),
Then
Fix
๐‘”๐‘ž (๐‘ก)
is continuous in
Dini's lemma yields
๐‘”๐‘ž โ†’ 1
๐‘ก
and decreasing in
uniformly on
31
[0, ๐‘ ],
๐‘ก โˆˆ [0, ๐‘ ].
๐‘ž
by virtue of Lemma 5.5.
hence
]
[
๐ธ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก โ†’ 1
๐‘ก.
uniformly in
formly in
๐‘ก
We deduce that
]
[
๐ธ ๐ท๐‘ ๐›ฝ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก (๐œ”) โ†’ ๐ธ[๐ท๐‘  โˆฃโ„ฑ๐‘ก ](๐œ”)
uni-
since
[
]
๐ธ ๐ท๐‘ ๐›ฝ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก โˆ’ ๐ธ[๐ท๐‘  โˆฃโ„ฑ๐‘ก ]
] [
]
[
โ‰ค ๐ธ โˆฃ๐ท๐‘ ๐›ฝ โˆ’ ๐ท๐‘  โˆฃ(๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก + ๐ธ ๐ท๐‘  {(๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โˆ’ 1}โ„ฑ๐‘ก [
]
]
[
โ‰ค โˆฅ๐ท๐‘ ๐›ฝ โˆ’ ๐ท๐‘  โˆฅ๐ฟโˆž (๐‘ƒ ) ๐ธ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก + โˆฅ๐ท๐‘  โˆฅ๐ฟโˆž (๐‘ƒ ) ๐ธ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก โˆ’ 1
[
]
โ‰ค โˆฅ๐ท๐‘ ๐›ฝ โˆ’ ๐ท๐‘  โˆฅ๐ฟโˆž (๐‘ƒ ) + ๐‘˜2 ๐ธ (๐‘Œ๐‘  /๐‘Œ๐‘ก )๐‘ž โ„ฑ๐‘ก โˆ’ 1.
The rest of the argument is like the end of the proof of Proposition 6.1.
(iii) Let
๐‘ข๐‘0 (๐‘ฅ0 ) < โˆž
for some
๐‘0 โˆˆ (0, 1).
Then we can take a dierent
approach via Proposition 5.1, which shows that
๐ฟโˆ—๐‘ก (๐‘)
โ‰ฅ ๐ธ
[โˆซ
๐‘ก
for all
๐‘ < 0,
๐‘‡
]1โˆ’๐‘ž/๐‘ž0 (
)๐‘ž/๐‘ž0
๐ท๐‘ ๐›ฝ ๐œ‡โˆ˜ (๐‘‘๐‘ )โ„ฑ๐‘ก
๐‘˜1๐›ฝโˆ’๐›ฝ0 ๐ฟโˆ—๐‘ก (๐‘0 )
where we note that
๐‘ž0 < 0.
Using that almost every path of
๐ฟโˆ— (๐‘
0 ) is bounded and bounded away from zero (Lemma 4.1), the right hand
โˆซ๐‘‡
๐‘ƒ -a.s. tends to ๐œ‚๐‘ก = ๐ธ[ ๐‘ก ๐ท๐‘  ๐œ‡โˆ˜ (๐‘‘๐‘ )โˆฃโ„ฑ๐‘ก ] uniformly in ๐‘ก as ๐‘ž โ†’ 0. Since
๐ฟโˆ— (๐‘0 ) is prelocally bounded, the prelocal convergence in โ„›โˆž follows in the
side
same way.
Remark 7.2. One can ask when the convergence in Proposition 7.1 holds
even in
โ„›โˆž .
The following statements remain valid if
๐ฟโˆ—
replaced by
๐ฟ.
๐‘ข๐‘0 (๐‘ฅ0 ) < โˆž for some ๐‘0 โˆˆ (0, 1), and in addition
โˆ—
that ๐ฟ (๐‘0 ) is (locally) bounded. Then the argument for Proposiโˆ—
โˆž (โ„›โˆž ).
tion 7.1(iii) shows ๐ฟ (๐‘) โ†’ ๐œ‚ in โ„›
๐‘™๐‘œ๐‘
โˆ—
โˆž (โ„›โˆž ) implies that ๐ฟโˆ— (๐‘) is (locally)
(ii) Conversely, ๐ฟ (๐‘) โ†’ ๐œ‚ in โ„›
๐‘™๐‘œ๐‘
bounded away from zero for all ๐‘ < 0 close to zero, because ๐œ‚ โ‰ฅ ๐‘˜1 > 0.
(i) Assume again that
As we turn to the convergence of the martingale part
๐‘€ ๐ฟ(๐‘) ,
a suitable
localization will again be crucial.
Lemma 7.3.
(
Proof.
Let ๐‘1 < 0. There exists a localizing sequence (๐œŽ๐‘› ) such that
)๐œŽ
๐ฟ(๐‘) โˆ’๐‘› > 1/๐‘›
simultaneously for all ๐‘ โˆˆ [๐‘1 , 0).
This follows from Proposition 5.4 and Lemma 4.1.
Next, we state a basic result (i) for the convergence of
๐‘€ ๐ฟ(๐‘)
in
2
โ„‹๐‘™๐‘œ๐‘
and
stronger convergences under additional assumptions (ii) and (iii), for which
Remark 7.2(i) gives sucient conditions.
32
Assume that ๐‘† is continuous. As ๐‘ โ†’ 0โˆ’,
2 .
(i)
โ†’
in โ„‹๐‘™๐‘œ๐‘
๐ฟ(๐‘) โ†’ ๐‘€ ๐œ‚ in ๐ต๐‘€ ๐‘‚ .
(ii) if ๐ฟ(๐‘) โ†’ ๐œ‚ in โ„›โˆž
๐‘™๐‘œ๐‘
๐‘™๐‘œ๐‘ , then ๐‘€
(iii) if ๐ฟ(๐‘) โ†’ ๐œ‚ in โ„›โˆž , then ๐‘€ ๐ฟ(๐‘) โ†’ ๐‘€ ๐œ‚ in ๐ต๐‘€ ๐‘‚.
Proposition 7.4.
๐‘€ ๐ฟ(๐‘)
Proof.
๐‘€๐œ‚
๐‘‹ = ๐‘‹(๐‘) = ๐œ‚ โˆ’ ๐ฟ(๐‘).
๐‘‹ is bounded uniformly in ๐‘
๐‘€ ๐‘‹(๐‘) โ†’ 0. Lemma 5.9 applied to
โˆฅ๐œ‚โˆฅโˆž โˆ’๐œ‚ shows that ๐‘€ ๐œ‚ โˆˆ ๐ต๐‘€ ๐‘‚. We may restrict our attention to ๐‘ in some
๐ฟ(๐‘) โˆฅ
interval [๐‘1 , 0) and Lemma 5.11 shows that sup๐‘โˆˆ[๐‘ ,0) โˆฅ๐‘€
๐ต๐‘€ ๐‘‚ < โˆž.
1
๐ฟ
๐ฟ
๐ฟ
โˆ™
Due to the orthogonality of the sum ๐‘€
= ๐‘
๐‘€ + ๐‘ , we have in
Set
Then
by Lemma 4.1 and our aim is to prove
particular that
sup โˆฅ๐‘ ๐ฟ (๐‘) โˆ™ ๐‘€ โˆฅ๐ต๐‘€ ๐‘‚ < โˆž.
(7.4)
๐‘โˆˆ[๐‘1 ,0)
Under the condition of (iii),
to zero since
๐œ‚ โ‰ฅ ๐‘˜ 1 > 0;
๐ฟ(๐‘)
is bounded away from zero for all
moreover,
๐œ†
โˆ™
๐‘€ โˆˆ ๐ต๐‘€ ๐‘‚
(i) and (ii) we may assume by a localization as in Lemma 7.3 that
bounded away from zero uniformly in
assume that
๐œ† โˆ™ ๐‘€ โˆˆ ๐ต๐‘€ ๐‘‚,
๐‘.
Since
๐‘€
๐‘
close
by Corollary 5.12. For
๐ฟโˆ’ (๐‘)
is
is continuous, we may also
by another localization.
Using the formula (4.7) for
๐ด๐ฟ
and the decomposition (7.1) of
๐œ‚,
the
๐‘‹ is continuous and
nite variation part ๐ด
{
}
2 ๐‘‘๐ด๐‘‹ = 2 (1 โˆ’ ๐‘)๐ท๐›ฝ ๐ฟ๐‘žโˆ’ โˆ’ ๐ท ๐‘‘๐œ‡
(7.5)
}
{
)
(
๐ฟ โŠค
๐‘‘โŸจ๐‘€ โŸฉ ๐‘ ๐ฟ .
โˆ’ ๐‘ž ๐ฟโˆ’ ๐œ†โŠค ๐‘‘โŸจ๐‘€ โŸฉ ๐œ† + 2๐œ†โŠค ๐‘‘โŸจ๐‘€ โŸฉ ๐‘ ๐ฟ + ๐ฟโˆ’1
โˆ’ ๐‘
In particular, we note that
๐‘‹
[๐‘€ ] = [๐‘‹] โˆ’
๐‘‹02
2
=๐‘‹ โˆ’
๐‘‹02
โˆซ
โˆ’2
๐‘‹โˆ’ ๐‘‘๐‘‹.
(7.6)
๐‘‹02 โ†’ 0 and ๐ธ[๐‘‹๐‘‡2 ] โ†’ 0 by Proposition 7.1 (Remark 6.2
โˆž by assumption and under (ii)
applies). In case (iii) we have ๐‘‹ โ†’ 0 in โ„›
]
[ 2
1
2
the same holds after a localization. If we denote ๐‘œ๐‘ก := ๐ธ ๐‘‹๐‘‡ โˆ’ ๐‘‹๐‘ก โ„ฑ๐‘ก , we
1
1
โˆž in cases (ii) and
therefore have that ๐‘œ0 โ†’ 0 in case (i) and ๐‘œ โ†’ 0 in โ„›
]
[
โˆซ
๐‘‡
2
๐›ฝ ๐‘ž
(iii). Denote also ๐‘œ๐‘ก := 2๐ธ
๐‘ก ๐‘‹โˆ’ {(1 โˆ’ ๐‘)๐ท ๐ฟโˆ’ โˆ’ ๐ท} ๐‘‘๐œ‡ โ„ฑ๐‘ก . Recalling
๐‘ž
๐›ฝ
that ๐‘ โ†’ 0โˆ’ implies ๐‘ž โ†’ 0+ and ๐›ฝ โ†’ 1โˆ’, we have (1 โˆ’ ๐‘)๐ท ๐ฟโˆ’ โˆ’ ๐ท โ†’ 0 in
2
โˆž
โ„›โˆž and since ๐‘‹โˆ’ is bounded uniformly
follows that ๐‘œ โ†’ 0 in โ„› .
