M.Sc. I MT 101 Algebra-1 All

H
I
SHIVAJI UNIVERSITY, KOLHAPUR
CENTRE FOR DISTANCE EDUCATION
Algebra-I
(Mathematics)
For
M. Sc. Part-I
K
J
Copyright ©
Registrar,
Shivaji University,
Kolhapur. (Maharashtra)
First Edition 2008
Second Edition 2010
Prescribed for M. Sc. Part-I
All rights reserved, No part of this work may be reproduced in any form by mimeography or
any other means without permission in writing from the Shivaji University, Kolhapur (MS)
Copies : 1,000
Published by:
Dr. D. V. Muley
Registrar,
Shivaji University,
Kolhapur-416 004
Printed by :
Shri. A. S. Mane,
I/c. Superintendent,
Shivaji University Press,
Kolhapur-416 004
ISBN-978-81-8486-080-1
H
Further information about the Centre for Distance Education & Shivaji University may be
obtained from the University Office at Vidyanagar, Kolhapur-416 004, India.
H
This material has been produced with the developmental grant from DEC-IGNOU, New
Delhi.
(ii)
Centre for Distance Education
Shivaji University, Kolhapur
n EXPERT COMMITTEE n
Dr. D. V. Muley
Prof. (Dr.) N. J. Pawar
Vice-Chancellor,
Shivaji University, Kolhapur
Registrar,
Shivaji University, Kolhapur.
n ADVISORY COMMITTEE n
Prof. (Dr.) N. J. Pawar
Vice-Chancellor,
Shivaji University, Kolhapur.
Dr. D. V. Muley
Registrar,
Shivaji University, Kolhapur.
Dr. A. B. Rajge
Director BCUD,
Shivaji University, Kolhapur.
Shri. B. S. Patil
Finance and Accounts Officer,
Shivaji University, Kolhapur.
Dr. B. M. Hirdekar
Prof. (Dr.) U. B. Bhoite
Lal Bahadur Shastri Marg,
Bharati Vidyapeeth, Pune.
Controller of Examination
Shivaji University, Kolhapur.
Prof. (Dr.) A. N. Joshi
Director, School of Education,
Y. C. M. O. U. Nashik.
Dr. (Smt.) Vasanti Rasam
Dean, Faculty of Social Sciences,
Shivaji University, Kolhapur.
Shri. J. R. Jadhav
Dean, Faculty of Arts & Fine Arts,
Shivaji University, Kolhapur.
Prof. (Dr.) B. S. Sawant
Dean, Faculty of Commerce,
Shivaji University, Kolhapur.
Prof. (Dr.) S. A. Bari
Director, Distance Education,
Kuvempu University, Karnataka.
Dr. T. B. Jagtap
Dean, Faculty of Science,
Shivaji University, Kolhapur.
Prof. Dr. (Smt.) Cima Yeole
(Member Secretary)
Director, Centre for Distance Education,
Shivaji University, Kolhapur.
Dr. K. N. Sangale
Dean, Faculty of Education,
Shivaji University, Kolhapur.
n B. O. S. MEMBERS OF MATHEMATICS n
Chairman- Prof. S. R. Bhosale
P.D.V.P. Mahavidyalaya, Tasgaon, Dist. Sangli.
l
Dr. L. N. Katkar
Head, Dept. of Mathematics,
Shivaji University, Kolhapur.
l
Dr. A. D. Lokhande
Yashavantrao Chavan Warana Mahavidyalaya,
Warananagar.
l
Dr. H. T. Dinde
Karmveer Bhaurao Patil College, Urun-Islampur,
Tal. Walwa, Dist. Sangli.
l
Prof. S. P. Patankar
Vivekanand College, Kolhapur.
l
l
Dr. T. B. Jagtap
Yashwantrao Chavan Institute of Science, Satara.
Prof. V. P. Rathod
Dept. of Mathematics, Gulbarga University,
Gulbarga, (Karnataka State.)
l
Shri. L. B. Jamale
Krishna Mahavidyalaya, Rethare Bk., Karad,
Dist. Satara.
l
Prof. S. S. Benchalli
l
Shri. Santosh Pawar,
1012, 'A' Ward Sadashiv Jadhav, Housing
Society, Radhanagari Road, Kolhapur-416 012.
Dept. of Mathematics,Karnataka University, Dharwad.
(iii)
Centre for Distance Education
Shivaji University,
Kolhapur.
Algebra-I
Writing Team
Unit No.
Dr. Y. S. Powar
Dept. of Mathematics,
Shivaji University, Kolhapur.
All
n
Editor n
Dr. Y. S. Powar
Department of Mathematics,
Shivaji University, Kolhapur.
Maharashtra.
(iv)
Preface
This book in the form of "Notes of Algebra-I" is a natural outgrowth of the lectures
delivered for M. Sc. Part-I students of Shivaji University. The primary purpose of this
book is to facilitate the post graduate education in Algebra. The topics in the book will
cover the syllabus of Algebra-I in detail for M. Sc. (Part-I) external students. For the
basic ideas in Group theory and Ring theory students are advised to read in detail the
other text books of Algebra.
First chapter deals with Group theory and it covers the following articles 1)
Isomorphism theorems, 2) Soluable groups, 3) Series of Groups, 4) Sylow theorems.
The second Chapter is on Ring theory and it especially deals with polynomial
rings.
In the third chapter we discuss Module theory, where modules are the
generalization of vector spaces which students have studied in their B. Sc. course.
The list of the articles in this chapter is as follows.
1) Modules 2) Sum and direct sum of submodules 3) Noetherian and Artenian
Modules.
We owe a deep sense of gratitude to the Vice-Chancellor Dr. N. J. Pawar who has
given impetus to go ahead with ambitious projects like the present one. Dr. L. N. Katkar,
Head, Department of Mathematics, Shivaji University has to be profusely thanked for
the ovation he has poured to prepare the SIM on Algebra. We also thank the Director
of Distance Education Mode Mrs. Cima Yeole and Deputy Director Shri. S. S. Patil for
their help and keen interest in completion of the SIM.
Prof. S. R. Bhosale
Chairman BOS in Mathematics
Shivaji University, Kolhapur-416004.
(v)
M. Sc. (Mathematics)
Algebra-I
Contents
Chapter 1 : Groups
1
1) Isomorphism Theorems
2) Solvable Groups
3) Series of A Group
4) Sylow Theorems
Chapter 2 : Ring of Polynomials
80
Chapter 3 : Theory of Modules
123
1) Modules
2) Sum and Direct Sum of Submodules
3) Noetherian and Artinian Modules
(vii)
CHAPTER I - GROUPS
Unit 1 : Isomorphism theorems :
1.1 Basic definitions and results
1.2 Isomorphism Theorems
1.1 Basic Definitions and Results :
Definition 1.1.1: A group โŒฉ๐บ, โˆ—โŒช is a set G together with a binary operation โˆ— defined on ๐บ,
satisfying the following axioms.
(i)
๐‘Ž โˆ— (๐‘ โˆ— ๐‘) = (๐‘Ž โˆ— ๐‘) โˆ— ๐‘
(ii)
There exists an element ๐‘’ โˆˆ ๐บ such that ๐‘’ โˆ— ๐‘Ž = ๐‘Ž = ๐‘Ž โˆ— ๐‘’.
(iii)
For each ๐‘Ž โˆˆ ๐บ, there is an element ๐‘Žโ€ฒ โˆˆ ๐บ such that ๐‘Ž โˆ— ๐‘Žโ€ฒ = ๐‘’ = ๐‘Žโ€ฒ โˆ— ๐‘Ž.
for all ๐‘Ž, ๐‘ โˆˆ ๐บ.
The element ๐‘’ is called an identity element for โˆ— in ๐บ and the element ๐‘Žโ€ฒ is called
the inverse of ๐‘Ž with respect to โˆ— in ๐บ.
Generally, we use โ€˜ โˆ™ โ€™ for a binary operation in a group ๐บ and ๐‘ฅ โˆ™ ๐‘ฆ is denoted by ๐‘ฅ๐‘ฆ simply.
Definition 1.1.2: A group ๐บ is abelian if its binary operation โˆ— is commutative.
i.e.
๐‘Ž๐‘ = ๐‘๐‘Ž
for all ๐‘Ž, ๐‘ โˆˆ ๐บ
Definition 1.1.3: Let H be a subset of a group ๐บ. If H is itself a group under the induced
binary operation defined on ๐บ, then H is a sub group of ๐บ. We denote this by ๐ป โ‰ค ๐บ.
๐บ is the improper subgroup of ๐บ. All other subgroups of ๐บ are proper subgroups. Also {๐‘’}
is the trivial subgroup of ๐บ. All other subgroups are non trivial.
Definition 1.1.4: Let ๐บ be a group and let ๐‘Ž โˆˆ ๐บ. Then the subgroup ๐ป = {๐‘Ž / ๐‘› โˆˆ ๐‘} of ๐บ
is called the cyclic subgroup of ๐บ generated by ๐‘Ž and it is denoted by < ๐‘Ž >.
(here ๐‘Ž = ๐‘Ž โˆ™ ๐‘Ž โˆ™ โ€ฆ โˆ™ ๐‘Ž ๐‘› times)
Definition 1.1.5: An element ๐‘Ž of group ๐บ generates ๐บ (or ๐‘Ž is generator for ๐บ)
if < ๐‘Ž > = ๐บ.
Algebra
Page No. 1
A group ๐บ is cyclic if there is some element a in ๐บ that generates ๐บ.
Definition 1.1.6: A permutation of a set ๐ด is a function from ๐ด into ๐ด that is both one-one
and onto.
Definition 1.1.7: If ๐ด is a finite set {1, 2, . . . , ๐‘›}, then the group of all permutations of ๐ด is the
symmetric group of ๐‘› letters and is denoted by ๐‘† . [ Note that |๐‘† | = ๐‘› ! ].
Definition 1.1.8: The subgroup of ๐‘† consisting of even permutations of ๐‘› letters is the
alternating group ๐ด of ๐‘› letters. [Note that, |๐ด | =
!
]
Definition 1.1.9: Let ๐บ and ๐บ be any groups. A mapping ๐œ™ โˆถ ๐บ โŸถ ๐บ is a homomorphism
if
๐œ™(๐‘ฅ๐‘ฆ) = ๐œ™(๐‘ฅ) โˆ™ ๐œ™(๐‘ฆ)
for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ
An isomorphism of a group ๐บ with a group ๐บ is a one to one homomorphism of
๐บ onto ๐บ .
Definition 1.1.10: Let ๐ป and ๐พ be subgroups of a group ๐บ. The join ๐ป โˆจ ๐พ of ๐ป and ๐พ is the
intersection of all subgroups of ๐บ containing ๐ป๐พ = {โ„Ž๐‘˜ / โ„Ž โˆˆ ๐ป, ๐‘˜ โˆˆ ๐พ}.
๐ป โˆจ ๐พ is the smallest subgroup of ๐บ containing both ๐ป and ๐พ.
Definition 1.1.11: Let ๐ป and ๐พ be subgroups of a group ๐บ. ๐บ is the internal direct product of
the subgroups ๐ป and ๐พ if the mapping ๐œ™ โˆถ ๐ป × ๐พ โŸถ ๐บ defined by ๐œ™(โ„Ž, ๐‘˜) = โ„Ž โˆ™ ๐‘˜ is an
isomorphism.
In this case any ๐‘” โˆˆ ๐บ can be uniquely written as ๐‘” = โ„Ž โˆ™ ๐‘˜, โ„Ž โˆˆ ๐ป and ๐‘˜ โˆˆ ๐พ. We
can generalize this definition for any finite ๐‘›.
Definition 1.1.12: Let ๐บ be group and let ๐‘Ž โˆˆ ๐บ, for ๐‘– โˆˆ ๐ผ (๐ผ is an indexing set). The smallest
subgroup of ๐บ containing {๐‘Ž / ๐‘– โˆˆ ๐ผ} is the subgroup generated by {๐‘Ž / ๐‘– โˆˆ ๐ผ}. If this
subgroup is all of ๐บ, then we say {๐‘Ž / ๐‘– โˆˆ ๐ผ} generates ๐บ and ๐‘Ž โ€ฒ๐‘  are the generators of ๐บ.
If there exists a finite set {๐‘Ž / ๐‘– โˆˆ ๐ผ} that generates ๐บ, then we say ๐บ is finitely generated.
Algebra
Page No. 2
Definition 1.1.13: Let ๐ป be subgroup of ๐บ and let ๐‘Ž โˆˆ ๐บ. The left coset ๐‘Ž๐ป of ๐ป is the set
{๐‘Žโ„Ž / โ„Ž โˆˆ ๐ป}. The right coset ๐ป๐‘Ž is similarly defined.
Definition 1.1.14: Let ๐ป be subgroup of group ๐บ. The number of left cosets of ๐ป in ๐บ is the
index of ๐ป in ๐บ and is denoted by (๐บ โˆถ ๐ป)
If ๐บ is finite, then (๐บ โˆถ ๐ป) is finite and (๐บ: ๐ป) =
| |
| |
.
Definition 1.1.15: A subgroup ๐ป of group ๐บ is a normal subgroup of ๐บ if ๐‘” ๐ป๐‘” = ๐ป for all
๐‘” โˆˆ ๐บ. We denote this by ๐ป โŠด ๐บ.
Obviously, ๐ป is normal iff ๐‘”โ„Ž๐‘”
โˆˆ ๐ป for all ๐‘” โˆˆ ๐บ and โ„Ž โˆˆ ๐ป.
Definition 1.1.16: Two subgroups ๐ป and ๐พ of a group ๐บ are conjugate of each other if
๐ป = ๐‘” ๐พ๐‘”, for some ๐‘” โˆˆ ๐บ.
Definition 1.1.17: If ๐‘ is a normal subgroup of a group ๐บ, the group of right/left cosets of
๐‘ under induced operation is the factor (quotient) group of ๐บ modulo ๐‘ and is denoted
by
.
Definition 1.1.18: A group ๐บ is simple if it has no proper, nontrivial normal subgroups.
i.e. if ๐ป โ‰ค ๐บ then either ๐ป = {๐‘’} or ๐ป = ๐บ.
Definition 1.1.19 : An element ๐‘Ž๐‘๐‘Ž ๐‘
in a group G (๐‘Ž, ๐‘ โˆˆ ๐บ) is called a commutator of
๐‘Ž and ๐‘ in ๐บ.
Definition 1.1.20 : The kernel of a homomorphism ๐œ™ of a group ๐บ into a group ๐บโ€ฒ is the set
of all elements of ๐บ mapped onto the identity element of ๐บโ€ฒ by ๐œ™. This is denoted by
๐‘˜๐‘’๐‘Ÿ ๐œ™.
Thus, ๐‘˜๐‘’๐‘Ÿ ๐œ™ = {๐‘ฅ โˆˆ ๐บ/๐œ™(๐‘ฅ) = ๐‘’โ€ฒ}.
Definition 1.1.21: Let ๐บ be a group. ๐‘† is any non empty subset of ๐บ. The normalizer of ๐‘† in ๐บ
is the set ๐‘[๐‘†] = {๐‘ฅ โˆˆ ๐บ/๐‘ฅ๐‘†๐‘ฅ
= ๐‘†}.
The normalizer of {๐‘Ž} is denoted by ๐‘[๐‘Ž].
Algebra
Page No. 3
Definition 1.1.22: Let ๐บ be a group and ๐‘Ž โˆˆ ๐บ. The set ๐ถ(๐‘Ž) = {๐‘ฅ๐‘Ž๐‘ฅ
/๐‘ฅ โˆˆ ๐บ} is called the
conjugate of ๐‘Ž in ๐บ.
Theorem 1.1.23: If ๐ป and ๐พ are subgroup of a group ๐บ, then
|๐ป๐พ| =
| |โˆ™| |
|
โˆฉ |
Let |๐ป| = ๐‘Ÿ, |๐พ| = ๐‘  and |๐ป โˆฉ ๐พ| = ๐‘ก.
Proof :
๐ป๐พ = {โ„Ž โˆ™ ๐‘˜ / โ„Ž โˆˆ ๐ป and ๐‘˜ โˆˆ ๐พ}
Then |๐ป๐พ| โ‰ค |๐ป| โˆ™ |๐พ| = ๐‘Ÿ โˆ™ ๐‘ 
โ„Ž ๐‘˜ =โ„Ž ๐‘˜
(i) Let
๐‘ฅ=โ„Ž
Let
Then ๐‘ฅ = โ„Ž
for some โ„Ž โ„Ž โˆˆ ๐ป and ๐‘˜ , ๐‘˜ โˆˆ ๐พ.
โ„Ž =๐‘˜ ๐‘˜
โ„Ž
.
โŸน ๐‘ฅ โˆˆ ๐ป and ๐‘ฅ = ๐‘˜ ๐‘˜
โŸน ๐‘ฅ โˆˆ ๐พ.
Thus ๐‘ฅ โˆˆ ๐ป โˆฉ ๐พ and further
Thus
โ„Ž =โ„Ž ๐‘ฅ
and
๐‘˜ = ๐‘ฅ๐‘˜
โ„Ž ๐‘˜ =โ„Ž ๐‘˜
โŸน โˆƒ ๐‘ฅ โˆˆ ๐ป โˆฉ ๐พ such that โ„Ž = โ„Ž ๐‘ฅ
and ๐‘˜ = ๐‘ฅ๐‘˜ .
(ii) Suppose โˆƒ ๐‘ฆ โˆˆ ๐ป โˆฉ ๐พ such that
โ„Ž =โ„Ž ๐‘ฆ
and ๐‘˜ = ๐‘ฆ๐‘˜
But then โ„Ž ๐‘˜ = โ„Ž ๐‘ฆ
for some โ„Ž โ„Ž โˆˆ ๐ป and ๐‘˜ ๐‘˜ โˆˆ ๐พ.
โˆ™ ๐‘ฆ๐‘˜ = โ„Ž ๐‘˜ .
Thus given ๐‘ฆ โˆˆ ๐ป โˆฉ ๐พ, โ„Ž ๐‘ฆ
and ๐‘ฆ๐‘˜ in HK will produce the element โ„Ž ๐‘˜ .
From (1) and (2), we get that there exists a one-one onto correspondence between the
repeated elements in HK and the elements of ๐ป โˆฉ ๐พ. Thus any element โ„Ž๐‘˜ โˆˆ ๐ป๐พ can be
represented in the form of โ„Ž ๐‘˜ for โ„Ž โˆˆ ๐ป and ๐‘˜ โˆˆ ๐พ for all ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘ก.
Hence
|๐ป๐พ| =
| |โˆ™| |
|
โˆฉ |
1.2 Isomorphism Theorems:
Theorem 1.2.1: A group ๐บ is the internal direct product of subgroups ๐ป and ๐พ if and
only
if
(i)
๐บ =๐ปโ‹๐พ
(ii) โ„Ž๐‘˜ = ๐‘˜โ„Ž
for all โ„Ž โˆˆ ๐ป and ๐‘˜ โˆˆ ๐พ.
(iii) ๐ป โˆฉ ๐พ = {๐‘’}
Algebra
Page No. 4
Proof : Only if part :
Let G be internal direct product of H and K. Hence ๐œ™: ๐ป × ๐พ โŸถ ๐บ defined by
๐œ™(โ„Ž, ๐‘˜) = โ„Ž๐‘˜
is an isomorphism.
Define
๐ป = {(โ„Ž, ๐‘’)/โ„Ž โˆˆ ๐ป}
and
๐พ = {(๐‘’, ๐‘˜)/๐‘˜ โˆˆ ๐พ}.
and
๐พ โ‰ค ๐ป × ๐พ.
Then
๐ป โ‰ค๐ป×๐พ
Further
๐ป โ‹ ๐พ = ๐ป × ๐พ; ๐ป โˆฉ ๐พ = {(๐‘’, ๐‘’)}
(โ„Ž, ๐‘’) โˆˆ ๐ป and (๐‘’, ๐‘˜) โˆˆ ๐พ
โŸน
(โ„Ž, ๐‘’)(๐‘’, ๐‘˜) = (โ„Ž, ๐‘˜)
and
(๐‘’, ๐‘˜)(โ„Ž, ๐‘’) = (โ„Ž, ๐‘˜).
(โ„Ž, ๐‘’)(๐‘’, ๐‘˜) = (๐‘’, ๐‘˜)(โ„Ž, ๐‘’).
Hence,
Therefore we get
(i)
๐ปโ‹๐พ =๐ป×๐พ
(ii) (โ„Ž, ๐‘’)(๐‘’, ๐‘˜) = (๐‘’, ๐‘˜)(โ„Ž, ๐‘’),
for all (โ„Ž, ๐‘’) โˆˆ ๐ป and (๐‘’, ๐‘˜) โˆˆ ๐พ .
(iii) ๐ป โˆฉ ๐พ = {(๐‘’, ๐‘’)}
As ๐œ™ โˆถ ๐ป × ๐พ โŸถ ๐บ is an isomorphism we get ๐œ™(๐ป ) = ๐ป and ๐œ™(๐พ ) = ๐พ and
๐œ™(๐ป × ๐พ) = ๐บ. Hence we get
(i)
๐บ = ๐ป โ‹ ๐พ.
for all โ„Ž โˆˆ ๐ป and ๐‘˜ โˆˆ ๐พ.
(ii) โ„Ž๐‘˜ = ๐‘˜โ„Ž
(iii) ๐ป โˆฉ ๐พ = {๐‘’}
If part :
Define ๐œ™ โˆถ ๐ป × ๐พ โŸถ ๐บ by
๐œ™(โ„Ž, ๐‘˜) = โ„Ž. ๐‘˜
To prove that ๐œ™ is an isomorphism.
(i)
๐œ™ is a well defined map.
(โ„Ž , ๐‘˜ ) = (โ„Ž , ๐‘˜ ) โŸน
โŸน
โ„Ž = โ„Ž and ๐‘˜ = ๐‘˜
โ„Ž ๐‘˜ =โ„Ž ๐‘˜
โŸน ๐œ™(โ„Ž , ๐‘˜ ) = ๐œ™(โ„Ž , ๐‘˜ )
(ii) ๐œ™ is one one.
Let
๐œ™(โ„Ž , ๐‘˜ ) = ๐œ™(โ„Ž , ๐‘˜ )
Then
โ„Ž ๐‘˜ =โ„Ž ๐‘˜
and hence
โ„Ž
But
โ„Ž
and hence โ„Ž
Algebra
โ„Ž =๐‘˜ ๐‘˜
โ„Ž โˆˆ๐ป
and
๐‘˜ ๐‘˜
โˆˆ๐พ
โ„Ž โˆˆ ๐ป โˆฉ ๐พ = {๐‘’}
and
๐‘˜ ๐‘˜
โˆˆ ๐ป โˆฉ ๐พ = {๐‘’}.
Page No. 5
Thus
โ„Ž
โ„Ž =๐‘’
Hence
(โ„Ž , ๐‘˜ ) = (โ„Ž , ๐‘˜ )
and
๐‘˜ ๐‘˜
= ๐‘’, proving that โ„Ž = โ„Ž
and ๐‘˜ = ๐‘˜ .
This shows that ๐œ™ is one-one.
(iii) ๐œ™ is onto.
Let ๐‘” โˆˆ ๐บ. As โ„Ž๐‘˜ = ๐‘˜โ„Ž for all โ„Ž โˆˆ ๐ป and ๐‘˜ โˆˆ ๐พ. We get HK is a subgroup of ๐บ and
hence ๐ป โˆจ ๐พ = ๐ป๐พ. But by (i) ๐ป โˆจ ๐พ = ๐บ. Therefore ๐บ = ๐ป๐พ. Thus ๐‘” โˆˆ ๐บ can be
expressed as ๐‘” = โ„Ž๐‘˜ for some โ„Ž โˆˆ ๐ป and ๐‘˜ โˆˆ ๐พ. And we get ๐œ™(โ„Ž, ๐‘˜) = ๐‘”.
This shows that ๐œ™ is onto.
(iv) ๐œ™ is a homomorphism.
๐œ™[(โ„Ž , ๐‘˜ ) (โ„Ž , ๐‘˜ )] = ๐œ™(โ„Ž โ„Ž , ๐‘˜ ๐‘˜ )
=โ„Ž โ„Ž ๐‘˜ ๐‘˜
=โ„Ž [๐‘˜ โ„Ž ]๐‘˜
โ€ฆ by (2)
= (โ„Ž . ๐‘˜ ) (โ„Ž . ๐‘˜ )
= ๐œ™(โ„Ž , ๐‘˜ ) ๐œ™(โ„Ž , ๐‘˜ )
From (i), (ii), (iii) and (iv), we get ๐œ™ is an isomorphism. Hence ๐บ = ๐ป × ๐พ.
Theorem 1.2.2: Let ๐‘ be a normal subgroup of ๐บ.
Then the map ๐‘“ โˆถ ๐บ โŸถ
defined by
๐‘“(๐‘”) = ๐‘ ,
for ๐‘” โˆˆ ๐บ
is an onto homomorphism.
Proof : ๐‘“ is obviously onto.
Now ๐‘“(๐‘” ๐‘” ) = ๐‘
= ๐‘
๐‘
= ๐‘“(๐‘” ) โˆ™ ๐‘“(๐‘” ) ,
for all ๐‘” , ๐‘” โˆˆ ๐บ
Shows that ๐‘“ is a homomorphism.
Hence ๐‘“ is an onto homomorphism.
Remark : This map ๐‘“ is called natural or canonical homomorphism.
Theorem 1.2.3: Let ๐บ and ๐บโ€ฒ be any groups. For any homomorphism ๐œ™ โˆถ ๐บ โŸถ ๐บโ€ฒ, kernel of
๐œ™ is a normal subgroup of G.
Proof :
(i)
๐‘˜๐‘’๐‘Ÿ ๐œ™ = {๐‘ฅ โˆˆ ๐บ | ๐œ™(๐‘ฅ) = ๐‘’โ€ฒ}. As ๐‘’ โˆˆ ๐‘˜๐‘’๐‘Ÿ๐œ™; ๐‘˜๐‘’๐‘Ÿ๐œ™ is non empty set.
(ii) Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘˜๐‘’๐‘Ÿ ๐œ™.
๐œ™(๐‘ฅ๐‘ฆ) = ๐œ™(๐‘ฅ) โˆ™ ๐œ™(๐‘ฆ)
Algebra
โ€ฆ.. โˆต
๐œ™ is homomorphism.
Page No. 6
= ๐‘’โ€ฒ โˆ™ ๐‘’โ€ฒ
โ€ฆ.. โˆต
๐‘ฅ, ๐‘ฆ โˆˆ ๐‘˜๐‘’๐‘Ÿ ๐œ™
= ๐‘’โ€ฒ
Thus ๐œ™(๐‘ฅ๐‘ฆ) = ๐‘’โ€ฒ.
Hence ๐‘ฅ. ๐‘ฆ โˆˆ ๐‘˜๐‘’๐‘Ÿ ๐œ™.
(iii) Let ๐‘ฅ โˆˆ ๐‘˜๐‘’๐‘Ÿ ๐œ™. Then ๐œ™(๐‘ฅ) = ๐‘’โ€ฒ.
As ๐œ™(๐‘ฅ
) = [๐œ™(๐‘ฅ)]
= [๐‘’ ]
= ๐‘’โ€ฒ shows that ๐‘ฅ
โˆˆ ๐‘˜๐‘’๐‘Ÿ ๐œ™.
From (i), (ii) and (iii) we get ๐‘˜๐‘’๐‘Ÿ๐œ™ is a subgroup of ๐บ.
(iv) Let ๐‘› โˆˆ ๐‘˜๐‘’๐‘Ÿ ๐œ™ and ๐‘” โˆˆ ๐บ. Then
๐œ™(๐‘” ๐‘›๐‘”) = ๐œ™(๐‘” ) ๐œ™(๐‘›) ๐œ™(๐‘”)
= [๐œ™(๐‘”)]
โˆ™ ๐‘’โ€ฒ โˆ™ ๐œ™(๐‘”)
= ๐‘’โ€ฒ
๐‘” ๐‘›๐‘” โˆˆ ๐‘˜๐‘’๐‘Ÿ๐œ™,
Hence
for all ๐‘” โˆˆ ๐บ and ๐‘› โˆˆ ๐‘.
Thus shows that ๐‘˜๐‘’๐‘Ÿ๐œ™ is a normal subgroup of ๐บ.
Theorem 1.2.4: Let ๐บ and ๐บโ€ฒ be groups. ๐œ™ โˆถ ๐บ โŸถ ๐บโ€ฒ is a homomorphism.
๐ปโ‰ค๐บ
โŸน ๐œ™(๐ป) โ‰ค ๐บโ€ฒ
(ii) ๐ป โŠด ๐บ
โŸน ๐œ™(๐ป) โŠด ๐บโ€ฒ
(i)
(iii) ๐พโ€ฒ โ‰ค ๐บโ€ฒ โŸน ๐œ™
(๐พโ€ฒ) โ‰ค ๐บ
(iv) ๐พโ€ฒ โŠด ๐บโ€ฒ โŸน ๐œ™
(๐พโ€ฒ) โŠด ๐บ
Proof : Proof is obvious and hence omitted.
โ€ข
First Isomorphism Theorem :
Theorem 1.2.5: Every homomorphic image of a group is isomorphic with its suitable
quotient group.
OR
Let ๐บ and ๐บโ€ฒ be groups and let ๐œ™: ๐บ โŸถ ๐บโ€ฒ be an onto homomorphism.
Then
๐บโ€ฒ โ‰…
.
Proof : Let ๐œ™: ๐บ โŸถ ๐บโ€ฒ be onto homomorphism. Then ๐บ = ๐œ™(๐บ) = {๐œ™(๐‘ฅ)/๐‘ฅ โˆˆ ๐บ}.
Let ๐‘ = ๐‘˜๐‘’๐‘Ÿ๐œ™. Then ๐‘ โŠด ๐บ (Seer theorem 0.4).
Let ๐œ“ โˆถ ๐บ โŸถ
be canonical mapping. Then ๐œ“ is an onto homomorphism. (See theorem
1.2.2).
Define ๐›พ โˆถ
Algebra
โŸถ ๐บ = ๐œ™(๐บ) by
Page No. 7
๐›พ ๐‘
= ๐œ™(๐‘”) ,
for ๐‘” โˆˆ ๐บ
Claim 1 : ๐œ™ is well defined map.
Let ๐‘
=๐‘
๐‘
for some ๐‘” , ๐‘” โˆˆ ๐บ
=๐‘ โŸน ๐‘” ๐‘”
โŸน ๐‘” ๐‘”
โˆˆ๐‘
โˆˆ ๐‘˜๐‘’๐‘Ÿ๐œ™
โŸน ๐œ™ (๐‘” ๐‘” ) = ๐‘’โ€ฒ
โŸน ๐œ™ (๐‘” ) โˆ™ ๐œ™( ๐‘” ) = ๐‘’โ€ฒ
โŸน ๐œ™ (๐‘” ) โˆ™ [๐œ™( ๐‘” )]
= ๐‘’โ€ฒ
โŸน ๐œ™ (๐‘” ) = ๐œ™( ๐‘” )
โŸน ๐›พ ๐‘
=๐›พ ๐‘
This shows that ๐›พ is well defined.
Claim 2 : ๐›พ is a homomorphism.
๐›พ ๐‘ โˆ™๐‘
=๐›พ ๐‘
= ๐œ™(๐‘” ๐‘” )
= ๐œ™(๐‘” ) ๐œ™(๐‘” )
=๐›พ ๐‘
โˆ™๐›พ ๐‘
for any ๐‘ , ๐‘
โˆˆ
This shows that ๐›พ is a homomorphism.
Claim 3 : ๐›พ is onto.
Let ๐‘ฆ โˆˆ ๐บโ€ฒ. ๐œ™ being onto, there exists ๐‘ฅ โˆˆ ๐บ such that ๐œ™(๐‘ฅ) = ๐‘ฆ. For this ๐‘ฅ โˆˆ ๐บ, ๐‘ โˆˆ
and ๐›พ(๐‘ ) = ๐œ™(๐‘ฅ) = ๐‘ฆ. This shows that ๐›พ is onto.
Claim 4 : ๐›พ is one-one.
Let ๐›พ(๐‘ ) = ๐›พ ๐‘
๐›พ(๐‘ ) = ๐›พ ๐‘
Thus
๐›พ(๐‘ ) = ๐›พ ๐‘
for some ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ
โŸน
๐œ™(๐‘ฅ) = ๐œ™(๐‘ฆ)
โŸน
๐œ™ (๐‘ฅ) โˆ™ [๐œ™( ๐‘ฆ)]
โŸน
๐œ™ (๐‘ฅ) โˆ™ ๐œ™(๐‘ฆ
โŸน
๐œ™ (๐‘ฅ๐‘ฆ
โŸน
๐‘ฅ๐‘ฆ
โŸน
๐‘ =๐‘
โŸน
๐‘ =๐‘ .
= ๐‘’โ€ฒ
) = ๐‘’โ€ฒ
) = ๐‘’โ€ฒ
โˆˆ ๐‘˜๐‘’๐‘Ÿ๐œ™ = ๐‘
Hence ๐›พ is one-one.
Algebra
Page No. 8
โ‰… ๐บโ€ฒ.
From claims (i) to (iv) it follows that ๐›พ is an isomorphism and hence
Diagrammatically we represent the theorem as follows.
๐œ™
๐œ“
๐œ™(๐‘”)
g
๐œ“
๐›พ
๐บ
๐‘ = ๐‘˜๐‘’๐‘Ÿ๐œ™
โ€ข
๐œ™
๐บ = ๐œ™(๐บ)
G
๐›พ
๐‘
(๐‘ = ๐‘˜๐‘’๐‘Ÿ๐œ™)
Second Isomorphism Theorem :
Theorem 1.2.6: ๐ป is a subgroup of group ๐บ and ๐‘ is a normal subgroup of a group ๐บ. Then
โ‰…
โˆฉ
๐ปโ‰ค๐บ
and
๐‘โŠด๐บ
โŸน
๐ป๐‘ โ‰ค ๐บ
Further
๐‘ โ‰ค ๐ป๐‘ and
๐‘โŠด๐บ
โŸน
๐‘ โŠด ๐ป๐‘
Hence
is defined.
Proof :
๐ปโˆฉ๐‘ โŠด๐ป
โŸน
is defined.
โˆฉ
Define ๐œ™ โˆถ ๐ป๐‘ โŸถ
by
โˆฉ
๐œ™(โ„Ž๐‘›) = (๐ป โˆฉ ๐‘) โ„Ž
for โ„Ž โˆˆ ๐ป and ๐‘› โˆˆ ๐‘
Claim 1 : ๐œ™ is well defined.
Let โ„Ž ๐‘› = โ„Ž ๐‘›
โ„Ž ๐‘› =โ„Ž ๐‘›
โ„Ž
for โ„Ž , โ„Ž โˆˆ ๐ป and ๐‘› , ๐‘› โˆˆ ๐‘.
โŸน
โ„Ž โˆˆ ๐ป and ๐‘› ๐‘›
Hence โ„Ž
โ„Ž =๐‘› ๐‘›
โ„Ž
โ„Ž =๐‘› ๐‘›
โˆˆ ๐‘.
โŸน
โ„Ž
โ„Ž โˆˆ๐ปโˆฉ๐‘
โŸน
(๐ป โˆฉ ๐‘) โ„Ž = (๐ป โˆฉ ๐‘) โ„Ž
โŸน
๐œ™ (โ„Ž ๐‘› ) = ๐œ™ (โ„Ž ๐‘› )
This shows that ๐œ™ is well defined.
Claim 2 : ๐œ™ is a homomorphism.
๐œ™ [(โ„Ž ๐‘› )(โ„Ž ๐‘› )]
= ๐œ™ [โ„Ž (๐‘› โ„Ž ) ๐‘› ]
= ๐œ™ [โ„Ž (โ„Ž ๐‘› ) ๐‘› ]
.... โ„Ž , โ„Ž โˆˆ ๐ป and ๐‘› , ๐‘› โˆˆ ๐‘
.... ๐‘ โŠด ๐บ
โŸน โ„Ž๐‘ = ๐‘โ„Ž
Hence ๐‘› โ„Ž = โ„Ž ๐‘› for some ๐‘› โˆˆ ๐‘
= ๐œ™ [(โ„Ž โ„Ž )(๐‘› ๐‘› )]
Algebra
Page No. 9
= (๐ป โˆฉ ๐‘) โ„Ž โ„Ž
= [(๐ป โˆฉ ๐‘) โ„Ž ] [(๐ป โˆฉ ๐‘) โ„Ž ]
= ๐œ™ (โ„Ž ๐‘› ) ๐œ™ (โ„Ž ๐‘› )
This shows that ๐œ™ is a homomorphism.
Claim 3 : ๐œ™ is onto.
Let (๐ป โˆฉ ๐‘) โ„Ž โˆˆ
. Then โ„Ž โˆˆ ๐ป.
โˆฉ
As โ„Ž โˆˆ ๐ป โŸน โ„Ž โˆ™ ๐‘’ โˆˆ ๐ป๐‘
and ๐œ™(โ„Ž๐‘’) = (๐ป โˆฉ ๐‘) โ„Ž .
This shows that ๐œ™ is onto.
From claim 1, claim 2 and claim 3, ๐œ™ is an onto homomorphism. Hence by 1st
isomorphism theorem,
โ‰…
. . . (1)
โˆฉ
Now,
๐‘˜๐‘’๐‘Ÿ๐œ™ = {โ„Ž๐‘› โˆˆ ๐ป๐‘ / ๐œ™(โ„Ž๐‘›) = (๐ป โˆฉ ๐‘)}
= {โ„Ž๐‘› โˆˆ ๐ป๐‘ / (๐ป โˆฉ ๐‘)โ„Ž = (๐ป โˆฉ ๐‘)}
= {โ„Ž๐‘› โˆˆ ๐ป๐‘ / โ„Ž โˆˆ (๐ป โˆฉ ๐‘)}
=๐‘
... โˆต โ„Ž โˆˆ ๐ป โˆฉ ๐‘
โŸน โ„Žโˆˆ๐‘
โŸน โ„Žโˆ™๐‘› โˆˆ๐‘
Thus
๐‘˜๐‘’๐‘Ÿ๐œ™ = ๐‘
for โ„Ž โˆˆ ๐ป and ๐‘› โˆˆ ๐‘
. . . (2)
From (1) and (2) we get
โ‰…
โ€ข
โˆฉ
Third Isomorphism Theorem :
Theorem 1.2.7: Let ๐ป and ๐พ be normal subgroups of a group ๐บ with ๐พ โ‰ค ๐ป. Then
/
โ‰…
/
Proof : Let ๐ป and ๐พ are normal in ๐บ and ๐พ โ‰ค ๐ป. Therefore ๐พ is a normal subgroup of ๐ป.
Thus
,
,
are all defined.
Define ๐œ™ โˆถ ๐บ โŸถ
/
/
๐œ™(๐‘”) =
Algebra
by
โˆ™ ๐พ
for each ๐‘” โˆˆ ๐บ.
Page No. 10
Claim 1 : ๐œ™ is well defined.
Let ๐‘” = ๐‘” in ๐บ.
๐‘” =๐‘”
โŸน
๐พ
=๐พ
โŸน
โŸน
โˆ™๐พ
=
โˆ™๐พ
๐œ™ (๐‘” ) = ๐œ™ (๐‘” )
Hence ๐œ™ is well defined.
Claim 2 : ๐œ™ is homomorphism..
Let ๐‘” , ๐‘” โˆˆ ๐บ.
๐œ™(๐‘” ๐‘” ) =
โˆ™๐พ
=
โˆ™ ๐พ
=
โˆ™ ๐พ๐‘”
โˆ™๐พ
โˆ™ ๐พ๐‘”
1
2
= ๐œ™(๐‘” ) โˆ™ ๐œ™(๐‘” )
This shows that ๐œ™ is homomorphism.
Claim 3 : ๐œ™ is onto.
Let
โˆ™ ๐พ๐‘Ž โˆˆ
/
. Then ๐‘Ž โˆˆ ๐บ. For this ๐‘Ž โˆˆ ๐บ we get ๐œ™(๐‘Ž) =
/
๐ป
โˆ™๐พ .
๐พ
Therefore ๐œ™ is onto.
From claim 1, claim 2 and claim 3, ๐œ™ is an onto homomorphism. Hence by 1st
isomorphism theorem,
โ‰…
/
/
. . . (1)
Now,
๐‘˜๐‘’๐‘Ÿ๐œ™ = {๐‘ฅ โˆˆ ๐บ / ๐œ™(๐‘ฅ) = (๐ป/๐พ)}
= {๐‘ฅ โˆˆ ๐บ / (๐ป/๐พ)(๐พ ) = (๐ป/๐พ)}
= {๐‘ฅ โˆˆ ๐บ / ๐พ โˆˆ (๐ป/๐พ)}
= {๐‘ฅ โˆˆ ๐บ / ๐‘ฅ โˆˆ ๐ป}
Thus
๐‘˜๐‘’๐‘Ÿ๐œ™ = ๐ป
. . . (2)
From (1) and (2) we get
โ‰…
Algebra
/
/
Page No. 11
โ€ข
Zassenhaus Lemma :
Theorem 1.2.8: Let ๐ป and ๐พ be subgroups of group ๐บ. ๐ป โˆ— and ๐พ โˆ— be normal subgroups of ๐ป
and ๐พ respecively. Then
(i)
๐ป โˆ— (๐ป โˆฉ ๐พ โˆ— ) is a normal subgroup of ๐ป โˆ— (๐ป โˆฉ ๐พ).
(ii)
๐พ โˆ— (๐ป โˆ— โˆฉ ๐พ) is a normal subgroup of ๐พ โˆ— (๐ป โˆฉ ๐พ).
(iii)
โˆ—(
โˆฉ )
โˆ—( โˆฉ โˆ—)
โ‰…
โˆ—(
โˆ—(
โˆฉ )
)
โˆ—โˆฉ
โ‰…
(
โˆ—
โˆฉ
โˆฉ )โˆ™(
โˆ—
โˆฉ )
Proof :
(i)
๐ป โˆฉ ๐พ โ‰ค ๐ป, ๐ป โˆ— โŠด ๐ป
โŸน
๐ป โˆ— โˆ™ (๐ป โˆฉ ๐พ) โ‰ค ๐ป.
(ii)
๐ป โˆฉ ๐พ โ‰ค ๐พ, ๐พ โˆ— โŠด ๐พ
โŸน
๐พ โˆ— โˆ™ (๐ป โˆฉ ๐พ) โ‰ค ๐พ.
(iii)
๐ป โˆ— โˆฉ ๐พ โŠด ๐ป and ๐ป โˆ— โˆฉ ๐พ โ‰ค ๐พ
Hence
๐ป โˆ— โˆฉ ๐พ โŠด ๐ป โˆฉ ๐พ.
Similarly, ๐พ โˆ— โˆฉ ๐ป โŠด ๐ป โˆฉ ๐พ.
Hence
Therefore
(๐ป โˆ— โˆฉ ๐พ) โˆ™ (๐พ โˆ— โˆฉ ๐ป) โŠด (๐ป โˆฉ ๐พ).
(
โˆ—
โˆฉ
โˆฉ )โˆ™(
โˆ—
โˆฉ )
is defined.
Put ๐ฟ = (๐ป โˆ— โˆฉ ๐พ) โˆ™ (๐พ โˆ— โˆฉ ๐ป). Thus ๐ฟ โŠด (๐ป โˆฉ ๐พ).
(iv)
Define ๐œ™ โˆถ ๐ป โˆ— (๐ป โˆฉ ๐พ) โŸถ
( โˆฉ )
by
๐œ™(โ„Ž๐‘ฅ) = ๐ฟ๐‘ฅ
where โ„Ž โˆˆ ๐ป โˆ— and ๐‘ฅ โˆˆ ๐ป โˆฉ ๐พ.
