OR-MA-ST 706 HW #3 Due Thurs. March 31 Spring 2016 1. Reiland Let B‡ − \ œ ÖB − I 8 À 13 ÐBÑ !ß 3 œ "ß á ß 7à 24 ÐBÑ œ !ß 4 œ "ß á ß :× and define ^ " ÐB‡ Ñ œ œ ÖD − I 8 À D X f13 ÐB‡ Ñ !ß 3 − MÐB‡ Ñß D X f24 ÐB‡ Ñ œ !ß 4 œ "ß á ß :× where MÐB‡ Ñ œ Ö3 À 13 ÐB‡ Ñ œ !×Þ Show that ^ " ÐB‡ Ñ is a closed convex cone. (Note: a set E © I 8 is closed if it contains its limit points, that is, if E is closed and ÖB5 × is a sequence of points in E such that B5 Ä Bß then B − E). If D − ^ " ÐB‡ Ñß then clearly αD − ^ " ÐB‡ Ñ for α !Þ Therefore ^ " ÐB‡ Ñ is a cone. Suppose D " and D # are elements of ^ " ÐB‡ Ñà then for 3 − MÐB‡ Ñß D "X f13 ÐB‡ Ñ 0, D #X f13 ÐB‡ Ñ 0ß and D "X f24 ÐB‡ Ñ œ !ß D #X f24 ÐB‡ Ñ œ ! for 4 œ "ß á ß :Þ Then for 3 − MÐB‡ Ñß ÐD " D # ÑX f13 ÐB‡ Ñ œ D "X f13 ÐB‡ Ñ D #X f13 ÐB‡ Ñ ! (1) ÐD " D # ÑX f24 ÐB‡ Ñ œ D "X f24 ÐB‡ Ñ D #X f24 ÐB‡ Ñ œ ! Ð#Ñ In addition, (1) and (2) imply that D " D # − ^ " ÐB‡ Ñ. Since ^ " ÐB‡ Ñ is a cone and D " D # − ^ " ÐB‡ Ñ when D " ß D # − ^ " ÐB‡ Ñß ^ " ÐB‡ Ñ is a convex cone. ^ " ÐB‡ Ñ is closed: Let ÖD 5 × be a sequence in ^ " ÐB‡ Ñ such that lim D 5 œ DÞ Since each D 5 − ^ " ÐB‡ Ñß we have 5X ‡ D65 `13 ÐB Ñ `B6 6œ" 8 ‡ D f13 ÐB Ñ œ and D 5X f24 ÐB‡ Ñ œ D65 8 6œ" `24 ÐB‡ Ñ `B6 5Ä∞ ! for 3 − MÐB‡ Ñ œ !ß 4 œ "ß á ß :Þ We must show that D − ^ " ÐB‡ ÑÞ For 3 − MÐB‡ Ñß 3 ÐB Ñ 3 ÐB Ñ 3 ÐB Ñ 5 `13 ÐB Ñ D X f13 ÐB‡ Ñ œ D6 `1`B œ lim D65 `1`B œ lim D65 `1`B œ lim D6 `B6 6 6 6 8 6œ" ‡ 8 6œ" ‡ 5Ä∞ 5 " 8 6œ" ‡ 5Ä∞ ‡ ‡ ‡ 5Ä∞ 6œ" œ lim D f13 ÐB Ñ ! since D − ^ ÐB Ñ for all 5Þ 5X 8 5Ä∞ For 4 œ "ß á ß :ß D X f24 ÐB‡ Ñ œ D6 8 6œ" `24 ÐB‡ Ñ `B6 œ lim D65 8 6œ" 5Ä∞ `24 ÐB‡ Ñ `B6 œ lim D65 8 6œ" 5Ä∞ `24 ÐB‡ Ñ `B6 `24 ÐB Ñ œ lim D65 `B 6 8 5Ä∞ 6œ" ‡ OR-MA-ST 706 HW #3 Solutions page 2 œ lim D 5X f24 ÐB‡ Ñ œ ! since D 5 − ^ " ÐB‡ Ñ for all 5Þ 5Ä∞ Remark: Recall that we proved in class that HÐB‡ Ñ © ^ " ÐB‡ Ñ where HÐB‡ Ñ œ ÖD − I 8 À B œ B‡ ) D − \ for ) − Ð!ß $ Ñ for some $ !