โˆซ in ๐‘, it ๐‘‹
๐‘‹
As ๐‘€
โˆˆ ๐ต๐‘€ ๐‘‚ and ๐‘‹โˆ’ is bounded, ๐‘‹โˆ’ ๐‘‘๐‘€ is a martingale and (7.6)
For case (i) we have
yields
[
]
]
[
[
๐ธ [๐‘€ ๐‘‹ ]๐‘‡ โˆ’ [๐‘€ ๐‘‹ ]๐‘ก โ„ฑ๐‘ก = ๐ธ ๐‘‹๐‘‡2 โˆ’ ๐‘‹๐‘ก2 โ„ฑ๐‘ก โˆ’ 2๐ธ
โˆซ
๐‘ก
33
๐‘‡
]
๐‘‹โˆ’ ๐‘‘๐ด๐‘‹ โ„ฑ๐‘ก .
Using (7.5) and the denitions of
๐‘œ1
and
๐‘œ2 ,
we can rewrite this as
]
[
๐ธ [๐‘€ ๐‘‹ ]๐‘‡ โˆ’ [๐‘€ ๐‘‹ ]๐‘ก โ„ฑ๐‘ก โˆ’ ๐‘œ1๐‘ก + ๐‘œ2๐‘ก
[โˆซ ๐‘‡
{
( ๐ฟ )โŠค
} ]
๐ฟ ๐‘‹โˆ’ ๐ฟโˆ’ ๐œ†โŠค ๐‘‘โŸจ๐‘€ โŸฉ ๐œ† + 2๐œ†โŠค ๐‘‘โŸจ๐‘€ โŸฉ ๐‘ ๐ฟ + ๐ฟโˆ’1
๐‘
= ๐‘ž๐ธ
๐‘‘โŸจ๐‘€
โŸฉ
๐‘
โ„ฑ๐‘ก .
โˆ’
๐‘ก
Applying the Cauchy-Schwarz inequality and using that
๐‘‹โˆ’ , ๐ฟโˆ’ , ๐ฟโˆ’1
โˆ’
are
๐‘, it follows that
]
[
๐ธ [๐‘€ ๐‘‹ ]๐‘‡ โˆ’ [๐‘€ ๐‘‹ ]๐‘ก โ„ฑ๐‘ก โˆ’ ๐‘œ1๐‘ก + ๐‘œ2๐‘ก
]
[โˆซ ๐‘‡
๐‘‹โˆ’ (1 + ๐ฟโˆ’ )๐œ†โŠค ๐‘‘โŸจ๐‘€ โŸฉ ๐œ†โ„ฑ๐‘ก
โ‰ค ๐‘ž๐ธ
๐‘ก
]
[โˆซ ๐‘‡
( ๐ฟ )โŠค
๐‘‹โˆ’ (1 + ๐ฟโˆ’1
๐‘‘โŸจ๐‘€ โŸฉ ๐‘ ๐ฟ โ„ฑ๐‘ก
+ ๐‘ž๐ธ
โˆ’ ) ๐‘
๐‘ก
(
)
โˆ™
โ‰ค ๐‘ž๐ถ โˆฅ๐œ† ๐‘€ โˆฅ๐ต๐‘€ ๐‘‚ + โˆฅ๐‘ ๐ฟ(๐‘) โˆ™ ๐‘€ โˆฅ๐ต๐‘€ ๐‘‚ ,
bounded uniformly in
where
๐ถ > 0 is a constant independent of ๐‘ and ๐‘ก. In view of
๐‘ž๐ถ โ€ฒ with a constant ๐ถ โ€ฒ > 0 and we
]
[
๐ธ [๐‘€ ๐‘‹ ]๐‘‡ โˆ’ [๐‘€ ๐‘‹ ]๐‘ก โ„ฑ๐‘ก โ‰ค ๐‘ž๐ถ โ€ฒ + ๐‘œ1๐‘ก โˆ’ ๐‘œ2๐‘ก .
hand side is bounded by
(7.4), the right
have
For (i) we only have to prove the convergence to zero of the left hand side
for
๐‘ก = 0 and so this ends the proof. For (ii) and (iii) we use [๐‘€ ๐‘‹ ]๐‘ก =
+ (ฮ”๐‘€๐‘ก๐‘‹ )2 and โˆฃฮ”๐‘€ ๐‘‹ โˆฃ = โˆฃฮ”๐‘‹โˆฃ โ‰ค 2โˆฅ๐‘‹โˆฅโ„›โˆž to obtain
]
[
sup ๐ธ [๐‘€ ๐‘‹ ]๐‘‡ โˆ’ [๐‘€ ๐‘‹ ]๐‘กโˆ’ โ„ฑ๐‘ก โ‰ค ๐‘ž๐ถ โ€ฒ + โˆฅ๐‘œ1 โˆฅโ„›โˆž + โˆฅ๐‘œ2 โˆฅโ„›โˆž + 4โˆฅ๐‘‹โˆฅ2โ„›โˆž
[๐‘€ ๐‘‹ ]๐‘กโˆ’
๐‘กโ‰ค๐‘‡
and we have seen that the right hand side tends to
7.2
The Limit
0
as
๐‘ โ†’ 0โˆ’.
๐‘ โ†’ 0+
๐ฟ(๐‘) for ๐‘ โ†’ 0+ is meaningless without supposing
๐‘ข๐‘0 (๐‘ฅ0 ) < โˆž for some ๐‘0 โˆˆ (0, 1), so we make this a standing assumption
We notice that the limit of
that
for the entire Section 7.2. We begin with a result on the integrability of the
tail of the sequence.
Lemma 7.5.
that
Let 1 โ‰ค ๐‘Ÿ < โˆž. There exists a localizing sequence (๐œŽ๐‘› ) such
ess sup
๐ฟ๐‘กโˆง๐œŽ๐‘› (๐‘)
๐‘กโˆˆ[0,๐‘‡ ], ๐‘โˆˆ(0,๐‘0 /๐‘Ÿ]
Proof.
is in ๐ฟ๐‘Ÿ (๐‘ƒ ) for all ๐‘›.
๐‘1 = ๐‘0 /๐‘Ÿ and ๐œŽ๐‘› = inf{๐‘ก > 0 : ๐ฟ๐‘ก (๐‘1 ) > ๐‘›} โˆง ๐‘‡ , then by
๐‘Ÿ
Corollary 5.2(ii), sup๐‘ก ๐ฟ๐‘กโˆง๐œŽ๐‘› (๐‘1 ) โ‰ค ๐‘› + ฮ”๐ฟ๐œŽ๐‘› (๐‘1 ) โˆˆ ๐ฟ (๐‘ƒ ). But ๐ฟ(๐‘) โ‰ค
๐ถ๐ฟ(๐‘1 ) by Corollary 5.2(i), so (๐œŽ๐‘› ) already satises the requirement.
Let
34
As ๐‘ โ†’ 0+,
Proposition 7.6.
๐ฟโˆ— (๐‘) โ†’ ๐œ‚,
uniformly in ๐‘ก, ๐‘ƒ -a.s.; in โ„›๐‘Ÿ๐‘™๐‘œ๐‘ for ๐‘Ÿ โˆˆ [1, โˆž); and prelocally in โ„›โˆž . Moreover, the convergence takes place in โ„›โˆž (in โ„›โˆž
๐‘™๐‘œ๐‘ ) if and only if ๐ฟ(๐‘1 ) is
(locally) bounded for some ๐‘1 โˆˆ (0, ๐‘0 ). The same assertions hold for ๐ฟโˆ—
replaced by ๐ฟ.
Proof.
implies
๐‘ โˆˆ (0, ๐‘0 ) in this proof and recall that ๐‘ โ†’ 0+
๐›ฝ โ†’ 1โˆ’. Since ๐ฟ = (๐ฟโˆ— )1/๐›ฝ , it suces to prove the
We consider only
๐‘ž โ†’ 0โˆ’ and
๐ฟโˆ— . Using Lemma
claims for
๐ฟโˆ—๐‘ก (๐‘)
โˆ˜
โˆ’๐›ฝ๐‘
โ‰ฅ ๐œ‡ [๐‘ก, ๐‘‡ ]
4.1,
๐ธ
[โˆซ
๐‘‡
๐‘ก
]๐›ฝ
๐ท๐‘  ๐œ‡โˆ˜ (๐‘‘๐‘ )โ„ฑ๐‘ก โ†’ ๐œ‚๐‘ก
in
โ„›โˆž .
(7.7)
Conversely, by Proposition 5.1,
๐ฟโˆ—๐‘ก (๐‘)
โ‰ค ๐ธ
[โˆซ
๐‘‡
๐ท๐‘ ๐›ฝ
๐‘ก
]1โˆ’๐‘ž/๐‘ž0 (
)๐‘ž/๐‘ž0
๐œ‡ (๐‘‘๐‘ )โ„ฑ๐‘ก
๐‘˜1๐›ฝโˆ’๐›ฝ0 ๐ฟโˆ—๐‘ก (๐‘0 )
.
โˆ˜
๐ฟโˆ— (๐‘0 ) is
๐‘ก as ๐‘ž โ†’ 0โˆ’.
Since almost every path of
tends to
๐œ‚๐‘ก
uniformly in
bounded, the right hand side
By localizing
๐ฟโˆ— (๐‘0 )
โˆ—
We have proved that ๐ฟ (๐‘)
๐‘ƒ -a.s.
to be prelocally
bounded, the same argument shows the prelocal convergence in
Lemma 7.5, the convergence in
(7.8)
โ„›โˆž .
โ†’ ๐œ‚ uniformly in ๐‘ก, ๐‘ƒ -a.s. In view
โ„›๐‘Ÿ๐‘™๐‘œ๐‘ follows by dominated convergence.
of
For the second claim, note that the if statement is shown exactly like
โ„›โˆž convergence and the converse holds by boundedness of ๐œ‚ .
Of course, if ๐ฟ(๐‘1 ) is (locally) bounded for some ๐‘1 โˆˆ (0, ๐‘0 ), then in fact
๐ฟ(๐‘) has this property for all ๐‘ โˆˆ (0, ๐‘1 ], by Corollary 5.2(i).
the prelocal
We turn to the convergence of the martingale part. The major diculty
will be that
๐ฟ(๐‘)
may have unbounded jumps; i.e., we have to prove the
convergence of quadratic BSDEs whose solutions are not locally bounded.
Assume that ๐‘† is continuous. As ๐‘ โ†’ 0+,
2 .