Claim 1 : ๐œ™ is well defined.
Let
for โ„Ž , โ„Ž โˆˆ ๐ป โˆ— and ๐‘ฅ โˆˆ ๐ป โˆฉ ๐พ.
โ„Ž ๐‘ฅ =โ„Ž ๐‘ฅ
for โ„Ž โ„Ž โˆˆ ๐ป โˆ— and ๐‘ฅ ๐‘ฅ
Then โ„Ž โ„Ž = ๐‘ฅ ๐‘ฅ
Hence โ„Ž โ„Ž = ๐‘ฅ ๐‘ฅ
โŸน
โ„Ž โ„Ž โˆˆ ๐ป โˆ— โˆฉ (๐ป โˆฉ ๐พ)
โŸน
โ„Ž โ„Ž โˆˆ ๐ปโˆ— โˆฉ ๐พ โІ ๐ฟ
โŸน
โ„Ž โ„Ž โˆˆ๐ฟ
โŸน
๐‘ฅ ๐‘ฅ
โŸน
๐ฟ
โŸน
๐œ™ (โ„Ž ๐‘ฅ ) = ๐œ™(โ„Ž ๐‘ฅ )
โˆˆ ๐ป โˆฉ ๐พ.
โˆˆ๐ฟ
=๐ฟ
This shows that ๐œ™ is a well defined map.
Claim 2 : ๐œ™ is homomorphism.
Algebra
Page No. 12
Let โ„Ž ๐‘ฅ , โ„Ž ๐‘ฅ โˆˆ ๐ป โˆ— (๐ป โˆฉ ๐พ). Then โ„Ž , โ„Ž โˆˆ ๐ป โˆ— and ๐‘ฅ , ๐‘ฅ โˆˆ ๐ป โˆฉ ๐พ.
As ๐ป โˆ— โŠด ๐ป and ๐‘ฅ โˆˆ ๐ป we get ๐‘ฅ ๐ป โˆ— = ๐ป โˆ— ๐‘ฅ . Thus ๐‘ฅ โ„Ž โˆˆ ๐‘ฅ ๐ป โˆ— implies ๐‘ฅ โ„Ž โˆˆ ๐ป โˆ— ๐‘ฅ .
Hence ๐‘ฅ โ„Ž = โ„Ž ๐‘ฅ for some โ„Ž โˆˆ ๐ป โˆ— . Hence we get
๐œ™ [(โ„Ž ๐‘ฅ )(โ„Ž ๐‘ฅ )] = ๐œ™ [โ„Ž (๐‘ฅ โ„Ž )๐‘ฅ ]
... By associativity.
= ๐œ™ [โ„Ž (โ„Ž ๐‘ฅ )๐‘ฅ ]
... ๐‘ฅ โ„Ž = โ„Ž ๐‘ฅ .
= ๐œ™ [(โ„Ž โ„Ž ) (๐‘ฅ ๐‘ฅ )]
... By associativity.
= ๐ฟ
... By definition of ๐œ™.
= ๐ฟ
โˆ™๐ฟ
= ๐œ™ (โ„Ž ๐‘ฅ ) ๐œ™(โ„Ž ๐‘ฅ )
This shows that ๐œ™ is a homomorphism.
Claim 3 : ๐œ™ is onto.
Let ๐ฟ โˆˆ
โˆฉ
. Then ๐‘ฅ โˆˆ ๐ป โˆฉ ๐พ.
Hence, ๐‘’ โˆ™ ๐‘ฅ โˆˆ ๐ป โˆ— โˆ™ (๐ป โˆฉ ๐พ) and ๐œ™ (๐‘’๐‘ฅ) = ๐ฟ . This shows that ๐œ™ is onto.
Thus, from claim 1, claim 2 and claim 3 we get
โˆฉ
is a homomorphic image of
๐ป โˆ— โˆ™ (๐ป โˆฉ ๐พ).
Hence, by first isomorphism theorem,
โˆฉ
โˆ— โˆ™(
โ‰…
โˆฉ )
. . . (1)
Now,
๐‘˜๐‘’๐‘Ÿ๐œ™ = {โ„Ž๐‘ฅ โˆˆ ๐ป โˆ— โˆ™ (๐ป โˆฉ ๐พ)/๐œ™(โ„Ž๐‘ฅ) = ๐ฟ}
= {โ„Ž๐‘ฅ โˆˆ ๐ป โˆ— โˆ™ (๐ป โˆฉ ๐พ)/๐ฟ = ๐ฟ}
= {โ„Ž๐‘ฅ โˆˆ ๐ป โˆ— โˆ™ (๐ป โˆฉ ๐พ)/๐‘ฅ โˆˆ ๐ฟ}
= {โ„Ž๐‘ฅ / โ„Ž โˆˆ ๐ป โˆ— ๐‘Ž๐‘›๐‘‘ ๐‘ฅ โˆˆ (๐ป โˆฉ ๐พ) โˆฉ ๐ฟ}
= {โ„Ž๐‘ฅ / โ„Ž โˆˆ ๐ป โˆ— ๐‘Ž๐‘›๐‘‘ ๐‘ฅ โˆˆ ๐ฟ}
= {โ„Ž๐‘ฅ / โ„Ž๐‘ฅ โˆˆ ๐ป โˆ— โˆ™ ๐ฟ}
= {โ„Ž๐‘ฅ / โ„Ž๐‘ฅ โˆˆ ๐ป โˆ— โˆ™ (๐ป โˆฉ ๐พ โˆ— )}
= ๐ป โˆ— โˆ™ (๐ป โˆฉ ๐พ โˆ— )
. . . (2)
[ ๐ป โˆ— ๐ฟ = ๐ป โˆ— โˆ™ (๐ป โˆ— โˆฉ ๐พ) โˆ™ (๐ป โˆฉ ๐พ โˆ— ) = ๐ป โˆ— โˆ™ (๐ป โˆฉ ๐พ โˆ— ) as ๐ป โˆ— โˆฉ ๐พ โ‰ค ๐ป โˆ— ]
From (1) and (2), we get,
โˆฉ
โ‰…
โˆ—
( โˆฉ )
โˆฉ โˆ—)
โˆ—โˆ™ (
๐‘˜๐‘’๐‘Ÿ๐œ™ being a normal subgroup of ๐ป โˆ— โˆ™ (๐ป โˆฉ ๐พ โˆ— ), we get
Algebra
Page No. 13
๐ป โˆ— โˆ™ (๐ป โˆฉ ๐พ โˆ— ) โŠฒ ๐ป โˆ— โˆ™ (๐ป โˆฉ ๐พ)
(v) As in (iv) we can prove
โˆฉ
โˆ—
( โˆฉ )
โˆ—โˆ™ ( โˆ— โˆฉ )
โ‰…
and ๐พ โˆ— โˆ™ (๐ป โˆ— โˆฉ ๐พ) is a normal subgroup of ๐พ โˆ— โˆ™ (๐ป โˆฉ ๐พ).
This completes the proof of Zassenhaus Lemma.
Theorem 1.2.9:
Let ๐บ be a group.
(i) For any non empty subset ๐‘† of ๐บ, ๐‘[๐‘†] is a subgroup of ๐บ.
Further, for any subgroup ๐ป of ๐บ.
(ii) ๐‘[๐ป] is the largest subgroup of ๐บ in which ๐ป is normal.
(iii) If ๐พ is a subgroup of ๐‘[๐ป], then ๐ป is a normal subgroup of ๐พ๐ป.
Proof :
(i) ๐‘[๐‘†] = {๐‘ฅ โˆˆ ๐บ/๐‘ฅ๐‘†๐‘ฅ
= ๐‘†}. As ๐‘’๐‘†๐‘’
= ๐‘† we get ๐‘’ โˆˆ ๐‘[๐‘†].
Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘[๐‘†]
๐‘ฆ) ๐‘† (๐‘ฅ
(๐‘ฅ
๐‘ฆ)
= (๐‘ฅ
๐‘ฆ) ๐‘† (๐‘ฆ
=๐‘ฅ
(๐‘ฆ ๐‘† ๐‘ฆ
=๐‘ฅ
๐‘†๐‘ฅ
๐‘ฅ)
)๐‘ฅ
=๐‘†
This shows that ๐‘ฅ
๐‘ฆ โˆˆ ๐‘[๐‘†] whenever ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘[๐‘†].
Hence N[S] is a subgroup of G.
(ii) Let H be a subgroup of G.
๐ป โІ ๐‘[๐ป],
as โ„Ž๐ปโ„Ž
=๐ป
for any โ„Ž โˆˆ ๐ป
Let ๐ป โŠฒ ๐พ where K is any subgroup of G. Then ๐‘˜๐ป๐‘˜
=๐ป
for any ๐‘˜ โˆˆ ๐พ.
Hence ๐พ โІ ๐‘[๐ป].
Now for any ๐‘” โˆˆ ๐‘[๐ป] we get ๐‘”๐ป๐‘”
= ๐ป. This shows that ๐ป โŠด ๐‘[๐ป] and if ๐ป โŠฒ ๐พ for
some ๐พ โ‰ค ๐บ, then ๐พ โІ ๐‘[๐ป].
Hence N [H] is the largest subgroup of G in which H is normal.
(iii) ๐พ โ‰ค ๐‘[๐ป]. Hence for all ๐‘˜ โˆˆ ๐พ, ๐‘˜๐ป๐‘˜
= ๐ป. Hence HK = KH. This shows that HK is a
subgroup of G.
๐ป โŠฒ ๐‘[๐ป] and ๐พ โ‰ค ๐‘[๐ป]
๐ป โŠด ๐‘[๐ป]
Algebra
โŸน
โŸน
๐ป๐พ โ‰ค ๐‘[๐ป]
๐ป โŠด ๐พ๐ป as ๐ป โ‰ค ๐ป๐พ
Page No. 14
Theorem 1.2.10: ๐บ is a group and ๐ป is a subgroup of ๐บ such that (๐บ: ๐ป) = 2. Then ๐ป is a
normal subgroup of ๐บ.
Proof : Select any ๐‘” โˆˆ ๐บ such that ๐‘” โˆ‰ ๐ป.
๐บ = ๐ป โˆช ๐ป๐‘” and
๐ป โˆฉ ๐ป๐‘” = ๐œ™.
Similarly, ๐บ = ๐ป โˆช ๐‘”๐ป and
๐ป โˆฉ ๐‘”๐ป = ๐œ™.
Then,
Hence, this is possible iff ๐ป๐‘” = ๐‘”๐ป. Thus for any ๐‘” โˆ‰ ๐ป we get ๐ป๐‘” = ๐‘”๐ป.
But, as for any โ„Ž โˆˆ ๐ป, we have, ๐ปโ„Ž = โ„Ž๐ป. It follows that ๐ป๐‘” = ๐‘”๐ป, for each ๐‘” โˆˆ ๐บ.
Hence, ๐ป โŠด ๐บ.
Theorem 1.2.11 : Let ๐บ be a group. Then following statements are true.
(i)
The set of conjugate classes of ๐บ is a partition of ๐บ.
(ii)
|๐‘(๐‘Ž)| = [๐บ: ๐‘(๐‘Ž)].
(iii) If ๐บ is finite, |๐บ| = โˆ‘|๐บ: ๐‘(๐‘Ž)|, ๐‘Ž is running over exactly one element from each
conjugate class.
Proof :
(i)
Define a relation 'โˆผ' on ๐บ by ๐‘Ž โˆผ ๐‘ iff ๐‘ = ๐‘ฅ๐‘Ž๐‘ฅ
. Then 'โˆผ' is an equivalence relation
on ๐บ and the equivalence class containing ๐‘Ž is ๐‘(๐‘Ž). Hence, ๐บ = โ‹ƒ ๐ถ(๐‘Ž) (disjoint
union). Hence, {๐ถ(๐‘Ž) / ๐‘Ž โˆˆ ๐บ} forms a partition of ๐บ.
(ii)
To prove |๐‘(๐‘Ž)| = (๐บ: ๐‘(๐‘Ž)) .
Let โ„œ denote the set of all right cosets of ๐‘[๐‘Ž] in ๐บ.
Define a map ๐‘“ โˆถ ๐ถ(๐‘Ž) โŸถ โ„œ by
๐‘“(๐‘”๐‘Ž๐‘” ) = ๐‘(๐‘Ž)๐‘”
(i)
๐‘“ is well defined (obviously true.)
(ii)
๐‘“ is one-one.
Let (๐‘ ) ๐‘ฅ = (๐‘ ) ๐‘ฆ ,
(๐‘ ) ๐‘ฅ = (๐‘ ) ๐‘ฆ
Thus ,
๐‘“(๐‘ฅ
โŸน
๐‘ฅ
๐‘Ž๐‘ฅ) = ๐‘“(๐‘ฆ
๐‘Ž๐‘ฅ = ๐‘ฆ
for some ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ
โŸน
๐‘ฅ๐‘ฆ
โˆˆ ๐‘(๐‘Ž)
โŸน
(๐‘ฅ๐‘ฆ
) ๐‘Ž (๐‘ฅ๐‘ฆ
โŸน
๐‘ฅ๐‘ฆ
๐‘Ž = ๐‘Ž๐‘ฅ๐‘ฆ
โŸน
๐‘ฆ
๐‘Ž๐‘ฆ=๐‘ฅ
)
=๐‘Ž
๐‘Ž๐‘ฅ
๐‘Ž ๐‘ฆ)
๐‘Ž๐‘ฆ
Hence, ๐‘“ is one-one.
Algebra
Page No. 15
(iii) ๐‘“ is onto.
Let (๐‘ )๐‘” โˆˆ โ„œ. Then for this ๐‘” โˆˆ ๐บ, ๐‘” ๐‘Ž๐‘” โˆˆ ๐ถ(๐‘Ž) and ๐‘“(๐‘” ๐‘Ž๐‘”) = (๐‘ )๐‘”. This
shows that ๐‘“ is onto.
From (i), (ii) and (iii) we get โˆƒ a mapping ๐‘“ โˆถ ๐ถ(๐‘Ž) โŸถ โ„œ which is both one-one and
onto. Hence |๐‘(๐‘Ž)| = |โ„œ| = [๐บ: ๐‘(๐‘Ž)] .
(iii) Let ๐บ be finite. As ๐บ =
U C(a) (disjoint union) we get
a
G = โˆ‘ C( a ) = โˆ‘ ( G : N ( a ))
a
a
where a runs over exactly one element from each conjugate class.
Algebra
Page No. 16
Unit 2 : Solvable Groups :
2.1
Derived subgroup of a group ๐บ.
2.2
Isomorphism Theorems.
2.1 Derived subgroup of a group G :
Definition 2.1.1: Let G be a group. Define ๐‘ˆ = {๐‘Ž๐‘๐‘Ž ๐‘
/ ๐‘Ž, ๐‘ โˆˆ ๐บ}.
The subgroup generated by ๐‘ˆ i.e. โŒฉ๐‘ˆโŒช is called the derived subgroup of ๐บ and it is denoted
by ๐บโ€ฒ.
Remarks 2.1.2:
(i)
U is the set of commutators in G.
(ii) ๐‘ฅ โˆˆ ๐บโ€ฒ
โŸน
๐‘ฅ = ๐‘ฆ ๐‘ฆ โ€ฆ ๐‘ฆ where n is a finite integer and ๐‘ฆ โˆˆ ๐‘ˆ for each ๐‘–.
(iii) ๐บโ€ฒ is also called commutator subgroup of G.
(iv) ๐บ is abelian iff ๐บ = {๐‘’}.
Theorem 2.1.3: Let ๐บ be a group and let ๐บโ€ฒ be the derived subgroup of ๐บ. Then
(i)
๐บโ€ฒ โŠฒ ๐บ
(ii)
is abelian.
(iii) ๐‘ โŠด ๐บ.
is abelian iff ๐บโ€ฒ โ‰ค ๐‘.
Proof :
(1) By definition, ๐บโ€ฒ is a subgroup of ๐บ only to prove ๐บโ€ฒ is normal in ๐บ.
Let ๐‘” โˆˆ ๐บ and ๐‘ฅ โˆˆ ๐บโ€ฒ.
Case I :
๐‘ฅ โˆˆ ๐บโ€ฒ and ๐‘ฅ = ๐‘Ž๐‘๐‘Ž ๐‘
.
Then
๐‘” ๐‘ฅ๐‘” = ๐‘” (๐‘Ž๐‘๐‘Ž ๐‘
)๐‘”
= (๐‘” ๐‘Ž๐‘”) (๐‘” ๐‘๐‘”) (๐‘” ๐‘Ž ๐‘”) (๐‘” ๐‘ ๐‘”)
= (๐‘” ๐‘Ž๐‘”) (๐‘” ๐‘๐‘”) (๐‘” ๐‘Ž๐‘”)
This shows that ๐‘”๐‘ฅ๐‘”
โˆˆ ๐‘ˆ and hence ๐‘”๐‘ฅ๐‘”
(๐‘” ๐‘๐‘”)
โˆˆ ๐บโ€ฒ.
Case II : Let ๐‘ฅ โˆˆ ๐บโ€ฒ and ๐‘ฅ = ๐‘ฆ ๐‘ฆ โ€ฆ ๐‘ฆ where n is finite and ๐‘ฆ โˆˆ ๐‘ˆ for each ๐‘– and hence
๐‘” ๐‘ฅ๐‘”, being the finite product of elements of U. is in ๐บโ€ฒ.
Thus, for ๐‘” โˆˆ ๐บ and ๐‘ฅ โˆˆ ๐บโ€ฒ we get ๐‘”๐‘ฅ๐‘”
Algebra
โˆˆ ๐บโ€ฒ and hence ๐บโ€ฒ is a normal subgroup of ๐บ.
Page No. 17
(2) ๐บ โŠด ๐บ
โŸน
To prove that
Let ๐บ , ๐บ โˆˆ
is defined.
is abelian.
. Then ๐‘Ž, ๐‘ โˆˆ ๐บ.
[(๐บ ) (๐บ )] [(๐บ ) (๐บ )]
= [๐บ ] [๐บ ]
= [๐บ ] ๐บ(
โ€ฆ by the definition of โˆ™ in
.
)
= [๐บ ] ๐บ
= ๐บ
=๐บ
as ๐‘Ž๐‘๐‘Ž ๐‘
= identity element of
.
(๐บ ) (๐บ ) = (๐บ ) (๐บ ) .
But this shows that
Hence
โˆˆ๐บ
is abelian.
(3)
Only if part :
is abelian
(๐‘ )(๐‘ ) = (๐‘ )(๐‘ )
โŸน
=๐‘
for all ๐‘Ž, ๐‘ โˆˆ ๐บ.
for ๐‘Ž, ๐‘ โˆˆ ๐บ
Hence
๐‘
โŸน
(๐‘ )(๐‘ )
โŸน
(๐‘ ) ๐‘(
โŸน
(๐‘ )(๐‘
โŸน
๐‘
=๐‘
for ๐‘Ž, ๐‘ โˆˆ ๐บ
โŸน
๐‘Ž๐‘๐‘Ž ๐‘
โˆˆ๐‘
for ๐‘Ž, ๐‘ โˆˆ ๐บ
=๐‘
for ๐‘Ž, ๐‘ โˆˆ ๐บ
=๐‘
for ๐‘Ž, ๐‘ โˆˆ ๐บ
)=๐‘
for ๐‘Ž, ๐‘ โˆˆ ๐บ
)
This shows that ๐‘ˆ โІ ๐‘. By the definition of subgroups generated by U, we get โŒฉ๐‘ˆโŒช โІ ๐‘.
Therefore ๐บโ€ฒ โІ ๐‘.
If part :
Let ๐‘ โŠด ๐บ and ๐บโ€ฒ โІ ๐‘. To prove that
As ๐บโ€ฒ โІ ๐‘ we get we get ๐‘Ž๐‘๐‘Ž ๐‘
Thus
๐‘
i.e.
(๐‘ ) ๐‘(
Algebra
is abelian.
โˆˆ ๐‘ for all ๐‘Ž, ๐‘ โˆˆ ๐บ.
=๐‘
)
=๐‘
Page No. 18
i.e.
(๐‘ )(๐‘ )[(๐‘ )(๐‘ )]
i.e.
(๐‘ )(๐‘ ) = (๐‘ )(๐‘ )
=๐‘
Thus, for all ๐‘Ž, ๐‘ โˆˆ ๐บ, we have (๐‘ )(๐‘ ) = (๐‘ )(๐‘ ) and hence
is abelian.
Example 2.1.4 : For any n, the derived subgroup ๐‘† of ๐‘† is ๐ด .
Solution :
Case I : n = 1, 2
For n = 1, 2 we know ๐‘† = {๐‘’} and ๐ด = {๐‘’}. Hence ๐‘† = ๐ด .
Case II : n > 2
We know ๐‘“ = (1, 2) โˆˆ ๐‘† and ๐‘” = (1, 2, 3) โˆˆ ๐‘† .
๐‘”
โˆˆ๐‘†
โˆ€ ๐‘›.
Hence,
๐‘“๐‘”๐‘“
Thus,
(1 2) (1 2 3) (2 1) (3 2 1) โˆˆ ๐‘†
But
(1 2)(1 2 3)(2 1)(3 2 1) = (1 2 3)
for each n.
(1 2 3) โˆˆ ๐‘† .
Hence,
As ๐‘† is normal subgroup of ๐‘† for each n (See theorem 1.3), we get ๐‘” ๐‘ฅ๐‘” โˆˆ ๐‘† for any
๐‘” โˆˆ ๐‘† and ๐‘ฅ โˆˆ ๐‘† .
Hence, in particular
As
๐‘”(1 2 3)๐‘”
โˆˆ๐‘†
i.e. ๐‘” โˆˆ ๐ด
๐‘”(1 2 3)๐‘”
=๐‘”
for each ๐‘” โˆˆ ๐ด , we get ๐ด โІ ๐‘† .
Now ๐‘“๐‘”๐‘“
๐‘”
is an even permutation for any ๐‘“, ๐‘” โˆˆ ๐‘† , we get ๐‘† โІ ๐ด .
By combining both the inclusions, we get ๐‘† = ๐ด and this completes the solution.
Example 2.1.5 : (i) |๐บ| = ๐‘ (p is prime)
(ii) |๐บ| = ๐‘
(p is prime)
โŸน ๐บ = {๐‘’}.
โŸน ๐บ = {๐‘’}.
Solution :
(i) |๐บ| = ๐‘
โŸน G is abelian.
Select any ๐‘Ž โˆˆ ๐บ such that ๐‘Ž โ‰  ๐‘’.
Then โŒฉ๐‘ŽโŒช is a subgroup of ๐บ and ๐‘‚[โŒฉ๐‘ŽโŒช] | ๐‘‚[๐บ].
Hence ๐‘‚[โŒฉ๐‘ŽโŒช] | ๐‘.
As ๐‘Ž โ‰  ๐‘’. We get ๐‘‚[โŒฉ๐‘ŽโŒช] = ๐‘. i.e. โŒฉ๐‘ŽโŒช = ๐บ.
Thus ๐บ is a cyclic and hence abelian.
โŸน ๐บ = {๐‘’}.
Algebra
Page No. 19
(ii) |๐บ| = ๐‘
โŸน G is abelian.
(See ex. 2.16, result 4)
โŸน ๐บ = {๐‘’}.
2.2 Solvable Groups :
Definition 2.2.1: Let ๐บ be any group. For any positive integer ๐‘›, we define the ๐‘›
subgroup of ๐บ, written as ๐บ (
๐บ(
)
)
derived
as follows :
= ๐บ , ๐บ(
)
= ๐บ(
)
, โ€ฆ , ๐บ(
)
= ๐บ(
)
โ€ฆ
where ๐บโ€ฒ denotes the derived subgroup of ๐บ.
Definition 2.2.2: A group ๐บ is said to be solvable, if there exists some positive integer ๐‘› such
that ๐บ (
)
= {๐‘’}.
Example 2.2.3:
(i)
Any abelian group ๐บ is solvable as ๐บ (
)
= ๐บ = {๐‘’}
(ii) Let ๐‘ be a prime number. The groups of order p, ๐‘ are solvable (See example 1.5)
(iii) Any finite group ๐บ with |๐บ| โ‰ค 5 is solvable. (Since any group ๐บ with |๐บ| โ‰ค 5 is
abelian).
(iv) ๐‘† is solvable.
๐‘† = โŒฉ {(1)(1 2)(1 3)(2 3)(1 2 3)(1 3 2)}, โˆ˜ โŒช
Then, ๐‘† = ๐ด = โŒฉ {(1), (1 2 3), (1 3 2)}, โˆ˜ โŒช
As
โ€ฆ See example 2.1.4
(1 2 3)(1 3 2)(1 2 3) (1 3 2)
= (1 2 3)(1 3 2)(3 2 1)(2 3 1)
= (1 )
We get, ๐ด = {๐‘’} โŸต
Hence, ๐‘†
( )
( )
=๐ด
an identity element of in ๐‘† .
= {๐‘’}. This shows that ๐‘† is solvable.
(v) ๐‘† is not solvable for ๐‘› โ‰ฅ 5.
We need the following result.
Result : If ๐‘ โŠด ๐‘† (๐‘› โ‰ฅ 5) then N contains each 3-cycles.
As (๐‘† ) is a normal subgroup of ๐‘† . (๐‘† ) will contain all the 3-cycles in ๐‘† .
Again (๐‘† ) = (๐‘† )(
)
is a normal subgroup of (๐‘† ) and (๐‘† ) contains all the 3-cycles
in ๐‘† . Hence, (๐‘† )( ) must contain each 3-cycles in ๐‘† .
Algebra
Page No. 20
Continuing this process we will get that (๐‘† )(
no k such that (๐‘† )(
)
)
contains each 3-cycle in ๐‘† and hence โˆƒ
= {๐‘’} .
Therefore ๐‘† is not solvable for ๐‘› โ‰ฅ 5.
Theorem 2.2.4 : Every subgroup of a solvable group is solvable.
Proof : Let G be a solvable group and ๐ป โ‰ค ๐บ. Then by the definition of the derived
subgroup, we get ๐ปโ€ฒ โ‰ค ๐บโ€ฒ. In general ๐ป (
solvable, โˆƒ a positive integer n such that ๐บ (
๐ป(
)
โ‰ค ๐บ(
)
= {๐‘’}
)
โ‰ค ๐บ(
)
for any positive integer k. As G is
= {๐‘’}. Hence
๐ป(
โŸน
)
)
= {๐‘’}. Thus H is solvable.
Remark : Converse of theorem 2.2.4 need not be true.
Theorem 2.2.5 : Homomorphic image of a solvable group is solvable.
Proof : Let ๐บ and ๐บ be any two groups such that ๐บ is solvable and ๐บ is a homomorphic
image of ๐บ . Hence โˆƒ a positive integer k such that ๐บ
( )
= {๐‘’ } where ๐‘’ is the identity in
๐บ.
As ๐บ is a homomorphic image of ๐บ , there exists an onto homomorphism ๐‘“: ๐บ โŸถ ๐บ .
Thus ๐บ = ๐‘“(๐บ ) = {๐‘“(๐‘ฅ) / ๐‘ฅ โˆˆ ๐บ }.
Now ๐‘“(๐‘Ž๐‘๐‘Ž ๐‘ ) = ๐‘“(๐‘Ž)๐‘“(๐‘)[๐‘“(๐‘Ž)] [๐‘“(๐‘)]
for ๐‘Ž, ๐‘ โˆˆ ๐บ
Define
๐‘ˆ = {๐‘Ž๐‘๐‘Ž ๐‘
/ ๐‘Ž, ๐‘ โˆˆ ๐บ }
๐‘ˆ = {๐‘ฅ๐‘ฆ๐‘ฅ
/ ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ }.
๐‘ฆ
Then ๐‘ˆ = {๐‘“(๐‘ )๐‘“(๐‘ก)[๐‘“(๐‘ )] [๐‘“(๐‘ก)]
= {๐‘“(๐‘ ๐‘ก๐‘ 
๐‘ก
) / ๐‘ , ๐‘ก โˆˆ ๐บ }
and
/ ๐‘ , ๐‘ก โˆˆ ๐บ }
as ๐บ = ๐‘“(๐บ )
. . . since f is a homomorphism.
= ๐‘“(๐‘ˆ )
But then we get ๐‘“(๐บ ) = ๐บ .
Continuing in this way we get
๐‘“ ๐บ
As ๐บ
( )
Algebra
= [๐‘“(๐บ )](
)
. . . for any positive integer n.
= {๐‘’} we get
๐‘“ ๐บ
โŸน
( )
( )
= [๐‘“(๐บ )](
๐‘“({๐‘’ }) = [๐‘“(๐บ )](
)
)
Page No. 21
โŸน
{๐‘’ } = ๐บ
( )
where ๐‘’ is an identity element in ๐บ .
This shows that ๐บ is solvable.
Corollary 2.2.6 : Any quotient group
of a solvable group G is solvable.
Proof : As is a homomorphic image of G under the natural / canonical mapping ๐‘“ โˆถ ๐บ โŸถ
defined by ๐‘“(๐‘”) = ๐‘๐‘”, the result follows by theorem 2.5.
Remark 2.2.7 : Converse of the corollary 2.2.6 need not be true.
For this consider the group ๐‘† for ๐‘› โ‰ฅ 5. ๐‘† is not solvable (See example 2.3 (5)).
๐ด โŠฒ ๐‘† and hence
is defined. As
= 2, we get
is solvable but ๐‘† is not solvable.
Thus the quotient group
Theorem 2.2.8 : Let ๐‘ โŠด ๐บ. If both N and
Proof :
is abelian and hence solvable.
are solvable, then G is solvable.
N is solvable
โŸน
โˆƒ a positive integer ๐‘˜ such that ๐‘ (
is solvable
โŸน
โˆƒ a positive integer ๐‘™ such that
()
(N is the identity element of
Now
= the group generated by {๐‘ ๐‘ ๐‘
๐‘
= the group generated by {๐‘
/ ๐‘Ž, ๐‘ โˆˆ ๐บ}
)
= {๐‘’}.
= {๐‘}.
)
/ ๐‘Ž, ๐‘ โˆˆ ๐บ}
. . . (1)
Now ๐บโ€ฒ โŠด ๐บ and ๐‘ โŠด ๐บ will imply ๐บโ€ฒ๐‘ is a normal subgroup of G and ๐‘ โŠด ๐บโ€ฒ๐‘. Hence
the quotient group
is defined.
= {๐‘ / ๐‘ฅ โˆˆ ๐บโ€ฒ๐‘ = ๐‘๐บโ€ฒ}
. . . (2)
From (1) and (2), w get,
=
Continuing in this way we get
( )
()
Hence,
Algebra
=
=
()
( )
,
=
for any positive integer n.
โˆ™
= {๐‘}.
Page No. 22
But then
๐บ ( ) โІ ๐‘ and hence ๐บ ( )
( )
โІ ๐‘(
)
= {๐‘’} implies ๐บ (
)
= {๐‘’},
establishing that G is solvable.
Combining the result of theorem 2.2.4, 2.2.8 and corollary 2.2.7 we get,
Corollary 2.2.9 : Let ๐‘ โŠฒ ๐บ. G is solvable if and only if both N and
are solvable.
Example 2.2.10 : ๐ด and ๐ต are solvable groups iff ๐ด × ๐ต is solvable.
Solution : Only if part :
Let ๐ด and ๐ต be solvable groups.
To prove that ๐ด × ๐ต is solvable.
We know, the mapping ๐‘“: ๐ด × ๐ต โŸถ ๐ด defined by ๐‘“(๐‘Ž, ๐‘) = ๐‘Ž is an onto homomorphism.
Hence, by fundamental theorem of homomorphism.
×
โ‰…๐ด
where ๐‘˜๐‘’๐‘Ÿ๐‘“ = {๐‘’ } × ๐ต, ๐‘’ denotes the identity element in A.
Thus,
{
×
}×
โ‰… ๐ด.
As A is solvable, by theorem 2.2.5,
{
×
}×
is solvable.
. . . (1)
Further the mapping ๐‘” โˆถ {๐‘’ } × ๐ต โŸถ ๐ต defined by ๐‘”(๐‘’ , ๐‘) = ๐‘ for each ๐‘ โˆˆ ๐ต is
isomorphism. Hence {๐‘’ } × ๐ต โ‰… ๐ต.
As B is solvable, by theorem 2.2.5 we get, {๐‘’ } × ๐ต is a solvable group.
As both {๐‘’ } × ๐ต and
{
×
}×
. . . (2)
are solvable groups, by theorem 2.2.8, ๐ด × ๐ต is solvable.
If part :
Let ๐ด × ๐ต be a solvable group. As the mapping ๐‘“: ๐ด × ๐ต โŸถ ๐ด defined by ๐‘“(๐‘Ž, ๐‘) = ๐‘Ž is
an onto homomorphism, we get ๐ด is a homomorphic image of a solvable group ๐ด × ๐ต
and hence ๐ด is solvable.
Similarly, we can prove that ๐ต is solvable.
Example 2.2.11 : ๐ป and ๐พ be normal solvable subgroups of group ๐บ. Show that ๐ป๐พ is
solvable.
Solution : ๐ป๐พ is a subgroup of ๐บ. By second isomorphism theorem,
Algebra
Page No. 23
โ‰…
โˆฉ
Now, any quotient group of a solvable group being solvable, we get
โˆฉ
is a solvable.
(Since H is solvable). Now isomorphic image of a solvable group is solvable. Hence
is solvable. Thus K and
both are solvable will imply HK is solvable. (See theorem
2.2.8).
Definition 2.2.12 : A finite sequence {๐‘ , ๐‘ , โ€ฆ , ๐‘ } of subgroups of a group G is called a
normal series of ๐บ if
{๐‘’} = ๐‘ โŠฒ ๐‘ โŠฒ ๐‘ โŠฒ โ‹ฏ โŠฒ ๐‘ = ๐บ.
are called factors of the normal series. (1 โ‰ค ๐‘– โ‰ค ๐‘Ÿ).
The quotient groups
For detail discussion of normal series see Unit 3.2.
Theorem 2.2.13 : A group G is solvable if and only if G has a normal series with abelian
factors.
Proof : Only f part :
Let G be a solvable group. Hence โˆƒ a positive integer ๐‘˜ such that ๐บ (
Consider ๐บ ( ) , ๐บ (
)
)
Hence the sequence ๐บ ( ) , ๐บ (
)
)
โŠฒ ๐บ(
)
()
Further the factors
= {๐‘’}.
, โ€ฆ , ๐บ ( ) , ๐บ . By theorem 1.6, ๐บ ( ) is a normal subgroup of G for
each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘˜. Further ๐บ (
{e} = ๐บ (
)
(
)
โŠฒ ๐บ ( ) , by theorem 1.4 (1).
, โ€ฆ , ๐บ ( ) , ๐บ forms a normal series
โŠฒ โ‹ฏ โŠฒ ๐บ(
)
โŠฒ๐บ.
are abelian groups for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘˜ (See theorem 1.4 (2)).
Thus if G is solvable, G has a normal series,
{e} = ๐บ (
)
โŠฒ ๐บ(
)
โŠฒ โ‹ฏ โŠฒ ๐บ(
)
โŠฒ๐บ
with abelian factors.
If part :
Let G has a normal series. {๐ป , ๐ป , โ€ฆ , ๐ป } with ๐ป = {๐‘’} and ๐ป = ๐บ and with abelian
factors. Thus
{๐‘’} = ๐ป โŠฒ ๐ป โŠฒ ๐ป โŠฒ โ‹ฏ โŠฒ ๐ป = ๐บ
Algebra
Page No. 24
is an abelian group with 0 โ‰ค ๐‘– โ‰ค ๐‘›.
and
=
Now
โŸน
is abelian.
๐บโ€ฒ โІ ๐ป
โŸน
๐บโ€ฒโ€ฒ โІ (๐ป
i.e.
๐บ(
)โ€ฒ
Hence by transitivity,
๐บโ€ฒโ€ฒ โІ (๐ป
)
)
โІ๐ป
Continuing in this way, we get
๐บ(
)
โІ๐ป
Hence ๐บ (
)
= {๐‘’}, proving that G is Solvable.
= ๐ป = {๐‘’}
Example 2.2.14 :
(i) In ๐‘† we have a normal series {๐‘’} โŠฒ ๐ด โŠฒ ๐‘† such
that is abelian and such
{ }
that is
abelian. Hence ๐‘† is solvable.
(ii) Consider the group ๐‘† . ๐ด โŠฒ ๐‘† . Define
๐‘‰ = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
Then ๐‘‰ โŠฒ ๐ด .
Consider the sequence {(1)}, ๐‘‰ , ๐ด , ๐‘† . We have {(1)} โŠฒ ๐‘‰ โŠฒ ๐ด โŠฒ ๐‘†
. . .
(1)
The factors of the normal series are
{ }
|
{ }
= |{
=
,
|
}|
|
|
|
|
|
|
=|
|
and
.
= =4
โŸน
=
=3
โŸน
is abelian.
=
=2
โŸน
is abelian.
{ }
is abelian.
(Result used : G is abelian if |๐บ| โ‰ค 5).
This shows that ๐‘† has a solvable series and hence ๐‘† is solvable.
Example 2.2.15 : Let ๐บ be a solvable group. Show that ๐บ contains at least one normal,
abelian subgroup ๐ป.
Solution :
Algebra
Page No. 25
Case I :
๐บ is abelian. In this we take ๐ป = ๐บ.
Case II : ๐บ is non-abelian.
G is solvable โŸน โˆƒ a positive integer ๐‘˜ such that ๐บ (
Consider ๐ป = ๐บ (
Then {๐‘’} = ๐บ (
โŸน
๐บ(
)
)
)
)
= {๐‘’}.
.
โŠฒ ๐บ(
)
. Hence ๐บ (
is abelian.
)
= {๐‘’}.
(See remark 1.2 (iv))
๐บ(
)
โŠฒ๐บ
โŸน
๐บ(
)
โŠฒ๐บ
๐บ(
)
โŠฒ๐บ
โŸน
๐บ(
)
โŠฒ๐บ
(See example 1.6)
Continuing in this way we get
๐ป = ๐บ(
)
โŠฒ๐บ
Thus G contains a normal, abelian subgroup H.
Example 2.2.16 : Let ๐บ be a non-abelian group such that |๐บ| = ๐‘ , where ๐‘ is any prime
number. Show that ๐บ = ๐‘(๐บ).
Solution : To solve this problem we mainly use the following result.
Let p be a prime.
Result 1 : |๐บ| = ๐‘ (๐‘› > 0)
โŸน
๐‘(๐บ) โ‰  {๐‘’}.
Result 2 : |๐บ| = ๐‘
โŸน
G is cyclic.
Result 3 :
โŸน
๐บ is abelian.
( )
is cyclic
Result 4 : Any group of order ๐‘ is abelian.
is abelian
โŸน
๐บโ€ฒ โІ ๐‘.
Result 6 : ๐บ is abelian
โŸบ
๐บโ€ฒ = {๐‘’}.
Result 5 :
Solution of the problem :
(i)
|๐บ| = ๐‘
โŸน
๐‘(๐บ) โ‰  {๐‘’}
โŸน
|๐‘(๐บ)| โ‰  1.
(ii)
G is non-abelian
โŸน
๐‘(๐บ) โ‰  ๐บ
โŸน
|๐‘(๐บ)| โ‰  ๐‘ .
(iii) As ๐‘(๐บ) โŠฒ ๐บ,
|
|๐‘(๐บ)| |๐บ| = ๐‘ .
Hence, |๐‘(๐บ)| = 1, ๐‘, ๐‘ , ๐‘ .
From (i) and (ii),
|๐‘(๐บ)| = ๐‘ or ๐‘
Algebra
Page No. 26
(iv) |๐‘(๐บ)| = ๐‘
Thus
โŸน
( )
= ๐‘ and hence
( )
=|
( )
| |
( )|
=
= ๐‘.
is a cyclic group. Hence G must be abelian.
As this is not true we get |๐‘(๐บ)| โ‰  ๐‘ .
Hence, only possible value of |๐‘(๐บ)| is p. But in this case
(v)
( )
This shows that
=|
( )
| |
( )|
=
=๐‘ .
is an abelian group. But then ๐บโ€ฒ โІ ๐‘(๐บ).
As ๐บโ€ฒ โ‰ค ๐‘(๐บ) we get |๐บโ€ฒ| | |๐‘(๐บ)| = ๐‘ As G is non-abelian, |๐บโ€ฒ| โ‰  1.
Thus, |๐บโ€ฒ| = ๐‘ = |๐‘(๐บ)|. This in turn shows that ๐บ = ๐‘(๐บ).
Exercise โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
(i)
Show that the groups of order ๐‘, ๐‘ , ๐‘๐‘ž, , ๐‘ ๐‘ž where p and q are distinct primes
are solvable.
(ii) Prove that any group of order ๐‘๐‘ž๐‘Ÿ is solvable when ๐‘, ๐‘ž, ๐‘Ÿ are primes and ๐‘Ÿ > ๐‘๐‘ž.
(iii) Show that a group of order 4p, where p is prime is solvable.
(iv) State whether the following statements are true or false.
1. Every finite group is solvable.
2. Every finite group of prime order is solvable.
3. ๐‘† is a solvable group.
4. ๐บ is solvable if ๐บ has a normal series.
5. The property of โ€˜being a solvable groupโ€™ is preserved under isomorphism.
(v) Prove or disprove : ๐‘† × ๐‘† is solvable.
โ€ขโ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Theorem 2.2.17 : If ๐‘ โŠด ๐บ, then the derived subgroup of ๐‘ is also a normal subgroup of ๐บ.
Proof : ๐‘ โŠด ๐บ. ๐‘ = derived subgroup of ๐บ.
๐‘ = the subgroup generated by the set {๐‘› ๐‘› ๐‘› ๐‘› / ๐‘› , ๐‘› โˆˆ ๐‘}.
Let ๐‘ฅ โˆˆ ๐‘ and ๐‘” โˆˆ ๐บ. To prove that ๐‘” ๐‘ฅ๐‘” โˆˆ ๐‘ .
It is enough to prove that ๐‘” ๐‘ฅ๐‘” โˆˆ ๐‘ , when ๐‘ฅ = ๐‘› ๐‘› ๐‘› ๐‘›
Now,
Algebra
, for some ๐‘› , ๐‘› โˆˆ ๐‘.
๐‘” (๐‘› ๐‘› ๐‘› ๐‘› )๐‘”
Page No. 27
= (๐‘” ๐‘› ๐‘”) (๐‘” ๐‘› ๐‘”) (๐‘” ๐‘› ๐‘”) (๐‘” ๐‘› ๐‘”)
= (๐‘” ๐‘› ๐‘”) (๐‘” ๐‘› ๐‘”) (๐‘” ๐‘› ๐‘”)
(๐‘” ๐‘› ๐‘”)
Now, N being a normal subgroup of G, ๐‘” (๐‘› ๐‘› ๐‘› ๐‘› )๐‘” is finite product of the type
๐‘Ž๐‘๐‘Ž ๐‘
where ๐‘Ž, ๐‘ โˆˆ ๐‘.
Hence, ๐‘” (๐‘› ๐‘› ๐‘› ๐‘› )๐‘” โˆˆ ๐‘โ€ฒ.
Hence ๐‘โ€ฒ โŠด ๐บ.
Example 2.2.18 : True or false ? Justify.
If every proper subgroup of ๐บ is solvable, then ๐บ is solvable.
Solution : False. Let ๐บ = ๐ด .
Assume that ๐ด is solvable.
Then
=2 โŸน
is abelian. (Since
is abelian).
Hence, by theorem 2.2.8, ๐‘† is solvable; which is not true.
Hence, ๐บ = ๐ด is not solvable.