× is the set of feasible directions at B‡ . Since ^ " ÐB‡ Ñ is closed from the above problem, then in fact we have HÐB‡ Ñ © ^ " ÐB‡ Ñ where HÐB‡ Ñ denotes the closure of HÐB‡ Ñ Òthis latter set containment is true since if F − I 8 ß G − I 8 with G a closed set and F © G , then F © GÞ Proof: Suppose B − Fà then there exists a sequence ÖB5 × © F such that B5 Ä B. ÖB5 × © F and F © G implies ÖB5 × © Gà since G is closed, the limit of ÖB5 × is in G , that is, B − GÞ Therefore, F © G ]. 2(a). Consider the constraints 1" ÐBÑ œ Ð" B" B# Ñ$ ! 1# ÐBÑ œ B" ! 1$ ÐBÑ œ B# !Þ X Prove that at the point B‡ œ "# ß "# , we have HÐB‡ Ñ § ^ " ÐB‡ Ñ, that is, show that HÐB‡ Ñ is properly contained in ^ " ÐB‡ Ñ. ^ " ÐB‡ Ñ À $Ð" B" B# Ñ# ! X At B‡ œ "# ß "# , MÐB‡ Ñ œ Ö"×Þ f1" ÐB‡ Ñ œ œ ! so $Ð" B" B# Ñ# ^ " ÐB‡ Ñ œ ÖD − I # À D X f1" ÐB‡ Ñ !× œ ÖD − I # À !D" !D# !× œ I # Þ HÐB‡ Ñ À HÐB‡ Ñ œ ÖD − I # À B‡ ) D − \ß for ) − Ð!ß $ Ñ for some $ !×Þ " )D" B‡ )D œ #" ; # ) D# 1" ÐB‡ )DÑ œ Ð" "# )D" "# )D# Ñ$ œ Ð )ÐD" D# ÑÑ$ œ )$ ÐD" D# Ñ$ ! Ê ÐD" D# Ñ$ Ÿ ! Ê D" D# Ÿ ! Ê D# Ÿ D" D ‡ 1# ÐB )DÑ œ "# )D" ! for ) − (!ß $ ÐD" ÑÑ for some $ ÐD" Ñ ! for any D œ " − I # D# D " 1$ ÐB‡ )DÑ œ # )D# ! for ) − (!ß $ ÐD# ÑÑ for some $ ÐD# Ñ ! for any D œ " − I # D# Therefore HÐB‡ Ñ œ ÖD − I # À D# Ÿ D" ×Þ Since HÐB‡ Ñ is closed, HÐB‡ Ñ œ HÐB‡ ÑÞ Therefore HÐB‡ Ñ œ ÖD − I # À D# Ÿ D" × § ^ " ÐB‡ Ñ œ I # . 2(b). Show that the constraints 1% ÐBÑ œ Ð" B" B# Ñ ! 1& ÐBÑ œ B" ! 1' ÐBÑ œ B# ! define precisely the same feasible region as the constraints in 2(a). In addition, show that for any feasible B, HÐBÑ œ ^ " ÐBÑÞ Let \ " œ ÖB − I # À 13 ÐBÑ !ß 3 œ "ß #ß $×ß \ # œ ÖB − I # À 13 ÐBÑ !ß 3 œ %ß &ß '×. i) B − \ " Ê Ð" B" B# Ñ$ !ß B" !ß B# ! Ê Ð" B" B# Ñ !ß B" !ß B# ! Ê B − \ # so \ " © \ # Þ OR-MA-ST 706 HW #3 Solutions page 3 ii) B − \ # Ê Ð" B" B# Ñ !ß B" !ß B# ! Ê Ð" B" B# Ñ$ !ß B" !