(i)
โ†’
in โ„‹๐‘™๐‘œ๐‘
(ii) if there exists ๐‘1 โˆˆ (0, ๐‘0 ] such that ๐ฟ(๐‘1 ) is locally bounded, then
๐‘€ ๐ฟ(๐‘) โ†’ ๐‘€ ๐œ‚ in ๐ต๐‘€ ๐‘‚๐‘™๐‘œ๐‘ .
(iii) if there exists ๐‘1 โˆˆ (0, ๐‘0 ] such that ๐ฟ(๐‘1 ) is bounded, then ๐‘€ ๐ฟ(๐‘) โ†’ ๐‘€ ๐œ‚
in ๐ต๐‘€ ๐‘‚.
Proposition 7.7.
๐‘€ ๐ฟ(๐‘)
๐‘€๐œ‚
The following terminology will be useful in the proof. We say that real
numbers
(๐‘ฅ๐œ€ )
converge to
๐‘ฅ
linearly
as
๐œ€โ†’0
if
lim sup 1๐œ€ โˆฃ๐‘ฅ๐œ€ โˆ’ ๐‘ฅโˆฃ < โˆž.
๐œ€โ†’0+
35
Let ๐‘ฅ๐œ€ โ†’ ๐‘ฅ linearly and ๐‘ฆ๐œ€ โ†’ ๐‘ฆ linearly. Then
(i) lim sup๐œ€โ†’0 1๐œ€ โˆฃ๐‘ฅ๐œ€ โˆ’ ๐‘ฆ๐œ€ โˆฃ < โˆž if ๐‘ฅ = ๐‘ฆ,
(ii) ๐‘ฅ๐œ€ ๐‘ฆ๐œ€ โ†’ ๐‘ฅ๐‘ฆ linearly,
(iii) if ๐‘ฅ > 0 and ๐œ‘ is a real function with ๐œ‘(0) = 1 and dierentiable at 0,
then (๐‘ฅ๐œ€ )๐œ‘(๐œ€) โ†’ ๐‘ฅ linearly.
Lemma 7.8.
Proof.
from
(i) This is immediate from the triangle inequality. (ii) This follows
โˆฃ๐‘ฅ๐œ€ ๐‘ฆ๐œ€ โˆ’ ๐‘ฅ๐‘ฆโˆฃ โ‰ค โˆฃ๐‘ฅ๐œ€ โˆฃโˆฃ๐‘ฆ๐œ€ โˆ’ ๐‘ฆโˆฃ + โˆฃ๐‘ฆโˆฃโˆฃ๐‘ฅ๐œ€ โˆ’ ๐‘ฅโˆฃ because convergent sequences are
bounded. (iii) Here we use
โˆฃ(๐‘ฅ๐œ€ )๐œ‘(๐œ€) โˆ’ ๐‘ฅโˆฃ โ‰ค โˆฃ๐‘ฅ๐œ€ โˆฃโˆฃ(๐‘ฅ๐œ€ )๐œ‘(๐œ€)โˆ’1 โˆ’ 1โˆฃ + โˆฃ๐‘ฅ๐œ€ โˆ’ ๐‘ฅโˆฃ;
๐‘ฅ๐œ€ โ†’ ๐‘ฅ linearly, the question is reduced to the
โˆ’1
๐œ‘(๐œ€)โˆ’1
boundedness of ๐œ€
โˆฃ(๐‘ฅ๐œ€ )
โˆ’ 1โˆฃ. Fix 0 < ๐›ฟ1 < ๐‘ฅ < ๐›ฟ2 and set ๐œš(๐›ฟ, ๐œ€) :=
โˆฃ๐›ฟ ๐œ‘(๐œ€)โˆ’1 โˆ’ 1โˆฃ. For ๐œ€ small enough, ๐‘ฅ๐œ€ โˆˆ [๐›ฟ1 , ๐›ฟ2 ] and then
as
{๐‘ฅ๐œ€ }
is bounded and
๐œš(๐›ฟ1 , ๐œ€) โˆง ๐œš(๐›ฟ2 , ๐œ€) โ‰ค โˆฃ(๐‘ฅ๐œ€ )๐œ‘(๐œ€)โˆ’1 โˆ’ 1โˆฃ โ‰ค ๐œš(๐›ฟ1 , ๐œ€) โˆจ ๐œš(๐›ฟ2 , ๐œ€).
โ€ฒ
โˆ’1 โˆฃ๐œš(๐›ฟ, ๐œ€)โˆฃ = ๐‘‘ ๐›ฟ ๐œ‘(๐œ€) โˆฃ
For ๐›ฟ > 0 we have lim๐œ€ ๐œ€
๐œ€=0 = โˆฃ log(๐›ฟ)๐œ‘ (0)โˆฃ < โˆž.
๐‘‘๐œ€
Hence the upper and the lower bound above converge to 0 linearly.
Proof of Proposition 7.7.
We rst prove (ii) and (iii), i.e, we assume that
๐ฟ(๐‘) โ‰ฅ ๐‘˜1 from Lemma 4.1.
๐ถ > 0 independent of ๐‘ such that
Hence ๐ฟ(๐‘) is bounded uniformly in
๐ฟ(๐‘1 ) is locally bounded (resp. bounded).
Recall
By Corollary 5.2(i) there exists a constant
๐ฟ(๐‘) โ‰ค ๐ถ๐ฟ(๐‘1 ) for all ๐‘ โˆˆ (0, ๐‘1 ].
๐‘ โˆˆ (0, ๐‘1 ] in the case (iii) and for (ii) this holds after a localization. Now
๐ฟ(๐‘) โˆฅ
Lemma 5.11(ii) implies sup๐‘โˆˆ(0,๐‘ ] โˆฅ๐‘€
๐ต๐‘€ ๐‘‚ < โˆž and we can proceed
1
exactly as in the proof of items (ii) and (iii) of Proposition 7.4.
(i)
This case is more dicult because we have to use prelocal bounds
and Lemma 5.11(ii) does not apply.
Again, we want to imitate the proof
of Proposition 7.4(i), or more precisely, the arguments after (7.6). We note
2 -convergence those estimates are required only at
โ„‹๐‘™๐‘œ๐‘
๐ต๐‘€ ๐‘‚-norms can be replaced by โ„‹2 -norms. Inspecting
that for the claimed
๐‘ก = 0
and so the
that proof in detail, we see that we can proceed in the same way once we
establish:
โˆ™
There exists a localizing sequence
all
(๐œŽ๐‘› )
and constants
๐ถ๐‘›
such that for
๐‘›,
(b)
(๐ป1[0,๐œŽ๐‘› ] ) โˆ™ ๐‘€ ๐ฟ(๐‘) is a martingale for all ๐ป predictable and bounded,
and all ๐‘ โˆˆ (0, ๐‘0 ),
(
)
sup๐‘โˆˆ(0,๐‘0 ] ๐ฟโˆ’ (๐‘) + ๐ฟโˆ’1
โˆ’ (๐‘) โ‰ค ๐ถ๐‘› on [0, ๐œŽ๐‘› ],
(c)
lim sup๐‘โ†’0+ โˆฅ๐‘ ๐ฟ(๐‘) 1[0,๐œŽ๐‘› ] โˆฅ๐ฟ2 (๐‘€ ) โ‰ค ๐ถ๐‘› .
(a)
36
We may assume by localization that
(๐œŽ๐‘› )
๐‘ โˆˆ (0, ๐‘0 ).
instead of indicating
(a)
Fix
๐œ† โˆ™ ๐‘€ โˆˆ โ„‹2 .
We now prove (a)-(c);
explicitly, we write by localization. . . as usual.
By Lemma 4.1 and Lemma 5.2(ii),
๐ฟ = ๐ฟ(๐‘) is
๐ฟ =
๐ฟ is a
and ๐‘€
a supermartingale of class (D). Hence its Doob-Meyer decomposition
๐ฟ0 + ๐‘€ ๐ฟ + ๐ด๐ฟ
is such that
๐ด๐ฟ
is decreasing and nonpositive,
true martingale. Thus
0 โ‰ค ๐ธ[โˆ’๐ด๐ฟ
๐‘‡ ] = ๐ธ[๐ฟ0 โˆ’ ๐ฟ๐‘‡ ] < โˆž.
After localizing as in Lemma 7.5 (with
๐ฟ
Hence sup๐‘ก โˆฃ๐‘€๐‘ก โˆฃ
โ‰ค sup๐‘ก ๐ฟ๐‘ก โˆ’
๐ด๐ฟ
๐‘‡
โˆˆ
๐‘Ÿ = 1),
๐ฟ1 (๐‘ƒ ).
we have
sup๐‘ก ๐ฟ๐‘ก โˆˆ ๐ฟ1 (๐‘ƒ ).
Now (a) follows by the BDG
inequalities exactly as in the proof of Lemma 5.9.
(b) We have ๐ฟโˆ’ (๐‘) โ‰ฅ ๐‘˜1 by Lemma 4.1. Conversely, by Corollary 5.2(i),
๐ฟโˆ’ (๐‘) โ‰ค ๐ถ๐ฟโˆ’ (๐‘0 ) for ๐‘ โˆˆ (0, ๐‘0 ] with some universal constant ๐ถ > 0, and
๐ฟโˆ’ (๐‘0 ) is locally bounded by left-continuity.
(c) We shall use the rate of convergence obtained for ๐ฟ(๐‘) and the
๐ฟ contained in ๐ด๐ฟ via the Bellman BSDE. We may
information about ๐‘
assume by localization that (a) and (b) hold with ๐œŽ๐‘› replaced by ๐‘‡ . Thus
it suces to show that
โˆš
๐‘ ๐ฟ(๐‘) โˆš
lim sup ๐ฟ
(๐‘)๐œ†
+
< โˆž.
โˆ’
๐ฟโˆ’ (๐‘) ๐ฟ2 (๐‘€ )
๐‘โ†’0+
Suppressing again
๐‘
in the notation, (a) and the formula (4.7) for
๐ด๐ฟ
imply
๐ธ[๐ฟ0 โˆ’ ๐ฟ๐‘‡ ] = ๐ธ[โˆ’๐ด๐ฟ
๐‘‡]
โˆซ ๐‘‡
[
] ๐‘ž [โˆซ ๐‘‡
(
(
๐‘ ๐ฟ )โŠค
๐‘ ๐ฟ )]
๐›ฝ ๐‘ž
.