Claim : All proper subgroups of ๐ด are solvable.
๐‘‚(๐ด ) =
(
)
= 60 = 2 โˆ™ 3 โˆ™ 5
(i)
๐ด is simple โŸน ๐ด does not have any subgroup of order 30.
(ii)
๐ด may contain subgroups of order 2, 2 , 3, 5, 6 = 2 โˆ™ 3, 10 = 2 โˆ™ 5, 15 = 3 โˆ™ 5,
20 = 2 โˆ™ 5.
All these subgroups of ๐ด are solvable by the following result.
Result : Let ๐‘ and ๐‘ž be distinct primes. Then any groups of order ๐‘๐‘ž or ๐‘ ๐‘ž are solvable.
Example 2.2.19 : Show that the set ๐บ of all matrices of the type
1
0
0
๐‘Ž
1
0
๐‘
๐‘
1
๐‘Ž, ๐‘, ๐‘ โˆˆ ๐‘
is non abelian and solvable under the multiplication.
Solution : It is easy to prove that โŒฉ๐บ, โˆ™ โŒช is a group.
As ๐‘Ž, ๐‘, ๐‘ โˆˆ ๐‘ = {0, 1, 2}, |๐บ| = 27 = 3 . As any group of order power of a prime,
is solvable, G is solvable.
Algebra
Page No. 28
Example 2.2.20 : Show that ๐‘† โŠƒ ๐ด โŠƒ {๐‘’} is a normal series in ๐‘† for ๐‘› > 4. Deduce that
๐‘† is not solvable for ๐‘› > 4.
Solution : We know that ๐ด โŠฒ ๐‘† and {๐‘’} โŠฒ ๐ด . Hence {๐‘’}, ๐ด , ๐‘†
forms a normal series
in ๐‘† . Let ๐‘† be solvable for n > 4. Then subgroup of solvable group being solvable, ๐ด
will be a solvable. But ๐ด is not solvable for > 4 as ๐ด is simple for n > 4 and a solvable
group contains non-trivial normal subgroup (See theorem 2.13)
Exercise :
Prove that ๐‘† × ๐‘† is solvable.
โ€ขโ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Unit 3: Series of A Group
3.1
Subnormal Series, Schreierโ€™s Theorem, Jordan-Holder Theorem
3.2
Normal Series
3.3
Ascending Central Series
3.4
Nilpotent Groups
3.1 Subnormal Series :
Definition 3.1.1 : Let ๐บ be a group. A subnormal series of a group ๐บ is a finite sequence
๐ป , ๐ป , โ€ฆ , ๐ป of subgroups of ๐บ such that ๐ป โŠฒ ๐ป
for each ๐‘–, 0 โ‰ค ๐‘– < ๐‘› with ๐ป = {๐‘’}
and ๐ป = ๐บ.
Remarks :
(i) Every group ๐บ has a subnormal series with ๐ป = {๐‘’} and ๐ป = ๐บ.
(ii) The groups
are called factor groups of the series (0 โ‰ค ๐‘– < ๐‘› โˆ’ 1).
Examples 3.1.2 :
(i)
In a group โŒฉ๐‘, +โŒช, {0} < 8๐‘ < 4๐‘ < ๐‘ is a subnormal series where
8๐‘ = {0, ±8, ±16, ±24, โ€ฆ }
4๐‘ = {0, ±4, ±8, ±16, ±24, โ€ฆ }
{0} โŠฒ 8๐‘, 8๐‘ โŠฒ 4๐‘ and 4๐‘ โŠฒ ๐‘.
Hence, the finite sequence {๐‘’}, 8๐‘, 4๐‘, ๐‘ of subgroups of Z form a subnormal series.
(ii)
Let ๐บ = โŒฉ๐‘ŽโŒช where ๐‘Ž = ๐‘’.
Algebra
Page No. 29
Then ๐บ = {๐‘Ž, ๐‘Ž , ๐‘Ž , ๐‘Ž , ๐‘Ž , ๐‘Ž , ๐‘Ž } with ๐‘Ž = ๐‘’.
Define ๐ป = {๐‘’, ๐‘Ž } . Then {๐‘’}, ๐ป, ๐บ will form a subnormal series in G.
(iii) In ๐‘† , {(1), ๐ด , ๐‘† } will form a subnormal series in ๐‘† .
(iv) Let ๐บ = โŒฉ๐‘ŽโŒช ,
where ๐‘Ž
= ๐‘’.
Then
๐‘† = {๐‘’}, โŒฉ๐‘Ž โŒช, โŒฉ๐‘Ž โŒช, G
and
๐‘† = {๐‘’}, โŒฉ๐‘Ž โŒช, โŒฉ๐‘Ž โŒช, G
will be two subnormal series in ๐บ.
Definition 3.1.3 : A subnormal series ๐พ is a refinement of a subnormal series {๐ป } if
{๐ป } โІ ๐พ that is each ๐ป = ๐พ for some ๐‘—.
Example 3.1.4 :
(i) The series in ๐‘ given by
{0} โŠฒ 72๐‘ โŠฒ 24๐‘ โŠฒ 8๐‘ โŠฒ 4๐‘ โŠฒ ๐‘
is a refinement of the series
{0} โŠฒ 72๐‘ โŠฒ 8๐‘ โŠฒ ๐‘
(ii) Let ๐บ = โŒฉ๐‘ŽโŒช where ๐‘Ž
= ๐‘’.
The subnormal series
{๐‘’}, โŒฉ๐‘Ž โŒช, โŒฉ๐‘Ž โŒช, G
is not a refinement of the series
{๐‘’}, โŒฉ๐‘Ž โŒช, โŒฉ๐‘Ž โŒช, G
in ๐บ.
Definition 3.1.5 : Two subnormal series {๐ป } and ๐พ of the same group ๐บ are isomorphic if
there is a one-one correspondence between the collection of factor groups
and
such that the corresponding factor groups are isomorphic.
Remark : The two isomorphic normal series must contain the same number of subgroups.
Example 3.1.6 : Let ๐บ = ๐‘ .
๐‘
= โŒฉ{0, 1, 2, 3, โ€ฆ ,14} , โŠ• โŒช
< 5 > = the subgroup generated by 5 in ๐‘
= {0, 5, 10}
< 3 > = the subgroup generated by 3 in ๐‘
= {0, 3, 6, 9, 12}
Consider the two subnormal series in ๐‘
Algebra
given by
Page No. 30
๐‘† = {0}, โŒฉ5โŒช, ๐‘
๐‘† = {0}, โŒฉ3โŒช, ๐‘
and
The set of factor groups for ๐‘† is
๐‘‡ =
โŒฉ โŒช
,
โŒฉ โŒช
{ }
The set of factor groups for ๐‘† is
๐‘‡ =
Now,
โŒฉ โŒช
and
โŒฉ โŒช
โŒฉ โŒช
,
โŒฉ โŒช
{ }
โ‰…๐‘
and
โ‰…๐‘
and
โŒฉ โŒช
{ }
โŒฉ โŒช
{ }
โ‰…๐‘
โ‰…๐‘
We establish one-one, onto correspondence between ๐‘‡ and ๐‘‡ as
โŒฉ โŒช
โŸท
โŒฉ โŒช
and
{ }
โŒฉ โŒช
{ }
โŸท
โŒฉ โŒช
Then the corresponding factor group being isomorphic we get, the two series ๐‘† and ๐‘† of
๐‘
are isomorphic.
โ€ข Schreierโ€™s Theorem :
Theorem 3.1.7 : Two subnormal series of a group ๐บ have isomorphic refinements.
Proof : Let ๐บ be a group and let
and
{๐‘’} = ๐ป < ๐ป < ๐ป < โ‹ฏ < ๐ป = ๐บ
โ€ฆ (1)
{๐‘’} = ๐พ < ๐พ < ๐พ < โ‹ฏ < ๐พ = ๐บ
โ€ฆ (2)
be two subnormal series of ๐บ.
Define
๐ป =๐ป โˆ™ ๐ป
As
๐ป โŠฒ๐ป
โˆฉ๐พ
we get ๐ป โˆ™ ๐ป
โˆฉ๐พ
is a subgroup of ๐บ for each ๐‘–, 0 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1
and each ๐‘—, ๐‘œ โ‰ค ๐‘— < ๐‘š.
(i)
๐ป โŠฒ๐ป
and ๐พ โŠฒ ๐พ
๐ป โˆ™ ๐ป
i.e.
(ii)
. Hence by Zassenhaus Lemma,
โˆฉ๐พ โŠฒ๐ป โˆ™ ๐ป
โˆฉ๐พ
๐ป, โŠด ๐ป,
๐ป , = ๐ป โˆ™ (๐ป
= ๐ป โˆ™ (๐ป
โˆฉ๐พ )
โˆฉ {๐‘’})
= ๐ป โˆ™ {๐‘’}
Algebra
Page No. 31
=๐ป
(iii) ๐ป , = ๐ป โˆ™ (๐ป
โˆฉ๐พ )
= ๐ป โˆ™ (๐ป
โˆฉ ๐บ)
=๐ป โˆ™๐ป
=๐ป
as ๐ป โІ ๐ป
From (i), (ii) and (iii), we get a chain containing ๐‘›๐‘š + 1 elements not necessarily distinct
groups which is as follows.
{๐‘’} = ๐ป = ๐ป
โ‰ค๐ป
,
โ‰ค๐ป
,
,
โ‰คโ‹ฏโ‰ค๐ป
โ‰คโ‹ฏโ‰ค๐ป
,
=๐ป
=๐ป
,
=๐ป
,
=๐ป
,
โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ
โ‰ค๐ป
โ‰ค๐ป
,
โ‰คโ‹ฏโ‰ค๐ป
,
=๐ป =๐บ
,
. . . (3)
This chain refines the chain in (1). The set of factor groups of the chain represented in (3)
is
,
/ 1 โ‰ค ๐‘– โ‰ค ๐‘›, 1 โ‰ค ๐‘— โ‰ค ๐‘š โˆ’ 1
,
. . . (4)
Similarly, by defining
๐พ, = ๐พ โˆ™ ๐พ
โˆฉ๐ป
for 0 โ‰ค ๐‘— โ‰ค ๐‘š โˆ’ 1 and 0 โ‰ค ๐‘– โ‰ค ๐‘›.
We obtain a subnormal chain containing ๐‘›๐‘š + 1 element as follows.
{๐‘’} = ๐พ = ๐พ
,
โ‰ค๐พ
,
โ‰คโ‹ฏโ‰ค๐พ
,
=๐พ
,
=๐พ
โ‰ค๐พ
,
โ‰คโ‹ฏโ‰ค๐พ
,
=๐พ
,
=๐พ
โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ
โ‰ค๐พ
โ‰ค๐พ
,
,
โ‰คโ‹ฏโ‰ค๐พ
,
=๐พ =๐บ
. . . (5)
Note that the two chains represented in (4) and (5) not necessarily contain distinct groups.
The chain (5) refines the chain (2). The set of factor groups of the chain represented in (5)
is
,
,
Again as ๐ป โŠฒ ๐ป
/ 0 โ‰ค ๐‘— โ‰ค ๐‘š, 0 โ‰ค ๐‘– < ๐‘› โˆ’ 1
and ๐พ โŠฒ ๐พ
โˆ™
โˆฉ
โˆ™
i.e.
Algebra
,
,
โ‰…
, by Zassenhaus Lemma,
โ‰…
โˆฉ
,
,
. . . (6)
โˆ™
โˆฉ
โˆ™
โˆฉ
for 0 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 and 0 โ‰ค ๐‘— โ‰ค ๐‘š โˆ’ 1.
Page No. 32
This isomorphism establishes one to one onto correspondence between the two sets
represented in (4) and (6). Deleting the repeated groups from the chains represented in (3)
and (5) we get subnormal series of distinct groups that are isomorphic refinements of the
subnormal series represented in (1) and (2) respectively.
This establishes that any two subnormal series of a group G have isomorphic
refinements.
Example 3.1.8 : Give the isomorphic refinements of the two subnormal series of โŒฉ๐‘, +โŒช.
(i) {0} โŠฒ 60๐‘ โŠฒ 20๐‘ โŠฒ ๐‘
(ii) {0} โŠฒ 245๐‘ โŠฒ 49๐‘ โŠฒ ๐‘
Solution : Define
๐ป = {0},
๐ป = 60๐‘,
๐ป = 20๐‘,
๐ป =๐‘
๐พ = {0},
๐พ = 245๐‘,
๐พ = 49๐‘,
๐พ =๐‘
Define ๐ป , = ๐ป โˆ™ ๐ป
โˆฉ๐พ
โˆ€
0 โ‰ค ๐‘– โ‰ค 2, 0 โ‰ค ๐‘— โ‰ค 3.
Then,
๐ป
,
= ๐ป = {0}
๐ป
,
= ๐ป โˆ™ (๐ป โˆฉ ๐พ ) = ๐ป โˆฉ ๐พ = 60๐‘ โˆฉ 245๐‘
( 2940 = ๐‘™. ๐‘. ๐‘š. (60, 245) )
= 2940๐‘
๐ป
,
= ๐ป โˆ™ (๐ป โˆฉ ๐พ ) = ๐ป โˆฉ ๐พ = 60๐‘ โˆฉ 49๐‘ = 2940๐‘
๐ป
,
= ๐ป โˆ™ (๐ป โˆฉ ๐พ ) = ๐ป โˆฉ ๐พ = ๐ป = 60๐‘
๐ป
,
= ๐ป โˆ™ (๐ป โˆฉ ๐พ ) = 60๐‘ โˆ™ {0} = 60๐‘
๐ป
,
= ๐ป โˆ™ (๐ป โˆฉ ๐พ ) = 60๐‘ โˆ™ (20๐‘ โˆฉ 245๐‘) = 60๐‘
๐ป
,
= ๐ป โˆ™ (๐ป โˆฉ ๐พ ) = 60๐‘ โˆ™ (20๐‘ โˆฉ 49๐‘) = 60๐‘
๐ป
,
= ๐ป โˆ™ (๐ป โˆฉ ๐พ ) = ๐ป โˆ™ ๐ป = 60๐‘ โˆ™ 20๐‘ = 20๐‘ = ๐ป
๐ป
,
= ๐ป โˆ™ (๐ป โˆฉ ๐พ ) = ๐ป โˆ™ {0} = ๐ป = 20๐‘
๐ป
,
= ๐ป โˆ™ (๐ป โˆฉ ๐พ ) = 20๐‘ โˆฉ 245๐‘ = 5๐‘
๐ป
,
= ๐ป โˆ™ (๐ป โˆฉ ๐พ ) = ๐ป โˆ™ ๐พ = 20๐‘ โˆ™ 49๐‘ = ๐‘
๐ป
,
= ๐ป โˆ™ (๐ป โˆฉ ๐พ ) = ๐ป โˆ™ ๐‘ = ๐‘
Hence, the refinement of the series represented in (1) is
{0} = ๐ป
,
โ‰ค๐ป
,
โ‰ค๐ป
,
โ‰ค๐ป
,
=๐ป =๐ป
,
โ‰ค๐ป
,
โ‰ค๐ป
,
โ‰ค๐ป
,
=๐ป =๐ป
,
โ‰ค๐ป
,
โ‰ค๐ป
,
โ‰ค๐ป
,
=๐ป
{0} โ‰ค 2940๐‘ โ‰ค 2940๐‘ โ‰ค 60๐‘ โ‰ค 60๐‘ โ‰ค 60๐‘ โ‰ค 20๐‘ โ‰ค 5๐‘ โ‰ค ๐‘ โ‰ค ๐‘ .
Algebra
Page No. 33
Deleting the repeated factors, we get,
{0} โŠฒ 2940๐‘ โŠฒ 60๐‘ โŠฒ 20๐‘ โŠฒ 5๐‘ โŠฒ ๐‘.
This is refinement of the series
{0} โŠฒ 60๐‘ โŠฒ 60๐‘ โŠฒ 20๐‘ โŠฒ ๐‘.
Similarly, defining ๐พ , = ๐พ ๐พ
โˆฉ ๐ป , we can obtain the refinement of the series,
{0} = ๐พ โŠฒ ๐พ โŠฒ ๐พ โŠฒ ๐พ = ๐‘
which is as follows.
{0} โŠฒ 2940๐‘ โŠฒ 980๐‘ โŠฒ 245๐‘ โŠฒ 49๐‘ โŠฒ ๐‘.
Definition 3.1.9 : A subnormal series {๐ป } = {๐ป , โ€ฆ , ๐ป } of a group ๐บ is a composition
are simple. (๐ป = {๐‘’} and ๐ป = ๐บ)
series if all the factor groups
Remark : In a composition series {๐ป }, ๐ป will be a maximal normal subgroup of ๐ป
.
Examples 3.1.10 :
(i) Consider the group ๐‘† for ๐‘› โ‰ฅ 5.
The series {๐‘’} < ๐ด < ๐‘† is a composition series in ๐‘† .
Here
{ }
โ‰…๐ด
=2
and
โŸน
โ‰…๐‘
Now for ๐‘› โ‰ฅ 5, ๐ด is a simple (as any normal subgroup ๐‘ โ‰  {๐‘’} of ๐ด will contain each
3-cycle in ๐‘† and hence ๐‘ = ๐ด ).
Hence
{ }
is a simple group.
Similarly, ๐‘ being simple we get
is simple.
Hence {๐‘’} โŠฒ ๐ด โŠฒ ๐‘† is a composition series of ๐‘† for ๐‘› โ‰ฅ 5.
(ii) Consider the group ๐บ = ๐‘ .
The series {0} < โŒฉ5โŒช < ๐‘
{0} < โŒฉ5โŒช < ๐‘
โŒฉ โŒช
{ }
โŒฉ โŒช
Algebra
is a composition series in ๐‘
.
is a subnormal series.
โ‰…๐‘
โŸน
โ‰…๐‘
โŸน
โŒฉ โŒช
{ }
โŒฉ โŒช
is a simple group.
is a simple group.
Page No. 34
Hence {0} < โŒฉ5โŒช < ๐‘
is a composition series in ๐‘ .
(iii) Consider the group ๐บ = โŒฉ๐‘ŽโŒช where |๐บ| = 6. Hence ๐‘Ž = ๐‘’.
๐ป = โŒฉ๐‘Ž โŒช = {๐‘’, ๐‘Ž }
Define
and
๐ป = โŒฉ๐‘Ž โŒช = {๐‘’, ๐‘Ž , ๐‘Ž }.
Then {๐‘’}, ๐ป , ๐บ and {๐‘’}, ๐ป , ๐บ will form two composition series in ๐บ.
(iv) ๐‘ has no composition series.
Let us assume that โˆƒ a composition series
As
{0} = ๐ป โŠฒ ๐ป โŠฒ โ‹ฏ โŠฒ ๐ป = ๐‘
in ๐‘.
{0} < ๐ป < ๐‘
for some positive integer n.
โŸน
๐ป = ๐‘›๐‘
โ‰… ๐‘›๐‘ , we must have ๐‘›๐‘ is simple.
But this is not true as ๐‘›๐‘ contains many nontrivial proper normal subgroups. Hence our
assumption is wrong.
Thus ๐‘ has no composition series.
โ€ข Existence of Composition series :
Theorem 3.1.11 : Every finite group ๐บ has at least one composition series.
Proof : If ๐บ is a simple group, then {๐‘’} โŠฒ ๐บ is a composition series in ๐บ.
If ๐บ is not simple group, then ๐บ has at least one proper normal subgroup ๐ป โ‰  {๐‘’}.
If ๐ป is a maximal normal subgroup then {๐‘’} will be maximal subgroup of ๐ป.
Hence
and
{ }
are simple subgroups. This shows that {๐‘’}, ๐ป, ๐บ will form a
composition series in ๐บ.
Let ๐ป be not maximal in ๐บ. It means that there exists a maximal normal subgroup ๐พ
such that ๐ป โŠ‚ ๐พ โŠ‚ ๐บ. Hence {๐‘’}, ๐ป, ๐พ, ๐บ will form a composition series.
If ๐ป is maximal in ๐บ, but {๐‘’} is not maximal in H then find a maximal normal
subgroup ๐ฟ such that {๐‘’} โŠ‚ ๐ฟ โŠ‚ ๐ป. In this case {๐‘’}, ๐ฟ, ๐ป, ๐บ will be the composition
series of the group ๐บ.
Proceeding like this, we always find a composition series for ๐บ. Since ๐บ is a finite
group, the number of its subgroups is also finite. Hence the composition series obtained
finally contains a finite number of elements.
Algebra
Page No. 35
This proves that any finite group ๐บ has at least one composition series.
Remark : An infinite group may or may not have a composition series.
e.g.
โ€ข
The group โŒฉ๐‘, +โŒช has no composition series. (See example 3.1.10 (4)).
Jordan-Hölder Theorem :
Theorem 3.1.12 : Any two composition series of a group ๐บ are isomorphic.
Proof :
Let {๐ป } and ๐พ be any two composition series of ๐บ.
is a simple group for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 and
Hence
is a simple group for each ๐‘—, 1 โ‰ค ๐‘— โ‰ค ๐‘š โˆ’ 1.
But we know that
is a simple group if and only if ๐‘ is a maximal normal subgroup
of ๐บ.
Hence,
is a simple implies ๐ป is a maximal normal subgroup of ๐ป
, for 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1.
Thus, intersection of any normal subgroups in between implies ๐ป and ๐ป
is not
possible.
Similarly, further refinement of the of the composition series ๐พ is not possible.
Thus, {๐ป } and ๐พ must be already isomorphic and ๐‘š = ๐‘›.
Theorem 3.1.13 : If a group ๐บ has a composition series and if ๐‘ is a proper normal subgroup
of ๐บ then there exist a composition series containing ๐‘.
Proof : Let {๐ป } be a composition series of ๐บ. Then
{๐‘’} = ๐ป โŠฒ ๐ป โŠฒ โ‹ฏ โŠฒ ๐ป = ๐บ
and
. . . (1)
is a simple group for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1.
Consider the subnormal series of G given by,
{๐‘’} โŠฒ ๐‘ โŠฒ ๐บ
Define
๐พ = {๐‘’}, ๐พ = ๐‘, ๐พ = ๐บ.
Define
๐พ, = ๐พ ๐พ
. . . (2)
โˆฉ๐ป
for 0 โ‰ค ๐‘– < 2 and 0 โ‰ค ๐‘— โ‰ค ๐‘›.
Algebra
Page No. 36
Then {0} = ๐พ = ๐พ
,
<๐พ
,
<โ‹ฏ<๐พ
,
=๐พ =๐พ
<๐พ
,
<โ‹ฏ<๐พ
,
=๐พ =๐บ
=๐‘
,
. . . (3)
The series in (3) is a refinement of the subnormal series (2). The refinement of (1) being
impossible (as {๐ป } is a composition series) we get the two subnormal series represented
by (1) and (3) must be isomorphic. As the isomorphic image of simple groups is a simple
group, we get all the factor groups of the subnormal series (3) will be simple groups.
Hence, the subnormal series (3) containing ๐‘ is a composition series.
Example 3.1.14 : Find the composition series for ๐‘† × ๐‘† .
๐ป = {๐‘’} × {๐‘’}
Solution :
๐ป = ๐ด × {๐‘’}
๐ป =๐ด ×๐ด
๐ป =๐‘† ×๐ด
๐ป =๐‘† ×๐‘†
{๐‘’} × {๐‘’} = ๐ป โŠฒ ๐ป โŠฒ ๐ป โŠฒ ๐ป โŠฒ ๐ป = ๐‘† × ๐‘†
Then
is a composition series in
๐‘† ×๐‘† .
Example 3.1.15 : Show that if {๐‘’} = ๐ป < ๐ป < ๐ป < โ‹ฏ < ๐ป = ๐บ is a subnormal series of
a group G and if ๐‘‚
=๐‘†
then G is of finite order ๐‘† . ๐‘† . โ€ฆ . ๐‘† .
Solution : By data
๐‘‚
=๐‘†
Thus
(
)
(
)
=๐‘†
๐‘‚
=
(
)
(
)
=๐‘†
โŸน
๐‘‚(๐ป ) = ๐‘† โˆ™ ๐‘‚(๐ป ) = ๐‘† โˆ™ 1 = ๐‘†
โŸน
๐‘‚(๐ป ) = ๐‘† โˆ™ ๐‘‚(๐ป ) = ๐‘† โˆ™ ๐‘†
โŸน
๐‘‚(๐ป ) = ๐‘† โˆ™ ๐‘‚(๐ป
Continuing in this way, we get
(
(
โŸน
)
)
=๐‘‚
=๐‘†
)
๐‘‚(๐บ) = ๐‘† โˆ™ ๐‘‚(๐ป
(โˆต
=๐‘† โˆ™๐‘†
โˆ™๐‘†
โˆ™ โ€ฆโˆ™ ๐‘†
=๐‘† โˆ™๐‘†
โˆ™๐‘†
โˆ™ โ€ฆโˆ™ ๐‘†
)
๐บ=๐ป )
Hence, ๐บ is a finite group and ๐‘‚(๐บ) = ๐‘† โˆ™ ๐‘† โˆ™ โ€ฆ โˆ™ ๐‘† .
Algebra
Page No. 37
Example 3.1.16 : Show that an abelian group has a composition series iff it is finite.
Solution : Only if part :
Let ๐บ be an abelian group. Let {๐ป } be a composition series of ๐บ.
Then {๐‘’} = ๐ป โŠฒ ๐ป โŠฒ โ‹ฏ โŠฒ ๐ป = ๐บ and
is a simple group for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค
๐‘› โˆ’ 1.
We know that if a group G is abelian then any subgroup of G is also abelian.
is abelian for each ๐‘–,
Hence
Thus
1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1.
is abelian and simple group for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1.
is a cyclic group of prime order say ๐‘
Hence
.
By example 3.1.15, we get |๐บ| = ๐‘ . ๐‘ . โ€ฆ . ๐‘ and hence ๐บ is a finite group.
If part :
Let ๐บ be a finite group.
By theorem 3.1.11, ๐บ has a composition series.
Example 3.1.17 : Show that infinite abelian group can have no composition series.
Solution : By an example 3.1.16, if an abelian group ๐บ contains a composition series, then ๐บ
must be finite. Hence no infinite abelian group will contain a composition series.
3.2. Normal Series :
Definition 3.2.1 : Let ๐บ be a group. A normal series of ๐บ is a finite sequence ๐‘ , ๐‘ , โ€ฆ , ๐‘ of
normal subgroups of ๐บ such that ๐‘ < ๐‘
, ๐‘ = {๐‘’} and ๐‘ = ๐บ.
Remark 3.2.2 : Every normal series of a group G is a subnormal series but not conversely.
For this consider the group ๐บ = ๐ท where ๐ท = โŒฉ{๐œš , ๐œš , ๐œš , ๐œš , ๐œ‡ , ๐œ‡ , ๐›ฟ , ๐›ฟ }, 0โŒช and
1 2 3 4
1 2 3 4
1 2 3 4
๐œš =
2 3 4 1
1 2 3 4
๐œš =
3 4 1 2
1 2 3 4
๐œš =
4 1 2 3
๐œš =
1
2
1
๐œ‡ =
4
1
๐›ฟ =
3
1
๐›ฟ =
1
๐œ‡ =
2
1
2
3
2
2
2
4
3
4
3
2
3
1
3
3
4
3
4
1
4
4
4
2
This group ๐ท is called the group of symmetries of a square.
Algebra
Page No. 38
The series ๐ท given by
{๐œš } < {๐œš , ๐œ‡ } < {๐œš , ๐œš , ๐œ‡ , ๐œ‡ } < ๐ท
is a subnormal series but it is not a normal series as {๐œš , ๐œ‡ } is not a normal subgroup of
๐ท.
Remark 3.2.3 : As every subgroup of an abelian group is normal, every subnormal series in
an abelian group will be a normal series. Thus the two concepts of normal and subnormal
series coincide in an abelian group.
Example 3.2.4 : {0} < 26๐‘ < 13๐‘ < ๐‘
{0} < 14๐‘ < 7๐‘ < ๐‘
and
are normal series in a group โŒฉ๐‘, +โŒช.
Definition 3.2.5 : Let {๐‘ } be a normal series of a group G. The normal series ๐พ
of a
group G is a refinement of the normal series {๐‘ } if {๐‘ } โІ ๐พ . i.e. ๐‘ = ๐พ for each ๐‘–.
Example 3.2.6 : The normal series
{0} < 72๐‘ < 24๐‘ < 8๐‘ < 4๐‘ < ๐‘
is a refinement of the normal series
{0} < 72๐‘ < 8๐‘ < ๐‘
in an abelian group โŒฉ๐‘, +โŒช.
Definition 3.2.7 : Two normal series {๐‘ } and ๐พ of a group G are said to be isomorphic if
there exists a one to one, onto correspondence between the collection of factor groups
๐ป๐‘–+1
๐ป๐‘–
and
Example 3.2.8 :
๐พ๐‘—+1
. So that the corresponding factor groups are abelian.
๐พ๐‘—
The two normal series
{0} < โŒฉ5โŒช < ๐‘
and
{0} < โŒฉ3โŒช < ๐‘
in a group ๐‘
are isomorphic.
Definition 3.2.9 : A normal series {๐‘ } of a group G is principal if all the factor groups
are simple.
Algebra
Page No. 39
Now we list the properties of normal series, the proofs of which are similar to those for
subnormal series.
3.2.10 Properties of Normal Series :
(i) Two normal series of a group G are isomorphic (Schreierโ€™s Theorem).
(ii) Every finite group G has at least one principal series.
(iii)Any two principal series of a group G are isomorphic. (Jordan Hölder Theorem)
(iv) If a group G has a principal series and if N is a proper normal subgroup of G, then there
exists a principal series in G containing N.
Exercise โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
(1) State whether the following statements are true or false.
(i)
Every normal series is a principal series.
(ii)
Every principal series is a composition series.
(iii)
Every composition series is a principal series.
(iv)
Every normal series is a subnormal series.
(v)
Every subnormal series is a normal series.
(vi)
Every group has a composition series.
(vii) Every group has a principal series.
(viii) Any two subnormal / normal series of the same group G are always isomorphic.
(ix)
Given any two normal series we can obtain the refinements for both the series.
(x)
Every abelian group has a composition series.
(2) Find all composition series for ๐‘ .
โ€ขโ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
3.3 Ascending Central Series :
Definition 3.3.1 : The center of a group G is the set {๐‘ฅ โˆˆ ๐บ / ๐‘ฅ๐‘” = ๐‘”๐‘ฅ โˆ€ ๐‘” โˆˆ ๐บ}.
Remark 3.3.2 :
(i)
The center of a group G is generally denoted by Z or Z(G).
(ii) As ๐‘’ โˆˆ ๐‘(๐บ), ๐‘(๐บ) โ‰  ๐œ™ or |๐‘(๐บ)| โ‰ฅ 1.
(iii) G is abelian โŸบ
๐‘(๐บ) = ๐บ.
(iv) ๐‘(๐บ) is always a normal subgroup of G.
Algebra
Page No. 40
3.3.3 Ascending Central Series :
Let ๐‘(๐บ) denote the center of a group G. As ๐‘(๐บ) โŠด ๐บ, the quotient group
is defined. Consider the canonical / natural map ๐‘“: ๐บ โŸถ
( )
( )
. Then ๐‘“ is an onto
homomorphism.
Consider ๐‘
๐บ
๐บ
. ๐‘ ( ) is a normal subgroup of the group
.
๐‘(๐บ)
๐‘๐บ
( )
Hence, ๐‘“
๐‘
๐บ
๐‘(๐บ)
is a normal subgroup of G containing ๐‘(๐บ). Denote this by ๐‘ (๐บ).
Thus we have,
{๐‘’} < ๐‘(๐บ) < ๐‘ (๐บ) < ๐บ
. . . (1)
Now ๐‘ (๐บ) โŠฒ ๐บ and hence the quotient group
( )
Consider the canonical/natural map ๐‘“ โˆถ ๐บ โŸถ
is defined.
( )
.
Surely ๐‘“
is an onto
homomorphism.
As ๐‘
๐บ
โŠด
๐‘1 (๐บ)
( )
,๐‘“
๐‘
๐บ
๐‘1 (๐บ)
is a normal subgroup of G. Denote it by ๐‘ (๐บ).
Thus, continuing in this process, we can construct a sequence of normal subgroups of G
๐‘(๐บ), ๐‘ (๐บ), ๐‘ (๐บ), โ€ฆ such that {๐‘’} โ‰ค ๐‘(๐บ) โ‰ค ๐‘ (๐บ) โ‰ค ๐‘ (๐บ) โ‰ค โ‹ฏ .
i.e.
This series is called the ascending central series of the group ๐บ.
Example 3.3.4 : Find the ascending central series for (i) ๐‘† and (ii) ๐ท .
Solution :
๐‘(๐บ) = {๐‘–} where ๐‘– is the identity map.
โŸน
(i) ๐บ = ๐‘†
Hence the ascending central series of ๐‘† is
{๐‘–} โ‰ค {๐‘–} โ‰ค โ‹ฏ โ‰ค {๐‘–} โ‰ค โ‹ฏ
(ii) ๐บ = ๐ท
๐‘(๐บ) = {๐œŒ , ๐œŒ }
โŸน
where
1
1
1
๐œŒ =
3
๐œŒ =
Now,
Algebra
(
)
=
2
2
2
4
3
3
3
1
4
4
4
2
=4
Page No. 41
As
we get,
(
)
(
)
๐‘“: ๐ท โŸถ
โ‰ค5
is abelian and hence ๐‘
)
(
๐‘“ being onto, ๐‘“
๐ท4
๐‘ (๐ท 4 )
๐ท
= ๐‘(๐ท4 ) .
4
be a canonical mapping.
๐ท4
๐‘ (๐ท 4 )
=๐ท
Thus, the ascending central series in ๐ท is
{๐œŒ } โ‰ค {๐œŒ , ๐œŒ } โ‰ค ๐ท โ‰ค ๐ท โ‰ค โ‹ฏ
3.4 Nilpotent Groups:
Thus we obtain normal subgroups ๐‘ (๐บ), ๐‘ (๐บ), . . . , ๐‘ (๐บ), . .. of ๐บ such that
( )
( )
= ๐‘
๐‘ (๐บ) is called the ๐‘›
( )
,
for every positive integer n > 1.
center of ๐บ.
Define ๐‘ (๐บ) = {๐‘’}. Then
( )
( )
= ๐‘
( )
,
for all positive integers n.
Again by definition,
๐‘ (๐บ) = {๐‘ฅ โˆˆ ๐บ ๐‘ฅ๐‘ฆ๐‘ฅ
๐‘ฆ
โˆˆ๐‘
(๐บ) / for all ๐‘ฆ โˆˆ ๐บ}
Hence,
[๐‘ (๐บ)] โІ ๐‘
(๐บ).
Definition 3.4.1: A group ๐บ is said to be nilpotent if ๐‘ (๐บ) = ๐บ for some ๐‘š. The smallest ๐‘š
such that ๐‘ (๐บ) = ๐บ is called the class of nilpotency of ๐บ.
Remark : Every abelian group is nilpotent. If ๐บ is abelian, then ๐‘ (๐บ) = ๐‘(๐บ). Hence ๐บ is
nilpotent.
Theorem 3.4.2:
Subgroup of a nilpotent group is nilpotent.
Proof :Let ๐บ be a nilpotent group.
Hence, โˆƒ a positive integer ๐‘š such that ๐‘ (๐บ) = ๐บ.
Let ๐ป โ‰ค ๐บ.
To prove that ๐ป is nilpotent.
When ๐ป = {๐‘’} or ๐ป = ๐บ. The result is obviously true.
Algebra
Page No. 42
Let {๐‘’} < ๐ป < ๐บ.
Now let ๐‘ฅ โˆˆ ๐ป โˆฉ ๐‘(๐บ). Then ๐‘”๐‘ฅ = ๐‘ฅ๐‘” for all ๐‘” โˆˆ ๐บ will imply โ„Ž๐‘ฅ = ๐‘ฅโ„Ž for all โ„Ž โˆˆ ๐ป.
Hence ๐‘ฅ โˆˆ ๐‘(๐ป). Thus ,
๐ป โˆฉ ๐‘(๐บ) โІ ๐‘(๐ป)
As ๐‘(๐บ) = ๐‘ (๐บ) and ๐‘(๐ป) โ‰ค ๐ป we get
๐ป โˆฉ ๐‘(๐บ) โ‰ค ๐‘ (๐ป)
. . . (1)
Now, let ๐‘ฅ โˆˆ ๐ป โˆฉ ๐‘ (๐บ).
Then
๐‘ฅ โˆˆ ๐‘ (๐บ) will imply ๐‘ฅ๐‘ฆ๐‘ฅ
But then
๐‘ฅ๐‘ฆ๐‘ฅ
๐‘ฆ
๐‘ฆ
โˆˆ ๐‘ (๐บ)
for all ๐‘ฆ โˆˆ ๐บ
โˆˆ ๐‘ (๐บ)
for all ๐‘ฆ โˆˆ ๐ป
As ๐‘ฅ โˆˆ ๐ป and ๐‘ฆ โˆˆ ๐ป we get ๐‘ฅ๐‘ฆ๐‘ฅ
๐‘ฆ
โˆˆ ๐‘ (๐บ)
for all ๐‘ฆ โˆˆ ๐ป.
But this in turn will imply ๐‘ฅ โˆˆ ๐‘ (๐ป). This shows that
๐ป โˆฉ ๐‘ (๐บ) โ‰ค ๐‘ (๐ป)
. . . (2)
Continuing in this way, we get
๐ป โˆฉ ๐‘ (๐บ) โІ ๐‘ (๐ป)
for all n.
Hence in particular,
๐ป โˆฉ ๐‘ (๐บ) โІ ๐‘ (๐ป)
i.e.
๐ป โˆฉ ๐บ โІ ๐‘ (๐ป)
i.e.
๐ป โІ ๐‘ (๐ป)
But as always, ๐‘ (๐ป) โІ ๐ป, we get ๐‘ (๐ป) = ๐ป.
This proves that H is nilpotent.
Theorem 3.4.3: Every homomorphic image of a nilpotent group is nilpotent.
Proof : Let ๐บ be a nilpotent group. Let ๐œ™ โˆถ ๐บ โŸถ ๐บ be an onto homomorphism.
To prove that the group ๐บ is nilpotent.
As ๐บ is nilpotent, โˆƒ a positive integer m such that ๐‘ (๐บ) = ๐บ.
(i) ๐‘(๐บ) = {๐‘ฅ โˆˆ ๐บ / ๐‘ฅ๐‘” = ๐‘”๐‘ฅ โˆ€ ๐‘” โˆˆ ๐บ}
๐‘(๐บ ) = {๐‘ฅ โˆˆ ๐บ / ๐‘ฅ๐‘” = ๐‘”๐‘ฅ โˆ€ ๐‘” โˆˆ ๐บ }
= {๐œ™(๐‘ฅ) โˆˆ ๐บ / ๐œ™(๐‘ฅ) โˆ™ ๐œ™(๐‘”) = ๐œ™(๐‘”) โˆ™ ๐œ™(๐‘ฅ) โˆ€ ๐œ™(๐‘”) โˆˆ ๐บ }
โ€ฆ โˆต ๐œ™ in onto.
But this shows that
๐œ™[๐‘(๐บ)] โІ ๐‘(๐บ )
Let ๐‘ฅ โˆˆ ๐‘ (๐บ).
Algebra
Then ๐‘ฅ๐‘ฆ๐‘ฅ
๐‘ฆ
โˆˆ ๐‘ (๐บ)
. . . (1)
for all ๐‘ฆ โˆˆ ๐บ.
Page No. 43
Hence,
๐œ™ (๐‘ฅ๐‘ฆ๐‘ฅ
๐‘ฆ
) โˆˆ ๐œ™[๐‘ (๐บ)]
[๐œ™(๐‘ฆ)]
๐œ™(๐‘ฅ) ๐œ™(๐‘ฆ) [๐œ™(๐‘ฅ)]
i.e.
for all ๐‘ฆ โˆˆ ๐บ.
โˆˆ ๐œ™[๐‘ (๐บ)]
for all ๐œ™(๐‘ฆ) โˆˆ ๐บ .
But this in turn will imply ๐œ™(๐‘ฅ) โˆˆ ๐‘ (๐บ ).
๐‘ฅ โˆˆ ๐‘ (๐บ)
Thus,
โŸน
๐œ™(๐‘ฅ) โˆˆ ๐‘ (๐บ ).
Therefore,
๐œ™ [๐‘ (๐บ)] โІ ๐‘ (๐บ )
. . . (2)
Continuing in this way, we get for all ๐‘›
๐œ™ [๐‘ (๐บ)] โІ ๐‘ (๐บ )
. . . (3)
Hence in particular,
๐œ™ [๐‘ (๐บ)] โІ ๐‘ (๐บ )
Hence,
๐œ™ (๐บ) โІ ๐‘ (๐บ )
But ๐œ™ being onto,
๐œ™ (๐บ) = ๐บ
Hence ,
๐บ โІ ๐‘ (๐บ ) โІ ๐บ
โŸน
๐‘ (๐บ ) = ๐บ
Hence, the group ๐บ in nilpotent.
Theorem 3.4.4: Any group of order ๐‘ is nilpotent. OR Any p-group is nilpotent.
Proof : Let ๐บ be a group with |๐บ| = ๐‘ .
To prove that ๐บ is nilpotent.
If ๐บ = ๐‘(๐บ) then we are through. Assume that ๐บ โ‰  ๐‘(๐บ).
|
Then as ๐‘ |๐บ| we get ๐‘(๐บ) โ‰  {๐‘’}. Hence |๐‘(๐บ)| โ‰  1 .
|
Further |๐‘(๐บ)| |๐บ| as ๐‘(๐บ) โ‰ค ๐บ we have |๐‘(๐บ)| = ๐‘ for some ๐‘Ÿ < ๐‘›.
But then
|๐บ|
๐บ
=
=๐‘
|๐‘(๐บ)|
๐‘(๐บ)
will imply ๐‘
Hence, ๐‘
|
( )
.
๐บ
is non trivial.
๐‘(๐บ)
i.e. ๐‘
๐บ
โ‰  ๐‘(๐บ).
๐‘(๐บ)
Hence, by definition of ๐‘ (๐บ) we get ๐‘(๐บ) โŠ‚ ๐‘ (๐บ).
i.e.
|๐‘ (๐บ)| < |๐‘ (๐บ)|.
Continuing in this way we get,
Algebra
Page No. 44
|๐‘ (๐บ)| < |๐‘ (๐บ)| < โ‹ฏ โ‰ค |๐บ| = ๐‘
Hence, there must exists some positive integer m such that |๐‘ (๐บ)| = ๐‘ .
This shows that ๐บ is nilpotent.
Theorem 3.4.5: A group ๐บ is nilpotent iff ๐บ has a normal series.
{๐‘’} = ๐‘ โŠฒ ๐‘ โŠฒ โ‹ฏ โŠฒ ๐‘ = ๐บ
such that
โІ๐‘
for all ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘˜ โˆ’ 1.
Proof : Only if part :
Let ๐บ be nilpotent then โˆƒ a positive integer m such that ๐‘ (๐บ) = ๐บ.
Consider the series
๐‘ (๐บ) = {๐‘’} < ๐‘ (๐บ) < ๐‘ (๐บ) < โ‹ฏ โ‰ค ๐‘ (๐บ) = ๐บ
Then
(i)
๐‘ (๐บ) is a normal subgroup of G for each ๐‘–.
โІ๐‘
(ii)
(iii)
๐‘ โŠฒ๐‘
for each ๐‘–, 0 โ‰ค ๐‘– โ‰ค ๐‘š โˆ’ 1.
for each ๐‘–, 0 โ‰ค ๐‘– โ‰ค ๐‘š โˆ’ 1.
