Effective cleavage of β-1,4-glycosidic bond by functional micelle with L-histidine residue Xiao-Hong Liao1, Ying Liu1,2, Xiao Peng1, Chun Mi1, Xiang-Guang Meng1,* 1 Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China 2 College of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, P. R. China *Corresponding Author.Telephone: +86-28-85462979. Fax: +86-28-85412291. E-Mail: [email protected]. 1. Effect of pH on conversion of MCB in the absence of catalyst Yield of reducing sugar /% 2.0 1.6 1.2 0.8 0.4 0.0 2 4 6 8 10 12 pH Fig. S1 Yield of reducing sugar changes with pH for hydrolysis of MCB. [MCB]0 = 2.0×10-3 mol·L-1, 90 °C, 10 h. 2. Varies of conversion of MCB with reaction time t at different temperatures. 70 60 Conversion of MCB /% 50 40 30 20 10 0 0 5 10 15 20 25 30 -1 t /h Fig. S2 Plots of conversion of MCB vs. reaction time t at different temperatures. pH 4.0, [MCB]0 = 2.0×10-3 mol·L-1, [NDH] = 2.0×10-4 mol·L-1, 80 °C (■), 90 °C (●), 100 °C (▲), 105 °C (▼), 110 °C (◄). 3. Calculation of first order rate constant kobsd of conversion of MCB catalyzed by NDH micelle 1.2 1.0 -ln(1-ct/co) 0.8 0.6 0.4 0.2 0.0 0 5 10 15 20 25 30 35 40 -3 10 t/s Fig. S3 Plots of -ln(1-ct/c0) vs. reaction time t for conversion of MCB catalyzed by NDH micelle at different temperatures. pH 4.0, [MCB]0 = 2.0×10-3 mol·L-1, [NDH] = 2.0×10-4 mol·L-1 , 80 °C (■), 90 °C (●), 100 °C (▲), 105 °C (▼), 110 °C (◄). 4. Calculation of first order rate constant kobsd of generation of monosaccharide catalyzed by NDH micelle 0.8 0.7 0.6 -ln(1-ct/co) 0.5 0.4 0.3 0.2 0.1 0.0 -0.1 0 5 10 15 20 25 30 -3 10 t /s Fig. S4 Plots of -ln(1-ct/c0) vs. reaction time t for generation of monosaccharide catalyzed by NDH micelle at different temperatures. pH 4.0, [MCB]0 = 2.0×10-3mol·L-1, [NDH] = 2.0×10-4 mol·L-1 , 80 °C (■), 90 °C (●), 100 °C (▲), 105 °C (▼), 110 °C (◄). 5. NMR Data of Methyl-β-D-Cellobioside (MCB) 1 H NMR (400 MHz, DMSO-d6): δ 5.17 (d, 1H, OH-2'), 5.10 (d, 1H, OH-2), 4.95 (d, 1H,OH-3'), 4.92 (d, 1H, OH-4'), 4.64 (br, 1H, OH-3), 4.54 (m, 2H, OH-6/-6'), 4.25 (d, 1H, H-1'), 4.09 (d, 1H, H-1), 3.76–3.67 (2H, H-6/-6'),3.41- 3.61 (2H, H-5/-5'), 3.38 (s, 3H, OMe), 3.32–3.22 (3H, H-3/-4/-5), 3.21–3.11 (2H, H-5'/-3'), 3.04 (m, 1H, H-4'), 3.03–2.96 (2H, H-2/-2'); 13 C NMR (100 MHz, DMSO-d6): δ 103.5 (C-1), 103.0 (C-1'), 80.3 (C-4), 76.7 (C-5'), 76.4 (C-3'), 74.9 (C-3), 74.7 (C-5), 73.2 (C-2'), 73.0 (C-2), 70.0 (C-4'), 61.0 (C-6'), 60.4 (C-6), 56.0 (OMe). Scheme S1 The route of synthesis of Methyl-β-D-Cellobioside
© Copyright 2026 Paperzz