= ๐ธ (1 โˆ’ ๐‘)
๐ท ๐ฟโˆ’ ๐‘‘๐œ‡ โˆ’ ๐ธ
๐ฟโˆ’ ๐œ† +
๐‘‘โŸจ๐‘€ โŸฉ ๐œ† +
2
๐ฟโˆ’
๐ฟโˆ’
0
0
Recalling that
โˆš
1
2
๐ฟ๐‘‡ = ๐ท๐‘‡ ,
this yields
[โˆซ ๐‘‡
(
(
๐‘ ๐ฟ )]
๐‘๐ฟ ๐‘ ๐ฟ )โŠค
1
๐ฟโˆ’ ๐œ† + โˆš 2
= 2๐ธ
๐ฟโˆ’ ๐œ† +
๐‘‘โŸจ๐‘€ โŸฉ ๐œ† +
๐ฟโˆ’
๐ฟโˆ’
๐ฟโˆ’ ๐ฟ (๐‘€ )
0
(
โˆซ ๐‘‡
[
])
๐›ฝ ๐‘ž
1
= โˆฃ๐‘žโˆฃ ๐ธ[๐ฟ0 โˆ’ ๐ฟ๐‘‡ ] โˆ’ ๐ธ (1 โˆ’ ๐‘)
๐ท ๐ฟโˆ’ ๐‘‘๐œ‡
0
(
โˆซ ๐‘‡
[
])
๐›ฝ ๐‘ž
1
= โˆฃ๐‘žโˆฃ ๐ฟ0 โˆ’ ๐ธ ๐ท๐‘‡ + (1 โˆ’ ๐‘)
๐ท ๐ฟโˆ’ ๐‘‘๐œ‡
0
=
1
โˆฃ๐‘žโˆฃ (๐ฟ0
โˆ’ ฮ“0 ),
โˆซ๐‘‡
ฮ“0 = ฮ“0 (๐‘) = ๐ธ[๐ท๐‘‡ + (1 โˆ’ ๐‘) 0 ๐ท๐›ฝ ๐ฟ๐‘žโˆ’ ๐‘‘๐œ‡]. We know that
[โˆซ๐‘‡
]
ฮ“0 converge to ๐œ‚0 = ๐ธ 0 ๐ท๐‘  ๐œ‡โˆ˜ (๐‘‘๐‘ ) as ๐‘ โ†’ 0+ (and hence
where we have set
๐ฟ0 and
๐‘ž โ†’ 0โˆ’). However,
both
we are asking for the stronger result
1
โˆฃ๐ฟ0 (๐‘) โˆ’ ฮ“0 (๐‘)โˆฃ < โˆž.
lim sup โˆฃ๐‘žโˆฃ
๐‘โ†’0+
37
๐ฟ0 (๐‘) โ†’ ๐œ‚0 linearly and ฮ“0 (๐‘) โ†’ ๐œ‚0
๐‘ก = 0 read
]1/๐›ฝ+๐‘/๐‘ž0 (
)๐‘ž/๐‘ž0
1โˆ’๐›ฝ /๐›ฝ
.
๐ท๐‘ ๐›ฝ ๐œ‡โˆ˜ (๐‘‘๐‘ )
๐‘˜1 0 ๐ฟ0 (๐‘0 )
By Lemma 7.8(i), it suces to show that
linearly. Using
๐ฟโˆ— = ๐ฟ๐›ฝ ,
inequalities (7.7) and (7.8) evaluated at
๐œ‡โˆ˜ [0, ๐‘‡ ]โˆ’๐‘ ๐œ‚0 โ‰ค ๐ฟ0 (๐‘) โ‰ค ๐ธ
[โˆซ
๐‘‡
0
Recalling the bound (2.4) for ๐ท , items (ii) and (iii) of Lemma 7.8 yield that
๐ฟ0 (๐‘) โ†’ ๐œ‚0 linearly. The second claim, that ฮ“0 (๐‘) โ†’ ๐œ‚0 linearly, follows from
the denitions of ฮ“0 (๐‘) and ๐œ‚0 using again (2.4) and the uniform bounds for
๐ฟโˆ’ from (b). This ends the proof.
7.3
Proof of Theorem 3.4 and Other Consequences
Assume that ๐‘† is continuous and that there exists ๐‘0 > 0 such
that ๐‘ข๐‘0 (๐‘ฅ0 ) < โˆž. As ๐‘ โ†’ 0,
Lemma 7.9.
๐‘ ๐ฟ(๐‘)
๐‘๐œ‚
โ†’
๐ฟโˆ’ (๐‘)
๐œ‚โˆ’
in ๐ฟ2๐‘™๐‘œ๐‘ (๐‘€ ) and
1
๐ฟโˆ’ (๐‘)
โˆ™
๐‘ (๐‘) โ†’
1
๐œ‚โˆ’
โˆ™
๐‘๐œ‚
2
.
in โ„‹๐‘™๐‘œ๐‘
(7.9)
For a sequence ๐‘ โ†’ 0โˆ’ the convergence ๐ฟ๐‘โˆ’ (๐‘) โ†’ ๐‘๐œ‚โˆ’ in ๐ฟ2๐‘™๐‘œ๐‘ (๐‘€ ) holds also
without the assumption on ๐‘0 .
Proof. By localization we may assume that ๐ฟโˆ’ (๐‘) is bounded away from zero
๐ฟ(๐‘)
and innity, uniformly in
๐‘
๐œ‚
(Lemma 7.3 and Lemma 4.1 and the preceding
proof ); we also recall (7.2). We have
๐‘ ๐ฟ(๐‘)
) (
) ๐‘ ๐œ‚ ๐‘ ๐œ‚ 1 ( ๐ฟ(๐‘)
โˆ’
๐‘
โˆ’ ๐‘ ๐œ‚ + ๐œ‚โˆ’ โˆ’ ๐ฟโˆ’ (๐‘)
โ‰ค
.
๐ฟโˆ’ (๐‘) ๐œ‚โˆ’
๐ฟโˆ’ (๐‘)
๐ฟโˆ’ (๐‘)๐œ‚โˆ’
๐‘ข๐‘0 (๐‘ฅ0 ) < โˆž. The rst part of (7.9) follows from the ๐ฟ2๐‘™๐‘œ๐‘ (๐‘€ ) and
โˆž convergences mentioned in Propositions 7.4, 7.7 and Proposiprelocal โ„›
Let
tions 7.1, 7.6, respectively. The proof of the second part of (7.9) is analogous.
๐‘ข๐‘0 (๐‘ฅ0 ) < โˆž and consider a sequence
๐ฟ๐‘ก (๐‘๐‘› ) โ†’ ๐œ‚๐‘ก ๐‘ƒ -a.s. for each ๐‘ก,
rather than the convergence of ๐ฟ๐‘กโˆ’ (๐‘๐‘› ) to ๐œ‚๐‘กโˆ’ . Consider the optional set
โˆฉ
ฮ› := ๐‘› {๐ฟโˆ’ (๐‘๐‘› ) = ๐ฟ(๐‘๐‘› )} โˆฉ {๐œ‚ = ๐œ‚โˆ’ }. Because ๐ฟ(๐‘๐‘› ) and ๐œ‚ are càdlàg,
{๐‘ก : (๐œ”, ๐‘ก) โˆˆ ฮ›๐‘ } โŠ‚ [0, ๐‘‡ ] is countable ๐‘ƒ -a.s. and as ๐‘€ is continuous is follows
โˆซ๐‘‡
๐‘
that
0 1ฮ› ๐‘‘โŸจ๐‘€ โŸฉ = 0 ๐‘ƒ -a.s. Now dominated convergence for stochastic
๐œ‚
๐œ‚
integrals yields that {(๐œ‚โˆ’ โˆ’ ๐ฟโˆ’ (๐‘๐‘› ))๐‘ } โˆ™ ๐‘€ = {(๐œ‚ โˆ’ ๐ฟ(๐‘๐‘› ))1ฮ› ๐‘ } โˆ™ ๐‘€ โ†’ 0
2
in โ„‹๐‘™๐‘œ๐‘ and the rest is as before.
Now drop the assumption that
๐‘๐‘› โ†’ 0โˆ’.
Then Proposition 7.1 only yields
Proof of Theorem 3.4 and Remark 3.5.
The convergence of the optimal con-
sumption is contained in Propositions 7.1 and 7.6 by the formula (4.2). The
convergence of the portfolios follows from Lemma 7.9 in view of (4.8).
๐‘ โˆˆ (0, ๐‘0 ] we have the uniform bound ๐œ…
ห† (๐‘) โ‰ค (๐‘˜2 /๐‘˜1 )๐›ฝ0 by Lemma 4.1
(4.2); while for ๐‘ โˆˆ [๐‘1 , 0), ๐œ…
ห† (๐‘) is prelocally uniformly bounded by
For
and
Lemma 7.3 and (4.2). Hence the convergence of the wealth processes follows
from Corollary A.4(i).
38
We complement the convergence in the primal problem by a result for
the solution
๐‘Œห† (๐‘)
of the dual problem (4.3).
Assume that ๐‘† is continuous and that there exists ๐‘0 > 0
such that ๐‘ข๐‘0 (๐‘ฅ0 ) < โˆž holds. Moreover, assume that there exists ๐‘1 โˆˆ (0, ๐‘0 ]
such that ๐ฟ(๐‘1 ) is locally bounded. As ๐‘ โ†’ 0,
Proposition 7.10.
๐œ‚0 (
1
๐‘Œห† (๐‘) โ†’
โ„ฐ โˆ’๐œ†โˆ™๐‘€ +
๐‘ฅ0
๐œ‚โˆ’
โˆ™
๐‘๐œ‚
)
๐‘Ÿ
in โ„‹๐‘™๐‘œ๐‘
for all ๐‘Ÿ โˆˆ [1, โˆž).
If ๐œ‚ and ๐ฟ(๐‘) are continuous for ๐‘ < 0, the convergence for a limit ๐‘ โ†’ 0โˆ’
holds in the semimartingale topology without the assumptions on ๐‘0 and ๐‘1 .
Proof. (i) If ๐ฟ(๐‘1 ) is locally bounded, then ๐ฟ(๐‘) โ†’ ๐œ‚ in โ„›โˆž
๐‘™๐‘œ๐‘ by Remark 7.2
๐‘€ ๐ฟ(๐‘) โ†’ ๐‘€ ๐œ‚ in ๐ต๐‘€ ๐‘‚๐‘™๐‘œ๐‘ by Propositions 7.4
โ†’ ๐‘ ๐œ‚ in ๐ต๐‘€ ๐‘‚๐‘™๐‘œ๐‘ by orthogonality of the KW
and Proposition 7.6. Moreover,
and 7.7. This implies
๐‘ ๐ฟ(๐‘)
decompositions. It follows that
โˆ’๐œ† โˆ™ ๐‘€ +
1
๐ฟโˆ’ (๐‘)
โˆ™
๐‘ ๐ฟ(๐‘) โ†’ โˆ’๐œ† โˆ™ ๐‘€ +
1
๐œ‚โˆ’
โˆ™
๐‘๐œ‚
in
๐ต๐‘€ ๐‘‚๐‘™๐‘œ๐‘ .