Hence
๐‘ (๐บ) = {๐‘’} < ๐‘ (๐บ) < ๐‘ (๐บ) < โ‹ฏ โ‰ค ๐‘ (๐บ) = ๐บ
will form the required series.
If part :
Let ๐บ be group and let ๐บ have a normal series
{๐‘’} = ๐บ < ๐บ < ๐บ < โ‹ฏ โ‰ค ๐บ = ๐บ
such that
โІ๐‘
To prove that ๐บ is nilpotent.
As
โІ๐‘
we get
{ }
โІ๐‘
{ }
.
Thus, ๐บ โІ ๐‘[๐บ]
i.e.
Algebra
๐บ โІ ๐‘ [๐บ]
. . . (1)
Page No. 45
โІ๐‘
Again by assumption,
.
. Hence ๐บ ๐‘ฅ โˆˆ ๐‘
Now, for any ๐‘ฅ โˆˆ ๐บ we get ๐บ ๐‘ฅ โˆˆ
.
Hence,
[๐บ ๐‘ฅ] [๐บ ๐‘ฆ] = [๐บ ๐‘ฆ] [๐บ ๐‘ฅ]
for all ๐บ , ๐‘ฆ โˆˆ
i.e.
๐‘ฅ๐‘ฆ๐‘ฅ
๐‘ฆ
โˆˆ๐บ
for all ๐‘ฆ โˆˆ ๐บ.
i.e.
๐‘ฅ๐‘ฆ๐‘ฅ
๐‘ฆ
โˆˆ ๐‘ [๐บ]
โ€ฆ by (1)
Thus,
๐‘ฅโˆˆ๐บ
โŸน
๐‘ฅ๐‘ฆ๐‘ฅ
๐‘ฆ
โˆˆ ๐‘ [๐บ]
โŸน
๐‘ฅ โˆˆ ๐‘ [๐บ]
๐บ โІ ๐‘ [๐บ]
Hence,
. . . (2)
Continuing in this way we get
๐บ = ๐บ โІ ๐‘ (๐บ) โІ ๐บ.
๐‘ (๐บ) = ๐บ
Hence,
Hence ๐บ is nilpotent.
Worked Examples โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Example 3.4.6 : ๐บ = ๐‘† is not nilpotent.
Solution: For ๐‘† , ๐‘(๐‘† ) = {๐œš } where ๐œš is the identity element of ๐‘† .
๐‘ (๐‘† ) = {๐œš }.
Hence,
๐‘
{
}
= {๐œš }
๐‘ (๐‘† ) = {๐œš }.
Hence,
Continuing in this way we get, ๐‘ (๐‘† ) = {๐œš }
for any ๐‘š โ‰ฅ 0.
Hence, ๐‘† is not nilpotent.
Example 3.4.7: ๐ท is nilpotent.
Solution : We know that ๐‘ (๐ท ) = {๐œš , ๐œš }.
Hence
As
Hence,
Hence,
Algebra
)
(
{
(
)
,
={
}
,
}
= |{
|
|
,
}|
= =4
is abelian. Therefore ๐‘
๐ท4
๐‘ (๐ท 4 )
๐ท
= ๐‘(๐ท4 )
4
๐‘ (๐ท ) = ๐ท . Hence, ๐ท is nilpotent.
Page No. 46
Example 3.4.8 : Show that ๐‘† is not nilpotent for ๐‘› โ‰ฅ 3.
Solution : For ๐‘› โ‰ฅ 3, ๐‘[๐‘† ] = {๐‘’} where e is the identity element in ๐‘† .
Thus ๐‘ (๐‘† ) = {๐‘’}. But then ๐‘ (๐‘† ) = {๐‘’} for all positive integers m.
Hence ๐‘† is nilpotent for ๐‘› โ‰ฅ 3.
โ€ขโ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Remark : ๐‘† is solvable but ๐‘† is not nilpotent. This shows that every solvable group need
not be nilpotent. But converse is always true. i.e. every nilpotent group is solvable.
Theorem 3.4.9: Every nilpotent group is solvable.
Proof :
Let ๐บ be nilpotent group. Then by theorem 3.4.5, there exists a normal series
{๐‘’} = ๐ป โŠฒ ๐ป โŠฒ โ‹ฏ โŠฒ ๐ป = ๐บ
such that
โІ๐‘
As ๐‘
is abelian, we get
is abelian.
Hence by theorem 2.2.13, G is solvable.
Worked Examples โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Example 3.4.10 : Give an example of a group G such that G has a normal subgroup N with
both N and
nilpotent but G is non-nilpotent.
Solution: Consider ๐บ = ๐‘† .
We know, ๐‘† is not nilpotent (See example3.4.8).
๐‘ = {(1), (1, 2, 3), (1, 3, 2)} is a normal subgroup of ๐‘† .
N is an abelian subgroup of ๐‘† ( โˆต |๐‘| = 3 )
Hence N is nilpotent.
Again
Thus both N and
= =2
โŸน
is abelian.
โŸน
is nilpotent.
are nilpotent but ๐‘† is not nilpotent.
Example 3.4.11 : Show that the product of two nilpotent groups is a nilpotent group.
Solution : Let ๐ป and ๐พ be any two nilpotent groups.
Algebra
Page No. 47
Then โˆƒ positive integers m and n such that ๐‘ (๐ป) = ๐ป and ๐‘ (๐พ) = ๐พ.
Let ๐บ = ๐ป × ๐พ.
๐‘ฅ โˆˆ ๐‘(๐บ)
โŸน
๐‘ฅ๐‘” = ๐‘”๐‘ฅ
๐‘ฅ = (๐‘ฅ , ๐‘ฅ ) and
for all ๐‘” โˆˆ ๐บ.
๐‘” = (๐‘” , ๐‘” )
Then ๐‘ฅ๐‘” = (๐‘ฅ ๐‘” , ๐‘ฅ ๐‘” )
๐‘”๐‘ฅ = (๐‘” ๐‘ฅ , ๐‘” ๐‘ฅ )
Thus, ๐‘ฅ๐‘” = ๐‘”๐‘ฅ โŸน
๐‘ฅ ๐‘” =๐‘” ๐‘ฅ
and ๐‘ฅ ๐‘” = ๐‘” ๐‘ฅ
for all ๐‘” โˆˆ ๐ป, ๐‘” โˆˆ ๐พ
But this will imply ๐‘ฅ โˆˆ ๐‘(๐ป) and ๐‘ฅ โˆˆ ๐‘(๐พ).
Thus, ๐‘ฅ = (๐‘ฅ , ๐‘ฅ ) โˆˆ ๐‘(๐บ) = ๐‘(๐ป × ๐พ)
โŸน
(๐‘ฅ , ๐‘ฅ ) โˆˆ ๐‘(๐ป) × ๐‘(๐พ)
Similarly, we can prove that
(๐‘ฅ , ๐‘ฅ ) โˆˆ ๐‘(๐ป) × ๐‘(๐พ)
โŸน
๐‘ฅ = (๐‘ฅ , ๐‘ฅ ) โˆˆ ๐‘(๐บ) = ๐‘(๐ป × ๐พ)
Hence,
๐‘(๐ป × ๐พ) = ๐‘(๐ป) × ๐‘(๐พ).
By iteration,
๐‘ (๐ป × ๐พ) = ๐‘ (๐ป) × ๐‘ (๐พ)
Hence, if ๐‘š > ๐‘› then ๐‘ (๐พ) = ๐พ
for each positive integer ๐‘–.
โŸน
๐‘ (๐พ) = ๐พ.
Thus, ๐‘ (๐ป × ๐พ) = ๐‘ (๐ป) × ๐‘ (๐พ) = ๐ป × ๐พ.
This shows that ๐‘ (๐บ) = ๐บ and ๐บ = ๐ป × ๐พ is nilpotent.
โ€ขโ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Unit 4 : Sylow Theorems :
4.1 Group action on a set.
4.2 Class equation of a group.
4.3 ๐‘-groups
4.4 Three Sylow theorems.
4.1 Group action on a set :
Definition 4.1.1: Let ๐บ be any group and let ๐‘‹ be any non-empty set. An action of ๐บ on ๐‘‹ is
a mapping ๐‘“: ๐‘‹ × ๐บ โŸถ ๐‘‹ satisfying the following conditions
(i) ๐‘“(๐‘ฅ, ๐‘’) = ๐‘ฅ
for all ๐‘ฅ โˆˆ ๐บ
(ii) ๐‘“(๐‘ฅ, ๐‘” ๐‘” ) = ๐‘“(๐‘“(๐‘ฅ, ๐‘” ), ๐‘” )
for all ๐‘ฅ โˆˆ ๐บ and ๐‘” , ๐‘” โˆˆ ๐บ
Under these conditions we say ๐‘‹ is a ๐บ-set. Note that every ๐บ-set need not be a group.
Algebra
Page No. 48
Examples 4.1.2 :
(i)
Let ๐‘‹ = {1, 2, โ€ฆ , ๐‘›} and ๐บ = โŒฉ๐‘† , 0โŒช. Define ๐‘“ โˆถ ๐‘‹ × ๐บ โŸถ ๐‘‹ by
๐‘“(๐‘ฅ, ๐œŽ) = ๐œŽ(๐‘ฅ)
for ๐‘ฅ โˆˆ ๐‘‹ and ๐œŽ โˆˆ ๐‘† .
Then
(1)
๐‘“(๐‘ฅ, ๐‘–) = ๐‘–(๐‘ฅ) = ๐‘ฅ
where ๐‘– = identity map defined on X.
(2)
๐‘“(๐‘ฅ, ๐œŽ โˆ˜ ๐œŽ ) = (๐œŽ โˆ˜ ๐œŽ )(๐‘ฅ) = ๐œŽ [๐œŽ (๐‘ฅ)]
= ๐‘“[๐‘“(๐‘ฅ, ๐œŽ ), ๐œŽ ]
From (1) and (2) we get X is a G-set.
(ii)
Let G be any group and let ๐ป โ‰ค ๐บ. โ„œ denotes the set of all right cosets of H in G.
Define ๐‘“ โˆถ โ„œ × ๐ป โŸถ โ„œ by
๐‘“(๐ป , โ„Ž) = ๐ป
for ๐ป โˆˆ โ„œ and โ„Ž โˆˆ ๐ป.
Then
(1)
๐‘“(๐ป , ๐‘’) = ๐ป
(2)
๐‘“(๐ป , โ„Ž โ„Ž ) = ๐ป
=๐ป
(
where ๐‘– = identity map defined on X.
)
= ๐ป(
)
= ๐‘“[๐‘“(๐ป , โ„Ž ), โ„Ž ]
From (1) and (2) we get โ„œ is a H-set.
(iii) Let G be any group and X be the set of all subgroups of G. Define ๐‘“: ๐‘‹ × ๐บ โŸถ ๐บ by
๐‘“(๐‘‡, ๐‘”) = ๐‘” ๐‘‡๐‘”
for ๐‘‡ โˆˆ ๐‘‹ and ๐‘” โˆˆ ๐บ.
Then
๐‘‡๐‘’ = ๐‘‡
(1)
๐‘“(๐‘‡, ๐‘’) = ๐‘’
(2)
๐‘“(๐‘‡, ๐‘” ๐‘” ) = (๐‘” ๐‘” ) ๐‘‡(๐‘” ๐‘” )
=๐‘”
[๐‘” ๐‘‡๐‘” ] ๐‘”
= ๐‘“[๐‘“(๐‘‡, ๐‘” ), ๐‘” ]
Hence X is a G - set.
(iv) Let ๐บ be a group and ๐ป โ‰ค ๐บ. Define ๐‘“: ๐บ × ๐ป โŸถ ๐บ by
๐‘“(๐‘”, โ„Ž) = โ„Ž ๐‘”โ„Ž
for ๐‘” โˆˆ ๐บ and โ„Ž โˆˆ ๐ป.
Then
(1)
๐‘“(๐‘”, ๐‘’) = ๐‘’
(2)
๐‘“(๐‘”, โ„Ž โ„Ž ) = (โ„Ž โ„Ž )
๐‘”๐‘’ = ๐‘”
=โ„Ž
Algebra
[โ„Ž
๐‘” (โ„Ž โ„Ž )
๐‘”โ„Ž ]โ„Ž
Page No. 49
= ๐‘“[๐‘“(๐‘”, โ„Ž ), โ„Ž ]
Hence G is a H - set.
(v)
Any group ๐บ is a G โ€“ set under the action ๐‘“: ๐บ × ๐บ โŸถ ๐บ defined by
๐‘“(๐‘” , ๐‘” ) = ๐‘” โˆ™ ๐‘” ,
for all ๐‘” , ๐‘” โˆˆ ๐บ.
Remark : Let ๐‘‹ be a ๐บ โ€“ set. Then by definition 4.1.1, there exists ๐‘“ โˆถ ๐‘‹ × ๐บ โŸถ ๐‘‹
satisfying the conditions,
(1) ๐‘“(๐‘ฅ, ๐‘’) = ๐‘ฅ
and
(2) ๐‘“(๐‘ฅ, ๐‘” ๐‘” ) = ๐‘“[๐‘“(๐‘ฅ, ๐‘” ), ๐‘” ].
Here onwards we write ๐‘“(๐‘ฅ, ๐‘”) = ๐‘ฅ๐‘” ,
for all ๐‘ฅ โˆˆ ๐‘‹ and ๐‘” โˆˆ ๐บ.
Thus, ๐‘ฅ๐‘’ = ๐‘ฅ and ๐‘ฅ(๐‘” ๐‘” ) = (๐‘ฅ๐‘” )๐‘” ,
for all ๐‘ฅ โˆˆ ๐‘‹ and ๐‘” , ๐‘” โˆˆ ๐บ.
Let ๐‘‹ be a ๐บ โ€“ set. For a fixed ๐‘ฅ โˆˆ ๐‘‹, define
๐บ = {๐‘” โˆˆ ๐บ / ๐‘ฅ๐‘” = ๐‘ฅ}
and for a fixed ๐‘” โˆˆ ๐บ, define
๐‘‹ = {๐‘ฅ โˆˆ ๐‘‹ / ๐‘ฅ๐‘” = ๐‘ฅ}.
As an important property of the set ๐บ , we prove
Theorem 4.1.3 : Let ๐‘‹ be a ๐บ โ€“ set. for any ๐‘ฅ โˆˆ ๐‘‹, ๐บ โ‰ค ๐บ.
Proof :
โŸน ๐บ โ‰  ๐œ™.
(i)
๐‘ฅ๐‘’ = ๐‘ฅ
โŸน ๐‘’โˆˆ๐บ
(ii)
๐‘” , ๐‘” โˆˆ ๐บ โŸน ๐‘ฅ๐‘” = ๐‘ฅ and
๐‘ฅ๐‘” = ๐‘ฅ.
Hence, ๐‘ฅ(๐‘” ๐‘” ) = (๐‘ฅ๐‘” )๐‘” = ๐‘ฅ๐‘” = ๐‘ฅ.
This shows that ๐‘” ๐‘” โˆˆ ๐บ .
(iii) Let ๐‘” โˆˆ ๐บ . Then ๐‘ฅ๐‘” = ๐‘ฅ
โŸน (๐‘ฅ๐‘”)๐‘”
= ๐‘ฅ๐‘”
โŸน ๐‘ฅ(๐‘”๐‘” ) = ๐‘ฅ๐‘”
โŸน ๐‘ฅ โˆ™ ๐‘’ = ๐‘ฅ๐‘”
โŸน ๐‘ฅ = ๐‘ฅ๐‘”
Hence ๐‘” โˆˆ ๐บ
โŸน
๐‘”
โˆˆ๐บ
From (i), (ii) and (iii) we get ๐บ is a sub group of G.
Definition 4.1.4 : Let X be a G โ€“ set. For any ๐‘ฅ โˆˆ ๐‘‹, the subgroup ๐บ of ๐บ is called the
isotropy subgroup of ๐บ.
Algebra
Page No. 50
Example 4.1.5 : Let ๐‘‹ = {1, 2, 3}. Then X is a ๐‘† - set. (See example 4.1.2 (1)). We have
๐‘† = {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}
The isotropy subgroup of 2 is {(1), (1 3)}.
On each ๐บ-set ๐‘‹, the group ๐บ induces an equivalence relation. This we prove in the following
theorem.
Theorem 4.1.6 : Let ๐‘‹ be a ๐บ โ€“ set. Define a relation โ€˜~โ€™ on ๐‘‹ by
๐‘ฅ~๐‘ฆ
โŸน ๐‘ฅ =๐‘ฆโˆ™๐‘”,
for some ๐‘” โˆˆ ๐บ.
Then the relation โ€˜~โ€™ is an equivalence relation on ๐‘‹.
Proof :
(i)
๐‘ฅ๐‘’ = ๐‘ฅ for all ๐‘ฅ โˆˆ ๐‘‹
โŸน
(ii)
โŸน ๐‘ฅ~๐‘ฅ,
the relation โ€˜~โ€™ is reflexive.
Let ๐‘ฅ ~ ๐‘ฆ. Hence ๐‘ฅ = ๐‘ฆ๐‘” ,
๐‘ฅ๐‘”
for all ๐‘ฅ โˆˆ ๐‘‹.
= (๐‘ฆ๐‘”) ๐‘”
for some ๐‘” โˆˆ ๐บ.
= ๐‘ฆ(๐‘”๐‘” ) = ๐‘ฆ๐‘’ = ๐‘ฆ
This shows that ๐‘ฅ ~ ๐‘ฆ
โŸน y~๐‘ฅ,
for x, ๐‘ฆ โˆˆ ๐‘‹.
Hence the relation โ€˜~โ€™ is symmetric.
(iii) Let ๐‘ฅ ~ ๐‘ฆ and ๐‘ฆ ~ ๐‘ง.
Then ๐‘ฅ = ๐‘ฆ๐‘” and ๐‘ฆ = ๐‘ง๐‘”
for some ๐‘” , ๐‘” โˆˆ ๐บ.
Thus, ๐‘ฅ = ๐‘ฆ๐‘” = (๐‘ง๐‘” )๐‘” = ๐‘ง(๐‘” ๐‘” ).
As ๐‘” , ๐‘” โˆˆ ๐บ, we get ๐‘ฅ ~ ๐‘ง.
This shows that ๐‘ฅ ~ ๐‘ฆ, ๐‘ฆ ~ ๐‘ง โŸน ๐‘ฅ ~ ๐‘ง
for ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹.
Hence the relation โ€˜~โ€™ is transitive.
From (i), (ii) and (iii) we get โ€˜~โ€™ is an equivalence relation on X.
Definition 4.1.7 : Let X be a ๐บ โ€“ set. Each equivalence class produced by the equivalence
relation โ€˜~โ€™ defined on ๐‘‹, described in Theorem 4.1.6, is called an orbit in ๐‘‹ under ๐บ.
The equivalence class containing ๐‘ฅ โˆˆ ๐‘‹ is orbit of ๐‘ฅ and we denote it by ๐‘ฅ๐บ.
Thus,
๐‘ฅ๐บ = {๐‘ฆ โˆˆ ๐‘‹ / ๐‘ฅ ~ ๐‘ฆ}
= {๐‘ฆ โˆˆ ๐‘‹ / ๐‘ฅ = ๐‘ฆ๐‘” ๐‘“๐‘œ๐‘Ÿ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘” โˆˆ ๐บ}
A relation between the orbit ๐‘ฅ๐บ and the subgroup ๐บ in a ๐บ โ€“ set ๐‘‹ is as follows.
Theorem 4.1.8 : Let ๐‘‹ be any ๐บ โ€“ set. Then |๐‘ฅ๐บ| = (๐บ: ๐บ ), for any ๐‘ฅ โˆˆ ๐‘‹.
Algebra
Page No. 51
Proof :
Fix up any ๐‘ฅ โˆˆ ๐‘‹. Let โ„œ denote the collection of all right cosets of the subgroup
๐บ in ๐บ. We will show that โ„œ is equipotent with the set ๐‘ฅ๐บ.
Now ๐‘ฆ โˆˆ ๐‘ฅ๐บ โŸน ๐‘ฆ ~ ๐‘ฅ โŸน ๐‘ฆ = ๐‘ฅ๐‘”
for some ๐‘” โˆˆ ๐บ.
Define ๐œ™ โˆถ ๐‘ฅ๐บ โŸถ โ„œ by
๐œ™(๐‘ฆ) = ๐บ ๐‘”
where ๐‘ฆ = ๐‘ฅ๐‘”, ๐‘” โˆˆ ๐บ.
(i) ๐œ™ is well defined.
Let ๐‘ฆ = ๐‘ฆ in ๐‘ฅ๐บ.
Then
๐‘ฆ = ๐‘ฅ๐‘”
and
๐‘ฆ = ๐‘ฅ๐‘”
for some ๐‘” , ๐‘” โˆˆ ๐บ.
Thus
๐‘ฆ =๐‘ฆ
โŸน
๐‘ฅ๐‘” = ๐‘ฅ๐‘”
โŸน
(๐‘ฅ๐‘” ) ๐‘”
โŸน
๐‘ฅ(๐‘” ๐‘” ) = ๐‘ฅ(๐‘” ๐‘” )
โŸน
๐‘ฅ๐‘’ = ๐‘ฅ(๐‘” ๐‘” )
โŸน
๐‘ฅ = ๐‘ฅ(๐‘” ๐‘” )
= (๐‘ฅ๐‘” ) ๐‘”
โŸน
๐‘” ๐‘”
โˆˆ๐บ
โŸน
(๐บ )๐‘” = (๐บ )๐‘”
โŸน
๐œ™(๐‘ฆ ) = ๐œ™(๐‘ฆ )
This shows that ๐œ™ is well defined map.
(ii)
๐œ™ is one-one.
Let
๐œ™(๐‘ฆ ) = ๐œ™(๐‘ฆ ) ,
for some ๐‘ฆ , ๐‘ฆ โˆˆ ๐‘‹ .
Let
๐œ™(๐‘ฆ ) = (๐บ )๐‘” ,
where ๐‘ฆ = ๐‘ฅ ๐‘”
and
๐œ™(๐‘ฆ ) = (๐บ )๐‘” ,
where ๐‘ฆ = ๐‘ฅ ๐‘” .
Thus,
๐œ™(๐‘ฆ ) = ๐œ™(๐‘ฆ )
โŸน
(๐บ )๐‘” = (๐บ )๐‘”
โŸน
๐‘”๐‘”
โŸน
๐‘ฅ (๐‘” ๐‘” ) = ๐‘ฅ
โŸน
(๐‘ฅ๐‘” ) ๐‘”
โŸน
๐‘ฅ๐‘” = ๐‘ฅ๐‘”
โŸน
๐‘ฆ =๐‘ฆ
โˆˆ๐บ
=๐‘ฅ
This shows that ๐œ™ is one-one.
(iii) ๐œ™ is onto.
Let (๐บ )๐‘” โˆˆ โ„œ. Then ๐‘” โˆˆ ๐บ and for this ๐‘”, consider the element ๐‘ฆ โˆˆ ๐‘‹ defined by
๐‘ฆ = ๐‘ฅ๐‘”.
Algebra
Page No. 52
Then ๐œ™(๐‘ฆ) = (๐บ )๐‘” shows that ๐œ™ is onto.
From (i), (ii) and (iii) we get ๐œ™ is an one-one, onto mapping. Hence ,
|๐‘ฅ๐บ| = |โ„œ|
But
|โ„œ|= Number of right cosets of ๐บ in G = (๐บ โˆถ ๐บ ).
Hence, |๐‘ฅ๐บ| = (๐บ โˆถ ๐บ ),
โˆ€ ๐‘ฅ โˆˆ ๐‘‹.
Corollary 4.1.9 : Let ๐บ be a finite group and let ๐‘‹ be a finite ๐บ-set. Then
(i) |๐บ| = |๐‘ฅ๐บ| โˆ™ |๐บ | ,
(ii) |๐‘‹| =
for any ๐‘ฅ โˆˆ ๐‘‹.
โˆ‘ ( G : Gx ) ,
where ๐ถ denotes the subset of ๐‘‹ containing exactly one
xโˆˆC
element from each orbit.
Proof :
(i)
From theorem 4.1.8, we have,
|๐‘ฅ๐บ| = (๐บ: ๐บ ) ,
(ii)
| |
Hence
|๐‘ฅ๐บ| =
Hence
|๐บ| = |๐‘ฅ๐บ| โˆ™ |๐บ |
|
|
for any ๐‘ฅ โˆˆ ๐‘‹.
โ€ฆ Since G is a finite group.
Let C denote the subset of X containing exactly one element from each orbit of X under
G.
Then
โˆ‘ xG
|๐‘‹| =
xโˆˆC
Since
๐‘‹=
๐‘ฅ๐บ
โˆˆ
and this union is a disjoint union.
As by theorem 4.1.8,
|๐‘ฅ๐บ| = (๐บ: ๐บ )
we get,
|๐‘‹| =
โˆ‘ ( G : Gx )
xโˆˆC
Algebra
Page No. 53
The following theorem gives a tool for determining the number of orbits in a G-set X
under G.
โ€ข
Burnside Theorem :
Theorem 4.1.10 : Let G be a finite group and let X be a finite G-set. If ๐‘Ÿ is the number of
orbits in X under G, then
โˆ‘
๐‘Ÿ. |๐บ| =
g โˆˆG
Proof :
Xg
Let N = number of ordered pairs (๐‘ฅ, ๐‘”) โˆˆ ๐‘‹ × ๐บ for which ๐‘ฅ๐‘” = ๐‘ฅ. Then for a
with pairs with ๐‘” as a second member and ๐‘ฅ๐‘” = ๐‘ฅ. Hence
fixed ๐‘” โˆˆ ๐บ, there are ๐‘‹
โˆ‘
N=
g โˆˆG
Xg
. . . (1)
Similarly, for a fixed ๐‘ฅ โˆˆ ๐‘‹, there are |๐บ | pairs with ๐‘ฅ as a first member and ๐‘ฅ๐‘” = ๐‘ฅ.
Hence,
โˆ‘
N=
xโˆˆ X
Gx
. . . (2)
From (1) and (2) we get,
๐‘‹
|๐บ |
=
โˆˆ
โˆˆ
=
โˆˆ
|๐บ|
|๐‘ฅ๐บ|
= |๐บ|
โˆˆ
โˆต |๐‘ฅ๐บ| = (๐บ: ๐บ ) =
1
|๐‘ฅ๐บ|
|๐บ|
|๐บ |
. . . (3)
r
Now, let ๐‘‚ , ๐‘‚ , ๐‘‚ , โ€ฆ , ๐‘‚ be r orbits of X under G. Then X = U Oi and this union is
i =1
disjoint. Hence we get,
โˆˆ
1
=
|๐‘ฅ๐บ|
r
1
|๐‘ฅ๐บ|
x โˆˆ U Oi
i =1
=
โˆˆ
Now consider
โˆ‘
xโˆˆO1
1
xG
โˆˆ
1
+โ‹ฏ +
|๐‘ฅ๐บ|
โˆˆ
1
|๐‘ฅ๐บ|
.
Let ๐‘‚ = {๐‘ก , ๐‘ก , ๐‘ก , โ€ฆ , ๐‘ก }
Algebra
1
+
|๐‘ฅ๐บ|
( ๐‘‚ is finite as X is finite )
Page No. 54
Hence,
โˆˆ
1
1
1
1
=
+
+โ‹ฏ+
|๐‘ก ๐บ| |๐‘ก ๐บ|
|๐‘ก ๐บ|
|๐‘ฅ๐บ|
=
1
1
+
+โ‹ฏ
|๐‘‚ | |๐‘‚ |
+
1
|๐‘‚ |
(๐‘› times) โ€ฆ by the definition of orbit
1
1 1
+ + โ‹ฏ+
๐‘›
๐‘› ๐‘›
๐‘›
= =1
๐‘›
=
โ€ฆ ๐‘› times
Generalizing this result we get,
โˆˆ
1
=1
|๐‘ฅ๐บ|
for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘Ÿ
Hence,
โˆˆ
1
= 1 +1 +โ‹ฏ+ 1
|๐‘ฅ๐บ|
=๐‘Ÿ
(๐‘Ÿ times)
. . . (4)
From (3) and (4) we get,
๐‘‹
= |๐บ| โˆ™ ๐‘Ÿ
โˆˆ
i.e.
๐‘Ÿ โˆ™ |๐บ| =
โˆ‘
g โˆˆG
Xg
This completes the proof.
4.2
Class Equation of a Group :
As an application of the Burnside theorem, we derive an equation which is called class
equation of a group.
Let ๐บ be a finite group and let ๐‘‹ be a finite ๐บ set. Let ๐‘‚ , ๐‘‚ , ๐‘‚ , โ€ฆ , ๐‘‚ be different ๐‘Ÿorbits in ๐‘‹ by ๐บ. Select ๐‘ฅ โˆˆ ๐‘‚ for each ๐‘–. Then ๐‘‹ being the disjoint union of
๐‘‚ , ๐‘‚ , ๐‘‚ , โ€ฆ , ๐‘‚ , we get
|๐‘‹| =
Algebra
|๐‘‚ |
Page No. 55
|๐‘ฅ ๐บ|
=
โ€ฆ (1)
Define ๐‘‹ = {๐‘ฅ โˆˆ ๐‘‹ / ๐‘ฅ๐‘” = ๐‘”,
for all ๐‘” โˆˆ ๐บ}
Let ๐‘‚ denote an one element orbit i.e. ๐‘‚ = {๐‘ฅ }. Then
๐‘‚ = {๐‘ฆ โˆˆ ๐‘‹ / ๐‘ฆ ~ ๐‘ฅ }
= {๐‘ฆ โˆˆ ๐‘‹ / ๐‘ฆ = ๐‘ฅ ๐‘” for some ๐‘” โˆˆ ๐บ}
= {๐‘ฅ ๐‘” / ๐‘” โˆˆ ๐บ}
= {๐‘ฅ }
โ€ฆ by assumption.
Thus, ๐‘‚ = {๐‘ฅ } if and only if ๐‘ฅ = ๐‘ฅ ๐‘” for all ๐‘” โˆˆ ๐บ. Hence the set ๐‘‹ is precisely the
union of one element orbit in ๐‘‹. Assume that there are โ€˜sโ€™ one element orbits in ๐‘‹ under
๐บ.
Then,
r
|๐‘‹| = ๐‘  +
โˆ‘
i = s +1
xi G
r
i.e.
|๐‘‹| = |๐‘‹ | +
โˆ‘
i = s +1
Again,
xi G
. . . (2)
|๐‘ฅ ๐บ| = ๐บ: ๐บ
โ€ฆ by Burnside theorem.
Hence, from (2) we get,
r
|๐‘‹| = |๐‘‹ | +
โˆ‘
i = s +1
( G : Gx )
. . . (3)
i
Now, for a finite group ๐บ we can consider ๐บ as a ๐บ set under conjugation.
i.e. ๐‘ฅ๐‘” = ๐‘” ๐‘ฅ๐‘”
for ๐‘ฅ, ๐‘” โˆˆ ๐บ.
Then by (2) we get,
r
|๐บ| = |๐‘‹ | +
โˆ‘
i = s +1
xi G
โ€ฆ (4)
Consider the set ๐‘‹ in (4)
๐‘‹ = {๐‘ฅ โˆˆ ๐‘‹ / ๐‘ฅ๐‘” = ๐‘ฅ, โˆ€
๐‘” โˆˆ ๐บ}
= {๐‘ฅ โˆˆ ๐‘‹ / ๐‘” ๐‘ฅ๐‘” = ๐‘ฅ, โˆ€ ๐‘” โˆˆ ๐บ}
(โˆต
๐‘ฅ๐‘” = ๐‘” ๐‘ฅ๐‘”)
= {๐‘ฅ โˆˆ ๐‘‹ / ๐‘ฅ๐‘” = ๐‘”๐‘ฅ, โˆ€ ๐‘” โˆˆ ๐บ}
= ๐‘(๐บ)
๐‘(๐บ) = center of ๐บ
Substituting |๐‘‹ | = |๐‘(๐บ)| in (4) we get
Algebra
Page No. 56
r
|๐บ| = |๐‘(๐บ)| +
โˆ‘
i = s +1
r
= |๐‘(๐บ)| +
โˆ‘
i = s +1
Let
๐‘› = ๐บ: ๐บ
Then ๐‘›
| |๐บ|
xi G
(G : Gx )
i
for each ๐‘–.
for each ๐‘–.
Hence,
|๐บ| = |๐‘(๐บ)| + ๐‘›
i.e.
|๐บ| = ๐ถ + ๐‘›
+๐‘›
+๐‘›
+. . . +๐‘›
+. . . +๐‘›
. . . (5)
where ๐ถ = |๐‘(๐บ)|
The equation (5) is called the class equation of the group ๐บ.
Recall that, for any ๐‘ฅ โˆˆ ๐บ the set
๐ถ(๐‘ฅ) = {๐‘” ๐‘ฅ๐‘” / ๐‘” โˆˆ ๐บ}
is called the conjugate class of x in G and the set
๐‘(๐‘ฅ) = {๐‘” โˆˆ ๐บ / ๐‘” ๐‘ฅ๐‘” = ๐‘ฅ}
is a normalizer of x in G. ๐‘(๐‘ฅ) is a subgroup of G and |๐ถ(๐‘ฅ)| = ๐บ โˆถ ๐‘(๐‘ฅ) . If ๐‘ฅ๐บ
denote the orbit of G under conjugation of G containing the element x; then
๐‘ฅ๐บ = {๐‘ฆ โˆˆ ๐‘‹ / ๐‘ฆ ~ ๐‘ฅ}
= {๐‘ฆ โˆˆ ๐บ / ๐‘ฆ = ๐‘ฅ๐‘”, for some ๐‘” โˆˆ ๐บ}
= {๐‘ฆ โˆˆ ๐บ / ๐‘ฆ = ๐‘” ๐‘ฅ๐‘”, for ๐‘” โˆˆ ๐บ}
= ๐ถ(๐‘ฅ)
Thus |๐‘ฅ๐บ| = |๐ถ(๐‘ฅ)| = (๐บ: ๐‘(๐‘ฅ))
. . . (6)
From the equation (5) we get,
|๐บ| = |๐‘(๐บ)| +
|๐‘ฅ ๐บ|
Where ๐‘ฅ ๐บ represents the orbit in ๐บ under conjugation by ๐บ, containing more than one
element.
Hence, from (5) and (6) we get
|๐บ| = |๐‘(๐บ)| +
(๐บ: ๐‘(๐‘ฅ))
โˆˆ
Algebra
Page No. 57
where ๐ถ contains exactly one element from each conjugate class with more than one
element.
Example : Consider the group ๐บ = ๐‘† . The centre of the group ๐‘† contains only one element
and the class equation of ๐‘† is 6 = 1 + 2 + 3.
With the help of class equation we derive the following important property of |๐‘(๐บ)|.
Theorem 4.2.1 : Let ๐บ be a finite group with |๐บ| = ๐‘ where ๐‘ is a prime number. Then the
centre of ๐บ is non trivial.
Proof :
|๐บ| = ๐‘ . to prove that ๐‘(๐บ) โ‰  {๐‘’}.
We know that the class equation of G is
|๐บ| = ๐ถ + ๐‘›
where ๐‘›
+๐‘›
+. . . +๐‘›
. . . (1)
| |๐บ| for each ๐‘– and
๐‘› = cardinality of the conjugate class in ๐บ and ๐ถ = |๐‘(๐บ)|.
Now,
| |๐บ|
โŸน
Hence, ๐‘
|๐‘›
+๐‘›
Again ๐‘
| |๐บ| = ๐‘ .
๐‘›
|
Hence, ๐‘ [|๐บ| โˆ’ (๐‘›
๐‘›
|๐‘
โŸน
๐‘
|๐‘›
,
for each ๐‘–, ๐‘ + 1 โ‰ค ๐‘– โ‰ค ๐‘Ÿ.
+. . . +๐‘› .
+๐‘›
+. . . +๐‘› )]
|
From (1) we get, ๐‘ ๐‘.
i.e.
|
๐‘ |๐‘(๐บ)|.
Hence, |๐‘(๐บ)| > 1.
i.e.
๐‘(๐บ) โ‰  {๐‘’}
We know that if |๐บ| = ๐‘, (p is prime) then ๐บ is cyclic and hence abelian. In the next
theorem we prove that if |๐บ| = ๐‘ then also ๐บ is abelian.
Algebra
Page No. 58
Theorem 4.2.2 : If ๐‘‚(๐บ) = ๐‘ , (p is prime), then ๐บ is an abelian group.
Proof : Let ๐บ be a non abelian group. Then ๐บ โ‰  ๐‘(๐บ).
Hence, |๐‘(๐บ)| โ‰  ๐‘ .
As |๐บ| = ๐‘ , by the theorem 2.1, ๐‘(๐บ) โ‰  {๐‘’} and hence |๐‘(๐บ)| โ‰  1.
|
As ๐‘(๐บ) |๐บ|, (๐บ being finite) we get |๐‘(๐บ)| = 1, ๐‘, ๐‘ .
Hence, the only possible value is |๐‘(๐บ)| = ๐‘.
Select any ๐‘Ž โˆˆ ๐บ such that ๐‘Ž โˆ‰ ๐‘(๐บ). (Such ๐‘Ž exists as ๐‘(๐บ) โŠ‚ ๐บ).
Consider ๐‘(๐‘Ž) = {๐‘ฅ โˆˆ ๐บ / ๐‘ฅ๐‘Ž๐‘ฅ
Then
= ๐‘Ž}.
๐‘(๐‘Ž) โ‰ค ๐บ. Further ๐‘ฅ โˆˆ ๐‘(๐บ).
โŸน ๐‘ฅ๐‘” = ๐‘”๐‘ฅ
for all ๐‘” โˆˆ ๐บ.
โŸน ๐‘ฅ๐‘Ž = ๐‘Ž๐‘ฅ
as ๐‘Ž โˆˆ ๐บ.
โŸน ๐‘ฅ๐‘Ž๐‘ฅ
=๐‘Ž
โŸน ๐‘ฅ โˆˆ ๐‘(๐‘Ž)
Thus, ๐‘(๐บ) โ‰ค ๐‘(๐‘Ž).
But ๐‘Ž โˆˆ ๐‘(๐‘Ž) and ๐‘Ž โˆ‰ ๐‘(๐บ) gives ๐‘(๐บ) โŠ‚ ๐‘(๐‘Ž).
Thus, we have ๐‘(๐บ) < ๐‘(๐‘Ž) โ‰ค ๐บ.
As ๐‘(๐‘Ž) โ‰ค ๐บ and |๐บ| = ๐‘ , we must have |๐‘(๐‘Ž)| = ๐‘ .
But then ๐‘(๐‘Ž) = ๐บ. Then by definition of ๐‘(๐‘Ž), ๐‘Ž๐‘ฅ = ๐‘ฅ๐‘Ž for all ๐‘ฅ โˆˆ ๐บ.
But this in turn will imply ๐‘Ž โˆˆ ๐‘(๐บ), a contradiction.
Hence ๐บ must be abelian.
An important property of a finite ๐บ โ€“ set is proved in the following theorem.
Theorem 4.2.3 : Let ๐บ be a finite group and ๐‘‹ is a finite ๐บ โ€“ set. If |๐บ| = ๐‘ (n > 0), (or if
|
๐‘ |๐บ| ) then |๐‘‹| โ‰ก |๐‘‹ | (mod ๐‘).
Proof : Let ๐‘‹ be a ๐บ - set. ๐‘‹ and ๐บ both are finite. We know that
r
|๐‘‹| = |๐‘‹ | +
โˆ‘
i = s +1
xi G
where
๐‘‹ = {๐‘ฅ โˆˆ ๐‘‹ / ๐‘ฅ๐‘” = ๐‘”๐‘ฅ ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘Ž๐‘โ„Ž ๐‘” โˆˆ ๐บ}
and
|๐‘‹ | = ๐‘ .
. . . (1)
๐‘ฅ ๐บ denotes the orbit in X under the action of ๐บ containing more than one element.
๐‘Ÿ = number of orbits in X.
Algebra
Page No. 59
By theorem 4.1.8,
|๐‘ฅ ๐บ| = (๐บ โˆถ ๐บ )
Hence ๐บ being a finite group
| |๐บ|
(๐บ โˆถ ๐บ )
|๐‘ฅ ๐บ|
Thus,
for each ๐‘–.
| |๐บ|
As |๐บ| = ๐‘ we get ๐‘
for each ๐‘–.
| |๐‘ฅ ๐บ| for each ๐‘–. Hence
r
๐‘
| โˆ‘
xi G
i = s +1
. . . (2)
From (1) we get,
r
โˆ‘
i = s +1
Hence, by (2) we get ๐‘
xi G = X โˆ’ X G
| |๐‘‹| โˆ’ |๐‘‹ |.
|๐‘‹| โ‰ก |๐‘‹ | (mod ๐‘)
i.e.
We know that converse of Lagrangeโ€™s theorem need not be true.
i.e. if ๐บ is a finite group and if ๐‘š/๐‘‚(๐บ) then ๐บ not necessarily contains a subgroup of order
๐‘š. But if ๐‘š is a prime number then surely ๐บ contains a subgroup of order ๐‘š if ๐‘š/|๐บ|.
This is proved by Cauchy in the following theorem.
โ€ข Cauchy theorem :
Theorem 4.2.4 : Let G be a finite group and ๐‘ be a prime number such that ๐‘
| |๐บ|. Then
there exists an element ๐‘Ž โˆˆ ๐บ such that ๐‘Ž = ๐‘’.
Proof :
(i) Define ๐‘‹ =
๐‘” ,๐‘” ,โ€ฆ,๐‘”
/ ๐‘” โˆ™ ๐‘” โˆ™ โ€ฆ โˆ™ ๐‘” = ๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘” โˆˆ ๐บ
๐‘” โˆ™ ๐‘” โˆ™ โ€ฆโˆ™ ๐‘” = ๐‘’ โŸน ๐‘”
= ๐‘” ๐‘” โ€ฆ๐‘”
Hence in p-tuple ๐‘” , ๐‘” , โ€ฆ , ๐‘”
๐‘” ,๐‘” ,โ€ฆ,๐‘”
|
As ๐‘ |๐บ|
Algebra
we have a freedom to select only ๐‘ โˆ’ 1 elements
. Therefore |๐‘‹| = |๐บ|
we get
.
.
|
๐‘ |๐‘‹|.
Page No. 60
(ii) Let ๐œŽ โˆˆ ๐‘† given by ๐œŽ = (1,2, โ€ฆ , ๐‘).
Define ๐ป = โŒฉ๐œŽโŒช. Then H is subgroup in ๐‘† .
Define ๐‘“ โˆถ ๐‘‹ × ๐ป โŸถ ๐‘‹ by
๐‘“
๐‘” ,๐‘” ,โ€ฆ,๐‘” , ๐œŽ
= ๐‘”
( ), ๐‘”
( ), โ€ฆ , ๐‘”
( )
Then
(i) ๐‘“
๐‘” , ๐‘” , โ€ฆ , ๐‘” , ๐‘– = ๐‘” ( ), ๐‘” ( ), โ€ฆ , ๐‘” (
)
= ๐‘” ,๐‘” ,โ€ฆ,๐‘”
(ii) ๐‘“
๐‘” ,๐‘” ,โ€ฆ,๐‘” , ๐œŽ โˆ˜ ๐œŽ
= ๐‘”
โˆ˜
( ), ๐‘”
โˆ˜
,๐‘”
( ), โ€ฆ , ๐‘”
โˆ˜
,โ€ฆ,๐‘”
= ๐‘”
( )
=๐‘“ ๐‘“
๐‘” ,๐‘” ,โ€ฆ,๐‘” , ๐œŽ , ๐œŽ
( )
( )
( )
Hence, from (1) and (2) we get X is a H โ€“ set.