ß B# ! Ê B − \ " so \ # © \ " Þ \ " © \ # and \ # © \ " Ê \ " œ \ # Þ So the feasible regions (shown below) are the same. Show that for any feasible B, HÐBÑ œ ^ " ÐBÑÞ For an arbitrary feasible Bß it is not known which constraints are active. There are 7 cases to consider. Case i): if B is in the interior of the feasible region, that is, 13 ÐBÑ ! for 3 œ %ß &ß 'ß then we can move a short distance in any direction from B and remain feasible, so HÐBÑ œ HÐBÑ œ I # Þ In addition, since MÐBÑ œ g, by definition ^ " ÐBÑ œ I # Þ So HÐBÑ œ ^ " ÐBÑÞ For reference in what follows, note that for any feasible B, f1% ÐBÑ œ " " ! ß f1& ÐBÑ œ ß f1' ÐBÑ œ Þ " ! " In addition, for any feasible Bß HÐBÑ œ ÖD − I # À B ) D − \ß for ) − Ð!ß $ Ñ for some $ !×Þ so 1% ÐB )DÑ œ " B" )D" B# )D# œ " ÐB" B# Ñ ) ÐD" D# Ñ !à 1& ÐB)DÑ œ B" )D" !à 1' ÐB)DÑ œ B# )D# !à Case ii) MÐBÑ œ Ö%×ß that is " B" B# œ !ß B" !ß B# !: 1% ÐB )DÑ œ )ÐD" D# Ñ ! for ) ! Ê D" D# Ÿ ! Ê D# Ÿ D" so HÐBÑ œ HÐBÑ œ ÖD − I # À D# Ÿ D" ×Þ ^ " ÐBÑ œ ÖD − I # À D X f1% ÐBÑ !× œ ÖD − I # À D# Ÿ D" ×Þ Therefore HÐBÑ œ ^ " ÐBÑÞ Case iii) MÐBÑ œ Ö&×, that is " B" B# !ß B" œ !ß B# !: 1& ÐB)DÑ œ B" )D" ! Ê D" ! so HÐBÑ œ HÐBÑ œ ÖD − I # À D" !×Þ ^ " ÐBÑ œ ÖD − I # À D X f1& ÐBÑ !× œ ÖD − I # À D" !×Þ Therefore HÐBÑ œ ^ " ÐBÑÞ Case iv) MÐBÑ œ Ö'×ß that is " B" B# !ß B" !ß B# œ !: OR-MA-ST 706 HW #3 Solutions 1' ÐB)DÑ œ B# )D# ! Ê D# ! so HÐBÑ œ HÐBÑ œ ÖD − I # À D# !×Þ ^ " ÐBÑ œ ÖD − I # À D X f1' ÐBÑ !× œ ÖD − I # À D# !×Þ Therefore HÐBÑ œ ^ " ÐBÑÞ Case v) MÐBÑ œ Ö%ß &×, that is, " B" B# œ !ß B" œ !ß B# !: from cases ii) and iii), HÐBÑ œ HÐBÑ œ ÖD − I # À D# Ÿ D" and D" !×Þ ^ " ÐBÑ œ ÖD − I # À D X f1% ÐBÑ !ß D X f1& ÐBÑ !× œ ÖD − I # À D# Ÿ D" and D" !× Therefore HÐBÑ œ ^ " ÐBÑÞ Case vi) MÐBÑ œ Ö%ß '×, that is, " B" B# œ !ß B" !ß B# œ !: from cases ii) and iv), HÐBÑ œ HÐBÑ œ ÖD − I # À D# Ÿ D" and D# !× ^ " ÐBÑ œ ÖD − I # À D X f1% ÐBÑ !ß D X f1' ÐBÑ !× œ ÖD − I # À D# Ÿ D" and D# !× Therefore HÐBÑ œ ^ " ÐBÑÞ Case vii) MÐBÑ œ Ö&ß '×, that is, " B" B# !ß B" œ !ß B# œ !: from cases iii) and iv), HÐBÑ œ HÐBÑ œ ÖD − I # À D" ! and D# !× ^ " ÐBÑ œ ÖD − I # À D X f1& ÐBÑ !ß D X f1' ÐBÑ !× œ ÖD − I # À D" ! and D# !× Therefore HÐBÑ œ ^ " ÐBÑÞ page 4
© Copyright 2026 Paperzz