This implies that the corresponding stochastic exponentials converge in
for
๐‘Ÿ โˆˆ [1, โˆž)
๐‘Ÿ
โ„‹๐‘™๐‘œ๐‘
(see Theorem 3.4 and Remark 3.7(2) in Protter [28]). In view
of the formula (4.9) for
๐‘Œห† (๐‘),
this ends the proof of the rst claim.
(ii) Using Lemma 7.9 and Lemma A.2(ii), the proof of the second claim
is similar.
Note that in the standard case
sition 7.10 is
โ„ฐ(โˆ’๐œ†
โˆ™
๐‘€ ),
๐ท โ‰ก 1
the normalized limit in Propo-
i.e., the minimal martingale density (cf. [31]).
We conclude by an additional statement concerning the convergence of the
wealth processes in Theorem 3.4.
Let the conditions of Theorem 3.4(ii) hold and assume
in addition that there exists ๐‘1 โˆˆ (0, ๐‘0 ] such that ๐ฟ(๐‘1 ) is locally bounded.
Then the convergence of the wealth processes in Theorem 3.4(ii) takes place
๐‘Ÿ for all ๐‘Ÿ โˆˆ [1, โˆž).
in โ„‹loc
Proof. Under the additional assumption, the results of this section yield the
Proposition 7.11.
ห† (๐‘) โˆ™ ๐‘€ in ๐ต๐‘€ ๐‘‚๐‘™๐‘œ๐‘
๐œ…
ห† (๐‘) in โ„›โˆž
๐‘™๐‘œ๐‘ and the convergence of ๐œ‹
๐œ”
โ„‹๐‘™๐‘œ๐‘ ) by the same formulas as before. Corollary A.4(ii) yields
convergence of
(and hence in
the claim.
A
Convergence of Stochastic Exponentials
This appendix provides some continuity results for stochastic exponentials of
continuous semimartingales in an elementary and self-contained way. They
are required for the main results of Section 3 because our wealth processes
are exponentials.
We also use a result from the (much deeper) theory of
โ„‹๐œ” -dierentials; but this is applied only for renements of the main results.
39
Let ๐‘‹ ๐‘› = ๐‘€ ๐‘› +๐ด๐‘› , ๐‘› โ‰ฅ 1 be continuous semimartingales
with
โˆ‘
continuous canonical โˆซdecompositions and assume that ๐‘› โˆฅ๐‘‹ ๐‘› โˆฅโ„‹2 < โˆž.
Then ๐‘€ ๐‘› , [๐‘€ ๐‘› ] and โˆฃ๐‘‘๐ด๐‘› โˆฃ are locally bounded uniformly in ๐‘›.
Lemma A.1.
Proof.
๐‘€๐‘ก๐‘›โ˜…
๐œŽ๐‘˜ = inf{๐‘ก > 0 : sup๐‘› โˆฃ๐‘€๐‘ก๐‘› โˆฃ > ๐‘˜} โˆง ๐‘‡ . We use the notation
= sup๐‘ โ‰ค๐‘ก โˆฃ๐‘€๐‘ ๐‘› โˆฃ, then the norms โˆฅ๐‘€๐‘‡๐‘›โ˜… โˆฅ๐ฟ2 and โˆฅ๐‘€ ๐‘› โˆฅโ„‹2 are equivalent
Let
by the BDG inequalities. Now
[
]
โˆ‘
โˆฅ๐‘€๐‘‡๐‘›โ˜… โˆฅ๐ฟ2
๐‘ƒ sup ๐‘€๐‘‡๐‘›โ˜… > ๐‘˜ โ‰ค ๐‘˜ โˆ’2
๐‘›
๐‘›
]
โˆ‘
๐‘ƒ [๐œŽ๐‘˜ < ๐‘‡ ] โ†’ 0. Similarly, ๐‘ƒ sup๐‘› [๐‘€ ๐‘› ]๐‘‡ > ๐‘˜ โ‰ค ๐‘˜ โˆ’1 ๐‘› โˆฅ๐‘€ ๐‘› โˆฅโ„‹2
[
]
โˆซ๐‘‡
โˆ‘
๐‘ƒ sup๐‘› 0 โˆฃ๐‘‘๐ด๐‘› โˆฃ > ๐‘˜ โ‰ค ๐‘˜ โˆ’2 ๐‘› โˆฅ๐ด๐‘› โˆฅโ„‹2 yield the other claims.
[
shows
and
We sometimes write in
๐’ฎ 0
to indicate convergence in the semimartingale
topology.
Let ๐‘‹ ๐‘› = ๐‘€ ๐‘› + ๐ด๐‘› , ๐‘› โ‰ฅ 1 and ๐‘‹ = ๐‘€ + ๐ด be continuous
semimartingales with continuous canonical decompositions.
โˆ‘
2 .
(i) ๐‘› โˆฅ๐‘‹ ๐‘› โˆ’ ๐‘‹โˆฅโ„‹2 < โˆž implies โ„ฐ(๐‘‹ ๐‘› ) โ†’ โ„ฐ(๐‘‹) in โ„‹๐‘™๐‘œ๐‘
2 implies โ„ฐ(๐‘‹ ๐‘› ) โ†’ โ„ฐ(๐‘‹) in ๐’ฎ 0 .
(ii) ๐‘‹ ๐‘› โ†’ ๐‘‹ in โ„‹๐‘™๐‘œ๐‘
(iii) ๐‘‹ ๐‘› โ†’ ๐‘‹ in ๐’ฎ 0 implies โ„ฐ(๐‘‹ ๐‘› ) โ†’ โ„ฐ(๐‘‹) in ๐’ฎ 0 .
Lemma A.2.
Proof.
(i)
in
โ„‹2 .
๐‘›.
Note
๐‘€
and
โˆซ
and, by Lemma A.1, that
independent of
โˆซ
โˆฃ๐‘‘๐ดโˆฃ are bounded
โˆฃ๐‘€ ๐‘› โˆฃ and โˆฃ๐‘‘๐ด๐‘› โˆฃ are bounded by a constant ๐ถ
๐‘›
2
๐‘›
that ๐‘‹ โ†’ ๐‘‹ in โ„‹ ; we shall show โ„ฐ(๐‘‹ ) โ†’ โ„ฐ(๐‘‹)
By localization we may assume that
Since this is a metric space, no loss of generality is entailed by passing
to a subsequence. Doing so, we have
uniformly in time,
๐‘ƒ -a.s.
๐‘€ ๐‘› โ†’ ๐‘€ , [๐‘€ ๐‘› ] โ†’ [๐‘€ ],
and
๐ด๐‘› โ†’ ๐ด
In view of the uniform bound
(
)
๐‘Œ ๐‘› := โ„ฐ(๐‘‹ ๐‘› ) = exp ๐‘‹ ๐‘› โˆ’ 21 [๐‘€ ๐‘› ] โ‰ค ๐‘’2๐ถ
we conclude that
of the stochastic
โˆฅ๐‘Œ
โˆ™
๐‘Œ ๐‘› โ†’ ๐‘Œ := โ„ฐ(๐‘‹) = exp(๐‘‹ โˆ’ 12 [๐‘€ ]) in โ„›2 . By denition
๐‘› = ๐‘Œ โˆ™ ๐‘‹ โˆ’ ๐‘Œ ๐‘› โˆ™ ๐‘‹ ๐‘› , where
exponential we have ๐‘Œ โˆ’ ๐‘Œ
๐‘‹ โˆ’ ๐‘Œ ๐‘› โˆ™ ๐‘‹ ๐‘› โˆฅโ„‹2 โ‰ค โˆฅ(๐‘Œ โˆ’ ๐‘Œ ๐‘› ) โˆ™ ๐‘‹โˆฅโ„‹2 + โˆฅ๐‘Œ ๐‘› โˆ™ (๐‘‹ โˆ’ ๐‘‹ ๐‘› )โˆฅโ„‹2 .
The rst norm tends to zero by dominated convergence for stochastic inte-
โˆฃ๐‘Œ ๐‘› โˆฃ โ‰ค ๐‘’2๐ถ and ๐‘‹ ๐‘› โ†’ ๐‘‹ in โ„‹2 .
๐‘›
Consider a subsequence of (๐‘‹ ). After passing to another subse2
(i) shows the convergence in โ„‹๐‘™๐‘œ๐‘ and Proposition 2.2 yields (ii).
grals and for the second we use that
(ii)
quence,
(iii) This follows from (ii) by using Proposition 2.2 twice.
We return to the semimartingale
๐‘…
of asset returns, which is assumed to
be continuous in the sequel. We recall the structure condition (2.6) and dene
๐ฟ๐œ” (๐‘€ ) := {๐œ‹ โˆˆ ๐ฟ(๐‘€ ) : โˆฅ๐œ‹โˆฅ๐ฟ๐œ” (๐‘€ ) < โˆž}, where โˆฅ๐œ‹โˆฅ๐ฟ๐œ” (๐‘€ ) := โˆฅ๐œ‹
๐œ”
and โ„‹ was introduced at the end of Section 2.2.
40
โˆ™
๐‘€ โˆฅโ„‹๐œ”
Lemma A.3.
๐œ‹๐‘›
โ†’๐œ‹
Proof.
in
Let ๐‘… be continuous, ๐‘Ÿ โˆˆ {2, ๐œ”}, and ๐œ‹, ๐œ‹๐‘› โˆˆ ๐ฟ๐‘Ÿ๐‘™๐‘œ๐‘ (๐‘€ ). Then
๐‘Ÿ .
if and only if ๐œ‹๐‘› โˆ™ ๐‘… โ†’ ๐œ‹ โˆ™ ๐‘… in โ„‹๐‘™๐‘œ๐‘
๐ฟ๐‘Ÿ๐‘™๐‘œ๐‘ (๐‘€ )
By (2.6) we have
โˆซ
๐œ‹ โˆ™ ๐‘… = ๐œ‹ โˆ™ ๐‘€ + ๐œ‹ โŠค ๐‘‘โŸจ๐‘€ โŸฉ ๐œ†.