Hence, by theorem 2.3, we get,
|๐‘‹| โ‰ก |๐‘‹ | (mod ๐‘)
Since ๐‘‚(๐ป) = ๐‘.
(โˆต |๐‘‹| = |๐บ| )
|
๐‘| |๐‘‹| โˆ’ |๐‘‹ | we must have ๐‘| |๐‘‹ |.
๐‘ |๐‘‹|
(iii) As
and
Now ๐‘‹ =
๐‘” ,๐‘” ,โ€ฆ,๐‘”
Hence ๐‘” , ๐‘” , โ€ฆ , ๐‘”
โŸน
/๐‘“
๐‘” ,๐‘” ,โ€ฆ,๐‘” , ๐œŽ
๐‘”
โˆ€ ๐œŽ โˆˆ๐ป
โˆˆ๐‘‹
๐‘“ ๐‘” ,๐‘” ,โ€ฆ,๐‘” , ๐œŽ = ๐‘” ,๐‘” ,โ€ฆ,๐‘”
โŸน
= ๐‘” ,๐‘” ,โ€ฆ,๐‘”
( ), ๐‘” ( ), โ€ฆ , ๐‘” ( )
as ๐œŽ โˆˆ ๐ป
= ๐‘” ,๐‘” ,โ€ฆ,๐‘”
(๐‘” , ๐‘” , โ€ฆ , ๐‘” ) = ๐‘” , ๐‘” , โ€ฆ , ๐‘”
โŸน
But then ๐‘” = ๐‘” = โ‹ฏ = ๐‘” .
This shows that an element of the type (๐‘Ž, ๐‘Ž, โ€ฆ , ๐‘Ž) โˆˆ ๐‘‹
i.e. ๐‘Ž = ๐‘’.
|
As ๐‘ |๐‘‹ | we must have |๐‘‹ | > 1.
Hence, โˆƒ ๐‘Ž โˆˆ ๐บ such that ๐‘Ž โ‰  ๐‘’ and (๐‘Ž, ๐‘Ž, โ€ฆ , ๐‘Ž) โˆˆ ๐‘‹ .
But then we have an element ๐‘Ž โˆˆ ๐บ, ๐‘Ž โ‰  ๐‘’ such that ๐‘Ž = ๐‘’.
This completes the proof.
Algebra
Page No. 61
An immediate application of Cauchyโ€™s theorem is
|
Theorem 4.2.5 : Let ๐บ be a finite group and let ๐‘ be any prime number. If ๐‘ |๐บ|, then there
exists a subgroup of order ๐‘ in ๐บ.
Proof : By Cauchyโ€™s theorem, โˆƒ ๐‘Ž โˆˆ ๐บ such that ๐‘Ž โ‰  ๐‘’ and ๐‘Ž = ๐‘’.
Define ๐ป = โŒฉ๐‘ŽโŒช.
Then ๐ป will be the subgroup of ๐บ of order ๐‘.
4.3.
p โ€“ Groups :
Definition 4.3.1 : A group ๐บ is a ๐‘ โ€“ group if every element in ๐บ has order a power of the
prime ๐‘. A subgroup of a group ๐บ is a p-subgroup of ๐บ if the subgroup is itself a ๐‘-group.
The characterization of ๐‘-groups is given in the following theorem.
Theorem 4.3.1 : Let ๐บ be a finite group. Then ๐บ is a p-group if and only if |๐บ| is a power of
prime p.
Proof : Only if part :
Let ๐บ be a ๐‘-group. Hence order of each element in ๐บ is a power of ๐‘. Let ๐‘ž be a prime
|
number different from ๐‘. If ๐‘ž |๐บ|, then by Cauchyโ€™s theorem, there exists an element
๐‘Ž โˆˆ ๐บ such that ๐‘‚(๐‘Ž) = ๐‘ž.
By assumption,
๐‘‚(๐‘Ž) = ๐‘
for some k.
Thus, ๐‘ž = ๐‘ ; which is impossible. Hence no prime number other than ๐‘ will be a divisor
of |๐บ|.
Hence, |๐บ| = ๐‘
for some n.
If part :
Let |๐บ| = ๐‘ for some n.
|
For any ๐‘Ž โˆˆ ๐บ, we know ๐‘‚(๐‘Ž) ๐‘‚(๐บ).
|
Hence, ๐‘‚(๐‘Ž) ๐‘ implies ๐‘‚(๐‘Ž) must be ๐‘ for some ๐‘˜.
Hence, ๐บ is a ๐‘ โ€“ group.
Theorem 4.3.2 : Let G be a finite group. Let H be a p โ€“ subgroup of G. Then
(๐‘[๐ป] โˆถ ๐ป) โ‰ก (๐บ โˆถ ๐ป) ๐‘š๐‘œ๐‘‘ ๐‘
Proof :
๐‘[๐ป] = {๐‘” โˆˆ ๐บ / ๐‘”๐ป๐‘”
= ๐ป}
We know that ๐‘[๐ป] is a subgroup of ๐บ containing H.
Algebra
Page No. 62
Let โ„œ denote the set of all right cosets of ๐ป in ๐บ.
Define ๐‘“ โˆถ โ„œ × ๐ป โŸถ โ„œ by
๐‘“(๐ป , โ„Ž) = ๐ป
Then, โ„œ is a H โ€“ set (See example 4.1.2 (2)).
As H is a p โ€“ subgroup |๐ป| = ๐‘ ,
for some ๐‘›
|
As ๐‘ |๐ป| we get
|โ„œ| โ‰ก |๐”‘ | (mod ๐‘) ,
(See theorem 4.2.3)
But
|โ„œ| = (๐บ: ๐ป)
Hence,
(๐บ: ๐ป) = |๐”‘ | (mod ๐‘)
Now,
๐”‘ = {๐ป โˆˆ โ„œ / ๐‘“(๐ป , โ„Ž) = ๐ป
. . . (1)
for each โ„Ž โˆˆ ๐ป}
= {๐ป โˆˆ โ„œ / ๐ป
=๐ป
= {๐ป โˆˆ โ„œ / ๐‘ฅ
โ„Ž๐‘ฅ โˆˆ ๐ป for each โ„Ž โˆˆ ๐ป}
= ๐ป โˆˆโ„œ
๐ป๐‘ฅ = ๐ป
๐‘ฅ
for each โ„Ž โˆˆ ๐ป}
= {๐ป โˆˆ โ„œ / ๐‘ฅ โˆˆ ๐‘[๐ป]}
= the set of all right cosets of H in ๐‘[๐ป].
Hence,
|๐”‘ | = (๐‘[๐ป] โˆถ ๐ป)
. . . (2)
From (1) and (2), we get,
(๐บ: ๐ป) โ‰ก (๐‘[๐ป] โˆถ ๐ป) (mod ๐‘)
|
Corollary 4.3.3 : Let ๐ป be a ๐‘ โ€“ subgroup of a group ๐บ. If ๐‘ (๐บ: ๐ป), then ๐‘[๐ป] โ‰  ๐ป.
Proof : By theorem 4.3.2, we get
(๐บ: ๐ป) โ‰ก (๐‘[๐ป] โˆถ ๐ป) (mod ๐‘)
As ๐‘
| (๐บ: ๐ป) we get
๐‘
Hence,
(๐‘[๐ป] โˆถ ๐ป) โ‰  1.
i.e.
๐ป โ‰  ๐‘[๐ป]
| (๐‘[๐ป] โˆถ ๐ป).
4.4. Sylow Theorems :
โ€ข
First Sylow Theorem :
Theorem 4.4.1 : Let G be a finite group with |๐บ| = ๐‘ โˆ™ ๐‘š where ๐‘ is a prime number and
๐‘ โˆค ๐‘š. Then
(i)
๐บ contains a subgroup of order ๐‘ for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
(ii)
Every subgroup of order ๐‘ is a normal subgroup of a subgroup of order ๐‘
Algebra
for
Page No. 63
1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1.
Proof :
(i) By Cauchyโ€™s theorem (see theorem 4.2.4) there exists a subgroup of order ๐‘ in ๐บ as
|
๐‘ |๐บ|. Assume that there exists a subgroup of order ๐‘ for each ๐‘– < ๐‘›.
Let ๐ป be a subgroup of order ๐‘ .
Now
( )
(๐บ โˆถ ๐ป) =
(
โˆ™
=
)
=๐‘
โˆ™ ๐‘š.
|
As ๐‘– < ๐‘› we get ๐‘ (๐บ โˆถ ๐ป).
Hence, by theorem 4.3.2,
(๐บ: ๐ป) โ‰ก (๐‘[๐ป] โˆถ ๐ป) (mod ๐‘)
|
As ๐‘ (๐บ: ๐ป) we get
Hence, ๐‘
| | |[ | ]|
|
๐‘ (๐‘[๐ป] โˆถ ๐ป).
Hence, by Cauchyโ€™s theorem,
Let ๐›พ โˆถ ๐‘[๐ป] โŸถ
๐‘
i.e.
[ ]
[ ]
|๐‘‚
๐‘[๐ป]
๐ป
.
contains a subgroup of order ๐‘. Let it be ๐‘˜.
be the canonical mapping.
Then ๐›พ is an onto homomorphism.
๐›พ
(๐‘˜) = {๐‘ฅ โˆˆ ๐‘[๐ป] / ๐›พ(๐‘ฅ) โˆˆ ๐‘˜} is the subgroup of ๐‘[๐ป] of order ๐‘
This shows that there exists a subgroup of order ๐‘
.
in ๐บ.
By induction on ๐‘›, the result follows.
(ii) By the construction explained in (i) we get,
๐ป<๐›พ
(๐‘˜) โ‰ค ๐‘[๐ป]
where ๐‘‚(๐ป) = ๐‘ and ๐‘‚ ๐›พ
(๐‘˜) = ๐‘
As ๐ป โŠฒ ๐‘[๐ป]. We must get ๐ป โŠฒ ๐›พ
.
(๐‘˜).
This shows that the subgroup of order ๐‘ is normal in a subgroup of a subgroup of order
๐‘
.
Example 4.4.2 : If ๐‘‚(๐บ) = 2 โˆ™ 3 โˆ™ 7 then ๐บ contains subgroup ๐ป , ๐ป , ๐ป and ๐ป such that
๐‘‚(๐ป ) = 2, ๐‘‚(๐ป ) = 2 , ๐‘‚(๐ป ) = 2 and ๐‘‚(๐ป ) = 2 and ๐ป โŠฒ ๐ป , ๐ป โŠฒ ๐ป , ๐ป โŠฒ ๐ป .
There also exists a subgroup ๐พ of order 3 and a subgroup ๐‘‡ of order 7 in G.
Definition 4.4.3 : A Sylow p โ€“ subgroup of a group ๐บ is a maximal p โ€“ subgroup of ๐บ.
Algebra
Page No. 64
Example 4.4.4 : In example 4.4.2,
๐ป is a Sylow 2 โ€“ subgroup.
๐พ is a Sylow 3 โ€“ subgroup.
๐‘‡ is a Sylow 7 โ€“ subgroup.
Remarks 4.4.5 :
(i) If |๐บ| = ๐‘ โˆ™ ๐‘š and ๐‘ โˆค ๐‘š then the subgroup of order ๐‘ will be a Sylow p โ€“ subgroup in
G.
(ii) If P is a Sylow p โ€“ subgroup in G, then ๐‘‚(๐‘” ๐‘ƒ๐‘”) = ๐‘‚(๐‘ƒ) will imply ๐‘” ๐‘ƒ๐‘” is also
Sylow p โ€“ subgroup of ๐บ, for any ๐‘” โˆˆ ๐บ. i. e. any conjugate of a Sylow p โ€“ subgroup of
๐บ is also a Sylow p โ€“ subgroup of ๐บ.
Conjugate of a Sylow p โ€“ subgroup is a Sylow p โ€“ subgroup in a finite group ๐บ. But any
two Sylow p โ€“ subgroups of ๐บ must be conjugates of each other. This we prove in the
following theorem.
โ€ข
Second Sylow Theorem :
Theorem 4.4.6 : Let G be a finite group with |๐บ| = ๐‘ โˆ™ ๐‘š where ๐‘ is a prime number and
๐‘ โˆค ๐‘š. Let ๐‘ƒ and ๐‘ƒ be any two Sylow p โ€“ subgroups of ๐บ. Then ๐‘ƒ and ๐‘ƒ are conjugate
subgroups of ๐บ.
Proof : Let โ„œ denote the set of all right cosets of ๐‘ƒ in ๐บ.
Define ๐‘“ โˆถ โ„œ × ๐‘ƒ โŸถ โ„œ by
๐‘“(๐‘ƒ , ๐‘ฆ) = ๐‘ƒ ๐‘ฅ๐‘ฆ.
Then
(i) ๐‘“(๐‘ƒ , ๐‘’) = ๐‘ƒ ๐‘ฅ๐‘’ = ๐‘ƒ ๐‘ฅ
and
(ii) ๐‘“(๐‘ƒ , ๐‘”โ„Ž) = ๐‘ƒ ๐‘ฅ๐‘”โ„Ž = ๐‘ƒ (๐‘ฅ๐‘”)โ„Ž = ๐‘“(๐‘“(๐‘ƒ , ๐‘”), โ„Ž)
for ๐‘”, โ„Ž โˆˆ ๐‘ƒ .
Hence โ„œ is a ๐‘ƒ set.
|
As ๐‘ƒ is a Sylow p โ€“ subgroup, ๐‘ |๐‘ |.
Hence, by theorem 4.2.3
|โ„œ| โ‰ก โ„œ
Now
(mod ๐‘)
. . . (1)
โ„œ = the set of all right cosets of ๐‘ƒ in ๐บ.
Hence, |โ„œ| = (๐บ โˆถ ๐‘ƒ ).
Therefore, |โ„œ| = (๐บ โˆถ ๐‘ƒ ) =
Algebra
| |
|
=
|
โˆ™
= ๐‘š and ๐‘ โˆค ๐‘š.
Page No. 65
Hence,
โ„œ
โ‰ 0
Hence
โ„œ
โ‰ฅ1
Now, โ„œ
= {๐‘ƒ ๐‘ฅ โˆˆ โ„œ / ๐‘“(๐‘ƒ ๐‘ฅ, ๐‘”) = ๐‘ƒ ๐‘ฅ
โ€ฆ by (1)
โ€ฆ (2)
= {๐‘ƒ ๐‘ฅ โˆˆ โ„œ / ๐‘ƒ ๐‘ฅ๐‘” = ๐‘ƒ ๐‘ฅ
for all ๐‘” โˆˆ ๐‘ƒ }
= {๐‘ƒ ๐‘ฅ โˆˆ โ„œ / ๐‘ฅ
๐‘”๐‘ฅ โˆˆ ๐‘ƒ
for all ๐‘” โˆˆ ๐‘ƒ }
= {๐‘ƒ ๐‘ฅ โˆˆ โ„œ / ๐‘ฅ
๐‘ƒ๐‘ฅโІ๐‘ƒ}
= {๐‘ƒ ๐‘ฅ โˆˆ โ„œ/๐‘ฅ
By (2),
for all ๐‘” โˆˆ ๐‘ƒ }
โ„œ
๐‘ƒ๐‘ฅ=๐‘ƒ}
(As |๐‘ฅ
๐‘ƒ ๐‘ฅ| = |๐‘ƒ | = |๐‘ƒ | = ๐‘ )
โ‰ฅ 1.
Hence, there exists ๐‘ฅ โˆˆ ๐บ such that ๐‘ฅ
๐‘ƒ ๐‘ฅ = ๐‘ƒ . Hence the proof.
The existence and the nature of Sylow ๐‘ โ€“ subgroups is proved in the First Sylow theorem
and the Second Sylow theorem respectively. The third Sylow theorem deals with the number
of Sylow ๐‘ โ€“ subgroups in a group ๐บ.
โ€ข
Third Sylow Theorem :
Theorem 4.4.7 : Let ๐บ be a finite group and ๐‘/|๐บ| (p is any prime number).
Let ๐‘Ÿ = number of Sylow ๐‘ โ€“ subgroups in ๐บ. Then
|
(ii) ๐‘Ÿ |๐บ|
(i) ๐‘Ÿ โ‰ก 1(mod ๐‘)
Proof :
(i) Let ๐‘Ÿ = number of Sylow ๐‘ โ€“ subgroups in ๐บ.
Hence ๐‘Ÿ โ‰  0
(by First Sylow theorem)
Let โ„’ denote the set of all Sylow p โ€“ subgroups in G. Then |โ„’| = ๐‘Ÿ.
Fix up any Sylow p โ€“ subgroup say ๐‘ƒ in ๐บ. Then for any ๐‘‡ โˆˆ โ„’ we have
๐‘‡ = ๐‘” ๐‘ƒ๐‘”
for some ๐‘” โˆˆ ๐บ (by Second Sylow theorem)
Define ๐‘“: โ„’ × ๐‘ƒ โŸถ โ„’ by
๐‘“(๐‘‡, ๐‘ฅ) = ๐‘ฅ
๐‘‡๐‘ฅ
for any ๐‘” โˆˆ ๐บ. (See remark 4.4.5 (2))
Now,
๐‘“(๐‘‡, ๐‘’) = ๐‘’
๐‘‡๐‘’ = ๐‘‡
and
๐‘“(๐‘‡, ๐‘ฅ๐‘ฆ) = (๐‘ฅ๐‘ฆ) ๐‘‡(๐‘ฅ๐‘ฆ)
=๐‘ฆ
โŸน
(๐‘ฅ
๐‘‡๐‘ฅ)๐‘ฆ
๐‘“(๐‘‡, ๐‘ฅ๐‘ฆ) = ๐‘“[๐‘“(๐‘‡, ๐‘ฅ), ๐‘ฆ] ,
for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘ƒ
Hence, โ„’ is a P โ€“ set.
As ๐‘ƒ is a Sylow p โ€“ subgroup, ๐‘/๐‘‚(๐‘ƒ).
Algebra
Page No. 66
Hence, by theorem 2.3, we have,
|โ„’| โ‰ก |โ„’ | (mod ๐‘)
. . . (1)
Consider the set โ„’ .
โ„’ = {๐‘‡ โˆˆ โ„’ / ๐‘“(๐‘‡, ๐‘ฅ) = ๐‘‡ for all ๐‘ฅ โˆˆ ๐‘ƒ}
= {๐‘‡ โˆˆ โ„’ / ๐‘ฅ
๐‘‡๐‘ฅ = ๐‘‡ for all ๐‘ฅ โˆˆ ๐‘ƒ}
= {๐‘‡ โˆˆ โ„’ / ๐‘ฅ โˆˆ ๐‘[๐‘‡] for all ๐‘ฅ โˆˆ ๐‘ƒ}
Thus, ๐‘‡ โˆˆ โ„’
iff ๐‘ƒ โІ ๐‘[๐‘‡].
Thus, ๐‘‡ โˆˆ โ„’
iff ๐‘ƒ โ‰ค ๐‘[๐‘‡].
Thus, ๐‘ƒ and ๐‘‡ both are subgroup of ๐‘[๐‘‡] and hence they are ๐‘ โ€“ subgroups of ๐‘[๐‘‡].
By Second Sylow theorem, P and T are conjugates.
Hence, for some ๐‘” โˆˆ ๐‘[๐‘‡],
๐‘” ๐‘‡๐‘” = ๐‘ƒ.
As ๐‘‡ โŠด ๐‘[๐‘‡], ๐‘” ๐‘‡๐‘” = ๐‘‡. Hence ๐‘ƒ = ๐‘‡.
Thus, ๐‘‡ โˆˆ โ„’
iff ๐‘ƒ = ๐‘‡. This shows that โ„’ = {๐‘ƒ}.
|โ„’ | = 1
Hence
. . . (2)
From (1) and (2) we get
|โ„’| โ‰ก 1 (mod ๐‘)
๐‘Ÿ โ‰ก 1 (mod ๐‘)
i.e.
|
(ii) To prove ๐‘Ÿ |๐บ|.
Let โ„’ denote the set of all Sylow ๐‘ โ€“ subgroups of ๐บ. As in (i) we can prove โ„’ is a ๐บ โ€“ set
under the action ๐‘“ โˆถ โ„’ × ๐บ โŸถ โ„’ defined by
๐‘“(๐‘‡, ๐‘”) = ๐‘” ๐‘‡๐‘”
By second Sylow theorem, elements of โ„’ are conjugates of each other.
Hence, โ„’ contains only one orbit.
Therefore
|โ„’| = | orbit of P |
(๐‘ƒ โˆˆ โ„’)
โŸน
|โ„’| = | ๐‘ƒโ„’ |
( orbit of ๐‘ƒ = ๐‘ƒโ„’ under G)
โŸน
๐‘Ÿ= ๐บโˆถ ๐บ
( theorem 1.3 )
But
๐บโˆถ ๐บ
||๐บ| and hence ๐‘Ÿ||๐บ|.
Examples 4.4.8 :
(๐Ÿ) A Sylow 3 โ€“ subgroup of a group of order 12 has order 3 as 12 = 2 × 3 .
Algebra
Page No. 67
(2) A Sylow 3 โ€“ subgroup of a group of order 54 has order 3 = 27 as
54 = 2 × 27 = 2 × 3 .
(3) By third Sylow theorem, a group of order 24 must have either 1 or 3 Sylow
2 โ€“ subgroups.
Let ๐‘Ÿ = number of Sylow 3 โ€“ subgroups.
|
(i) ๐‘Ÿ |๐บ|
โŸน
๐‘Ÿ/24
(ii) ๐‘Ÿ โ‰ก 1(mod 2)
โŸน
๐‘Ÿ = 1, 2,3, 4, 6, 8, 12, 24
|
โŸน
2 ๐‘Ÿโˆ’1
โŸน
๐‘Ÿ = 1, 3
(4) A group of order 255 must have either 1 or 85 Sylow 3 - subgroups.
255 = 3 × 5 × 17
Let ๐‘Ÿ = number of Sylow 3 โ€“ subgroups.
|
(i) ๐‘Ÿ |๐บ|
โŸน
(ii) ๐‘Ÿ โ‰ก 1(mod 3)
โŸน
|
3 |๐‘Ÿ โˆ’ 1
๐‘Ÿ 255
โŸน
๐‘Ÿ = 1, 3, 5, 15, 17, 51, 85, 255
โŸน
๐‘Ÿ = 1 or 85
(5) |๐บ| = 45. Show that G contains only one Sylow 3 โ€“ subgroups. Is ๐บ simple ?
Solution : |๐บ| = 45 = 3 × 5.
By 1st Sylow theorem G contains Sylow 3 โ€“ subgroups each of order 3 = ๐‘ž.
Let ๐‘Ÿ = number of Sylow 3 โ€“ subgroups in G.
By 3rd Sylow theorem,
|
๐‘Ÿ |๐บ|
๐‘Ÿ โ‰ก 1(mod 3)
and
Hence
|
|
(i) ๐‘Ÿ |๐บ|
โŸน
๐‘Ÿ 45
(ii) ๐‘Ÿ โ‰ก 1(mod 3)
โŸน
๐‘Ÿ=1
โŸน
๐‘Ÿ โˆˆ {1, 3, 5, 9, 15, 45}
This shows that there exists only one Sylow 3 โ€“ subgroups of order 3 = 9 say H.
By Second Sylow theorem,
๐ป = ๐‘” ๐ป๐‘”
for any ๐‘” โˆˆ ๐บ
Hence, H is a proper normal subgroup of G.
Hence, G is not simple.
Algebra
Page No. 68
(6) Show that a group of order 255 is not simple.
Solution : Let G be a group of order 255.
|๐บ| = 255
|๐บ| = 17 × 5 × 3 = 17 × 15 and 17 โˆค 15.
โŸน
Hence, By 1st Sylow theorem there exists Sylow 17 โ€“ subgroups in G each of order 17.
Let ๐‘Ÿ = number of Sylow 17 โ€“ subgroups.
Then, by 3rd Sylow theorem,
|
๐‘Ÿ |๐บ|
๐‘Ÿ โ‰ก 1(mod 17)
and
Hence,
|
(i) ๐‘Ÿ |๐บ|
๐‘Ÿ โˆˆ {1, 3, 5, 15, 17,51, 85, 255}
โŸน
(ii) ๐‘Ÿ โ‰ก 1(mod 17) โŸน
๐‘Ÿ=1
Thus, there exists only one Sylow 17 โ€“ subgroups in G say H.
Then, by Second Sylow theorem, H must be normal in G.
As |๐ป| = 17, H is a proper normal subgroup of G.
Hence, G is not simple.
(7) Show that no group of order 30 is simple.
Solution : Let G be a group with |๐บ| = 30 = 5 × 3 × 2.
(i) Hence, By 1st Sylow theorem, G contains Sylow 5 โ€“ subgroups each of order 5.
Let ๐‘Ÿ = number of Sylow 5 โ€“ subgroups of G.
Then, by 3rd Sylow theorem,
|
๐‘Ÿ |๐บ|
๐‘Ÿ โ‰ก 1(mod 5)
and
Hence,
|
(i) ๐‘Ÿ |๐บ| = 30 โŸน
(ii) ๐‘Ÿ โ‰ก 1(mod 5)
๐‘Ÿ โˆˆ {1, 2, 3, 5, 6, 10, 15, 30}
|
โŸน
5 ๐‘Ÿ โˆ’ 1. Hence ๐‘Ÿ = 1 or 6.
Suppose G contains six Sylow 5 โ€“ subgroups. Let they be ๐ป , ๐ป , ๐ป , ๐ป , ๐ป and ๐ป be
distinct Sylow 5 โ€“ subgroups.
Then, ๐‘‚(๐ป ) = 5 โˆ€
๐ป โˆฉ ๐ป = {๐‘’}
๐‘–, 1 โ‰ค ๐‘– โ‰ค 6.
for ๐‘– โ‰  ๐‘—
[ If ๐‘ฅ โˆˆ ๐ป โˆฉ ๐ป and if ๐‘ฅ โ‰  ๐‘’, then โŒฉ๐‘ฅโŒช = ๐ป = ๐ป ; # ]
Hence, each ๐ป contains four elements each of order 5. Hence, there exists 6 × 4 = 24
elements in G each of order 5.
Algebra
Page No. 69
(ii) By 1st Sylow theorem G contains Sylow 3 โ€“ subgroups each of order 3.
Let ๐‘Ÿ = number of Sylow 3 โ€“ subgroups of G.
Then, by 3rd Sylow theorem,
|
๐‘Ÿ |๐บ|
๐‘Ÿ โ‰ก 1(mod 3)
and
Hence,
|
(i) ๐‘Ÿ |๐บ| = 30 โŸน
(ii) ๐‘Ÿ โ‰ก 1(mod 3)
๐‘Ÿ โˆˆ {1, 2, 3, 5, 6, 10, 15, 30}
|
โŸน
3 ๐‘Ÿ โˆ’ 1. Hence ๐‘Ÿ = 1 or 10.
Suppose G contains ten Sylow 3 โ€“ subgroups each of order 3. Let ๐พ , ๐พ , โ€ฆ , ๐พ
denote
distinct Sylow 3 โ€“ subgroups of G. As in (i) we can prove that ๐บ contains 20 distinct
elements each of order 3.
(iii)Thus, from (i) and (ii), if ๐บ contains six Sylow 5 โ€“ subgroups and ten Sylow 3 โ€“
subgroups then ๐บ must contain 24 + 20 = 44 distinct elements which is not true as
|๐บ| = 30.
Hence, ๐บ must contain either only one Sylow 5 โ€“ subgroup or only one Sylow
3โ€“subgroup. Thus in either the case, ๐บ contains a proper normal subgroup by 2nd Sylow
theorem.
Hence, ๐บ is not simple.
(8) No group of order 36 is simple.
Solution : Let G be a group with |๐บ| = 36.
|๐บ| = 36 = 3 × 2 and 3 โˆค 4.
By 1st Sylow theorem, G contains Sylow 3 โ€“ subgroups each of order 9.
Let ๐‘Ÿ = number of Sylow 3 โ€“ subgroups of G.
Then, by 3rd Sylow theorem,
|
๐‘Ÿ |๐บ|
๐‘Ÿ โ‰ก 1(mod 3)
and
Hence,
|
(i) ๐‘Ÿ |๐บ| = 36 โŸน
(ii) ๐‘Ÿ โ‰ก 1(mod 3)
๐‘Ÿ โˆˆ {1, 2, 3, 4, 6, 9, 12, 18, 36}
โŸน
|
3 ๐‘Ÿ โˆ’ 1. Hence ๐‘Ÿ = 1 or 4.
Suppose ๐บ contains four Sylow 3 โ€“ subgroups each of order 9. Let ๐ป, ๐พ be any two
distinct Sylow 3 โ€“ subgroups. Then |๐ป| = 9 and |๐พ| = 9.
We know that,
Algebra
Page No. 70
|๐ป๐พ| =
| |โˆ™| |
|
โˆฉ |
Hence, ๐ป๐พ โІ ๐บ implies |๐ป โˆฉ ๐พ| = 3.
[
๐ปโˆฉ๐พ โ‰ค๐ป
|
โŸน
๐‘‚(๐ป โˆฉ ๐พ) ๐‘‚(๐ป)
โŸน
๐‘‚(๐ป โˆฉ ๐พ) โˆˆ {1, 3, 9}
But ๐‘‚(๐ป โˆฉ ๐พ) = 1
and
๐‘‚(๐ป โˆฉ ๐พ) = 9
โŸน
|
๐‘‚(๐ป โˆฉ ๐พ) 9
โŸน
|๐ป๐พ| = 81;
โŸน
๐ป = ๐พ; which is not true. ]
impossible.
Consider the group ๐‘[๐ป โˆฉ ๐พ].
|
As 3 ๐‘‚(๐ป โˆฉ ๐พ), ๐ป โˆฉ ๐พ < ๐‘[๐ป โˆฉ ๐พ] and hence |๐‘[๐ป โˆฉ ๐พ]| โˆˆ {18, 36} as
|
|๐‘[๐ป โˆฉ ๐พ]| |๐บ| = 36.
If ๐‘(๐ป โˆฉ ๐พ) = 18 then index of ๐‘(๐ป โˆฉ ๐พ) in G is 2 and then ๐‘(๐ป โˆฉ ๐พ) is a proper
normal subgroup G, proving that G is not simple.
If |๐‘(๐ป โˆฉ ๐พ)| = 36, then ๐‘[๐ป โˆฉ ๐พ] = ๐บ.
In this case, ๐ป โˆฉ ๐พ will be a proper normal subgroup of G.
Hence, G is not simple, in either the case.
(9) Show that Sylow p-subgroups of a finite group G is unique if and only if it is normal.
Solution :
Only if part :
Let G has a unique Sylow p-subgroup say ๐ป.
To prove that ๐ป โŠฒ ๐บ.
H is a Sylow p-subgroup
โŸน ๐‘”๐ป๐‘”
is also a Sylow subgroup of G. By uniqueness
we get,
๐ป = ๐‘” ๐ป๐‘”
for all ๐‘” โˆˆ ๐บ.
Hence, H is normal in ๐บ.
If part :
Let ๐ป be a Sylow p-subgroup in a group of ๐บ.
Let ๐ป be normal. If ๐พ is another Sylow p-subgroup of G then, by 2nd Sylow theorem,
๐พ = ๐‘”๐ป๐‘”
for some ๐‘” โˆˆ ๐บ.
But ๐ป being normal,
๐‘” ๐ป๐‘” =H
Thus, ๐พ = ๐ป. This shows that H is the unique Sylow p-subgroup.
Algebra
Page No. 71
(10) Let ๐ป โŠฒ ๐บ such that index of ๐ป in ๐บ is prime to p. (p is any prime number). Show that ๐ป
contains every Sylow p-subgroup of ๐บ.
Solution : Let |๐บ| = ๐‘ โˆ™ ๐‘š, ๐‘ โˆค ๐‘š. i.e. (๐‘, ๐‘š) = 1.
By data, index of ๐ป in ๐บ is prime to ๐‘.
โˆด
| |
is prime to p.
| |
โˆ™
| |
โˆด
|
is prime to p and |๐ป| ๐‘ โˆ™ ๐‘š
Assume that |๐ป| = ๐‘ โˆ™ ๐‘ž where (๐‘, ๐‘ž) = 1.
As |๐ป| = ๐‘ โˆ™ ๐‘ž, ๐ป contains a Sylow p-subgroup say ๐พ.
Then |๐พ| = ๐‘ , hence we get ๐พ is also a Sylow p-subgroup of ๐บ. If T is another Sylow psubgroup of ๐บ we get ๐‘‡ = ๐‘” ๐พ๐‘” for some ๐‘” โˆˆ ๐บ. Hence
๐‘‡ = ๐‘” ๐พ๐‘” โІ ๐‘” ๐ป๐‘” = ๐ป
(as ๐ป โŠฒ ๐บ)
shows that ๐‘‡ โІ ๐ป.
Thus, ๐ป contains all the Sylow p-subgroups of ๐บ.
(11) |๐บ| = 108. Show that ๐บ contains a normal subgroup of order 27 or 9.
Solution : |๐บ| = 108 = 3 × 2 = 3 โˆ™ 4 and 3 โˆค 4.
Hence, by Sylow first theorem, โˆƒ Sylow 3-subgroups each of order 27.
Let ๐‘Ÿ = number of Sylow 3-subgroups in G.
|
Then ๐‘Ÿ |๐บ| and ๐‘Ÿ โ‰ก 1(mod 3).
Hence, ๐‘Ÿ โˆˆ {1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108}
|
3 ๐‘Ÿโˆ’1
โŸน ๐‘Ÿ = 1 or 4.
Case I : ๐‘Ÿ = 1.
Then G contains only one Sylow subgroup of order 27 which is normal. (by second
Sylow theorem).
Case II : ๐‘Ÿ = 4.
Then G contains four Sylow 3-subgroups of order 27.
Let ๐ป and ๐พ denote any two distinct Sylow 3-subgroups. Then
|๐ป๐พ| =
will imply
|๐ป๐พ| =
| |โˆ™| |
|
โˆฉ |
×
|
โˆฉ |
i.e.
×
< |๐ป โˆฉ ๐พ|.
Further,
Algebra
Page No. 72
|
โŸน |๐ป โˆฉ ๐พ| |๐บ|
๐ปโˆฉ๐พ โ‰ค๐บ
|
โŸน |๐ป โˆฉ ๐พ| 108.
Hence, |๐ป โˆฉ ๐พ| = 9 or 27.
|๐ป โˆฉ ๐พ| = 27
But
โŸน
๐ป = ๐พ, which is not true.
Hence, |๐ป โˆฉ ๐พ| = 9.
Now consider ๐‘[๐ป โˆฉ ๐พ].
as
(๐ป โˆฉ ๐พ) โŠฒ ๐ป
and
(๐ป โˆฉ ๐พ) โŠฒ ๐พ
๐‘‚(๐ป โˆฉ ๐พ) = 3
and
๐‘‚(๐ป) = 3 .
[ Any subgroup of order ๐‘
is normal in a subgroup of group of order ๐‘ ]
Hence, ๐ป โŠ‚ ๐‘[๐ป โˆฉ ๐พ]
and
๐พ โŠ‚ ๐‘[๐ป โˆฉ ๐พ] .
Hence, the normal subgroup ๐ป๐พ is properly contained in ๐‘[๐ป โˆฉ ๐พ].
But then |๐ป๐พ| =
| |โˆ™| |
| โˆฉ |
=
×
= 81.
Therefore, |๐‘[๐ป โˆฉ ๐พ]| > |๐ป๐พ| = 81
|
Hence, |๐‘[๐ป โˆฉ ๐พ]| = 108 as |๐‘[๐ป โˆฉ ๐พ]| |๐บ| and |๐‘[๐ป โˆฉ ๐พ]| > 81.
Thus, ๐‘[๐ป โˆฉ ๐พ] = ๐บ. But this shows that ๐ป โˆฉ ๐พ is normal in ๐บ.
Theorem 4.4.9 : Let ๐บ be a finite group with |๐บ| = ๐‘๐‘ž where ๐‘ and ๐‘ž are distinct primes and
๐‘ < ๐‘ž.
(i)
๐บ contains a normal subgroup of order ๐‘ž.
(ii) ๐บ is not simple.
(iii) If ๐‘ โˆค ๐‘ž โˆ’ 1, then ๐บ is cyclic and abelian.
Proof :
(i)
|๐บ| = ๐‘๐‘ž, ๐‘ž โˆค ๐‘.
Hence, by 1st Sylow theorem ๐บ contains Sylow ๐‘ž-subgroups of order ๐‘ž.
|
Let ๐‘Ÿ = number of Sylow ๐‘ž-subgroups . Then ๐‘Ÿ |๐บ| and ๐‘Ÿ โ‰ก 1(mod ๐‘ž)
Hence, ๐‘Ÿ โˆˆ {1, ๐‘ž, ๐‘, ๐‘๐‘ž}
|
๐‘ž ๐‘Ÿโˆ’1
โŸน ๐‘Ÿ = 1.
Thus, there exists only one Sylow ๐‘ž-subgroups of ๐บ.
As ๐บ contains only one Sylow ๐‘ž-subgroup say ๐ป then ๐‘‚(๐ป) = ๐‘ž and ๐ป โŠด ๐บ by 2nd
Sylow theorem.
(ii) As ๐บ contains a proper subgroup normal subgroup ๐ป, ๐บ is not simple.
(iii) |๐บ| = ๐‘๐‘ž and ๐‘ โˆค ๐‘ž, by 1st Sylow theorem ๐บ contains Sylow ๐‘-subgroup of order ๐‘.
Algebra
Page No. 73
Let ๐‘Ÿ = number of Sylow ๐‘-subgroups.
|
Then ๐‘Ÿ |๐บ| and ๐‘Ÿ โ‰ก 1(mod ๐‘) by 3rd Sylow theorem
Hence, ๐‘Ÿ โˆˆ {1, ๐‘, ๐‘ž, ๐‘๐‘ž}. As ๐‘ | ๐‘Ÿ โˆ’ 1 we get ๐‘Ÿ = 1. ( โˆต ๐‘ โˆค ๐‘ž โˆ’ 1 by data)
Thus, there exists only one Sylow ๐‘-subgroups in ๐บ of order ๐‘.
Let ๐ป denote the Sylow ๐‘ž-subgroup and ๐พ denote the Sylow p-subgroup of ๐บ.
Then
๐ป โˆฉ ๐พ = {๐‘’}.
(i)
If ๐‘ฅ โˆˆ ๐ป โˆฉ ๐พ and if ๐‘ฅ โ‰  ๐‘’ then
๐‘ฅโˆˆ๐ป
โŸน ๐‘‚(๐‘ฅ) = ๐‘ž
๐‘ฅโˆˆ๐พ
โŸน ๐‘‚(๐‘ฅ) = ๐‘.
As ๐‘ โ‰  ๐‘ž we must have ๐ป โˆฉ ๐พ = {๐‘’}.
(ii) ๐ป โˆจ ๐พ โЇ ๐ป and ๐ป โˆจ ๐พ โЇ ๐พ
|
โŸน
๐ปโˆจ๐พ =๐บ
|
|
[ โˆต ๐‘‚(๐ป โˆจ ๐พ) ๐‘๐‘ž, ๐‘‚(๐ป) ๐‘‚(๐ป โˆจ ๐พ), ๐‘‚(๐พ) ๐‘‚(๐ป โˆจ ๐พ) โŸน
๐‘‚(๐ป โˆจ ๐พ) = ๐‘๐‘ž ]
Hence, ๐บ โ‰… ๐ป × ๐พ โ‰… ๐‘ × ๐‘ .
Hence, ๐บ is cyclic and abelian.
Example 4.4.10 : |๐บ| = 15 โŸน ๐บ is abelian and not simple.
Solution : |๐บ| = 15 = 5 โˆ™ 3. 5 and 3 are distinct primes and 3 โˆค 5 โˆ’ 1.
Hence, by theorem 4.4.9, ๐บ is abelian and not simple.
Example 4.4.11 : Let ๐บ be a finite group. Prove that
Solution: Assume that
โŸน
( )
( )
= 11 โˆ™ 7
( )
โ‰  77.
= 77.
7 โˆค 11 โˆ’ 1 .
and
Hence, by theorem, If ๐‘‚(๐บ) = ๐‘ โˆ™ ๐‘ž, where ๐‘, ๐‘ž are prime numbers such that ๐‘ โˆค ๐‘ž โˆ’ 1
then ๐บ is cyclic,
But
( )
is cyclic
( )
is cyclic.
โŸน
G is abelian
โŸน
๐‘(๐บ) = ๐บ
โŸน
โŸน
Algebra
( )
=1
a contradiction.
Page No. 74
Hence
โ‰  77.
( )
Example 4.12 :
Solution : Let
Prove that
( )
( )
( )
( )
( )
is abelian and Cyclic.
is Cyclic, G is abelian.
But then ๐‘(๐บ) = ๐บ and in this case
Hence,
3 โˆค (11 โˆ’ 1 = 10) .
= 33 = 11 โˆ™ 3 and
As 3 โˆค (11 โˆ’ 1) by theorem 4.9,
Hence, as
โ‰  33 for any finite group.
( )
= 1, a contradiction.
โ‰  33 for any finite group ๐บ.
Example 4.4.13 : |๐บ| = 255 โŸน ๐บ is abelian and not simple.
Solution : |๐บ| = 255 = 17 × 5 × 3 = 17 × 15 and 17 โˆค 15.
(i) By 1st Sylow theorem, G contains Sylow 17 โ€“ subgroups each of order 17.
Let ๐‘Ÿ = number of Sylow 17 โ€“ subgroups of G.
Then by 3rd Sylow theorem,
|
๐‘Ÿ |๐บ|
and
๐‘Ÿ โ‰ก 1(mod 17)
Hence, ๐‘Ÿ โˆˆ {1, 3, 5, 15, 17, 51, 85, 255}.
|
17 ๐‘Ÿ โˆ’ 1 โŸน
๐‘Ÿ = 1.
Thus, there exists only one Sylow 17-subgroup in ๐บ of order 17.
Hence, by 2nd Sylow theorem, ๐บ is not simple.
Let us denote by ๐ป the Sylow 17 โ€“ subgroups of G.
| |
=|
Hence
|
=
is defined.
= 15.
is abelian. (See theorem 4.4.10)
Hence, ๐บโ€ฒ โІ ๐ป
(See theorem 2.1.5(iii))
Hence, ๐บโ€ฒ โ‰ค ๐ป.
|
By Lagrangeโ€™s theorem, |๐บโ€ฒ| |๐ป| = 17
โŸน
|๐บโ€ฒ| = 1 or 17.
(ii) By 1st Sylow theorem, G contains Sylow 3 โ€“ subgroups each of order 3.
Algebra
Page No. 75
Let ๐‘Ÿ = number of Sylow 3 โ€“ subgroups in G.
By 3rd Sylow theorem,
|
๐‘Ÿ |๐บ|
๐‘Ÿ โ‰ก 1(mod 3)
and
Hence, ๐‘Ÿ = 1 or 85.
(iii)By 1st Sylow theorem, G contains Sylow 5 โ€“ subgroups each of order 5.
Let ๐‘Ÿ = number of Sylow 5 โ€“ subgroups in G.
By 3rd Sylow theorem,
|
๐‘Ÿ |๐บ|
๐‘Ÿ โ‰ก 1(mod 5)
and
Hence, ๐‘Ÿ = 1 or 51.
(iv) ๐พ โŠด ๐บ and hence
is defined.
Now, if ๐พ is Sylow 3-subgroup then
| |
=|
=
|
× ×
= 17 × 5.
and if ๐พ is Sylow 5-subgroup then
| |
=|
=
|
× ×
= 17 × 3.
Thus, in either the case by theorem 4.4.9
is abelian.
Hence, ๐บโ€ฒ โІ ๐พ.
|
Hence, ๐บโ€ฒ โ‰ค ๐พ and |๐บโ€ฒ| |๐พ| .
If ๐พ is Sylow 5-subgroup then |๐บโ€ฒ| = 1 or 5
and if ๐พ is Sylow 3-subgroup then |๐บโ€ฒ| = 1 or 3.
As ๐บโ€ฒ โŠด ๐บ we get |๐บโ€ฒ| โˆˆ {1, 3, 5, 17}.
Hence, |๐บโ€ฒ| = 1. i.e. ๐บ = {๐‘’}.
But then G must be an abelian. ( |๐บโ€ฒ| = 1 iff G is abelian).
Thus, the group of order 255 is abelian and not simple.
Example 4.4.14: Find all the Sylow 3-subgroups of ๐‘† . Verify that they are all conjugate.
Solution : Let ๐บ = ๐‘† . Then |๐บ| = 24 = 2 × 3.
By 1st Sylow theorem, G contains Sylow 3-subgroups of order 3.
Let ๐‘Ÿ = number of Sylow 3-subgroups.
Then, by 3rd Sylow theorem,
Algebra
Page No. 76
|
and
๐‘Ÿ||๐บ| = ๐‘Ÿ|24
โŸน
๐‘Ÿ โˆˆ {1, 2, 3, 4, 6, 8, 12, 24}
๐‘Ÿ โ‰ก 1(mod 3)
โŸน
3 ๐‘Ÿ โˆ’ 1. Hence ๐‘Ÿ = 1 or 4.
๐‘Ÿ |๐บ|
๐‘Ÿ โ‰ก 1(mod 3)
|
Case I : ๐‘Ÿ = 1.
Then ๐บ contains only one Sylow 3-subgroup. It must be normal by 2nd Sylow theorem.
Case II : ๐‘Ÿ = 4.
Let ๐บ contains four Sylow 3-subgroups each of order 3 Hence each must be a cyclic
group generated by the 3-cycles
(1, 2, 3),
(1, 2, 4),
(1, 3, 4)
and
(2, 4, 3)
These cyclic groups are conjugate to each other and they are distinct.
Example 4.4.15: |๐บ| = 2๐‘, p is prime, show that either ๐บ is cyclic or ๐บ is generated by
{๐‘Ž, ๐‘} with the relation ๐‘Ž = ๐‘’ = ๐‘ and ๐‘๐‘Ž๐‘ = ๐‘Ž .
Solution : |๐บ| = 2 × ๐‘ and ๐‘ โˆค 2. Hence by 1st Sylow theorem, ๐บ contains Sylow ๐‘subgroups, each of order ๐‘.
Let ๐‘Ÿ = number of Sylow ๐‘-subgroups.
Then by 3rd Sylow theorem,
|
๐‘Ÿ||๐บ|
๐‘Ÿ |๐บ|
๐‘Ÿ โ‰ก 1(mod ๐‘)
and
๐‘Ÿ โ‰ก 1(mod ๐‘)
โŸน
๐‘Ÿ โˆˆ {1, 2, ๐‘, 2๐‘}
โŸน
๐‘ ๐‘Ÿ โˆ’ 1. Hence ๐‘Ÿ = 1.
|
Thus, ๐บ contains only one Sylow p-subgroup say ๐ป.
|๐ป| = ๐‘
โŸน
Let ๐ป = โŒฉ๐‘ŽโŒช. Then
Hence,
๐ป is cyclic.
| |
=|
|
=
= 2.
is Cyclic group of order 2.
๐‘‚(๐ป) = ๐‘
โŸน
๐ป โŠ‚ ๐บ.
Select ๐‘ โˆˆ ๐บ such that ๐‘ โˆ‰ ๐ป. Then ๐บ = {๐‘’, ๐‘Ž, โ€ฆ , ๐‘Ž
, ๐‘, ๐‘๐‘Ž, โ€ฆ , ๐‘๐‘Ž
}.
|
As ๐‘ โˆˆ ๐บ, ๐‘‚(๐‘) ๐‘‚(๐บ) and hence ๐‘‚(๐‘) = 2 or ๐‘.
If ๐‘‚(๐‘) = ๐‘, then ๐‘ โˆˆ โŒฉ๐‘ŽโŒช = ๐ป as ๐ป is the only subgroup of ๐บ of order p; which is not
true. Hence,
Algebra
๐‘‚(๐‘) โ‰  ๐‘.
Page No. 77
Hence, ๐‘‚(๐‘) = 2. Then ๐‘ = ๐‘’.
Thus,
๐‘Ž =๐‘’=๐‘
. . . (1)
Now, consider the element ๐‘๐‘Ž๐‘
Thus, ๐‘๐‘Ž๐‘
=๐‘Ž
๐‘ =๐‘˜โˆ’1
Case I :
๐‘๐‘Ž๐‘
๐‘๐‘Ž๐‘
โŸน
๐‘ (๐‘๐‘Ž๐‘ )๐‘ = ๐‘ ๐‘Ž ๐‘
โŸน
(๐‘
โŸน
๐‘’๐‘Ž๐‘’=๐‘
โŸน
๐‘Ž=๐‘ ๐‘Ž ๐‘
โŸน
๐‘Ž = (๐‘ ๐‘Ž ๐‘)
โŸน
๐‘Ž = (๐‘Ž )
โŸน
๐‘Ž
โŸน
๐‘ ๐‘˜ โˆ’1
๐‘) ๐‘Ž (๐‘
๐‘) = ๐‘
๐‘Ž ๐‘
=๐‘’
โŸน
โŸน
(๐‘˜ โˆ’ 1) = ๐‘ or (๐‘˜ + 1) = ๐‘
โŸน
๐‘˜ =1+๐‘
โŸน
โˆˆ ๐ป = โŒฉ๐‘ŽโŒช.
๐‘Ž ๐‘
|
๐‘|(๐‘˜ โˆ’ 1)(๐‘˜ + 1)
=๐‘Ž =๐‘Ž
Case II : ๐‘ = ๐‘˜ + 1
. As โŒฉ๐‘ŽโŒช is normal in ๐บ, ๐‘๐‘Ž๐‘
=๐‘Ž โˆ™๐‘Ž =๐‘Ž โˆ™๐‘’ =๐‘Ž
๐‘˜ =๐‘โˆ’1
=๐‘Ž =๐‘Ž
=๐‘Ž โˆ™๐‘Ž
=๐‘Ž
or
๐‘๐‘Ž๐‘
Thus, ๐‘๐‘Ž = ๐‘Ž๐‘
or
๐‘๐‘Ž๐‘ = ๐‘Ž
Thus, if ๐‘ = ๐‘˜ โˆ’ 1
i.e.
๐‘˜ = 1 + ๐‘, ๐บ is a non abelian group generated by {๐‘Ž, ๐‘}
Thus, ๐‘๐‘Ž๐‘
=๐‘’โˆ™๐‘Ž
=๐‘Ž
=๐‘Ž
(โˆต ๐‘ = ๐‘’ โŸน ๐‘
= ๐‘).
with the relations ๐‘Ž = ๐‘’ = ๐‘ and ๐‘๐‘Ž๐‘ = ๐‘Ž .
If ๐‘ = ๐‘˜ + 1 then ๐บ is abelian and ๐‘‚(๐‘Ž๐‘) = 2๐‘. i.e. ๐บ is cyclic of order 2๐‘.
Example 4.4.16 : ๐‘‚(๐บ) = ๐‘ , ๐‘ is a prime. Show that G is cyclic or G is isomorphic to
direct product of two cyclic groups each of order ๐‘.
Solution : ๐‘‚(๐บ) = ๐‘ โŸน ๐บ is abelian.
If G is cyclic then we are through.
Let G be not cyclic.
|
As ๐‘ ๐‘‚(๐บ), by Cauchyโ€™s theorem โˆƒ ๐‘Ž โˆˆ ๐บ such that ๐‘‚(๐‘Ž) = ๐‘. Let ๐ป = โŒฉ๐‘ŽโŒช.
Then ๐‘‚(๐ป) = ๐‘. Hence, ๐ป โ‰  ๐บ.
|
Select ๐‘ โˆˆ ๐บ such that ๐‘ โˆ‰ ๐ป. As ๐‘‚(๐‘) ๐‘‚(๐บ) we get, ๐‘‚(๐‘) = 1, ๐‘, ๐‘ .
Algebra
Page No. 78
As ๐‘ โˆ‰ ๐ป we get, ๐‘ โ‰  ๐‘’.
Hence ๐‘‚(๐‘) โ‰  1.
If ๐‘‚(๐‘) = ๐‘ , then ๐บ will be cyclic, not true.
Hence, ๐‘‚(๐‘) = ๐‘. Let ๐พ = โŒฉ๐‘โŒช.
๐ปโˆฉ๐พ โ‰ค๐ป
|
โŸน
๐‘‚(๐ป โˆฉ ๐พ) ๐‘‚(๐ป) = ๐‘.
Hence, ๐‘‚(๐ป โˆฉ ๐พ) = 1 or ๐‘.
If ๐‘‚(๐ป โˆฉ ๐พ) = ๐‘ will imply ๐ป = ๐พ, which is not true. Hence ๐‘‚(๐ป โˆฉ ๐พ) = 1.
Now, ๐บ is abelian โŸน ๐ป โŠฒ ๐บ and ๐พ โŠฒ ๐บ. Hence ๐ป๐พ โŠฒ ๐บ.
|๐ป๐พ| =
| || |
| โˆฉ |
=
โˆ™
= ๐‘ = ๐‘‚(๐บ)
(See theorem 1.2.6)
But ๐ป๐พ = ๐บ.
As ๐ป and ๐พ are normal subgroups of ๐บ with ๐ป โˆฉ ๐พ = {๐‘’} and ๐ป โˆจ ๐พ = ๐บ we get
๐บ โ‰… ๐ป × ๐พ. (see theorem 1.2.1)
This completes the proof.
Exercise โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
1. Show that a group of order 148 cannot be simple.
2. Show that a group of order 108 cannot be simple.
3 Show that a group of order 144 cannot be simple.
โ€ขโ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Algebra
Page No. 79
CHAPTER II : RING OF POLYNOMIALS
Unit 1 :
1.1
Ring of Polynomials ๐‘…[๐‘ฅ] : Definition and Examles.
1.2
Basic Properties of ๐‘…[๐‘ฅ].
1.3
Division Algorithm.
1.4
Euclidean Domain and Unique Factorization Domain.
1.5
Zero of the Polynomial.
1.6
Irreducible Polynomials in ๐‘…[๐‘ฅ].
1.7
Factorization in ๐น[๐‘ฅ] and Eisenstein Criterion.
1.1 Ring of Polynomials R[x] :
Definition 1.1.1 : Let ๐‘… be a ring. A polynomial ๐‘“(๐‘ฅ) with coefficients in ๐‘… and in an
indeterminate ๐‘ฅ is an infinite formal sum
๐‘Ž ๐‘ฅ = ๐‘Ž + ๐‘Ž ๐‘ฅ + ๐‘Ž ๐‘ฅ + โ‹ฏ+ ๐‘Ž ๐‘ฅ +โ‹ฏ
where, ๐‘Ž โˆˆ ๐‘… and ๐‘Ž = 0 for all but finite number of values of ๐‘–. The ๐‘Ž are called
coefficients of ๐‘“(๐‘ฅ). We simply write ๐‘“(๐‘ฅ) as
๐‘“(๐‘ฅ) = ๐‘Ž + ๐‘Ž ๐‘ฅ + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ
when ๐‘Ž
= 0 for all ๐‘– โ‰ฅ 1.
Examples :
(i)
๐‘“(๐‘ฅ) = ๐‘ฅ + 2๐‘ฅ + 5 is a polynomial with coefficients in ๐‘.
(ii)
๐‘“(๐‘ฅ) = ๐‘ฅ + 1 is a polynomial with coefficients in ๐‘ .
( Here ๐‘“(๐‘ฅ) = 1 โˆ™ ๐‘ฅ + 0 โˆ™ ๐‘ฅ + 1 )
Definition 1.1.2: Let
๐‘“(๐‘ฅ) = ๐‘Ž + ๐‘Ž ๐‘ฅ + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ
be
a
polynomial
with
coefficients in a ring ๐‘…. If there exists some ๐‘– > 0 such that ๐‘Ž โ‰  0, then the largest
value of such ๐‘– is called the degree of the polynomial ๐‘“(๐‘ฅ). If no such ๐‘– > 0 exists, then
we say that ๐‘“(๐‘ฅ) is of zero degree.
Algebra
Page No. 80
Examples :
The degree of the polynomial ๐‘“(๐‘ฅ) = ๐‘ฅ + 4๐‘ฅ + 3๐‘ฅ + 2๐‘ฅ + 7 with coefficients
(i)
in ๐‘ is of degree 5.
(ii) ๐‘“(๐‘ฅ) = + 0 โˆ™ ๐‘ฅ + 0 โˆ™ ๐‘ฅ . ๐‘“(๐‘ฅ) is a polynomial with coefficients in ๐‘„. The degree
of ๐‘“(๐‘ฅ) is zero.
Definition 1.1.3: Let ๐‘… be a ring and let ๐‘…[๐‘ฅ] denote the set of polynomials with coefficients
in ๐‘… and in an indeterminate ๐‘ฅ. Let ๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ] where
and
๐‘“(๐‘ฅ) = ๐‘Ž + ๐‘Ž ๐‘ฅ + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ ,
(๐‘Ž โˆˆ ๐‘…)
๐‘”(๐‘ฅ) = ๐‘ + ๐‘ ๐‘ฅ + ๐‘ ๐‘ฅ + โ‹ฏ + ๐‘ ๐‘ฅ ,
๐‘ โˆˆ๐‘…
We define โ€ฒ + โ€ฒ and โ€ฒ โˆ™ โ€ฒ of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) as follows.
(๐‘š < ๐‘›),
๐‘“(๐‘ฅ) + ๐‘”(๐‘ฅ) = ๐‘ + ๐‘ ๐‘ฅ + ๐‘ ๐‘ฅ + โ‹ฏ + ๐‘ ๐‘ฅ ,
(i)
where, ๐‘ = ๐‘Ž + ๐‘ , โˆ€ ๐‘–.
[ Here ๐‘
(ii) ๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) = ๐‘‘ + ๐‘‘ ๐‘ฅ + ๐‘‘ ๐‘ฅ + โ‹ฏ + ๐‘‘
where,
๐‘‘ =
โˆ‘
i + j =k
i.e.
= 0 for ๐‘– โ‰ฅ 1 ]
๐‘ฅ
,
ai b j , (1 โ‰ค ๐‘– โ‰ค ๐‘›, 1 โ‰ค ๐‘— โ‰ค ๐‘š)
๐‘‘ =๐‘Ž ๐‘ +๐‘Ž ๐‘
+ โ‹ฏ+ ๐‘Ž ๐‘ .
Obviously,
๐‘“(๐‘ฅ) + ๐‘”(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ]
and
๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ].
Remark 1.1.4 : โŒฉ๐‘…[๐‘ฅ], +, โˆ™ โŒช is a ring where โ€ฒ + โ€ฒ and โ€ฒ โˆ™ โ€ฒ are as defined in (i) and (ii) in the
definition 1.1.3. This ring is called the polynomial ring over the ring ๐‘….
If ๐‘… is a ring and ๐‘ฅ and ๐‘ฆ are two indeterminates, then we can form the ring
(๐‘…[๐‘ฅ])(๐‘ฆ), that is, the ring of polynomials in ๐‘ฆ, with coefficients that are polynomials in
๐‘ฅ.
As (๐‘…[๐‘ฅ])(๐‘ฆ) โ‰… (๐‘…[๐‘ฆ])(๐‘ฅ), we denote this ring by ๐‘…[๐‘ฅ, ๐‘ฆ], the ring of polynomials in
two variables ๐‘ฅ and ๐‘ฆ with coefficients in ๐‘…. We can similarly define the ring
๐‘…[๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ] of polynomials in the โ€ฒ๐‘›โ€ฒ indeterminate ๐‘ฅ with coefficients in ๐‘….
1.2 Properties of ๐‘[๐ฑ] :
Theorem 1.2.1:
Let ๐‘… be a ring. Then ๐‘… is a sub-ring of the ring of polynomials ๐‘…[๐‘ฅ].
Algebra
Page No. 81
Proof : Let ๐‘Ž โˆˆ ๐‘…, we write
๐‘“(๐‘ฅ) = ๐‘Ž + 0 โˆ™ ๐‘ฅ + 0 โˆ™ ๐‘ฅ + โ‹ฏ + 0 โˆ™ ๐‘ฅ
( ๐‘› finite)
Then ๐‘“(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ] and is called a constant polynomial over the ring ๐‘….
Thus, if ๐‘Ž, ๐‘ โˆˆ ๐‘…, then ๐‘Ž, ๐‘ are constant polynomials in ๐‘…[๐‘ฅ] and as members of ๐‘…[๐‘ฅ],
their addition ๐‘Ž + ๐‘ and multiplication ๐‘Ž โˆ™ ๐‘ are again the constant polynomials in ๐‘…[๐‘ฅ].
Hence, ๐‘… is a subring of ๐‘…[๐‘ฅ].
Theorem 1.2.2 : ๐‘…[๐‘ฅ] is a ring of polynomials over a ring ๐‘…. ๐‘…[๐‘ฅ] is commutative iff R is
commutative.
Proof : Only if part :
Let ๐‘…[๐‘ฅ] be commutative. As, sub-ring of a commutative ring is commutative, we get
๐‘… is commutative.
If part :
Let ๐‘… be commutative.
Let
where,
and
๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ] ,
(๐‘Ž โˆˆ ๐‘…)
๐‘“(๐‘ฅ) = ๐‘Ž + ๐‘Ž ๐‘ฅ + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ ,
๐‘”(๐‘ฅ) = ๐‘ + ๐‘ ๐‘ฅ + ๐‘ ๐‘ฅ + โ‹ฏ + ๐‘ ๐‘ฅ ,
๐‘ โˆˆ๐‘… .
Then,
๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) = ๐‘Ž ๐‘ + (๐‘Ž ๐‘ + ๐‘Ž ๐‘ ) ๐‘ฅ + โ‹ฏ +
โˆ‘
ai b j ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ ๐‘ฅ
โˆ‘
ai b j =
i+ j =k
.
As ๐‘… is commutative,
๐‘Ž ๐‘ =๐‘ ๐‘Ž ,๐‘Ž ๐‘ +๐‘Ž ๐‘ =๐‘ ๐‘Ž +๐‘ ๐‘Ž , โ€ฆ,
i + j =k
โˆ‘
j + i =k
b j ai , โ€ฆ,
๐‘Ž ๐‘ =๐‘ ๐‘Ž .
Hence,
๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) = ๐‘Ž ๐‘ + (๐‘Ž ๐‘ + ๐‘Ž ๐‘ )๐‘ฅ + โ‹ฏ +
โˆ‘
i+ j =k
= ๐‘ ๐‘Ž + (๐‘ ๐‘Ž + ๐‘ ๐‘Ž )๐‘ฅ + โ‹ฏ +
โˆ‘
j +i=k
ai b j ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ ๐‘ฅ
b j ai ๐‘ฅ + โ‹ฏ + ๐‘ ๐‘Ž ๐‘ฅ
= ๐‘”(๐‘ฅ) โˆ™ ๐‘“(๐‘ฅ)
This shows that ๐‘…[๐‘ฅ] is commutative.
Algebra
Page No. 82
Theorem 1.2.3 : Let ๐‘… be a ring. ๐‘…[๐‘ฅ] has unity iff ๐‘… has unity.
Proof :
Only if part :
Let ๐‘…[๐‘ฅ] be a ring with unity.
Define
๐œ“ โˆถ ๐‘…[๐‘ฅ] โŸถ ๐‘… by
๐œ“ [๐‘Ž + ๐‘Ž ๐‘ฅ + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ ] = ๐‘Ž
is an onto homomorphism, we get ๐‘… has unity. [ Since homomorphic image of a ring
with unity contains the unity. ]
If part :
Let the ring ๐‘… contain the unity element say 1.
Then, consider the constant polynomial 1 + 0 โˆ™ ๐‘ฅ + 0 โˆ™ ๐‘ฅ + โ‹ฏ + 0 โˆ™ ๐‘ฅ ( ๐‘› finite) will
be the unity element of ๐‘…[๐‘ฅ].
Definition 1.2.4 : Let ๐‘“(๐‘ฅ) = ๐‘Ž + ๐‘Ž ๐‘ฅ + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ be a non zero polynomial in
๐‘…[๐‘ฅ]. We say that degree of ๐‘“(๐‘ฅ) is ๐‘› if ๐‘Ž โ‰  0 and ๐‘Ž
= 0 for ๐‘– โ‰ฅ 1.
We write, deg ๐‘“(๐‘ฅ) = ๐‘›.
Note that, the degree of a zero polynomial is not defined.
deg ๐‘“(๐‘ฅ) = 0 if ๐‘“(๐‘ฅ) = ๐‘Ž + ๐‘Ž ๐‘ฅ + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ
with ๐‘Ž = 0 for ๐‘– โ‰ฅ 1 and
๐‘Ž โ‰  0.
i.e.
deg ๐‘“(๐‘ฅ) = 0 if ๐‘“(๐‘ฅ) is a constant polynomial in ๐‘…[๐‘ฅ].
Theorem 1.2.5 : Let ๐‘… be a ring and ๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ) be non zero polynomials in ๐‘…[๐‘ฅ], where
deg ๐‘“(๐‘ฅ) = ๐‘› and deg ๐‘”(๐‘ฅ) = ๐‘š. If ๐‘“(๐‘ฅ) + ๐‘”(๐‘ฅ) and ๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) are non zero
polynomials in ๐‘…[๐‘ฅ], then
(i) deg [๐‘“(๐‘ฅ) + ๐‘”(๐‘ฅ)] โ‰ค max(๐‘š, ๐‘›)
(ii) deg [๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ)] โ‰ค ๐‘› + ๐‘š
(iii) If ๐‘… is an integral domain, deg [๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ)] = ๐‘› + ๐‘š
Proof : Let
๐‘“(๐‘ฅ) = ๐‘Ž + ๐‘Ž ๐‘ฅ + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ
where ๐‘Ž โˆˆ ๐‘… for 0 โ‰ค ๐‘– โ‰ค ๐‘› and ๐‘Ž โ‰  0 and ๐‘Ž
Let
๐‘”(๐‘ฅ) = ๐‘ + ๐‘ ๐‘ฅ + ๐‘ ๐‘ฅ + โ‹ฏ + ๐‘ ๐‘ฅ
where ๐‘ โˆˆ ๐‘… for 0 โ‰ค ๐‘— โ‰ค ๐‘š and ๐‘ โ‰  0 and ๐‘
Algebra
= 0, for each ๐‘– โ‰ฅ 1.
= 0 for each ๐‘– โ‰ฅ 1.
Page No. 83
(i)
๐‘“(๐‘ฅ) + ๐‘”(๐‘ฅ) = (๐‘Ž + ๐‘ ) + (๐‘Ž + ๐‘ )๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ , where ๐‘ก = max (๐‘›, ๐‘š).
Hence, deg [๐‘“(๐‘ฅ) + ๐‘”(๐‘ฅ)] โ‰ค ๐‘ก = max(๐‘š, ๐‘›)
(ii) ๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) = (๐‘Ž ๐‘ ) + (๐‘Ž ๐‘ + ๐‘Ž ๐‘ )๐‘ฅ + โ‹ฏ + (๐‘Ž ๐‘ )๐‘ฅ
.
This shows that
deg [๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ)] โ‰ค ๐‘ก = ๐‘› + ๐‘š
(iii) Let ๐‘… be an integral domain.
Then, deg ๐‘“(๐‘ฅ) = ๐‘›
deg ๐‘”(๐‘ฅ) = ๐‘š
โŸน ๐‘Ž โ‰  0.
โŸน ๐‘ โ‰  0.
As ๐‘… is an integral domain,
๐‘Ž โ‰  0, ๐‘ โ‰  0 โŸน ๐‘Ž ๐‘ โ‰  0.
Hence, deg [๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ)] = ๐‘› + ๐‘š.
โ€ฆ See (ii)
Theorem 1.2.6 : ๐‘… is an integral domain iff ๐‘…[๐‘ฅ] is an integral domain.
Proof :
Only if part :
Let ๐‘… be an integral domain.
To prove that ๐‘…[๐‘ฅ] is an integral domain.
Let
๐‘“(๐‘ฅ) โ‰  0, ๐‘”(๐‘ฅ) โ‰  0 in ๐‘…[๐‘ฅ]
Let
๐‘“(๐‘ฅ) = ๐‘Ž + ๐‘Ž ๐‘ฅ + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ
and
๐‘”(๐‘ฅ) = ๐‘ + ๐‘ ๐‘ฅ + ๐‘ ๐‘ฅ + โ‹ฏ + ๐‘ ๐‘ฅ .
such that
๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) = 0.
Let ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) both be constant polynomials.
Let ๐‘“(๐‘ฅ) = ๐‘Ž
and
๐‘”(๐‘ฅ) = ๐‘ .
Then, ๐‘“(๐‘ฅ) โ‰  0 โŸน ๐‘Ž โ‰  0
and
๐‘”(๐‘ฅ) โ‰  0 โŸน ๐‘ โ‰  0.
As ๐‘… is an integral domain, ๐‘Ž ๐‘ โ‰  0.
i.e.
๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) โ‰  0; which is not true.
Hence, one of ๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ) must be a non constant polynomial.
Let ๐‘“(๐‘ฅ) be a non constant polynomial. Hence deg ๐‘“(๐‘ฅ) โ‰ฅ 1.
Hence, deg ๐‘“(๐‘ฅ) + deg ๐‘”(๐‘ฅ) โ‰ฅ 1.
As ๐‘… is an integral domain
deg(๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ)) = deg ๐‘“(๐‘ฅ) + deg ๐‘”(๐‘ฅ) โ‰ฅ 1
This leads to the contradiction as ๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) = 0.
Hence,
Algebra
๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) = 0
โŸน
๐‘“(๐‘ฅ) = 0 or ๐‘”(๐‘ฅ) = 0.
Page No. 84
i.e.
๐‘…[๐‘ฅ] is an integral domain.
If part :
Let ๐‘…[๐‘ฅ] be an integral domain. As the ring ๐‘… is a subring of ๐‘…[๐‘ฅ], ๐‘… must be an integral
domain.
Remark 1.2.7 : If ๐น is a field then ๐น[๐‘ฅ] may not be a field.
Proof : As ๐น is a field, ๐น is an integral domain. [ Result : Every field is an integral domain. ]
Hence, by theorem 1.2.6, ๐น[๐‘ฅ] is an integral domain.
Consider the non-zero polynomial ๐‘“(๐‘ฅ) โˆˆ ๐น(๐‘ฅ) given by
๐‘“(๐‘ฅ) = 0 + 1 โˆ™ ๐‘ฅ + 0 โˆ™ ๐‘ฅ + โ‹ฏ + 0 โˆ™ ๐‘ฅ .
We will prove that ๐‘“(๐‘ฅ) has no multiplicative inverse in ๐น[๐‘ฅ].
Let, if possible, ๐‘”(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] such that
๐‘”(๐‘ฅ) = ๐‘ + ๐‘ ๐‘ฅ + ๐‘ ๐‘ฅ + โ‹ฏ + ๐‘ ๐‘ฅ
๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) = unity in ๐‘…[๐‘ฅ].
and
= 1 + 0 โˆ™ ๐‘ฅ + 0 โˆ™ ๐‘ฅ + โ‹ฏ+ 0 โˆ™ ๐‘ฅ
Thus, by comparing the coefficients, we get
1 = 0;
a contradiction.
Hence, ๐‘“(๐‘ฅ) does not have a multiplicative inverse in ๐น[๐‘ฅ]. Hence ๐น[๐‘ฅ] is not a field.
Theorem 1.2.8 : Let ๐น be a field then ๐น[๐‘ฅ] is an Euclidian domain.
Proof :
(I)
๐น is a field
โŸน
๐น is an integral domain.
โŸน
๐น[๐‘ฅ] is an integral domain.
โ€ฆ See theorem 1.2.6
(II) Let ๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] be a non-zero polynomial. Define ๐‘‘ ๐‘“(๐‘ฅ) = deg ๐‘“(๐‘ฅ).
Then, ๐‘‘ ๐‘“(๐‘ฅ) is a non-negative integer.
For ๐‘“(๐‘ฅ) โ‰  0 and ๐‘”(๐‘ฅ) โ‰  0 in ๐น[๐‘ฅ], we get
(i)
๐‘‘ ๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) = ๐‘‘ ๐‘“(๐‘ฅ) + ๐‘‘ ๐‘”(๐‘ฅ)
โ€ฆ See theorem 1.2.5
Hence, ๐‘‘ ๐‘“(๐‘ฅ) โ‰ค ๐‘‘ ๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) as ๐‘‘ ๐‘”(๐‘ฅ) โ‰ฅ 0.
(ii) Let ๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ) be non zero polynomials in ๐น[๐‘ฅ].
To prove that โˆƒ ๐‘ž(๐‘ฅ), ๐‘Ÿ(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] such that
๐‘“(๐‘ฅ) = ๐‘ž(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ)
where
Algebra
๐‘Ÿ(๐‘ฅ) = 0
or
๐‘‘ ๐‘Ÿ(๐‘ฅ) < ๐‘‘ ๐‘”(๐‘ฅ) .
Page No. 85
Case I : ๐‘‘ ๐‘“(๐‘ฅ) < ๐‘‘ ๐‘”(๐‘ฅ) . Then ๐‘“(๐‘ฅ) = 0 โˆ™ ๐‘”(๐‘ฅ) + ๐‘“(๐‘ฅ)
and the result follows in this case.
Case II : ๐‘‘ ๐‘”(๐‘ฅ) < ๐‘‘ ๐‘“(๐‘ฅ) ,
Let
๐‘“(๐‘ฅ) = ๐‘Ž + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ ,
( ๐‘Ž โˆˆ ๐น and ๐‘Ž โ‰  0 )
and
๐‘”(๐‘ฅ) = ๐‘ + ๐‘ ๐‘ฅ + โ‹ฏ + ๐‘ ๐‘ฅ ,
( ๐‘ โˆˆ ๐น and ๐‘ โ‰  0 )
๐‘‘ ๐‘”(๐‘ฅ) < ๐‘‘ ๐‘“(๐‘ฅ)
โŸน
๐‘š < ๐‘›.
Define ๐‘(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ’ [๐‘Ž ๐‘ ๐‘ฅ
] ๐‘”(๐‘ฅ).
Hence,
๐‘(๐‘ฅ) = [๐‘Ž + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ ] โˆ’ [๐‘ + ๐‘ ๐‘ฅ + โ‹ฏ + ๐‘ ๐‘ฅ ] [๐‘Ž ๐‘
shows that the coefficient of ๐‘ฅ in ๐‘(๐‘ฅ) is ๐‘Ž โˆ’ (๐‘Ž ๐‘
]
๐‘ฅ
โˆ™ ๐‘ ) = ๐‘Ž โˆ’ ๐‘Ž = 0.
Hence, ๐‘(๐‘ฅ) = zero polynomial or ๐‘‘ ๐‘(๐‘ฅ) < deg ๐‘“(๐‘ฅ) = ๐‘›.
Subcase I : ๐‘(๐‘ฅ) is a zero polynomial.
Then, ๐‘(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ’ ๐‘Ž ๐‘ ๐‘ฅ
Hence, ๐‘“(๐‘ฅ) = ๐‘Ž ๐‘ ๐‘ฅ
Taking ๐‘ž(๐‘ฅ) = ๐‘Ž ๐‘
โˆ™ ๐‘”(๐‘ฅ) will imply 0 = ๐‘“(๐‘ฅ) โˆ’ ๐‘Ž ๐‘ ๐‘ฅ
โˆ™ ๐‘”(๐‘ฅ).
โˆ™ ๐‘”(๐‘ฅ) + 0.
๐‘ฅ
and
๐‘Ÿ(๐‘ฅ) = 0, the result follows.
Subcase II : ๐‘ (๐‘ฅ) โ‰  0 and deg ๐‘(๐‘ฅ) < deg ๐‘”(๐‘ฅ).
Assume that the result is true for all the non zero polynomials in ๐น[๐‘ฅ] of degree less
than the degree of ๐‘”(๐‘ฅ) = ๐‘š.
Then, by this assumption,
๐‘(๐‘ฅ) = ๐‘ž (๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ),
where ๐‘Ÿ(๐‘ฅ) = 0
or
deg ๐‘Ÿ(๐‘ฅ) < deg ๐‘”(๐‘ฅ).
โˆ™ ๐‘”(๐‘ฅ) = ๐‘ž (๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ).
Hence, ๐‘“(๐‘ฅ) โˆ’ ๐‘Ž ๐‘ ๐‘ฅ
Thus,
i.e.
๐‘“(๐‘ฅ) = [๐‘Ž ๐‘
๐‘ฅ
+ ๐‘ž (๐‘ฅ)] ๐‘”(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ)
๐‘“(๐‘ฅ) = ๐‘ž(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ)
where ๐‘Ÿ(๐‘ฅ) = 0
or deg ๐‘Ÿ(๐‘ฅ) < deg ๐‘”(๐‘ฅ)
This shows that the result is true in this case also.
From (I) and (II), we get ๐น[๐‘ฅ] is an Euclidean domain.
As every Euclidean domain is a principal ideal domain we get,
Corollary 1.2.9: For a field ๐น, ๐น[๐‘ฅ] is a P. I. D.
Algebra
Page No. 86
1.3 Division Algorithm in ๐…[๐ฑ]:
Theorem 1.3.1 : Let ๐น be a field. Let
๐‘“(๐‘ฅ) = ๐‘Ž + ๐‘Ž ๐‘ฅ + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ
๐‘”(๐‘ฅ) = ๐‘ + ๐‘ ๐‘ฅ + ๐‘ ๐‘ฅ + โ‹ฏ + ๐‘ ๐‘ฅ
and
be two polynomials in ๐น[๐‘ฅ] with ๐‘Ž โ‰  0 and ๐‘ โ‰  0 with ๐‘š > 0.
Then, there are two polynomials ๐‘ž(๐‘ฅ) and ๐‘Ÿ(๐‘ฅ) in ๐น[๐‘ฅ] such that
๐‘“(๐‘ฅ) = ๐‘ž(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ)
with deg ๐‘Ÿ(๐‘ฅ) < deg ๐‘”(๐‘ฅ).
These polynomials ๐‘ž(๐‘ฅ) and ๐‘Ÿ(๐‘ฅ) are unique.
Proof : Define ๐‘† = {๐‘“(๐‘ฅ) โˆ’ ๐‘”(๐‘ฅ) โˆ™ ๐‘ (๐‘ฅ) / ๐‘ (๐‘ฅ) โˆˆ ๐น[๐‘ฅ}.
Then, ๐‘† โ‰  ๐œ™.
( as ๐‘“(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ’ ๐‘”(๐‘ฅ) โˆ™ 0 โˆˆ ๐‘† )
Select ๐‘Ÿ(๐‘ฅ) โˆˆ ๐‘† such that deg ๐‘Ÿ(๐‘ฅ) is minimal.
๐‘Ÿ(๐‘ฅ) โˆˆ ๐‘†
Then,
โŸน
๐‘Ÿ(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ’ ๐‘”(๐‘ฅ) โˆ™ ๐‘ž(๐‘ฅ), for some ๐‘ž(๐‘ฅ) โˆˆ ๐น[๐‘ฅ].
Hence , ๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ ๐‘ž(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ).
If ๐‘Ÿ(๐‘ฅ) = 0 then we are through.
If ๐‘Ÿ(๐‘ฅ) โ‰  0 then let
๐‘Ÿ(๐‘ฅ) = ๐‘ ๐‘ฅ + ๐‘
Hence,
๐‘ฅ
+ โ‹ฏ+ ๐‘ ,
where ๐‘ โˆˆ ๐น and ๐‘ โ‰  0.
deg ๐‘Ÿ(๐‘ฅ) = ๐‘ก.
We want to prove that ๐‘ก < ๐‘š.
Let ๐‘ก โ‰ฎ ๐‘š. Then ๐‘ก โ‰ฅ ๐‘š.
Consider the following polynomial in ๐น[๐‘ฅ].
๐‘“(๐‘ฅ) โˆ’ ๐‘ž(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) โˆ’ [๐‘ ๐‘ ]๐‘ฅ
= ๐‘“(๐‘ฅ) โˆ’ [๐‘ž(๐‘ฅ) + ๐‘ ๐‘ ๐‘ฅ
โˆ™ ๐‘”(๐‘ฅ)
] โˆ™ ๐‘”(๐‘ฅ)
As
๐‘ž(๐‘ฅ) + ๐‘ ๐‘ ๐‘ฅ
we get,
๐‘“(๐‘ฅ) โˆ’ ๐‘ž(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) โˆ’ [๐‘ ๐‘ ]๐‘ฅ
But
๐‘“(๐‘ฅ) โˆ’ ๐‘ž(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) โˆ’ ๐‘ ๐‘ ๐‘ฅ
= ๐‘Ÿ(๐‘ฅ) โˆ’ ๐‘ ๐‘ ๐‘ฅ
โˆˆ ๐น[๐‘ฅ] ,
[๐‘ ๐‘ฅ + ๐‘
โˆ™ ๐‘”(๐‘ฅ) โˆˆ ๐‘†
โˆ™ ๐‘”(๐‘ฅ)
๐‘ฅ
+ โ‹ฏ+ ๐‘ ]
= ๐‘Ÿ(๐‘ฅ) โˆ’ [๐‘ ๐‘ฅ + terms of lower degree]
= [๐‘ ๐‘ฅ + ๐‘
๐‘ฅ
+ โ‹ฏ + ๐‘ ] โˆ’ [๐‘ ๐‘ฅ + terms of lower degree]
Here, ๐‘“(๐‘ฅ) โˆ’ ๐‘ž(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) โˆ’ ๐‘ ๐‘ ๐‘ฅ
โˆ™ ๐‘”(๐‘ฅ) is a polynomial of degree < ๐‘ก =
deg ๐‘Ÿ(๐‘ฅ) and is a member of S.
This contradicts the fact that ๐‘Ÿ(๐‘ฅ) is a polynomial in S of minimal degree.
Hence, our assumption that ๐‘ก โ‰ฅ ๐‘š is wrong. Hence ๐‘ก < ๐‘š. i.e. deg ๐‘Ÿ(๐‘ฅ) < deg ๐‘”(๐‘ฅ).
Algebra
Page No. 87
Uniqueness :
Let
๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ ๐‘ž (๐‘ฅ) + ๐‘Ÿ (๐‘ฅ)
and
๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ ๐‘ž (๐‘ฅ) + ๐‘Ÿ (๐‘ฅ)
where
deg ๐‘Ÿ (๐‘ฅ) < ๐‘š
deg ๐‘Ÿ (๐‘ฅ) < ๐‘š, ๐‘ž (๐‘ฅ), ๐‘ž (๐‘ฅ), ๐‘Ÿ (๐‘ฅ), ๐‘Ÿ (๐‘ฅ) โˆˆ ๐น[๐‘ฅ].
and
Subtracting, we get,
๐‘”(๐‘ฅ)[๐‘ž (๐‘ฅ) โˆ’ ๐‘ž (๐‘ฅ)] = ๐‘Ÿ (๐‘ฅ) โˆ’ ๐‘Ÿ (๐‘ฅ)
. . . (1)
deg[๐‘Ÿ (๐‘ฅ) โˆ’ ๐‘Ÿ (๐‘ฅ)] < deg ๐‘”(๐‘ฅ)
As
we get (1) holds only when
and
๐‘ž (๐‘ฅ) โˆ’ ๐‘ž (๐‘ฅ) = 0
โŸน
๐‘ž (๐‘ฅ) = ๐‘ž (๐‘ฅ).
๐‘Ÿ (๐‘ฅ) โˆ’ ๐‘Ÿ (๐‘ฅ) = 0
โŸน
๐‘Ÿ (๐‘ฅ) = ๐‘Ÿ (๐‘ฅ).
This completes the proof.
1.3.2
Examples โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Ex1 : Let ๐‘“(๐‘ฅ) = ๐‘ฅ + 3๐‘ฅ + 4๐‘ฅ โˆ’ 3๐‘ฅ + 2 and ๐‘”(๐‘ฅ) = ๐‘ฅ + 2๐‘ฅ โˆ’ 3 be in ๐‘ [๐‘ฅ]. Find
๐‘ž(๐‘ฅ) and ๐‘Ÿ(๐‘ฅ) in ๐‘ [๐‘ฅ] such that ๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ ๐‘ž(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ) with deg ๐‘Ÿ(๐‘ฅ) < 2.
Solution : Let
and
๐‘“(๐‘ฅ) = ๐‘ฅ + 3๐‘ฅ + 4๐‘ฅ โˆ’ 3๐‘ฅ + 2
๐‘”(๐‘ฅ) = ๐‘ฅ + 2๐‘ฅ โˆ’ 3
be in ๐‘ [๐‘ฅ].
q(x)
f(x)
g(x)
x2 + 2 x โˆ’ 3
x 6 + 3 x5 + 0 โ‹… x 4 + 0 โ‹… x 3 + 4 x 2 โˆ’ 3 x + 2
โˆ’
x 4 + x3 + x 2 + x + 5
x 6 + 2 x5 โˆ’ 3 x 4
โˆ’
+
x5 + 3 x 4 + 0 โ‹… x 3
โˆ’
x5 + 2 x 4 โˆ’ 3 x 3
โˆ’
+
x 4 + 3 x3 + 4 x 2
โˆ’
x 4 + 2 x3 โˆ’ 3x 2
โˆ’
+
x3 + 0 โ‹… x 2 โˆ’ 3 x
โˆ’
x3 + 2 x 2 โˆ’ 3 x
โˆ’
+
5x2 + 0 โ‹… x + 2
โˆ’
5 x 2 + 3x โˆ’ 1
โˆ’
+
r ( x) = 4x + 3
Algebra
Page No. 88
Thus,
๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ ๐‘ž(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ)
where
๐‘ž(๐‘ฅ) = ๐‘ฅ + ๐‘ฅ + ๐‘ฅ + ๐‘ฅ + 5
. . . (5 = โˆ’2 in ๐‘ ).
=๐‘ฅ +๐‘ฅ +๐‘ฅ +๐‘ฅโˆ’2
๐‘Ÿ(๐‘ฅ) = 4๐‘ฅ + 3
and
Ex 2 : Let ๐‘“(๐‘ฅ) = ๐‘ฅ + ๐‘ฅ + ๐‘ฅ and ๐‘”(๐‘ฅ) = ๐‘ฅ + 2๐‘ฅ + 2๐‘ฅ in ๐‘ [๐‘ฅ]. Find ๐‘ž(๐‘ฅ) and ๐‘Ÿ(๐‘ฅ) in
๐‘ [๐‘ฅ] such that ๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ ๐‘ž(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ) with deg ๐‘Ÿ(๐‘ฅ) < 4.
Solution :
g(x)
4
f(x)
3
2
x + 2x + 0 โ‹… x + 2x + 0
5
x + 0โ‹… x
4
q(x)
3
2
+ x + 0โ‹… x + x + 0
x +1
x5 + 2 โ‹… x 4 + 0 โ‹… x 3 + 2 โ‹… x 2 + 0 โ‹… x
โˆ’ โˆ’
โˆ’
โˆ’
โˆ’
x 4 + x3 +
โˆ’
x2 + x + 0
x 4 + 2 x3 + 0 โ‹… x 2 + 2 โ‹… x + 0
โˆ’
โˆ’
โˆ’
โˆ’
r ( x) = 2x 3+ x 2 + 2x
Thus,
๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ ๐‘ž(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ) ,
where
๐‘ž(๐‘ฅ) = ๐‘ฅ + 1 , ๐‘Ÿ(๐‘ฅ) = 2๐‘ฅ + ๐‘ฅ + 2๐‘ฅ and deg ๐‘Ÿ(๐‘ฅ) < 4.