Let
๐œ’ :=
โˆซ
๐œ†โŠค ๐‘‘โŸจ๐‘€ โŸฉ ๐œ†
denote the mean-variance tradeo process. The inequality
๐ธ
๐‘‡
[( โˆซ
)2 ]
[( โˆซ
โˆฃ๐œ‹ โŠค ๐‘‘โŸจ๐‘€ โŸฉ ๐œ†โˆฃ
โ‰ค๐ธ
๐‘‡
๐œ‹ โŠค ๐‘‘โŸจ๐‘€ โŸฉ ๐œ‹
)( โˆซ
)]
๐œ†โŠค ๐‘‘โŸจ๐‘€ โŸฉ ๐œ†
0
0
0
๐‘‡
โˆฅ๐œ‹ โˆ™ ๐‘€ โˆฅโ„‹2 โ‰ค โˆฅ๐œ‹ โˆ™ ๐‘…โˆฅโ„‹2 โ‰ค (1 + โˆฅ๐œ’๐‘‡ โˆฅ๐ฟโˆž )โˆฅ๐œ‹ โˆ™ ๐‘€ โˆฅโ„‹2 .
bounded due to continuity, this yields the result for ๐‘Ÿ = 2.
๐‘Ÿ = ๐œ” is similar.
implies
As
๐œ’
is locally
The proof for
Let ๐‘… be continuous and (๐œ‹, ๐œ…), (๐œ‹๐‘› , ๐œ…๐‘› ) โˆˆ ๐’œ.
(i) Assume that ๐œ‹๐‘› โ†’ ๐œ‹ in ๐ฟ2๐‘™๐‘œ๐‘ (๐‘€ ), that (๐œ…๐‘› ) is prelocally bounded uniformly in ๐‘›, and that ๐œ…๐‘›๐‘ก โ†’ ๐œ…๐‘ก ๐‘ƒ -a.s. for each ๐‘ก โˆˆ [0, ๐‘‡ ]. Then
๐‘‹(๐œ‹ ๐‘› , ๐œ…๐‘› ) โ†’ ๐‘‹(๐œ‹, ๐œ…) in the semimartingale topology.
๐‘› ๐‘›
(ii) Assume ๐œ‹๐‘› โ†’ ๐œ‹ in ๐ฟ๐œ”๐‘™๐‘œ๐‘ (๐‘€ ) and ๐œ…๐‘› โ†’ ๐œ… in โ„›โˆž
๐‘™๐‘œ๐‘ . Then ๐‘‹(๐œ‹ , ๐œ… ) โ†’
๐‘Ÿ
๐‘‹(๐œ‹, ๐œ…) in โ„‹๐‘™๐‘œ๐‘ for all ๐‘Ÿ โˆˆ [1, โˆž).
Corollary A.4.
Proof.
๐œ‡(๐‘‘๐‘ )๐‘ก = ๐œ…๐‘›๐‘  โˆ™ ๐œ‡(๐‘‘๐‘ )๐‘กโˆ’ for all ๐‘ก. After
โˆซ๐‘‡ ๐‘›
localization, bounded convergence yields
0 โˆฃ๐œ…๐‘ก โˆ’๐œ…๐‘ก โˆฃ ๐œ‡(๐‘‘๐‘ก) โ†’ 0 ๐‘ƒ -a.s. and in
๐ฟ2 (๐‘ƒ ). Using Lemma A.3, we have ๐œ‹ ๐‘› โˆ™ ๐‘… + ๐œ…๐‘› โˆ™ ๐œ‡(๐‘‘๐‘ก) โ†’ ๐œ‹ โˆ™ ๐‘… + ๐œ… โˆ™ ๐œ‡(๐‘‘๐‘ก)
2
in โ„‹๐‘™๐‘œ๐‘ . In view of (2.2) we conclude by Lemma A.2(ii).
๐‘›
๐‘›
(ii) With Lemma A.3 we obtain ๐œ‹ โˆ™ ๐‘… + ๐œ… โˆ™ ๐œ‡(๐‘‘๐‘ก) โ†’ ๐œ‹ โˆ™ ๐‘… + ๐œ… โˆ™ ๐œ‡(๐‘‘๐‘ก)
๐‘Ÿ
๐œ”
in โ„‹๐‘™๐‘œ๐‘ . Thus the stochastic exponentials converge in โ„‹๐‘™๐‘œ๐‘ for all ๐‘Ÿ โˆˆ [1, โˆž)
(i)
By continuity of
๐œ‡, ๐œ…๐‘›๐‘ 
โˆ™
(see Theorem 3.4 and Remark 3.7(2) in [28]).
B
Proof of Lemma 6.12
In this section we give the proof of Lemma 6.12. As mentioned above, the
argument is adapted from the Brownian setting of [22, Proposition 2.4].
We use the notation introduced before Lemma 6.12, in particular, re-
๐‘˜ throughout and let ๐œ := ๐œ๐‘˜ . For xed integers ๐‘š โ‰ฅ ๐‘›
๐›ฟ๐ฟ = ๐ฟ๐‘› โˆ’ ๐ฟ๐‘š , moreover, ๐›ฟ๐‘€ , ๐›ฟ๐‘ , ๐›ฟ๐‘ have the analogous
meaning. Note that ๐›ฟ๐ฟ โ‰ฅ 0 as ๐‘š โ‰ฅ ๐‘›. The technique consists in applying
Itô's formula to ฮฆ(๐›ฟ๐ฟ), where, with ๐พ := 6๐ถ๐‘˜ ,
call (6.8). We x
we abbreviate
)
1 ( 4๐พ๐‘ฅ
๐‘’
โˆ’ 4๐พ๐‘ฅ โˆ’ 1 .
2
8๐พ
ฮฆ(๐‘ฅ) =
On
โ„+
this function satises
ฮฆ(0) = ฮฆโ€ฒ (0) = 0,
Moreover,
ฮฆโ€ฒโ€ฒ โ‰ฅ 0
ฮฆโ€ฒ โ‰ฅ 0,
ฮฆ โ‰ฅ 0,
and hence
โ„Ž(๐‘ฅ) :=
nonnegative and nondecreasing.
41
1 โ€ฒโ€ฒ
2 ฮฆ (๐‘ฅ)
1 โ€ฒโ€ฒ
2ฮฆ
โˆ’ 2๐พฮฆโ€ฒ โ‰ก 1.
โˆ’ ๐พฮฆโ€ฒ (๐‘ฅ) = 1 + ๐พฮฆโ€ฒ (๐‘ฅ)
is
(i) By Itô's formula we have
โˆซ ๐œ
[
]
๐‘š
ฮฆโ€ฒ (๐›ฟ๐ฟ๐‘  ) ๐‘“ ๐‘› (๐‘ , ๐ฟ๐‘›๐‘  , ๐‘๐‘ ๐‘› ) โˆ’ ๐‘“ ๐‘š (๐‘ , ๐ฟ๐‘š
ฮฆ(๐›ฟ๐ฟ0 ) = ฮฆ(๐›ฟ๐ฟ๐œ ) โˆ’
๐‘  , ๐‘๐‘  ) ๐‘‘โŸจ๐‘€ โŸฉ๐‘ 
0
โˆซ ๐œ
โˆซ ๐œ
โ€ฒโ€ฒ
1
โˆ’
ฮฆโ€ฒ (๐›ฟ๐ฟ๐‘  ) ๐‘‘๐›ฟ๐‘€๐‘  .
2 ฮฆ (๐›ฟ๐ฟ๐‘  ) ๐‘‘ โŸจ๐›ฟ๐‘€ โŸฉ๐‘  โˆ’
0
0
๐‘š
By elementary inequalities we have for all
and
๐‘›
that
)
หœ 2 + โˆฃ๐‘โˆฃ
หœ 2 ๐œ,
โˆฃ๐‘“ ๐‘› (๐‘ก, ๐ฟ๐‘› , ๐‘ ๐‘› ) โˆ’ ๐‘“ ๐‘š (๐‘ก, ๐ฟ๐‘š , ๐‘ ๐‘š )โˆฃ๐œ โ‰ค ๐œ‰ + ๐พ โˆฃ๐‘ ๐‘› โˆ’ ๐‘ ๐‘š โˆฃ2 + โˆฃ๐‘ ๐‘› โˆ’ ๐‘โˆฃ
(
where the index
๐‘ก
was omitted. Hence
[
๐œ
(
)]
ฮฆโ€ฒ (๐›ฟ๐ฟ๐‘  ) ๐œ‰๐‘  + ๐พ โˆฃ๐›ฟ๐‘๐‘  โˆฃ2 + โˆฃ๐‘๐‘ ๐‘› โˆ’ ๐‘หœ๐‘  โˆฃ2 + โˆฃ๐‘หœ๐‘  โˆฃ2 ๐‘‘โŸจ๐‘€ โŸฉ๐‘ 
ฮฆ(๐›ฟ๐ฟ0 ) โ‰ค ฮฆ(๐›ฟ๐ฟ๐œ ) +
0
โˆซ ๐œ
โˆซ ๐œ
1 โ€ฒโ€ฒ
ฮฆโ€ฒ (๐›ฟ๐ฟ๐‘  ) ๐‘‘๐›ฟ๐‘€๐‘  .
โˆ’
2 ฮฆ (๐›ฟ๐ฟ๐‘  ) ๐‘‘ โŸจ๐›ฟ๐‘€ โŸฉ๐‘  โˆ’
โˆซ
0
0
The expectation of the stochastic integral vanishes since
๐›ฟ๐ฟ
is bounded and
๐›ฟ๐‘€ โˆˆ โ„‹2 . We deduce
โˆซ ๐œ
โˆซ ๐œ
[ 1 โ€ฒโ€ฒ
]
โ€ฒ
2
1 โ€ฒโ€ฒ
๐ธ
ฮฆ
(๐›ฟ๐ฟ
)
โˆ’
๐พฮฆ
(๐›ฟ๐ฟ
)
โˆฃ๐›ฟ๐‘
โˆฃ
๐‘‘โŸจ๐‘€
โŸฉ
+
๐ธ
๐‘ 
๐‘ 
๐‘ 
๐‘ 
2
2 ฮฆ (๐›ฟ๐ฟ๐‘  ) ๐‘‘โŸจ๐›ฟ๐‘ โŸฉ๐‘  (B.1)
0
0
โˆซ ๐œ
หœ๐‘  โˆฃ2 ๐‘‘โŸจ๐‘€ โŸฉ๐‘  + ฮฆ(๐›ฟ๐ฟ0 )
โˆ’๐ธ
๐พฮฆโ€ฒ (๐›ฟ๐ฟ๐‘  )โˆฃ๐‘๐‘ ๐‘› โˆ’ ๐‘
(B.2)
0
โˆซ ๐œ
[
]
[
]
หœ๐‘  โˆฃ2 ๐‘‘โŸจ๐‘€ โŸฉ๐‘  .