Ex 3 : Let ๐‘“(๐‘ฅ) = ๐‘ฅ + 3๐‘ฅ + 3๐‘ฅ + ๐‘ฅ + 2 and ๐‘”(๐‘ฅ) = 4๐‘ฅ + 4๐‘ฅ + 3๐‘ฅ + 3 in ๐‘ [๐‘ฅ]. Find
๐‘ž(๐‘ฅ) and ๐‘Ÿ(๐‘ฅ) in ๐‘ [๐‘ฅ] so that ๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ ๐‘ž(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ) with deg ๐‘Ÿ(๐‘ฅ) < 3.
Solution :
g(x)
f(x)
x 4 + 3 x 3 +3x 2 + x + 2
4 x 3 + 4 x 2 + 3x + 3
โˆ’
q(x)
4x + 3
x4 + x 3 + 2x 2 + 2x
โˆ’ โˆ’
โˆ’
2 x3 + x 2 + 4 x + 2
โˆ’
2 x3 + 2 x 2 + 4 x + 4
โˆ’
โˆ’ โˆ’
r ( x) = 4x 2 + 3
Thus,
๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ ๐‘ž(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ) ,
where
๐‘ž(๐‘ฅ) = 4๐‘ฅ + 3 , ๐‘Ÿ(๐‘ฅ) = 4๐‘ฅ + 3 and deg ๐‘Ÿ(๐‘ฅ) < 3.
Algebra
Page No. 89
1.4 Euclidean Domain And Unique Factorization Domain :
Definition 1.4.1 : An integral domain is a commutative ring ๐‘… with unity containing no
divisors of 0.
i.e.
if ๐‘Ž โˆ™ ๐‘ = 0
for ๐‘Ž, ๐‘ โˆˆ ๐‘… then either ๐‘Ž = 0 or ๐‘ = 0.
Definition 1.4.2 : Let ๐‘… be a commutative ring ๐‘Ž, ๐‘ โˆˆ ๐‘…, ๐‘Ž โ‰  0. We say ๐‘Ž divides ๐‘ if โˆƒ
๐‘ โˆˆ ๐‘… such that ๐‘ = ๐‘Ž๐‘ .
We write this by ๐‘Ž/๐‘. In this case ๐‘Ž is called a factor of ๐‘.
Definition 1.4.3 : Let ๐‘… be a commutative ring. Let ๐‘Ž, ๐‘ โˆˆ ๐‘…. An element ๐‘‘ โˆˆ ๐‘… is called the
greatest common divisor of ๐‘Ž and ๐‘ if
(i)
๐‘‘/๐‘Ž and ๐‘‘/๐‘.
(ii)
If โˆƒ ๐‘ โˆˆ ๐‘… such that ๐‘/๐‘Ž and ๐‘/๐‘ then ๐‘/๐‘‘ .
We denote this by ๐‘‘ = gcd(๐‘Ž, ๐‘).
1.4.4 Remark :
(1) gcd(๐‘Ž, ๐‘) need not be unique in ๐‘….
For this consider ๐‘… = ๐‘ . Then
2โŠ— 3=6
โŸน
2/6
2โŠ— 2=4
โŸน
2/4
Again, if ๐‘/6 and ๐‘/4 then ๐‘/6 โˆ’ 4.
i.e ๐‘/2.
Thus, 2 = gcd(6, 4).
Again,
1โŠ— 6=6
6โŠ— 6=4
Hence, 6/6 and 6/4.
If ๐‘/6 and ๐‘/4 we get ๐‘/6.
Hence, gcd(6, 4) = 6.
Hence, 2 and 6 are g.c.d. in ๐‘ for the same pair (4, 6).
(2) Existence of g.c.d. for any pair ๐‘Ž, ๐‘ in a commutative ring ๐‘… is not compulsory.
e.g.
Algebra
Consider the ring ๐‘… of even integers.
Page No. 90
4, 6 โˆˆ ๐‘…. 2/4 in ๐‘… but 2 โˆค 6 in ๐‘…. As 2 โˆ™ 3 = 6 but 3 โˆ‰ ๐‘….
Thus, gcd(4, 6) does not exist in ๐‘….
Definition 1.4.5 : Let ๐‘… be a commutative ring with unity. ๐‘Ž, ๐‘ โˆˆ ๐‘… are called associates if
๐‘Ž = ๐‘ข๐‘ for some unit ๐‘ข in ๐‘….
[ ๐‘ข is a unit in ๐‘… means multiplicative inverse ๐‘ข
of ๐‘ข exists in ๐‘… ]
Theorem 1.4.6 : Let ๐‘… be an integral domain with unity. If ๐‘‘ = gcd(๐‘Ž, ๐‘) in ๐‘…, then
๐‘‘ = gcd(๐‘Ž, ๐‘) in ๐‘…, iff ๐‘‘ and ๐‘‘ are associates.
Proof :
Only if part :
Let ๐‘‘ = gcd(๐‘Ž, ๐‘) and ๐‘‘ = gcd(๐‘Ž, ๐‘).
๐‘‘ /๐‘Ž and
๐‘‘ /๐‘.
๐‘‘ /๐‘Ž and
๐‘‘ /๐‘.
Hence,
๐‘‘ /๐‘‘ and
๐‘‘ /๐‘‘
Hence,
๐‘‘ and ๐‘‘ are associates.
Then,
โ€ฆ by the definition of gcd.
If part :
Let ๐‘‘ and ๐‘‘ be associates and ๐‘‘ = gcd(๐‘Ž, ๐‘).
๐‘‘ =๐‘ข๐‘‘
for some unit ๐‘ข in ๐‘….
Hence,
๐‘‘ /๐‘‘ .
But
๐‘‘ /๐‘Ž and
๐‘‘ /๐‘.
Hence,
๐‘‘ /๐‘Ž and
๐‘‘ /๐‘.
. . . (1)
Let ๐‘ฅ โˆˆ ๐‘… such that ๐‘ฅ/๐‘Ž and ๐‘ฅ/๐‘.
Then ๐‘‘ = gcd(๐‘Ž, ๐‘)
โŸน
โŸน
๐‘ฅ=๐‘‘ ๐‘ก,
๐‘‘ /๐‘ฅ.
for some ๐‘ก โˆˆ ๐‘….
= (๐‘ข ๐‘‘ ) ๐‘ก
= ๐‘‘ (๐‘ข ๐‘ก)
But this shows that ๐‘‘ /๐‘ฅ .
Hence,
๐‘‘ = ๐‘”๐‘๐‘‘(๐‘Ž, ๐‘).
. . . (2)
Definition 1.4.7 : Let ๐ท be UFD. A non constant polynomial
๐‘“(๐‘ฅ) = ๐‘Ž + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ
Algebra
Page No. 91
in ๐ท[๐‘ฅ] is primitive if the only common divisors of all the ๐‘Ž are units of ๐ท.
1.4.8 Examples :
(i)
4๐‘ฅ + 7๐‘ฅ + 3 is primitive in ๐‘[๐‘ฅ].
(ii)
3๐‘ฅ + 6๐‘ฅ + 9 is not primitive in ๐‘[๐‘ฅ] as 3 is not a unit in ๐‘.
(iii) Any non constant irreducible in ๐ท[๐‘ฅ], where ๐ท is UFD, is primitive.
Theorem 1.4.9 : Let ๐ท be a UFD. Let ๐‘“(๐‘ฅ) โˆˆ ๐ท[๐‘ฅ] be a non constant polynomial.
Then, ๐‘“(๐‘ฅ) = (๐‘) โˆ™ ๐‘”(๐‘ฅ), where ๐‘”(๐‘ฅ) is a primitive in ๐ท[๐‘ฅ]. The element ๐‘ is unique
upto a unit factor in ๐ท and the polynomial ๐‘”(๐‘ฅ) is unique up to a unit factor in ๐ท.
Proof : Let ๐‘“(๐‘ฅ) = ๐‘Ž + +๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ , (๐‘Ž โ‰  0) be a nonconstant polynomial in
๐ท[๐‘ฅ]. The coefficients ๐‘Ž , ๐‘Ž , โ€ฆ , ๐‘Ž
in ๐ท can be factored into a finite product of
irreducible in ๐ท, uniquely upto order and associates.
Assume that each coefficient of ๐‘“(๐‘ฅ) is factorized in this way. Let ๐‘ denote the
irreducible in ๐ท appearing in the factorization of one coefficient. If ๐‘ƒ divides all
coefficients, then ๐‘ will be in the factorization of all coefficients. Assume that no other
associates of ๐‘ appears in the factorization of any coefficient of ๐‘“(๐‘ฅ).
Define
๐‘=
๐‘
where ๐›ผ is the greatest integer such that ๐‘
divides all the coefficients of ๐‘“(๐‘ฅ).
In this case ๐‘“(๐‘ฅ) = (๐‘) ๐‘”(๐‘ฅ) where ๐‘ โˆˆ ๐ท and ๐‘”(๐‘ฅ) โˆˆ ๐ท[๐‘ฅ] is primitive by construction.
Uniqueness :
Let if possible,
๐‘“(๐‘ฅ) = (๐‘) ๐‘”(๐‘ฅ)
and
๐‘“(๐‘ฅ) = (๐‘‘) โ„Ž(๐‘ฅ)
in ๐ท[๐‘ฅ].
where ๐‘”(๐‘ฅ) and โ„Ž(๐‘ฅ) are primitive in ๐ท[๐‘ฅ] and ๐‘, ๐‘‘ โˆˆ ๐ท.
Now,
(๐‘) ๐‘”(๐‘ฅ) = (๐‘‘) โ„Ž(๐‘ฅ) implies each irreducible factor in ๐‘ must divide the
irreducible factor in ๐‘‘ and conversely.
By cancelling the irreducible factors from ๐‘ and ๐‘‘, we get,
(๐‘ข) ๐‘”(๐‘ฅ) = (๐‘ฃ) โ„Ž(๐‘ฅ)
where ๐‘ข and ๐‘ฃ are units in ๐ท.
Algebra
Page No. 92
But this shows that ๐‘ is unique up to the unit factors and the primitive polynomial ๐‘”(๐‘ฅ)
is also unique up to unit factors.
Theorem (Gauss) 1.4.10 : Let ๐ท be UFD. ๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ) โˆˆ ๐ท[๐‘ฅ] be primitive polynomials.
Then ๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) is also primitive in ๐ท[๐‘ฅ].
Proof : Let
๐‘“(๐‘ฅ) = ๐‘Ž + +๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ , (๐‘Ž โ‰  0)
and
๐‘”(๐‘ฅ) = ๐‘ + +๐‘ ๐‘ฅ + โ‹ฏ + ๐‘ ๐‘ฅ , (๐‘ โ‰  0)
be two primitive polynomials in ๐ท[๐‘ฅ].
โ„Ž(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ).
Let
Then, โ„Ž(๐‘ฅ) = (๐‘Ž ๐‘ ) + (๐‘Ž ๐‘ + ๐‘Ž ๐‘ )๐‘ฅ + โ‹ฏ +
โˆ‘ ( ai b j ) ๐‘ฅ
+ โ‹ฏ + (๐‘Ž ๐‘ )๐‘ฅ
i + j =k
Select any irreducible ๐‘ in ๐ท. ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) being primitive in ๐ท[๐‘ฅ], ๐‘ โˆค ๐‘Ž for some ๐‘–
and ๐‘ โˆค ๐‘ for some ๐‘—.
Let ๐‘Ž be the first coefficient in ๐‘“(๐‘ฅ) such that ๐‘ โˆค ๐‘Ž .
ie. ๐‘/๐‘Ž , ๐‘/๐‘Ž ,โ€ฆ, ๐‘/๐‘Ž
.
Let ๐‘ be the first coefficient in ๐‘”(๐‘ฅ) such that ๐‘ โˆค ๐‘ .
ie. ๐‘/๐‘ , ๐‘/๐‘ , โ€ฆ, ๐‘/๐‘
.
The coefficient of ๐‘ฅ
in โ„Ž(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) is
= (๐‘Ž ๐‘
+ โ‹ฏ+ ๐‘Ž
๐‘Ž
+๐‘Ž ๐‘
) + ๐‘Ž ๐‘ + (๐‘Ž
๐‘
๐‘
+๐‘Ž
๐‘
+ โ‹ฏ+
๐‘ )
As ๐‘/๐‘Ž , ๐‘/๐‘Ž ,โ€ฆ, ๐‘/๐‘Ž
we get
๐‘/(๐‘Ž ๐‘
+๐‘Ž ๐‘
Similarly, ๐‘/๐‘ , ๐‘/๐‘ , โ€ฆ, ๐‘/๐‘
๐‘/(๐‘Ž
๐‘
+๐‘Ž
+ โ‹ฏ+ ๐‘Ž
).
๐‘
will imply
๐‘
+ โ‹ฏ+ ๐‘Ž
๐‘ ).
But ๐‘ โˆค ๐‘Ž and ๐‘ โˆค ๐‘ imply ๐‘ โˆค ๐‘Ž ๐‘ . (See result ****).
Hence, ๐‘ โˆค coefficient of ๐‘ฅ
in โ„Ž(๐‘ฅ).
Thus, we have proved that any irreducible ๐‘ โˆˆ ๐ท will not divide all the coefficients of
โ„Ž(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ).
Hence, โ„Ž(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) is a primitive polynomial in ๐ท[๐‘ฅ].
Generalization of the statement of Gaussโ€™s theorem is as follows.
Corollary 1.4.11: Let ๐ท be UFD. The finite product of primitive polynomials in ๐ท[๐‘ฅ] is
again a primitive polynomial.
Proof : Let ๐‘“ (๐‘ฅ), ๐‘“ (๐‘ฅ), โ€ฆ , ๐‘“ (๐‘ฅ) โˆˆ ๐ท[๐‘ฅ] be primitive polynomials.
Algebra
Page No. 93
Let ๐‘“(๐‘ฅ) = ๐‘“ (๐‘ฅ) โˆ™ ๐‘“ (๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘“ (๐‘ฅ).
Then, ๐‘“(๐‘ฅ) โˆˆ ๐ท[๐‘ฅ].
We will prove the result by induction on โ€˜nโ€™.
The result is true for ๐‘› = 2 by Gaussโ€™s theorem.
Let the result be true for ๐‘› = ๐‘Ÿ say.
i.e.
๐‘“ (๐‘ฅ) โˆ™ ๐‘“ (๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘“ (๐‘ฅ) is a primitive polynomials.
Consider ๐‘“ (๐‘ฅ) โˆ™ ๐‘“ (๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘“ (๐‘ฅ) โˆ™ ๐‘“
(๐‘ฅ) then this will be the product of two
primitive polynomials ๐‘“ (๐‘ฅ) โˆ™ ๐‘“ (๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘“ (๐‘ฅ) and ๐‘“
(๐‘ฅ), and hence a primitive
polynomial in ๐ท[๐‘ฅ] by Gaussโ€™s theorem.
By principle of mathematical induction, the result follows.
1.5 Zero of the Polynomials :
Definition 1.5.1 : Let ๐‘“(๐‘ฅ) = ๐‘Ž + ๐‘Ž ๐‘ฅ + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ be in ๐น[๐‘ฅ] where ๐น is a field. If
๐‘Ž โˆˆ ๐น such that ๐‘“(๐‘Ž) = ๐‘Ž + ๐‘Ž ๐‘Ž + ๐‘Ž ๐‘Ž + โ‹ฏ + ๐‘Ž ๐‘Ž = 0 ( zero in ๐น ) then ๐‘Ž is called
a zero of ๐‘“(๐‘ฅ) in ๐น .
Example 1.5.2 : Find all zeros of ๐‘ฅ + 3๐‘ฅ + ๐‘ฅ + 2๐‘ฅ in ๐‘ [๐‘ฅ].
Solution : Let ๐‘“(๐‘ฅ) = ๐‘ฅ + 3๐‘ฅ + ๐‘ฅ + 2๐‘ฅ and ๐‘ = {0, 1, 2, 3,4}.
(i)
๐‘“(0) = 0
โŸน
0 is a zero of ๐‘“(๐‘ฅ).
(ii)
๐‘“(1) = 1 + 3 + 1 + 2 = 1 โ‰  0
(iii)
๐‘“(2) = 4 โ‰  0
(iv)
๐‘“(3) = ๐‘“(โˆ’2) โ‰  0
(v)
๐‘“(4) = ๐‘“(โˆ’1) = โˆ’1 โˆ’ 3 + 1 โˆ’ 2 = 0 . Hence 4 is root of ๐‘“(๐‘ฅ) in ๐‘ .
โŸน
โŸน
1 is not a zero of ๐‘“(๐‘ฅ) in ๐‘ .
2 is not a root of ๐‘“(๐‘ฅ) in ๐‘ .
Thus, ๐‘ฅ = 0 and ๐‘ฅ = 4(= โˆ’1) are roots of ๐‘“(๐‘ฅ) in ๐‘ .
Definition 1.5.3 : Let ๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] where ๐น is a field. We say ๐‘”(๐‘ฅ) is a factor of ๐‘“(๐‘ฅ)
if ๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ ๐‘ž(๐‘ฅ) for some ๐‘ž(๐‘ฅ) โˆˆ ๐น[๐‘ฅ].
In this case we also say that ๐‘”(๐‘ฅ) divides ๐‘“(๐‘ฅ) in ๐น[๐‘ฅ].
Example : ๐‘ฅ + 1 is a factor of ๐‘ฅ + 1 in ๐‘ [๐‘ฅ].
Solution :
Algebra
Page No. 94
g(x)
f(x)
q(x)
x +1
x2 +1
x +1
โˆ’
x2 + x
โˆ’
โˆ’ x +1
โˆ’
x +1
โˆ’
r ( x) = 0
Thus,
where ๐‘ž(๐‘ฅ) = ๐‘ฅ + 1 โˆˆ ๐‘ [๐‘ฅ] .
๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ ๐‘ž(๐‘ฅ) ,
Hence,
๐‘ฅ + 1 is a factor of ๐‘ฅ + 1 in ๐‘ [๐‘ฅ].
Theorem 1.5.4 : Let ๐น be a field. An element ๐‘Ž โˆˆ ๐น is a zero of ๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] iff ๐‘ฅ โˆ’ ๐‘Ž is a
factor of ๐‘“(๐‘ฅ) in ๐น[๐‘ฅ].
Proof :
Only if part :
Let ๐‘Ž โˆˆ ๐น be a zero of ๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ].
Hence, by definition ๐‘“(๐‘Ž) = 0. By division algorithm, โˆƒ ๐‘ž(๐‘ฅ), ๐‘Ÿ(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] such that
๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ ๐‘Ž) โˆ™ ๐‘ž(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ) ,
where deg ๐‘Ÿ(๐‘ฅ) < 1.
Hence, ๐‘Ÿ(๐‘ฅ) must be a constant polynomial in ๐น[๐‘ฅ]. Let ๐‘Ÿ(๐‘ฅ) = ๐‘, ๐‘ โˆˆ ๐น .
Thus ,
๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ ๐‘Ž) โˆ™ ๐‘ž(๐‘ฅ) + ๐‘ .
Therefore,
๐‘“(๐‘Ž) = (๐‘Ž โˆ’ ๐‘Ž) โˆ™ ๐‘ž(๐‘Ž) + ๐‘ .
โŸน
0=0+๐‘
Hence,
๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ ๐‘Ž) โˆ™ ๐‘ž(๐‘ฅ),
โŸน
๐‘=0
๐‘ž(๐‘ฅ) โˆˆ ๐น[๐‘ฅ].
This shows that (๐‘ฅ โˆ’ ๐‘Ž) is a factor of ๐‘“(๐‘ฅ).
If part :
Let ๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ ๐‘Ž) โˆ™ ๐‘ž(๐‘ฅ)
for some ๐‘ž(๐‘ฅ) โˆˆ ๐น[๐‘ฅ].
Then, ๐‘“(๐‘Ž) = (๐‘Ž โˆ’ ๐‘Ž) โˆ™ ๐‘ž(๐‘Ž).
โŸน
๐‘“(๐‘Ž) = 0.
Hence, ๐‘Ž is a zero of ๐‘“(๐‘ฅ).
Theorem 1.5.5 : Let ๐น be a field and let ๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] be a non zero polynomial of degree
๐‘›. ๐‘“(๐‘ฅ) has at most ๐‘› roots in ๐น .
Proof : If ๐‘“(๐‘ฅ) has no zero in ๐น then the result is obviously true.
Algebra
Page No. 95
Let ๐‘Ž โˆˆ ๐น be a zero of ๐‘“(๐‘ฅ). Then by theorem 1.5.4,
๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ ๐‘Ž ) ๐‘ž (๐‘ฅ) ,
where deg ๐‘ž (๐‘ฅ) = ๐‘› โˆ’ 1.
If ๐‘ž (๐‘ฅ) has no zeros in ๐น , then ๐‘“(๐‘ฅ) has only one one zero in ๐น and in this case the
result is true.
If ๐‘Ž โˆˆ ๐น is a zero of ๐‘ž (๐‘ฅ), then
๐‘ž (๐‘ฅ) = (๐‘ฅ โˆ’ ๐‘Ž ) ๐‘ž (๐‘ฅ) ,
where deg ๐‘ž (๐‘ฅ) = ๐‘› โˆ’ 2.
Continuing in this way, we get,
๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ ๐‘Ž )(๐‘ฅ โˆ’ ๐‘Ž ) โ€ฆ (๐‘ฅ โˆ’ ๐‘Ž ) ๐‘ž (๐‘ฅ),
where ๐‘ž (๐‘ฅ) โˆˆ ๐น[๐‘ฅ] such that ๐‘ž (๐‘ฅ) has no zeros in ๐น .
Clearly, ๐‘Ÿ โ‰ค ๐‘›.
Claim :
๐‘ โˆˆ ๐น such that ๐‘ โ‰  ๐‘Ž
i.e.
โˆ€ ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘› will not be a zero of ๐‘“(๐‘ฅ).
no element of ๐น other than ๐‘Ž will be a zero of ๐‘“(๐‘ฅ).
๐‘“(๐‘) = (๐‘ โˆ’ ๐‘Ž )(๐‘ โˆ’ ๐‘Ž ) โ€ฆ (๐‘ โˆ’ ๐‘Ž ) ๐‘ž (๐‘),
As ๐‘ โ‰  ๐‘Ž we get ๐‘ โˆ’ ๐‘Ž โ‰  0 โˆ€ ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘Ÿ.
๐‘ž (๐‘) โ‰  0 as ๐‘ž (๐‘ฅ) has no zero in ๐น .
As ๐น is an integral domain (๐น being a field) we get,
(๐‘ โˆ’ ๐‘Ž )(๐‘ โˆ’ ๐‘Ž ) โ€ฆ (๐‘ โˆ’ ๐‘Ž ) ๐‘ž (๐‘) โ‰  0
i.e.
๐‘“(๐‘) โ‰  0.
Hence, no element ๐‘ โˆˆ ๐น other than ๐‘Ž will be a zero of ๐‘“(๐‘ฅ).
Thus,
๐‘Ž , ๐‘Ž , โ€ฆ , ๐‘Ž (๐‘Ÿ โ‰ค ๐‘›) are the only zeros of ๐‘“(๐‘ฅ).
Hence ๐‘“(๐‘ฅ) has at most ๐‘› zeros in ๐น .
1.5.6 Example โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Ex 1 : Consider the polynomial
๐‘“(๐‘ฅ) = ๐‘ฅ + 3๐‘ฅ + 2๐‘ฅ + 4
in ๐‘ [๐‘ฅ].
As
๐‘“(1) = 1 โจ 3 โจ 2 โจ 4 = 0
we get,
1 โˆˆ ๐‘ is a root of ๐‘“(๐‘ฅ).
Hence,
๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ 1) โˆ™ ๐‘ž (๐‘ฅ)
Algebra
in ๐‘ ,
. . . (1)
Page No. 96
To find ๐’’๐Ÿ (๐’™) :
๐‘ž (๐‘ฅ)
f(x)
x โˆ’1
x 4 + 3x 3 + 0 โ‹… x 2 + 2 x + 4
โˆ’
x3 + 4 x 2 + 4 x + 1
x4 โˆ’ x 3
+
4 x3 + 0 โ‹… x 2
4 x3 โˆ’ 4 x 2
โˆ’
+
4x2 + 2x
โˆ’
4x2 โˆ’ 4 x
+
6x + 4
x โˆ’ 1
โˆ’ +
0
Hence,
๐‘ž (๐‘ฅ) = ๐‘ฅ + 4๐‘ฅ + 4๐‘ฅ + 1
Again
๐‘ž (1) = 0 in ๐‘ .
Hence, 1 is a zero of ๐‘ž (๐‘ฅ) โˆˆ ๐‘ (๐‘ฅ).
๐‘ž (๐‘ฅ) = (๐‘ฅ โˆ’ 1) ๐‘ž (๐‘ฅ)
Hence,
. . . (2)
To find ๐’’๐Ÿ (๐’™) :
x โˆ’1
โˆ’
Thus,
๐‘ž (๐‘ฅ) = ๐‘ฅ + 4
Again
๐‘ž (1) = 0.
๐‘ž (๐‘ฅ)
๐‘ž (๐‘ฅ)
x 3 + 4x2 + 4x +1
x2 + 4
x3 โˆ’ x2
+
4x + 1
4x โˆ’ 4
โˆ’
+
0
Hence, 1 โˆˆ ๐‘ is a zero of ๐‘ž (๐‘ฅ) โˆˆ ๐‘ (๐‘ฅ).
Hence,
Algebra
๐‘ž (๐‘ฅ) = (๐‘ฅ โˆ’ 1) ๐‘ž (๐‘ฅ)
. . . (3)
Page No. 97
To find ๐’’๐Ÿ‘ (๐’™) :
๐‘ž (๐‘ฅ)
x โˆ’1
x2 + 0x + 4
โˆ’
Thus,
๐‘ž (๐‘ฅ)
x +1
x2 โˆ’ x
+
x+4
x โˆ’1
โˆ’ +
0
๐‘ž (๐‘ฅ) = ๐‘ฅ + 1
Thus, from (1), (2) and (3), we get
๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ 1)(๐‘ฅ โˆ’ 1)(๐‘ฅ โˆ’ 1)(๐‘ฅ + 1)
= (๐‘ฅ โˆ’ 1) โˆ™ (๐‘ฅ + 1).
Ex 2 : Let ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) be in ๐‘ [๐‘ฅ] , where
๐‘“(๐‘ฅ) = 4๐‘ฅ + 4๐‘ฅ + 3๐‘ฅ + 3
and
๐‘”(๐‘ฅ) = 4๐‘ฅ + 3.
Show that ๐‘”(๐‘ฅ) is a factor of ๐‘“(๐‘ฅ) in ๐‘ [๐‘ฅ] (or ๐‘”(๐‘ฅ) divides ๐‘“(๐‘ฅ) in ๐‘ [๐‘ฅ] ).
Solution :
๐‘”(๐‘ฅ)
๐‘“(๐‘ฅ)
๐‘ž(๐‘ฅ)
4 x2 + 3
4 x 3 + 4 x 2 +3 x + 3
x +1
4 x 3 + 0 x 2 +3 x
โˆ’
โˆ’
โˆ’
4x2 + 3
โˆ’
Thus,
4x2 + 3
โˆ’
0
๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ (๐‘ฅ + 1)
This shows that ๐‘”(๐‘ฅ) is a factor of ๐‘“(๐‘ฅ).
Ex 3 : Find all the zeros of the following polynomial ๐‘“(๐‘ฅ) = ๐‘ฅ + 2๐‘ฅ + 3 in ๐‘ [๐‘ฅ].
Solution : ๐‘“(1) โ‰  0. Hence 1 is not a zero of ๐‘“(๐‘ฅ).
๐‘“(โˆ’1) = 0. Hence โˆ’1 is a zero of ๐‘“(๐‘ฅ) in ๐‘ .
i.e.
4 is a zero of ๐‘“(๐‘ฅ).
โˆด (๐‘ฅ โˆ’ 4) is a factor of ๐‘“(๐‘ฅ) in ๐‘ [๐‘ฅ].
Algebra
Page No. 98
๐‘ž (๐‘ฅ)
x +1
x3 + 2 x + 3
โˆ’
x2 + 4x + 3
x3 + 4 x 2
โˆ’
4x2 + 2x
4x2 + 4x
โˆ’
โˆ’
3x + 3
3x + 3
โˆ’ โˆ’
0
โˆด
๐‘“(๐‘ฅ) = (๐‘ฅ + 1) โˆ™ (๐‘ฅ + 4๐‘ฅ + 3).
Let ๐‘ž (๐‘ฅ) = ๐‘ฅ + 4๐‘ฅ + 3.
Again ๐‘ž (โˆ’1) = 0. Hence -1 is a root of ๐‘ž (๐‘ฅ) and hence ๐‘“(๐‘ฅ) in ๐‘ [๐‘ฅ].
๐‘ž (๐‘ฅ)
x +1
x2 + 4x + 3
โˆ’
x+3
x2 + x
โˆ’
3x + 3
3x + 3
โˆ’ โˆ’
0
Thus, ๐‘“(๐‘ฅ) = (๐‘ฅ + 1)(๐‘ฅ + 1) โˆ™ (๐‘ฅ + 3).
Hence, -1 and -3 are zeros of ๐‘“(๐‘ฅ) in ๐‘ .
i.e.
4 and 2 are zeros of ๐‘“(๐‘ฅ) in ๐‘ .
[Since additive inverse of 1 in ๐‘ is 4 and additive inverse of 3 in ๐‘ is 2 ].
Ex 4 : Show that the polynomial ๐‘“(๐‘ฅ) = ๐‘ฅ + 4 can be factorized into linear factors in
๐‘ [๐‘ฅ].
Solution : Let ๐‘“(๐‘ฅ) = ๐‘ฅ + 4. Then ๐‘“(1) = 0 in ๐‘ .
Hence, 1 โˆˆ ๐‘ is a zero of ๐‘“(๐‘ฅ).
Algebra
Page No. 99
x โˆ’1
x4 + 4
โˆ’
x3 + x 2 + x + 1
x4 โˆ’ x 3
+
x3 + 0 x2
โˆ’
x3 โˆ’ x2
+
x2 + 0x
โˆ’
x2 โˆ’ x
+
x +4
x โˆ’1
โˆ’ +
0
Thus,
๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ 1)(๐‘ฅ + ๐‘ฅ + ๐‘ฅ + 1)
. . . (1)
Let ๐‘ž (๐‘ฅ) = ๐‘ฅ + ๐‘ฅ + ๐‘ฅ + 1.
Then, ๐‘ž (๐‘ฅ) โˆˆ ๐‘ [๐‘ฅ] and ๐‘ž (โˆ’1) = 0 i.e. ๐‘ž(4) = 0.
Hence, (๐‘ฅ โˆ’ 4) = (๐‘ฅ + 1) โˆˆ ๐‘ [๐‘ฅ] is a factor of ๐‘ž (๐‘ฅ).
x +1
x 3+x 2 +x +1
โˆ’
x2 +1
x3 + x 2
โˆ’
x +1
x +1
โˆ’ โˆ’
0
Thus, ๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ 1)(๐‘ฅ + 1) โˆ™ (๐‘ฅ + 1).
Let ๐‘ž (๐‘ฅ) = ๐‘ฅ + 1,
๐‘ž (๐‘ฅ) โˆˆ ๐‘ [๐‘ฅ]
and
๐‘ž (2) = 0.
Hence, 2 is a zero of ๐‘ž (๐‘ฅ).
xโˆ’2
x+2
x 2 +1
โˆ’
x 2 โˆ’ 2x
+
2x + 1
2x โˆ’ 4
โˆ’ +
0
Thus, ๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ 1)(๐‘ฅ + 1)(๐‘ฅ โˆ’ 2)(๐‘ฅ + 2).
Algebra
Page No. 100
1.6 Irreducible Polynomials in R[x] :
Throughout ๐‘… denotes an integral domain with unity.
Definition 1.6.1: Let ๐‘“(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ] and deg ๐‘“(๐‘ฅ) โ‰ฅ 1. ๐‘“(๐‘ฅ) is said to be irreducible
polynomial over ๐‘…, if it cannot be expressed as a product of two polynomials ๐‘”(๐‘ฅ) and
โ„Ž(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ] such that
0 < deg ๐‘”(๐‘ฅ) < deg ๐‘“(๐‘ฅ)
0 < deg โ„Ž(๐‘ฅ) < deg ๐‘“(๐‘ฅ).
and
1.6.2 Remarks:
(i)
If ๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ โ„Ž(๐‘ฅ) and if ๐‘“(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ] is irreducible, then deg ๐‘“(๐‘ฅ) = 0 or
deg โ„Ž(๐‘ฅ) = 0.
(ii)
A polynomial of positive degree which is not irreducible is said to be reducible.
(iii) The polynomial (๐‘ฅ + 1) โˆˆ ๐‘[๐‘ฅ] is irreducible over ๐‘ but it is reducible over โ„‚ as
(๐‘ฅ + 1) โˆˆ โ„‚[๐‘ฅ] and (๐‘ฅ + 1) = (๐‘ฅ + ๐‘–)(๐‘ฅ โˆ’ ๐‘–).
(iv)
Any polynomial of degree 1 over ๐‘… is irreducible over ๐‘….
(v)
The units in ๐‘… and ๐‘…[๐‘ฅ] are the same.
Theorem 1.6.3 : Every irreducible polynomial in ๐‘…[๐‘ฅ] is an irreducible element in ๐‘…[๐‘ฅ].
Proof : Let ๐‘“(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ] be an irreducible element in ๐‘…[๐‘ฅ].
To prove that ๐‘“(๐‘ฅ) is an irreducible polynomial in ๐‘…[๐‘ฅ].
Let, if possible, ๐‘“(๐‘ฅ) be reducible over ๐‘….
Let
๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ โ„Ž(๐‘ฅ),
where
with
0 < deg ๐‘”(๐‘ฅ) < deg ๐‘“(๐‘ฅ)
and
๐‘”(๐‘ฅ), โ„Ž(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ]
0 < deg โ„Ž(๐‘ฅ) < deg ๐‘“(๐‘ฅ).
As
deg ๐‘”(๐‘ฅ) > 0 and deg โ„Ž(๐‘ฅ) > 0, ๐‘”(๐‘ฅ) and โ„Ž(๐‘ฅ) are not constant polynomials
and ๐‘”(๐‘ฅ), โ„Ž(๐‘ฅ) โˆ‰ ๐‘… . Hence they are not units in ๐‘….
By lemma, ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) are not units in ๐‘…[๐‘ฅ]. Hence ๐‘“(๐‘ฅ) is not an irreducible
element in ๐‘…[๐‘ฅ].
Thus, ๐‘“(๐‘ฅ) is not an irreducible polynomial.
โŸน
๐‘“(๐‘ฅ) is not an irreducible element.
This shows that irreducible element in ๐‘…[๐‘ฅ] is an irreducible polynomial in ๐‘…[๐‘ฅ].
Algebra
Page No. 101
Remark 1.6.4 : Converse of the above theorem need not be true.
i.e.
Irreducible polynomial in ๐‘…[๐‘ฅ] need not be an irreducible element in ๐‘…[๐‘ฅ].
Consider, the polynomial 3๐‘ฅ + 3 โˆˆ ๐‘[๐‘ฅ].
Then 3๐‘ฅ + 3 is an irreducible polynomial in ๐‘[๐‘ฅ].
3๐‘ฅ + 3 = 3(๐‘ฅ + 1)
But
= Product of two polynomials in ๐‘[๐‘ฅ] which are non units in ๐‘[๐‘ฅ].
(Since the units in ๐‘[๐‘ฅ] are the units in ๐‘ which are 1 and -1).
Thus, 3๐‘ฅ + 3 is expressed as a product of two non zero, non unit polynomials in ๐‘[๐‘ฅ].
Hence, 3๐‘ฅ + 3 is not an irreducible element in ๐‘[๐‘ฅ].
Remark 1.6.5 : Primitive polynomial ๐‘“(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ] may be reducible or irreducible over ๐‘….
Example : ๐‘“(๐‘ฅ) = ๐‘ฅ โˆ’ 3๐‘ฅ + 2 โˆˆ ๐‘[๐‘ฅ] is a primitive and reducible as
๐‘ฅ โˆ’ 3๐‘ฅ + 2 = (๐‘ฅ โˆ’ 2)(๐‘ฅ โˆ’ 1) but ๐‘“(๐‘ฅ) = ๐‘ฅ โˆ’ 2 โˆˆ ๐‘[๐‘ฅ] is a primitive and
irreducible over ๐‘.
Theorem 1.6.6 : Let ๐‘… be UFD and ๐‘“(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ]. ๐‘“(๐‘ฅ) is an irreducible element in ๐‘…[๐‘ฅ] iff
either ๐‘“ is an irreducible element of ๐‘… or ๐‘“ is an irreducible primitive polynomial in
๐‘…[๐‘ฅ].
Proof :
Only if part :
Let ๐‘“(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ] be an irreducible element of ๐‘…[๐‘ฅ]. If ๐‘“ โˆˆ ๐‘… , then ๐‘“ will be a constant
polynomial and it will be an irreducible element in ๐‘….
Hence, if ๐‘“ โˆ‰ ๐‘…, we have to prove that ๐‘“(๐‘ฅ) is irreducible over ๐‘… and ๐‘“(๐‘ฅ) is a primitive
polynomial.
(i)
To prove ๐‘“(๐‘ฅ) is irreducible over ๐‘….
Let ๐‘“(๐‘ฅ) be reducible over ๐‘….
Let ๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ โ„Ž(๐‘ฅ); ๐‘”(๐‘ฅ), โ„Ž(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ].
As ๐‘“(๐‘ฅ) is an irreducible element in ๐‘…[๐‘ฅ] either ๐‘”(๐‘ฅ) or โ„Ž(๐‘ฅ) must be unit in ๐‘…[๐‘ฅ].
As units in ๐‘… and ๐‘…[๐‘ฅ] are the same, either ๐‘”(๐‘ฅ) or โ„Ž(๐‘ฅ) is a unit in ๐‘….
Hence, deg ๐‘”(๐‘ฅ) = 0 or deg โ„Ž(๐‘ฅ) = 0 (being constant polynomial in ๐‘…[๐‘ฅ] ).
But this in turn shows that ๐‘“(๐‘ฅ) is an irreducible polynomial in ๐‘…[๐‘ฅ].
Algebra
Page No. 102
(ii) Let ๐‘“(๐‘ฅ) = ๐‘ ๐‘“ (๐‘ฅ) where ๐‘ = content of ๐‘“(๐‘ฅ) and ๐‘“ (๐‘ฅ) is a primitive polynomial in
๐‘…[๐‘ฅ].
As deg ๐‘“(๐‘ฅ) = deg ๐‘“ (๐‘ฅ), we get deg ๐‘“ (๐‘ฅ) โ‰ฅ 1 and hence ๐‘“ (๐‘ฅ) โˆ‰ ๐‘….
Hence, ๐‘“ (๐‘ฅ) is not a unit in ๐‘…[๐‘ฅ] and ๐‘ is a unit in ๐‘….
Hence, ๐‘“(๐‘ฅ) is a primitive polynomial in ๐‘…[๐‘ฅ].
Thus, if a non constant polynomial ๐‘“(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ] is an irreducible element in ๐‘…[๐‘ฅ] then it
is an irreducible, primitive polynomial in ๐‘…[๐‘ฅ].
If part :
Let ๐‘“(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ].
If ๐‘“(๐‘ฅ) is an irreducible element in ๐‘…[๐‘ฅ] then ๐‘“(๐‘ฅ) is an irreducible polynomial in ๐‘…[๐‘ฅ]
(See theorem 1.6.3).
Let ๐‘“(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ] be primitive irreducible polynomial in ๐‘…[๐‘ฅ].
To prove that ๐‘“(๐‘ฅ) is an irreducible element in ๐‘…[๐‘ฅ].
๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ โ„Ž(๐‘ฅ)
Let
for some ๐‘”(๐‘ฅ), โ„Ž(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ].
As ๐‘“(๐‘ฅ) is an irreducible polynomial,
deg ๐‘”(๐‘ฅ) = 0
or
deg โ„Ž(๐‘ฅ) = 0
Let deg ๐‘”(๐‘ฅ) = 0. Then ๐‘”(๐‘ฅ) is a constant polynomial in ๐‘…[๐‘ฅ]. Let ๐‘”(๐‘ฅ) = ๐‘ .
Hence, ๐‘”(๐‘ฅ) โˆˆ ๐‘….
Now, ๐‘ (๐‘“) = ๐‘ (๐‘”โ„Ž) = ๐‘(๐‘”) โˆ™ ๐‘(โ„Ž).
๐‘“ is primitive
โŸน
๐‘ (๐‘“) = unit in ๐‘….
Hence, ๐‘”(๐‘ฅ) is unit in ๐‘…[๐‘ฅ].
Thus ,
๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ โ„Ž(๐‘ฅ)
โŸน ๐‘”(๐‘ฅ) is unit in ๐‘…[๐‘ฅ].
This in turn shows that ๐‘“(๐‘ฅ) is an irreducible element in ๐‘…[๐‘ฅ].
Theorem 1.6.7 : Let ๐‘… be UFD. Let ๐‘(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ] be a primitive polynomial in ๐‘…[๐‘ฅ]. ๐‘(๐‘ฅ)
can be factored in a unique way as a product of irreducible elements in ๐‘…[๐‘ฅ].
Proof : Let ๐น be a field of quotients of ๐‘…. Then ๐น[๐‘ฅ] is an Euclidean domain.
Hence, ๐น[๐‘ฅ] is a PID and therefore ๐น[๐‘ฅ] is UFD .
(i)
To prove that ๐‘(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ] can be factored as a product of irreducible elements in ๐‘…[๐‘ฅ].
๐‘(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ] โŸน ๐‘(๐‘ฅ) โˆˆ ๐น[๐‘ฅ].
As ๐น[๐‘ฅ] is UFD, we can write
Algebra
Page No. 103
๐‘(๐‘ฅ) = ๐‘ (๐‘ฅ) โˆ™ ๐‘ (๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘ (๐‘ฅ)
where ๐‘ (๐‘ฅ) โˆˆ ๐น[๐‘ฅ] and ๐‘ (๐‘ฅ) is an irreducible polynomial in ๐น[๐‘ฅ]
for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
๐‘ (๐‘ฅ) โˆˆ ๐น[๐‘ฅ]
๐‘ (๐‘ฅ) =
โŸน
๐‘“ [๐‘ฅ] ,
where ๐‘Ž โˆˆ ๐‘… and ๐‘“ (๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ].
Further, ๐‘ (๐‘ฅ) is an irreducible polynomial in ๐น[๐‘ฅ] โŸน ๐‘ (๐‘ฅ) is an irreducible element in
๐น[๐‘ฅ].
โŸน
๐‘“ (๐‘ฅ) is an irreducible element in ๐น[๐‘ฅ] for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
Now,
๐‘ (๐‘ฅ) =
=
๐‘“ [๐‘ฅ]
[๐‘ ๐‘“ โˆ— (๐‘ฅ)]
where ๐‘ = ๐‘(๐‘“ ) = constant of ๐‘“ and ๐‘“ โˆ— (๐‘ฅ) is a primitive polynomial in ๐‘…[๐‘ฅ].