ฮฆโ€ฒ (๐›ฟ๐ฟ๐‘  ) ๐œ‰๐‘  + ๐พโˆฃ๐‘
(B.3)
โ‰ค ๐ธ ฮฆ(๐›ฟ๐ฟ๐œ ) + ๐ธ
0
We let
for all
๐‘›
หœ
๐‘š tend to innity, then ๐›ฟ๐ฟ๐‘ก = ๐ฟ๐‘›๐‘ก โˆ’ ๐ฟ๐‘š
๐‘ก converges to ๐ฟ๐‘ก โˆ’ ๐ฟ๐‘ก ๐‘ƒ -a.s.
๐‘ก and with a uniform bound, so (B.3) converges to
โˆซ ๐œ
[
]
[
]
๐‘›
หœ
หœ ๐‘  ) ๐œ‰๐‘  + ๐พโˆฃ๐‘
หœ๐‘  โˆฃ2 ๐‘‘โŸจ๐‘€ โŸฉ๐‘  ;
๐ธ ฮฆ(๐ฟ๐œ โˆ’ ๐ฟ๐œ ) + ๐ธ
ฮฆโ€ฒ (๐ฟ๐‘›๐‘  โˆ’ ๐ฟ
0
while (B.2) converges to
โˆซ
๐œ
โˆ’๐ธ
หœ ๐‘  )โˆฃ๐‘๐‘ ๐‘› โˆ’ ๐‘
หœ๐‘  โˆฃ2 ๐‘‘โŸจ๐‘€ โŸฉ๐‘  + ฮฆ(๐ฟ๐‘›0 โˆ’ ๐ฟ
หœ 0 ).
๐พฮฆโ€ฒ (๐ฟ๐‘›๐‘  โˆ’ ๐ฟ
0
We turn to (B.1). The continuous function
in the rst integrand.
ฮฆโ€ฒโ€ฒ
๐‘š,
and note that
decreasing in
We recall that
โ„Ž
โ„Ž(๐‘ฅ) = 12 ฮฆโ€ฒโ€ฒ (๐‘ฅ) โˆ’ ๐พฮฆโ€ฒ (๐‘ฅ)
is nonnegative and nondecreasing
has the same properties.
๐‘› หœ
โ„Ž(๐›ฟ๐ฟ๐‘  ) = โ„Ž(๐ฟ๐‘›๐‘  โˆ’๐ฟ๐‘š
๐‘  ) โ†‘ โ„Ž(๐ฟ๐‘  โˆ’ ๐ฟ๐‘  );
occurs
Moreover, as
๐ฟ๐‘š
๐‘ก
is monotone
โ€ฒโ€ฒ
๐‘› หœ
ฮฆโ€ฒโ€ฒ (๐›ฟ๐ฟ๐‘  ) = ฮฆโ€ฒโ€ฒ (๐ฟ๐‘›๐‘  โˆ’๐ฟ๐‘š
๐‘  ) โ†‘ ฮฆ (๐ฟ๐‘  โˆ’ ๐ฟ๐‘  )
๐‘ƒ -a.s. for all ๐‘ . Hence we have for any xed ๐‘š0 โ‰ค ๐‘š that
โˆซ ๐œ
โˆซ ๐œ
๐‘›
๐‘š
๐‘›
๐‘š
๐‘›
๐‘š
0
๐ธ
โ„Ž(๐ฟ๐‘  โˆ’ ๐ฟ๐‘  )โˆฃ๐‘๐‘  โˆ’ ๐‘๐‘  โˆฃ ๐‘‘โŸจ๐‘€ โŸฉ๐‘  โ‰ฅ ๐ธ
โ„Ž(๐ฟ๐‘›๐‘  โˆ’ ๐ฟ๐‘š
๐‘  )โˆฃ๐‘๐‘  โˆ’ ๐‘๐‘  โˆฃ ๐‘‘โŸจ๐‘€ โŸฉ๐‘  ;
0
0
โˆซ ๐œ
โˆซ ๐œ
โ€ฒโ€ฒ
๐‘›
๐‘š
๐‘›
๐‘š
๐‘›
๐‘š
0
๐ธ
ฮฆ (๐ฟ๐‘  โˆ’ ๐ฟ๐‘  ) ๐‘‘โŸจ๐‘ โˆ’ ๐‘ โŸฉ๐‘  โ‰ฅ ๐ธ
ฮฆโ€ฒโ€ฒ (๐ฟ๐‘›๐‘  โˆ’ ๐ฟ๐‘š
๐‘  ) ๐‘‘โŸจ๐‘ โˆ’ ๐‘ โŸฉ๐‘  .
0
0
42
The right hand sides are convex lower semicontinuous functions of
๐ฟ2 (๐‘€ ) and
๐‘๐‘š โˆˆ
๐‘๐‘š
โˆˆ โ„‹2 , respectively, hence also weakly lower semicontinuous.
๐‘š โ†’๐‘
หœ and ๐‘ ๐‘š โ†’ ๐‘
หœ that
We conclude from the weak convergences ๐‘
๐œ
โˆซ
๐‘›
หœ๐‘š
โ„Ž(๐ฟ๐‘›๐‘  โˆ’ ๐ฟ๐‘š
๐‘  )โˆฃ๐‘๐‘  โˆ’ ๐‘๐‘  โˆฃ ๐‘‘โŸจ๐‘€ โŸฉ๐‘ 
โˆซ ๐œ
๐‘›
0
หœ
โ„Ž(๐ฟ๐‘›๐‘  โˆ’ ๐ฟ๐‘š
โ‰ฅ๐ธ
๐‘  )โˆฃ๐‘๐‘  โˆ’ ๐‘๐‘  โˆฃ ๐‘‘โŸจ๐‘€ โŸฉ๐‘  ;
lim inf ๐ธ
๐‘šโ†’โˆž
0
0
๐œ
โˆซ
lim inf ๐ธ
ฮฆ
๐‘šโ†’โˆž
โ€ฒโ€ฒ
(๐ฟ๐‘›๐‘ 
๐‘›
โˆ’ ๐ฟ๐‘š
๐‘  ) ๐‘‘โŸจ๐‘
โˆซ
๐‘š
0
๐‘š0 .
for all
๐œ
โˆ’ ๐‘ โŸฉ๐‘  โ‰ฅ ๐ธ
๐‘›
0
หœ
ฮฆโ€ฒโ€ฒ (๐ฟ๐‘›๐‘  โˆ’ ๐ฟ๐‘š
๐‘  ) ๐‘‘โŸจ๐‘ โˆ’ ๐‘ โŸฉ๐‘ 
0
We can now let
๐‘š0 tend toโˆซinnity, then by monotone convergence
๐œ
หœ ๐‘  )โˆฃ๐‘ ๐‘› โˆ’ ๐‘
หœ๐‘  โˆฃ ๐‘‘โŸจ๐‘€ โŸฉ๐‘  and the
๐ธ 0 โ„Ž(๐ฟ๐‘›๐‘  โˆ’ ๐ฟ
๐‘ 
the rst right hand side tends to
second one tends to
๐œ
โˆซ
๐ธ
โˆซ
หœ ๐‘  ) ๐‘‘โŸจ๐‘ ๐‘› โˆ’ ๐‘
หœ โŸฉ๐‘  โ‰ฅ 2๐ธ
ฮฆโ€ฒโ€ฒ (๐ฟ๐‘›๐‘  โˆ’ ๐ฟ
0
๐œ
[
]
หœ โŸฉ๐‘  = 2๐ธ โŸจ๐‘ ๐‘› โˆ’ ๐‘
หœ โŸฉ๐œ ,
๐‘‘โŸจ๐‘ ๐‘› โˆ’ ๐‘
0
where we have used that
หœ โ‰ฅ 0
๐ฟ๐‘› โˆ’ ๐ฟ
and
ฮฆโ€ฒโ€ฒ (๐‘ฅ) = 2๐‘’4๐พ๐‘ฅ โ‰ฅ 2
for
๐‘ฅ โ‰ฅ 0.
Altogether, we have passed from (B.1)(B.3) to
โˆซ
๐ธ
๐œ
(
)
[
]
หœ โŸฉ๐œ
หœ ๐‘  ) โˆฃ๐‘๐‘ ๐‘› โˆ’ ๐‘
หœ๐‘  โˆฃ2 ๐‘‘โŸจ๐‘€ โŸฉ๐‘  + ๐ธ โŸจ๐‘ ๐‘› โˆ’ ๐‘
โˆ’ 2๐พฮฆโ€ฒ (๐ฟ๐‘›๐‘  โˆ’ ๐ฟ
0
โˆซ ๐œ
[
]
หœ ๐œ ) โˆ’ ฮฆ(๐ฟ๐‘› โˆ’ ๐ฟ
หœ0 ) + ๐ธ
หœ ๐‘  ) ๐œ‰๐‘  + ๐พโˆฃ๐‘
หœ๐‘  โˆฃ2 ๐‘‘โŸจ๐‘€ โŸฉ๐‘  .
โ‰ค ๐ธฮฆ(๐ฟ๐‘›๐œ โˆ’ ๐ฟ
ฮฆโ€ฒ (๐ฟ๐‘›๐‘  โˆ’ ๐ฟ
0
1 โ€ฒโ€ฒ
2ฮฆ
0
As
1 โ€ฒโ€ฒ
2ฮฆ
we let
๐‘›
โˆ’ 2๐พฮฆโ€ฒ โ‰ก 1,
the rst integral reduces to
๐ธ
โˆซ๐œ
0
โˆฃ๐‘๐‘ ๐‘› โˆ’ ๐‘๐‘  โˆฃ2 ๐‘‘โŸจ๐‘€ โŸฉ๐‘  .
If
tend to innity, the right hand side converges to zero by dominated
convergence, so that we conclude
โˆซ
๐œ
หœ๐‘  โˆฃ2 ๐‘‘โŸจ๐‘€ โŸฉ๐‘  โ†’ 0;
โˆฃ๐‘๐‘ ๐‘› โˆ’ ๐‘
๐ธ
[
]
หœ โŸฉ๐œ โ†’ 0
๐ธ โŸจ๐‘ ๐‘› โˆ’ ๐‘
0
as claimed.
(ii) For all
โˆฃ๐ฟ๐‘›๐‘กโˆง๐œ
โˆ’
๐ฟ๐‘š
๐‘กโˆง๐œ โˆฃ
The sequence
๐‘š
and
we have
โˆ’
๐ฟ๐‘š
๐œ โˆฃ
โˆซ
๐œ
๐‘š
โˆฃ๐‘“ ๐‘› (๐‘ , ๐ฟ๐‘›๐‘  , ๐‘๐‘ ๐‘› ) โˆ’ ๐‘“ ๐‘š (๐‘ , ๐ฟ๐‘š
๐‘  , ๐‘๐‘  )โˆฃ ๐‘‘โŸจ๐‘€ โŸฉ๐‘ 
๐‘กโˆง๐œ
๐‘›
๐‘š + (๐‘€๐œ๐‘› โˆ’ ๐‘€๐œ๐‘š ) โˆ’ (๐‘€๐‘กโˆง๐œ
โˆ’ ๐‘€๐‘กโˆง๐œ
).
(B.4)
โ‰ค
โˆฃ๐ฟ๐‘›๐œ
๐‘›
๐‘€ ๐‘š = ๐‘๐‘š
subsequence, still denoted
+
๐‘€ + ๐‘ ๐‘š is Cauchy in โ„‹๐œ2 . We pick a fast
๐‘š
๐‘š โˆ’ ๐‘€ ๐‘š+1 โˆฅ
โˆ’๐‘š .
by ๐‘€ , such that โˆฅ๐‘€
โ„‹๐œ2 โ‰ค 2
โˆ™
This implies that
๐‘€ โˆ— := sup โˆฃ๐‘€ ๐‘š โˆฃ โˆˆ โ„‹๐œ2 ;
๐‘š
๐‘ โˆ— := sup โˆฃ๐‘ ๐‘š โˆฃ โˆˆ ๐ฟ2๐œ (๐‘€ )
๐‘š
43
๐‘š
๐‘ ๐‘š converges ๐‘ƒ โŠ—โŸจ๐‘€ ๐œ โŸฉ-a.e. to ๐‘หœ. Therefore, lim๐‘› ๐‘“ ๐‘š (๐‘ก, ๐ฟ๐‘š
๐‘ก , ๐‘๐‘ก ) =
๐œ
๐‘š
๐‘š
๐‘š
๐œ
โˆ—
2
หœ ๐‘ก , ๐‘หœ๐‘ก ) ๐‘ƒ โŠ—โŸจ๐‘€ โŸฉ-a.e. Moreover, โˆฃ๐‘“ (๐‘ก, ๐ฟ , ๐‘ ) โˆฃ โ‰ค ๐œ‰๐‘ก +๐ถโˆฃ๐‘ โˆฃ and this
๐‘“ (๐‘ก, ๐ฟ
๐‘ก
๐‘ก
๐‘ก
1
bound is in ๐ฟ๐œ (๐‘€ ). Passing to a subsequence if necessary, we have
โˆซ ๐œ
๐‘š
โˆฃ๐‘“ ๐‘› (๐‘ , ๐ฟ๐‘›๐‘  , ๐‘๐‘ ๐‘› ) โˆ’ ๐‘“ ๐‘š (๐‘ , ๐ฟ๐‘š
lim
๐‘  , ๐‘๐‘  )โˆฃ ๐‘‘โŸจ๐‘€ โŸฉ๐‘ 
๐‘šโ†’โˆž 0
โˆซ ๐œ
หœ๐‘  , ๐‘
หœ๐‘  )โˆฃ ๐‘‘โŸจ๐‘€ โŸฉ๐‘  ๐‘ƒ -a.s.
โˆฃ๐‘“ ๐‘› (๐‘ , ๐ฟ๐‘›๐‘  , ๐‘๐‘ ๐‘› ) โˆ’ ๐‘“ (๐‘ , ๐ฟ
=
and that
0
As
หœ
๐‘€๐‘š โ†’ ๐‘€
picking a
๐‘šโ†’โˆž
[
]
๐‘š โˆ’๐‘€
หœ๐‘กโˆง๐œ โˆฃ โ†’ 0 and, after
โ„‹๐œ2 , we have ๐ธ sup๐‘กโ‰ค๐‘‡ โˆฃ๐‘€๐‘กโˆง๐œ
๐‘š
หœ๐‘กโˆง๐œ โˆฃ โ†’ 0 ๐‘ƒ -a.s. We can now take
subsequence, sup๐‘กโ‰ค๐‘‡ โˆฃ๐‘€๐‘กโˆง๐œ โˆ’ ๐‘€
in
in (B.4) to obtain
หœ ๐‘กโˆง๐œ โˆฃ โ‰ค โˆฃ๐ฟ๐‘›๐œ โˆ’ ๐ฟ
หœ๐œ โˆฃ +
sup โˆฃ๐ฟ๐‘›๐‘กโˆง๐œ โˆ’ ๐ฟ
๐‘กโ‰ค๐‘‡
โˆซ
๐œ
หœ๐‘  , ๐ฟ
หœ ๐‘  )โˆฃ ๐‘‘โŸจ๐‘€ โŸฉ๐‘ 
โˆฃ๐‘“ ๐‘› (๐‘ , ๐ฟ๐‘›๐‘  , ๐‘๐‘ ๐‘› ) โˆ’ ๐‘“ (๐‘ , ๐ฟ
0
๐‘›
หœ๐œ ) โˆ’ (๐‘€๐‘กโˆง๐œ
หœ๐‘กโˆง๐œ ).
+ sup (๐‘€๐œ๐‘› โˆ’ ๐‘€
โˆ’๐‘€
๐‘กโ‰ค๐‘‡
With exactly the same arguments, extracting another subsequence if necessary, the right hand side converges to zero
๐‘›
shown that lim๐‘› sup๐‘กโ‰ค๐‘‡ โˆฃ๐ฟ๐‘กโˆง๐œ
หœ ๐‘กโˆง๐œ โˆฃ = 0,
โˆ’๐ฟ
๐‘ƒ -a.s.
as
๐‘› โ†’ โˆž.
along a subsequence.
monotonicity, we conclude the result for the whole sequence.
We have
But by
โ–ก
References
[1] J. P. Ansel and C. Stricker. Décomposition de Kunita-Watanabe. In Séminaire
de Probabilités XXVII, volume 1557 of Lecture Notes in Math., pages 3032,
Berlin, 1993. Springer.
[2] D. Becherer. Bounded solutions to backward SDE's with jumps for utility
optimization and indierence hedging. Ann. Appl. Probab., 16(4):20272054,
2006.
[3] S. Biagini and M. Frittelli. Utility maximization in incomplete markets for
unbounded processes. Finance Stoch., 9(4):493517, 2005.
[4] S. Biagini and M. Frittelli. The supermartingale property of the optimal wealth
process for general semimartingales. Finance Stoch., 11(2):253266, 2007.
[5] L. Carassus and M. Rásonyi. Convergence of utility indierence prices to the
superreplication price. Math. Methods Oper. Res., 64(1):145154, 2006.
[6] F. Delbaen, P. Monat, W. Schachermayer, M. Schweizer, and C. Stricker.
Weighted norm inequalities and hedging in incomplete markets. Finance
Stoch., 1(3):181227, 1997.
[7] F. Delbaen and W. Schachermayer. The fundamental theorem of asset pricing
for unbounded stochastic processes. Math. Ann., 312:215250, 1998.
[8] C. Dellacherie and P. A. Meyer. Probabilities and Potential B. North Holland,
Amsterdam, 1982.
[9] M. Émery. Une topologie sur l'espace des semimartingales. In Séminaire de
Probabilités XIII, volume 721 of Lecture Notes in Math., pages 260280, Berlin,
1979. Springer.
44
[10] C. Frei and M. Schweizer. Exponential utility indierence valuation in a general semimartingale model. In F. Delbaen, M. Rásonyi, and C. Stricker, editors, Optimality and Risk - Modern Trends in Mathematical Finance. The
Kabanov Festschrift, pages 4986. Springer, 2009.
[11] T. Goll and J. Kallsen. Optimal portfolios for logarithmic utility. Stochastic
Process. Appl., 89(1):3148, 2000.
[12] T. Goll and J. Kallsen. A complete explicit solution to the log-optimal portfolio
problem. Ann. Appl. Probab., 13(2):774799, 2003.
[13] C. Gollier. The Economics of Risk and Time. MIT Press, Cambridge, 2001.
[14] P. Grandits and T. Rheinländer. On the minimal entropy martingale measure.
Ann. Probab., 30(3):10031038, 2002.
[15] P. Grandits and C. Summer. Risk averse asymptotics and the optional decomposition. Theory Probab. Appl., 51(2):325334, 2007.
[16] M. Grasselli. A stability result for the HARA class with stochastic interest
rates. Insurance Math. Econom., 33(3):611627, 2003.
[17] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes.
Springer, Berlin, 2nd edition, 2003.
[18] E. Jouini and C. Napp. Convergence of utility functions and convergence of
optimal strategies. Finance Stoch., 8(1):133144, 2004.
[19] Yu. Kabanov and C. Stricker. On the optimal portfolio for the exponential utility maximization: Remarks to the six-author paper. Math. Finance.,
12:125134, 2002.
[20] I. Karatzas and G. ยšitkovi¢. Optimal consumption from investment and
random endowment in incomplete semimartingale markets. Ann. Probab.,
31(4):18211858, 2003.
[21] K. Kardaras and G. ยšitkovi¢. Stability of the utility maximization problem
with random endowment in incomplete markets. Forthcoming in Math. Finance.
[22] M. Kobylanski. Backward stochastic dierential equations and partial dierential equations with quadratic growth. Ann. Probab., 28(2):558602, 2000.
[23] K. Larsen. Continuity of utility-maximization with respect to preferences.
Math. Finance, 19(2):237250, 2009.
[24] M. Mania and M. Schweizer. Dynamic exponential utility indierence valuation. Ann. Appl. Probab., 15(3):21132143, 2005.
[25] M. Mania and R. Tevzadze. A unied characterization of the ๐‘ž -optimal and
minimal entropy martingale measures. Georgian Math. J., 10(2):289310,
2003.
[26] M. Nutz. The Bellman equation for power utility maximization with semimartingales. Preprint (arXiv:0912.1883v1), 2009.
[27] M. Nutz. The opportunity process for optimal consumption and investment
with power utility. Preprint (arXiv:0912.1879v1), 2009.
[28] P. Protter. An extension of Kazamaki's results on ๐ต๐‘€ ๐‘‚ dierentials. Ann.
Probab., 8(6):11071118, 1980.
[29] M. Santacroce. On the convergence of the ๐‘-optimal martingale measures to
the minimal entropy martingale measure. Stoch. Anal. Appl., 23(1):3154,
2005.
[30] W. Schachermayer. Optimal investment in incomplete markets when wealth
may become negative. Ann. Appl. Probab., 11(3):694734, 2001.
[31] M. Schweizer. On the minimal martingale measure and the Föllmer-Schweizer
decomposition. Stochastic Anal. and Appl., 13:573599, 1995.
45