๐‘ (๐‘ฅ) =
Thus, ๐‘(๐‘ฅ)
=
๐‘“ โˆ— (๐‘ฅ) ,
โ€ฆ
โ€ฆ
โˆ€ ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
๐‘“ โˆ— (๐‘ฅ) ๐‘“ โˆ— (๐‘ฅ) โ€ฆ ๐‘“ โˆ— (๐‘ฅ)
(๐‘Ž ๐‘Ž โ€ฆ ๐‘Ž ) ๐‘(๐‘ฅ) = (๐‘ ๐‘ โ€ฆ ๐‘ ) ๐‘“ โˆ— (๐‘ฅ) ๐‘“ โˆ— (๐‘ฅ) โ€ฆ ๐‘“ โˆ— (๐‘ฅ).
Hence,
As each ๐‘ (๐‘ฅ) is an irreducible polynomial in ๐น[๐‘ฅ], we get ๐‘“ โˆ— (๐‘ฅ) is also an irreducible
polynomial and hence irreducible element in ๐น[๐‘ฅ].
Thus, ๐‘“ โˆ— (๐‘ฅ) is an irreducible element in ๐‘…[๐‘ฅ].
Equating the content on both sides, we get, ๐‘Ž ๐‘Ž โ€ฆ ๐‘Ž = (๐‘ ๐‘ โ€ฆ ๐‘ ) ๐‘ข, where ๐‘ข is a
unit in ๐‘….
Hence,
๐‘(๐‘ฅ) = ๐‘ข [๐‘“ โˆ— (๐‘ฅ) ๐‘“ โˆ— (๐‘ฅ) โ€ฆ ๐‘“ โˆ— (๐‘ฅ)]
= [๐‘ข ๐‘“ โˆ— (๐‘ฅ)] ๐‘“ โˆ— (๐‘ฅ) โ€ฆ ๐‘“ โˆ— (๐‘ฅ)
= Product of irreducible elements in ๐‘…[๐‘ฅ].
This shows that ๐‘(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ] is factored into a product of irreducible elements in ๐‘…[๐‘ฅ].
(ii) Uniqueness :
Let
๐‘(๐‘ฅ) = ๐‘“ โˆ— (๐‘ฅ) ๐‘“ โˆ— (๐‘ฅ) โ€ฆ ๐‘“ โˆ— (๐‘ฅ)
and
๐‘(๐‘ฅ) = ๐‘Ÿ (๐‘ฅ) ๐‘Ÿ (๐‘ฅ) โ€ฆ ๐‘Ÿ (๐‘ฅ)
be two factorization of ๐‘(๐‘ฅ) as a product of irreducible elements in ๐‘…[๐‘ฅ].
Algebra
Page No. 104
As ๐‘… is a UFD, the number ๐‘› will remain the same as ๐น[๐‘ฅ] is a UFD, ๐‘Ÿ (๐‘ฅ) is uniquely
determined upto associates in ๐น[๐‘ฅ].
Hence,
๐‘Ÿ (๐‘ฅ) = ๐‘ข ๐‘“ โˆ— (๐‘ฅ),
where ๐‘ข is a unit in ๐น .
Hence,
๐‘ข =
for some ๐‘Ž , ๐‘ โˆˆ ๐‘…,
,
โˆ€ ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
Thus,
๐‘Ÿ (๐‘ฅ) =
Hence,
๐‘“ โˆ— (๐‘ฅ)
โˆ€ ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
๐‘ ๐‘Ÿ (๐‘ฅ) = ๐‘Ž ๐‘“ โˆ— (๐‘ฅ)
โˆ€ ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
As ๐‘Ÿ (๐‘ฅ) and ๐‘“ โˆ— (๐‘ฅ) are primitive polynomials, equating the contents on both sides we
get ๐‘ = ๐‘ฃ ๐‘Ž where ๐‘ฃ is a unit in ๐‘….
Hence, ๐‘Ÿ (๐‘ฅ) is associate of ๐‘“ โˆ— (๐‘ฅ) in ๐‘…[๐‘ฅ].
Thus the uniqueness follows.
Theorem 1.6.8 : ๐‘… is UFD โŸน ๐‘…[๐‘ฅ] is UFD.
Proof : Let ๐‘“(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ] be a non zero non unit element in ๐‘…[๐‘ฅ].
Let ๐‘“(๐‘ฅ) = ๐‘ ๐‘(๐‘ฅ) where ๐‘ = content of ๐‘“ and ๐‘(๐‘ฅ) is a primitive polynomial in ๐‘ฅ .
By theorem 1.6.7,
๐‘(๐‘ฅ) = ๐‘“ โˆ— (๐‘ฅ) ๐‘“ โˆ— (๐‘ฅ) โ€ฆ ๐‘“ โˆ— (๐‘ฅ)
where ๐‘“ โˆ— (๐‘ฅ) is an irreducible element in ๐‘…[๐‘ฅ] and this representation is unique up to
associates.
Also ๐‘ โˆˆ ๐‘… and ๐‘… is UFD imply
(i)
๐‘ is unit in ๐‘…
(ii)
๐‘ can be expressed as ๐‘ = ๐‘ ๐‘ โ€ฆ ๐‘ where ๐‘ are irreducible elements in ๐‘…, โˆ€ ๐‘Ÿ,
or
1โ‰ค๐‘Ÿโ‰ค๐‘˜
Case (i) : ๐‘ is a unit in ๐‘….
Then, ๐‘“(๐‘ฅ) = ๐‘ ๐‘(๐‘ฅ)
= ๐‘ [๐‘“ โˆ— (๐‘ฅ) ๐‘“ โˆ— (๐‘ฅ) โ€ฆ ๐‘“ โˆ— (๐‘ฅ)]
= ๐‘ [๐‘“ โˆ— (๐‘ฅ)][ ๐‘“ โˆ— (๐‘ฅ) โ€ฆ ๐‘“ โˆ— (๐‘ฅ)]
= Finite product of irreducible elements in ๐‘…[๐‘ฅ] and the representation is
unique upto associates.
Case (ii) : ๐‘ is non unit.
Then ๐‘ = ๐‘ ๐‘ โ€ฆ ๐‘ where each ๐‘ is an irreducible elements in ๐‘….
Algebra
Page No. 105
As ๐‘ is an irreducible element in ๐‘…, ๐‘ is an irreducible element in ๐‘…[๐‘ฅ].
Thus, ๐‘“(๐‘ฅ) = ๐‘ ๐‘ โ€ฆ ๐‘ ๐‘“ โˆ— (๐‘ฅ) ๐‘“ โˆ— (๐‘ฅ) โ€ฆ ๐‘“ โˆ— (๐‘ฅ)
= Finite product of irreducible elements in ๐‘…[๐‘ฅ] and the representation is
unique upto associates.
Thus, from case (i) and case (ii), we get ๐‘…[๐‘ฅ] is UFD.
1.6.9
Example : ๐‘[๐‘ฅ] is UFD as ๐‘ is UFD. ๐‘[๐‘ฅ] is UFD but not PID.
[ If ๐‘[๐‘ฅ] is PID then ๐‘ must be a field which is not so.]
Now onwards ๐น denotes a field.
1.6.10 Remarks :
(i)
Let๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] be irreducible over ๐น . But note that, at the same time it may be
reducible over the field ๐ธ . (๐ธ โЇ ๐น).
(ii) Any polynomial of degree 1 in ๐น[๐‘ฅ] is irreducible over ๐น .
Example 1.6.11 : ๐‘ฅ โˆ’ 3 โˆˆ ๐‘„[๐‘ฅ] is irreducible over ๐‘„.
But it is reducible over โ„ where ๐‘„ = the field of quotients and โ„ = the field of reals.
For the polynomials of degree 2 or 3 particularly we have
Theorem 1.6.12 : Let ๐น be a field and ๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ]. Let deg ๐‘“(๐‘ฅ) = 2 or 3. Then ๐‘“(๐‘ฅ) is
reducible over ๐น if and only if ๐‘“(๐‘ฅ) has a zero in ๐น .
Proof :
Only if part :
Let ๐‘“ be reducible over ๐น .
Then
๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ โ„Ž(๐‘ฅ)
where
๐‘”(๐‘ฅ), โ„Ž(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] , deg ๐‘”(๐‘ฅ) < deg ๐‘“(๐‘ฅ) and deg โ„Ž(๐‘ฅ) < deg ๐‘“(๐‘ฅ).
๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ โ„Ž(๐‘ฅ)
โŸน
deg ๐‘“(๐‘ฅ) = deg ๐‘”(๐‘ฅ) + deg โ„Ž(๐‘ฅ)
[โˆต ๐น is an integral domain]
As
deg ๐‘“(๐‘ฅ) = 2/3, the deg ๐‘”(๐‘ฅ) = 1 or deg โ„Ž(๐‘ฅ) = 1.
Thus, let us assume that deg ๐‘”(๐‘ฅ) = 1.
Then, ๐‘”(๐‘ฅ) = ๐‘ฅ โˆ’ ๐‘Ž say, for some ๐‘Ž โˆˆ ๐น .
Algebra
Page No. 106
But then ๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ ๐‘Ž) โˆ™ โ„Ž(๐‘ฅ)
โŸน
๐‘“(๐‘Ž) = 0 and hence ๐‘Ž โˆˆ ๐น will be a zero of
๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ].
If part :
Let ๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] has a zero in ๐น say โ€ฒ๐‘Žโ€ฒ. Then (๐‘ฅ โˆ’ ๐‘Ž) is a factor of ๐‘“(๐‘ฅ).
๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ ๐‘Ž) โˆ™ ๐‘”(๐‘ฅ).
Hence,
Hence, deg ๐‘“ = deg(๐‘ฅ โˆ’ ๐‘Ž) + deg ๐‘”(๐‘ฅ)
where
deg ๐‘”(๐‘ฅ) = 2 < deg ๐‘“(๐‘ฅ) = 1 + deg ๐‘”(๐‘ฅ) ,
if deg ๐‘“(๐‘ฅ) = 3
or
deg ๐‘”(๐‘ฅ) = 1 < deg ๐‘“(๐‘ฅ) ,
if deg ๐‘“(๐‘ฅ) = 2.
Hence, ๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] is a reducible polynomial over the field ๐น .
More generally we get
Theorem 1.6.13: Let ๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] be any polynomial of degree > 1. If ๐‘Ž โˆˆ ๐น is a zero of
๐‘“(๐‘ฅ) in ๐น , then ๐‘“(๐‘ฅ) is reducible over ๐น .
Proof :
(As ๐‘“(๐‘ฅ) and (๐‘ฅ โˆ’ ๐‘Ž) are in ๐น[๐‘ฅ] ) By division algorithm, we get,
๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ ๐‘Ž) โˆ™ ๐‘”(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ)
where ๐‘Ÿ(๐‘ฅ) = 0 or deg ๐‘Ÿ(๐‘ฅ) < deg ๐‘“(๐‘ฅ).
๐‘“(๐‘Ž) = 0 + ๐‘Ÿ(๐‘ฅ) โŸน 0 = ๐‘Ÿ(๐‘Ž).
Thus,
โ€ฆ as ๐‘Ž is a zero of ๐‘“(๐‘ฅ), ๐‘“(๐‘Ž) = 0.
๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ ๐‘Ž) โˆ™ ๐‘”(๐‘ฅ).
Therefore,
deg ๐‘“(๐‘ฅ) = deg(๐‘ฅ โˆ’ ๐‘Ž) + deg ๐‘”(๐‘ฅ)
Therefore,
deg ๐‘”(๐‘ฅ) = deg ๐‘“(๐‘ฅ) โˆ’ 1 > 0.
This shows that ๐‘“(๐‘ฅ) is reducible.
We know that every ideal in ๐น[๐‘ฅ] is a principle ideal. (Being an Euclidean domain, ๐น[๐‘ฅ] is
PID.) Using this fact we prove
Theorem 1.6.14: If ๐น is a field, then the ideal โŒฉ๐‘(๐‘ฅ)โŒช โ‰  {0} of ๐น[๐‘ฅ] is maximal iff ๐‘(๐‘ฅ) is
irreducible over ๐น .
Proof :
Only if part :
Let โŒฉ๐‘(๐‘ฅ)โŒช โ‰  {0} be a maximal ideal in ๐น[๐‘ฅ].
To prove that ๐‘(๐‘ฅ) is irreducible over ๐น . Let if possible ๐‘(๐‘ฅ) be reducible.
Hence, โˆƒ ๐‘”(๐‘ฅ) and โ„Ž(๐‘ฅ) in ๐น[๐‘ฅ] such that ๐‘(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ โ„Ž(๐‘ฅ) where
Algebra
Page No. 107
0 < deg ๐‘”(๐‘ฅ) < deg ๐‘(๐‘ฅ)
0 < deg โ„Ž(๐‘ฅ) < deg ๐‘(๐‘ฅ).
and
Now, ๐‘(๐‘ฅ) โˆˆ โŒฉ๐‘(๐‘ฅ)โŒช
๐‘”(๐‘ฅ) โˆ™ โ„Ž(๐‘ฅ) โˆˆ โŒฉ๐‘(๐‘ฅ)โŒช.
โŸน
As โŒฉ๐‘(๐‘ฅ)โŒช is a maximal ideal in ๐น[๐‘ฅ], it is a prime ideal in ๐น[๐‘ฅ]
Hence, either ๐‘”(๐‘ฅ) โˆˆ โŒฉ๐‘(๐‘ฅ)โŒช or โ„Ž(๐‘ฅ) โˆˆ โŒฉ๐‘(๐‘ฅ)โŒช.
But then ๐‘”(๐‘ฅ) = ๐‘(๐‘ฅ) โˆ™ ๐‘ž (๐‘ฅ) or โ„Ž(๐‘ฅ) = ๐‘(๐‘ฅ) โˆ™ ๐‘ž (๐‘ฅ), for some ๐‘ž (๐‘ฅ), ๐‘ž (๐‘ฅ) โˆˆ ๐น[๐‘ฅ].
But then we canโ€™t have deg ๐‘”(๐‘ฅ) or deg โ„Ž(๐‘ฅ) less than the deg ๐‘(๐‘ฅ).
Hence our assumption is wrong i.e. ๐‘(๐‘ฅ) is irreducible.
If part :
Let ๐‘(๐‘ฅ) be irreducible polynomial in ๐น[๐‘ฅ].
To prove that โŒฉ๐‘(๐‘ฅ)โŒช is maximal.
Let ๐ด be an ideal in ๐น[๐‘ฅ] such that โŒฉ๐‘(๐‘ฅ)โŒช โІ ๐ด โІ ๐น[๐‘ฅ]. As ๐น[๐‘ฅ] is PID, ๐ด = โŒฉ๐‘“(๐‘ฅ)โŒช for
some ๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ].
As ๐‘(๐‘ฅ) โˆˆ โŒฉ๐‘(๐‘ฅ)โŒช we get ๐‘(๐‘ฅ) โˆˆ โŒฉ๐‘“(๐‘ฅ)โŒช.
Hence ๐‘(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) ,
for some ๐‘”(๐‘ฅ) โˆˆ ๐น[๐‘ฅ].
As ๐‘(๐‘ฅ) is irreducible, we get
deg ๐‘”(๐‘ฅ) = 0
Case 1 :
or
deg ๐‘“(๐‘ฅ) = 0
deg ๐‘”(๐‘ฅ) = 0
Then, ๐‘”(๐‘ฅ) is a constant polynomial in ๐น[๐‘ฅ].
Let
๐‘”(๐‘ฅ) = ๐‘
Then,
๐‘(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ™ ๐‘
[๐‘
implies
๐‘“(๐‘ฅ) = ๐‘
โˆ™ ๐‘(๐‘ฅ).
exists in ๐น as ๐‘ is a non zero element in ๐น . ]
Hence,
Case 2 :
for some ๐‘ โˆˆ ๐น
๐‘“(๐‘ฅ) = ๐‘
โˆ™ ๐‘(๐‘ฅ) implies ๐‘”(๐‘ฅ) โˆˆ โŒฉ๐‘(๐‘ฅ)โŒช and hence ๐ด = โŒฉ๐‘”(๐‘ฅ)โŒช = โŒฉ๐‘(๐‘ฅ)โŒช.
deg ๐‘“(๐‘ฅ) = 0
Then, ๐‘“(๐‘ฅ) is a non zero constant polynomial in ๐น[๐‘ฅ].
Hence, ๐‘“(๐‘ฅ) is a non zero element in ๐น and hence ๐‘“(๐‘ฅ) is a unit in ๐น .
But then โŒฉ๐‘“(๐‘ฅ)โŒช = ๐ด = ๐น[๐‘ฅ]. This shows that there exists no proper ideal ๐ด in ๐น[๐‘ฅ] such
that โŒฉ๐‘(๐‘ฅ)โŒช โŠ‚ ๐ด โŠ‚ ๐น[๐‘ฅ].
Hence, โŒฉ๐‘(๐‘ฅ)โŒช is a maximal ideal in ๐น[๐‘ฅ].
Algebra
Page No. 108
1.6.15 Examples :
(i)
๐‘ฅ โˆ’ 3 โˆˆ ๐‘„[๐‘ฅ] is an irreducible polynomial. Hence โŒฉ๐‘ฅ โˆ’ 3โŒช in ๐‘„[๐‘ฅ] is a maximal ideal
in ๐น[๐‘ฅ] and hence
(ii)
[ ]
[ ]
is a field.
where ๐ผ = โŒฉ๐‘ฅ โˆ’ 5๐‘ฅ + 6โŒช is not a field as ๐‘ฅ โˆ’ 5๐‘ฅ + 6 = (๐‘ฅ โˆ’ 2)(๐‘ฅ โˆ’ 3) shows
that ๐‘ฅ โˆ’ 5๐‘ฅ + 6 is a reducible polynomial in ๐‘„[๐‘ฅ] and hence ๐ผ is not a maximal ideal in
๐‘„[๐‘ฅ].
If ๐‘… is an integral domain with unity then every irreducible element in ๐‘…[๐‘ฅ] is an
irreducible polynomial in ๐‘…[๐‘ฅ] (See Theorem 1.6.3). The converse need not be true. But it is
true if ๐‘… is a field.
Theorem 1.6.16: Let ๐น be a field. ๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] is an irreducible polynomial in ๐น[๐‘ฅ] iff ๐‘“(๐‘ฅ)
is an irreducible element in ๐น[๐‘ฅ].
Proof :
Only if part :
Let ๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] be irreducible polynomial in ๐น[๐‘ฅ].
Let ๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ โ„Ž(๐‘ฅ) for ๐‘”(๐‘ฅ), โ„Ž(๐‘ฅ) โˆˆ ๐น[๐‘ฅ].
๐‘“ being irreducible, either deg ๐‘”(๐‘ฅ) = 0 or deg โ„Ž(๐‘ฅ) = 0.
Suppose, deg ๐‘”(๐‘ฅ) = 0. Then ๐‘”(๐‘ฅ) is a constant polynomial in ๐น[๐‘ฅ].
Let ๐‘”(๐‘ฅ) = ๐‘Ž (๐‘Ž โˆˆ ๐‘…).
Then ๐‘Ž โ‰  0 and ๐‘Ž โˆˆ ๐น .
Hence, ๐‘Ž
exists in ๐น . But this shows ๐‘”(๐‘ฅ) = ๐‘Ž is a unit in ๐น[๐‘ฅ].
Hence, ๐‘“(๐‘ฅ) is an irreducible element in ๐น[๐‘ฅ].
If part :
Let ๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] be an irreducible element in ๐น[๐‘ฅ].
Then every field being an integral domain with unity, the result follows by Theorem
2.6.3 in 5. [ Every irreducible element in ๐‘…[๐‘ฅ] is an irreducible polynomial in ๐‘…[๐‘ฅ]. ]
Theorem 1.6.17 : Let ๐ท be UFD and let ๐น be a field of quotients of ๐ท. Let ๐‘“(๐‘ฅ) โˆˆ ๐ท[๐‘ฅ]
where degree of ๐‘“(๐‘ฅ) > 0. Then
(i) ๐‘“(๐‘ฅ) is irreducible in ๐ท[๐‘ฅ]
Algebra
โŸน
๐‘“(๐‘ฅ) is irreducible in ๐น[๐‘ฅ].
Page No. 109
(ii) ๐‘“(๐‘ฅ) is primitive in ๐ท[๐‘ฅ] and ๐‘“(๐‘ฅ) is irreducible in ๐น[๐‘ฅ] โŸน ๐‘“(๐‘ฅ) is irreducible
in ๐ท[๐‘ฅ].
Proof :
(i)
Degree of ๐‘“(๐‘ฅ) > 0 โŸน ๐‘“(๐‘ฅ) is non constant polynomial in ๐ท[๐‘ฅ].
Let ๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ โ„Ž(๐‘ฅ), where ๐‘”(๐‘ฅ) and โ„Ž(๐‘ฅ) are polynomials of lower degree in ๐น[๐‘ฅ].
As ๐น is a field of quotients of ๐ท, the coefficients in ๐‘”(๐‘ฅ) and โ„Ž(๐‘ฅ) are of the form
for
some ๐‘Ž, ๐‘ โˆˆ ๐ท. By clearing the denominators we get
(๐‘‘) ๐‘“(๐‘ฅ) = ๐‘” (๐‘ฅ) โ„Ž (๐‘ฅ)
. . . (1)
where ๐‘‘ โˆˆ ๐ท and ๐‘” (๐‘ฅ), โ„Ž (๐‘ฅ) โˆˆ ๐ท[๐‘ฅ] such that
degree of ๐‘” (๐‘ฅ) = degree of ๐‘”(๐‘ฅ)
and
degree of โ„Ž (๐‘ฅ) = degree of โ„Ž(๐‘ฅ).
Now, by theorem 1, ๐‘“(๐‘ฅ) = (๐‘) โˆ™ ๐‘(๐‘ฅ), ๐‘” (๐‘ฅ) = (๐‘ ) โˆ™ ๐‘ (๐‘ฅ) and โ„Ž (๐‘ฅ) = (๐‘ ) โˆ™ ๐‘ (๐‘ฅ)
where ๐‘, ๐‘ , ๐‘ โˆˆ ๐ท and ๐‘(๐‘ฅ), ๐‘ (๐‘ฅ), ๐‘ (๐‘ฅ) โˆˆ ๐ท[๐‘ฅ] are primitive polynomials in ๐ท[๐‘ฅ].
Thus, from (1), we get,
(๐‘‘๐‘) ๐‘(๐‘ฅ) = (๐‘ ๐‘ ) ๐‘ (๐‘ฅ) ๐‘ (๐‘ฅ)
. . . (2)
By theorem 1.4.10, the product ๐‘ (๐‘ฅ) โˆ™ ๐‘ (๐‘ฅ) is also a primitive polynomials in ๐ท[๐‘ฅ].
But then ๐‘ ๐‘ = (๐‘‘๐‘) ๐‘ข for some unit ๐‘ข in ๐ท.
Hence, from (2), we get,
(๐‘‘๐‘) ๐‘(๐‘ฅ) = (๐‘‘๐‘๐‘ข) ๐‘ (๐‘ฅ) ๐‘ (๐‘ฅ)
Hence,
(๐‘) ๐‘(๐‘ฅ) = (๐‘๐‘ข) ๐‘ (๐‘ฅ) ๐‘ (๐‘ฅ)
i.e.
๐‘“(๐‘ฅ) = (๐‘๐‘ข) ๐‘ (๐‘ฅ) ๐‘ (๐‘ฅ)
This shows that ๐‘“(๐‘ฅ) has a factorization in ๐ท[๐‘ฅ].
Thus, we have proved that ๐‘“(๐‘ฅ) has a factorization in ๐น[๐‘ฅ] โŸน ๐‘“(๐‘ฅ) has a
factorization in ๐ท[๐‘ฅ].
Hence, ๐‘“(๐‘ฅ) โˆˆ ๐ท[๐‘ฅ] is irreducible in ๐ท[๐‘ฅ], then it is irreducible in ๐น[๐‘ฅ].
(ii) Let ๐‘“(๐‘ฅ) โˆˆ ๐ท[๐‘ฅ]. As ๐ท[๐‘ฅ] โІ ๐น[๐‘ฅ].
We get, if ๐‘“(๐‘ฅ) is reducible in ๐ท[๐‘ฅ] then ๐‘“(๐‘ฅ) is reducible in ๐น[๐‘ฅ].
Hence the result.
Corollary 1.6.18 :
Let ๐ท be a UFD and let ๐น be the field of quotients in ๐ท.
Let ๐‘“(๐‘ฅ) โˆˆ ๐ท[๐‘ฅ] be a non constant polynomial. Then ๐‘“(๐‘ฅ) factors into the product of
two polynomials of lower degree in ๐น[๐‘ฅ] if an only if it has a factorization into
Algebra
Page No. 110
polynomials of same degree in ๐ท[๐‘ฅ].
Proof :
Only if part :
Let ๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โ„Ž(๐‘ฅ) be a factorization of ๐‘“(๐‘ฅ) in ๐น[๐‘ฅ] where degree of ๐‘”(๐‘ฅ) = ๐‘Ÿ and
degree of โ„Ž(๐‘ฅ) = ๐‘ . As in the proof of the theorem 4(1) we can prove
๐‘“(๐‘ฅ) = (๐‘Ž) ๐‘ (๐‘ฅ) ๐‘ (๐‘ฅ)
where
degree of ๐‘ (๐‘ฅ) = degree of ๐‘”(๐‘ฅ) = ๐‘Ÿ
and
degree of ๐‘ (๐‘ฅ) = degree of โ„Ž(๐‘ฅ) = ๐‘ 
and
๐‘ (๐‘ฅ), ๐‘ (๐‘ฅ) โˆˆ ๐ท[๐‘ฅ].
If part :
Let ๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โ„Ž(๐‘ฅ),
where ๐‘”(๐‘ฅ), โ„Ž(๐‘ฅ) โˆˆ ๐ท[๐‘ฅ].
Then, ๐‘”(๐‘ฅ), โ„Ž(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] , since ๐ท[๐‘ฅ] โІ ๐น[๐‘ฅ], and the result follows.
1.7 Factorization in ๐…[๐ฑ] :
Throughout ๐น denotes a field.
Definition 1.7.1 : Let ๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ) โˆˆ ๐น[๐‘ฅ]. We say ๐‘”(๐‘ฅ) divides ๐‘“(๐‘ฅ) in ๐น[๐‘ฅ] if there exists
๐‘ž(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] such that ๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ ๐‘ž(๐‘ฅ).
Example 1.7.2: Let
๐‘“(๐‘ฅ) = 4๐‘ฅ + 4๐‘ฅ + 3๐‘ฅ + 3
and
๐‘”(๐‘ฅ) = 4๐‘ฅ + 3
๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ) โˆˆ ๐‘ [๐‘ฅ] and ๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ (๐‘ฅ + 1) in ๐‘ [๐‘ฅ].
Hence, ๐‘”(๐‘ฅ) divides ๐‘“(๐‘ฅ) in ๐‘ [๐‘ฅ].
๐‘”(๐‘ฅ)
๐‘“(๐‘ฅ)
๐‘ž(๐‘ฅ)
4 x2 + 0 โ‹… x + 3
4 x 3 + 4 x 2 +3 x + 3
x +1
โˆ’
4 x 3 + 0 x 2 +3 x
โˆ’
โˆ’
4x2 + 3
โˆ’
4x2 + 3
โˆ’
0
Theorem 1.7.3 : Let ๐‘(๐‘ฅ) be an irreducible polynomial in ๐น[๐‘ฅ]. If ๐‘(๐‘ฅ) divides ๐‘Ÿ(๐‘ฅ) โˆ™ ๐‘ (๐‘ฅ)
for ๐‘Ÿ(๐‘ฅ), ๐‘ (๐‘ฅ) โˆˆ ๐น[๐‘ฅ], then either ๐‘(๐‘ฅ)/๐‘Ÿ(๐‘ฅ) or ๐‘(๐‘ฅ)/๐‘ (๐‘ฅ).
Proof :
Algebra
๐‘(๐‘ฅ)/๐‘Ÿ(๐‘ฅ) โˆ™ ๐‘ (๐‘ฅ)
โŸน
๐‘Ÿ(๐‘ฅ) โˆ™ ๐‘ (๐‘ฅ) = ๐‘(๐‘ฅ) โˆ™ ๐‘ž(๐‘ฅ) for some ๐‘ž(๐‘ฅ) โˆˆ ๐น[๐‘ฅ].
Page No. 111
But this implies that ๐‘Ÿ(๐‘ฅ) โˆ™ ๐‘ (๐‘ฅ) โˆˆ โŒฉ๐‘(๐‘ฅ)โŒช.
๐‘(๐‘ฅ) being an irreducible polynomial in ๐น[๐‘ฅ], โŒฉ๐‘(๐‘ฅ)โŒช is a maximal ideal in ๐น[๐‘ฅ].
As ๐น[๐‘ฅ] is a commutative ring with unity, โŒฉ๐‘(๐‘ฅ)โŒช is a prime ideal.
Hence, ๐‘Ÿ(๐‘ฅ) โˆ™ ๐‘ (๐‘ฅ) โˆˆ โŒฉ๐‘(๐‘ฅ)โŒช implies ๐‘Ÿ(๐‘ฅ) โˆˆ โŒฉ๐‘(๐‘ฅ)โŒช or ๐‘ (๐‘ฅ) โˆˆ โŒฉ๐‘(๐‘ฅ)โŒช.
Hence, either ๐‘(๐‘ฅ) divides ๐‘Ÿ(๐‘ฅ) or ๐‘(๐‘ฅ) divides ๐‘ (๐‘ฅ) in ๐น[๐‘ฅ].
Using the mathematical induction we get,
Corollary 1.7.4 : Let ๐‘(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] be an irreducible polynomial. If ๐‘(๐‘ฅ)/๐‘Ÿ (๐‘ฅ) โˆ™
๐‘Ÿ (๐‘ฅ) โ€ฆ ๐‘Ÿ (๐‘ฅ). for ๐‘Ÿ (๐‘ฅ) โˆˆ ๐น[๐‘ฅ]. Then ๐‘(๐‘ฅ)/๐‘Ÿ (๐‘ฅ) for at least one ๐‘– .
Theorem 1.7.5 : Let ๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] be a non constant polynomial. Then ๐‘“(๐‘ฅ) can be factored
into a product of irreducible polynomials in ๐น[๐‘ฅ]. The irreducible polynomials will be
unique except for order and for unit factors in ๐น .
Proof : Let ๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] be a non constant polynomial.
Case (I) : ๐‘“(๐‘ฅ) is irreducible.
Then there is nothing to prove.
Case (II) : ๐‘“(๐‘ฅ) is not irreducible.
Let
๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ โ„Ž(๐‘ฅ)
where
degree of ๐‘”(๐‘ฅ) < degree of ๐‘“(๐‘ฅ)
and
degree of โ„Ž(๐‘ฅ) < degree of ๐‘Ÿ(๐‘ฅ).
If ๐‘”(๐‘ฅ) and โ„Ž(๐‘ฅ) both are irreducible then we are through.
If ๐‘”(๐‘ฅ) and โ„Ž(๐‘ฅ) both are not irreducible then at least one of them factors into
polynomials of lower degree. Continuing this process, we get,
๐‘“(๐‘ฅ) = ๐‘ (๐‘ฅ) โˆ™ ๐‘ (๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘ (๐‘ฅ)
where each ๐‘ (๐‘ฅ) is an irreducible polynomial in ๐น[๐‘ฅ].
This completes the proof of the first part.
Now, let us assume that
๐‘“(๐‘ฅ) = ๐‘ (๐‘ฅ) โˆ™ ๐‘ (๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘ (๐‘ฅ)
. . . (1)
๐‘“(๐‘ฅ) = ๐‘ž (๐‘ฅ) โˆ™ ๐‘ž (๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘ž (๐‘ฅ)
. . . (2)
be two factorizations of ๐‘“(๐‘ฅ) into the irreducible polynomials in ๐น[๐‘ฅ].
Now,
๐‘ (๐‘ฅ)/๐‘ (๐‘ฅ) โˆ™ ๐‘ (๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘ (๐‘ฅ)
Algebra
implies
Page No. 112
๐‘ (๐‘ฅ)/๐‘ž (๐‘ฅ) โˆ™ ๐‘ž (๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘ž (๐‘ฅ)
As ๐‘ (๐‘ฅ) is an irreducible polynomial in ๐น[๐‘ฅ], ๐‘ (๐‘ฅ)/๐‘ž (๐‘ฅ), for some ๐‘—.
Take ๐‘ž (๐‘ฅ) = ๐‘ž (๐‘ฅ).
Since ๐‘ž (๐‘ฅ) is irreducible and ๐‘ (๐‘ฅ)/๐‘ž (๐‘ฅ) we get, ๐‘ž (๐‘ฅ) = ๐‘ข ๐‘ (๐‘ฅ) where ๐‘ข โ‰  0.
Hence, ๐‘ข โˆˆ ๐น is a unit in ๐น .
Thus,
๐‘ (๐‘ฅ) โˆ™ ๐‘ (๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘ (๐‘ฅ) = ๐‘ž (๐‘ฅ) โˆ™ ๐‘ž (๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘ž (๐‘ฅ)
will imply
๐‘ (๐‘ฅ) โˆ™ ๐‘ (๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘ (๐‘ฅ) = ๐‘ข ๐‘ (๐‘ฅ) โˆ™ ๐‘ž (๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘ž (๐‘ฅ)
Cancelling ๐‘ (๐‘ฅ) from both side, we get,
๐‘ (๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘ (๐‘ฅ) = ๐‘ข โˆ™ ๐‘ž (๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘ž (๐‘ฅ)
Arguing as above, we get, ๐‘ (๐‘ฅ) = ๐‘ข ๐‘ž (๐‘ฅ), where ๐‘ข โ‰  0 is a unit in ๐น .
Substituting this value in the above expression and cancelling ๐‘ (๐‘ฅ) from both sides, we
get,
๐‘ (๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘ (๐‘ฅ) = ๐‘ข โˆ™ ๐‘ข โˆ™ ๐‘ž (๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘ž (๐‘ฅ)
Continuing in this way we arrive at
1 = ๐‘ข โˆ™ ๐‘ข โˆ™ โ€ฆโˆ™ ๐‘ข โˆ™ ๐‘ž
(๐‘ฅ) โˆ™ ๐‘ž
(๐‘ฅ) โˆ™ โ€ฆ โˆ™ ๐‘ž (๐‘ฅ).
But this is possible only when ๐‘  = ๐‘Ÿ. Hence,
1 = ๐‘ข โˆ™ ๐‘ข โˆ™ โ€ฆโˆ™ ๐‘ข
This shows that the irreducible factors ๐‘ (๐‘ฅ) and ๐‘ž (๐‘ฅ) are the same except for order
and unit factors.
1.7.6 Examples โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Ex 1 : Let ๐‘“(๐‘ฅ) = ๐‘ฅ + 3๐‘ฅ + 2๐‘ฅ + 4 โˆˆ ๐‘ [๐‘ฅ].
๐‘ฅ=1
โŸน
๐‘“(1) = 1 + 3 + 2 + 4 = 10 = 0 in ๐‘ [๐‘ฅ].
Hence, ๐‘ฅ = 1 is a root / zero of ๐‘“(๐‘ฅ).
๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ 1) โˆ™ ๐‘”(๐‘ฅ)
Algebra
Page No. 113
๐‘”(๐‘ฅ)
๐‘“(๐‘ฅ)
๐‘ž(๐‘ฅ)
x โˆ’1
x 4 + 3 x 3 +2 x + 4
x 3 + 4 x 2 +4 x + 1
โˆ’
x4 โˆ’ x 3
+
4 x3 + 2 x
โˆ’
4 x3 โˆ’ 4 x2
+
4x2 + 2x
โˆ’
4x2 โˆ’ 4x
+
x+4
x โˆ’1
โˆ’ +
5 = 0 in Z5 [x]
Thus, ๐‘ฅ = 1 is a zero of ๐‘“(๐‘ฅ) and ๐‘“(๐‘ฅ) = (๐‘ฅ + 4๐‘ฅ + 4๐‘ฅ + 1) (๐‘ฅ โˆ’ 1).
Let
๐‘”(๐‘ฅ) = (๐‘ฅ + 4๐‘ฅ + 4๐‘ฅ + 1).
Then,
๐‘”(๐‘ฅ) โˆˆ ๐‘ (๐‘ฅ)
. . . (1)
and
๐‘”(1) = 10 โ‰ก 0(๐‘š๐‘œ๐‘‘ 5)
โˆด
(๐‘ฅ โˆ’ 1) is a factor of ๐‘”(๐‘ฅ).
x โˆ’1
x 3 + 4 x 2 +4 x + 1
โˆ’
x2 + 4
x3 โˆ’ x 2
+
0 + 0 + 4x +1
โˆ’
4x โˆ’ 4
+
0
This shows that (๐‘ฅ โˆ’ 1) is a factor of ๐‘ฅ + 4๐‘ฅ + 4๐‘ฅ + 1 and hence ๐‘ฅ โˆ’ 1 is also a
factor of ๐‘“(๐‘ฅ).
Again, ๐‘ฅ = 1 โŸน ๐‘ฅ + 4 = 0 in ๐‘ .
Hence, (๐‘ฅ โˆ’ 1) is a factor of ๐‘ฅ + 4.
x โˆ’1
x 2+ 4
โˆ’
x +1
x2 โˆ’ x
+
x+4
x โˆ’1
โˆ’ +
0
Algebra
Page No. 114
This shows that (๐‘ฅ โˆ’ 1) is a factor of (๐‘ฅ + 4) and hence (๐‘ฅ โˆ’ 1) is a factor of ๐‘“(๐‘ฅ).
Thus, we get,
๐‘“(๐‘ฅ) = ๐‘ฅ + 3๐‘ฅ + 2๐‘ฅ + 4 = (๐‘ฅ โˆ’ 1) โˆ™ (๐‘ฅ + 1) in ๐‘ [๐‘ฅ].
This shows that ๐‘“(๐‘ฅ) is factored as a product of irreducible polynomials in ๐‘ [๐‘ฅ].
These irreducible factors in ๐‘ [๐‘ฅ] are defined upto units in ๐‘ [๐‘ฅ].
e.g.
(๐‘ฅ โˆ’ 1) โˆ™ (๐‘ฅ + 1) = (๐‘ฅ โˆ’ 1) โˆ™ (2๐‘ฅ โˆ’ 2)(3๐‘ฅ + 3)
Ex 2 : Show that the polynomial (๐‘ฅ + 4) can be factored into linear factors in ๐‘ [๐‘ฅ].
Solution : Let ๐‘“(๐‘ฅ) = ๐‘ฅ + 4 in ๐‘ [๐‘ฅ].
Then ๐‘“(1) = 1 + 4 = 0 in ๐‘ .
Hence, ๐‘ฅ โˆ’ 1 is a factor of ๐‘“(๐‘ฅ).
x โˆ’1
x 3 + x 2 + x +1
x 4 + 0 โ‹… x 3 +0 โ‹… x 2 +0 โ‹… x + 4
x 4 โˆ’ x3
โˆ’ +
x 3+ 0 โ‹… x 2
โˆ’
x3 โˆ’ x2
+
x 2+0โ‹… x
โˆ’
x2 โˆ’ x
+
x+4
x โˆ’1
โˆ’ +
0+0
Thus, ๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ 1)(๐‘ฅ + ๐‘ฅ + ๐‘ฅ + 1)
. . . (1)
Consider ๐‘”(๐‘ฅ) = (๐‘ฅ + ๐‘ฅ + ๐‘ฅ + 1) in ๐‘ [๐‘ฅ].
Then ๐‘”(โˆ’1) = โˆ’1 + 1 โˆ’ 1 + 1 = 0.
Hence, (๐‘ฅ + 1) is a factor of ๐‘”(๐‘ฅ) in ๐‘ [๐‘ฅ].
x +1
x 3 + x 2 + x +1
โˆ’
x 2 +1
x3 + x2
โˆ’
x +1
x +1
โˆ’ โˆ’
0+0
Thus, ๐‘”(๐‘ฅ) = (๐‘ฅ + ๐‘ฅ + ๐‘ฅ + 1) = (๐‘ฅ + 1)(๐‘ฅ + 1)
Algebra
Page No. 115
Hence, from (1), we get,
๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ 1)(๐‘ฅ + 1)(๐‘ฅ + 1)
Let
. . . (2)
โ„Ž(๐‘ฅ) = (๐‘ฅ + 1) in ๐‘ [๐‘ฅ].
โ„Ž(2) = 4 + 1 = 0.
Hence, (๐‘ฅ โˆ’ 2) is a factor of โ„Ž(๐‘ฅ) in ๐‘ [๐‘ฅ].
xโˆ’2
x+2
x2+ 1
โˆ’
x2 โˆ’ 2x
+
2x + 1
2x โˆ’ 4
โˆ’ +
0
We know that, โ€˜๐‘„โ€™ the field of rational numbers is the field of quotients of an integral domain
๐‘.
Hence applying theorem 1.6.6 to ๐‘„ in particular, we get,
Result : Let ๐‘“(๐‘ฅ) โˆˆ ๐‘[๐‘ฅ]. If ๐‘“(๐‘ฅ) is primitive an irreducible over ๐‘ then ๐‘“(๐‘ฅ) is irreducible
over ๐‘„.
โ€ข
Eisenstein Criteria for Irreducibility over ๐‘ธ :
Theorem 1.7.7 : Let ๐‘ โˆˆ ๐‘ be a prime. Let ๐‘“(๐‘ฅ) โˆˆ ๐‘[๐‘ฅ], where
๐‘“(๐‘ฅ) = ๐‘Ž + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ , (๐‘Ž โ‰  0)
such that ๐‘Ž โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) but ๐‘Ž โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘), for ๐‘– < ๐‘›, with ๐‘Ž โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘ ). Then
๐‘“(๐‘ฅ) is irreducible over ๐‘„.
[ ๐‘ is a prime number such that ๐‘/๐‘Ž , ๐‘/๐‘Ž ,โ€ฆ, ๐‘/๐‘Ž
and ๐‘ โˆค ๐‘Ž and ๐‘ โˆค ๐‘Ž ].
Proof : Assume that ๐‘“(๐‘ฅ) is reducible in ๐‘[๐‘ฅ].
Let
๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ โ„Ž(๐‘ฅ) ,
where ๐‘”(๐‘ฅ), โ„Ž(๐‘ฅ) are non-constant polynomials in ๐‘[๐‘ฅ] with degree < n.
Let
๐‘”(๐‘ฅ) = ๐‘ + ๐‘ ๐‘ฅ + โ‹ฏ + ๐‘ ๐‘ฅ , (๐‘ โ‰  0)
and
Algebra
โ„Ž(๐‘ฅ) = ๐‘ + ๐‘ ๐‘ฅ + โ‹ฏ + ๐‘ ๐‘ฅ , (๐‘ โ‰  0)
Page No. 116
(i)
๐‘ โˆค๐‘Ž
โŸน ๐‘ โˆค๐‘ ๐‘ .
If ๐‘/๐‘ and ๐‘/๐‘ then ๐‘ /๐‘ ๐‘ .
Hence, either ๐‘ โˆค ๐‘ or ๐‘ โˆค ๐‘ exclusively.
Assume that ๐‘ โˆค ๐‘ but ๐‘/๐‘ .
(ii) ๐‘ โˆค ๐‘Ž
โŸน ๐‘โˆค๐‘ ๐‘
โŸน ๐‘ โˆค ๐‘ and ๐‘ โˆค ๐‘ .
(iii) Thus, ๐‘/๐‘ and ๐‘ โˆค ๐‘ .
Find the smallest ๐‘˜ such that ๐‘ โˆค ๐‘ . Thus ๐‘ โˆค ๐‘ and ๐‘ โˆค ๐‘ โŸน ๐‘ โˆค ๐‘ ๐‘ .
But ๐‘ ๐‘ + ๐‘ ๐‘
+ โ‹ฏ + ๐‘ ๐‘ is a coefficient of ๐‘ฅ in ๐‘”(๐‘ฅ)โ„Ž(๐‘ฅ).
As ๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ โ„Ž(๐‘ฅ), equating the coefficients of ๐‘ฅ , we get,
๐‘Ž =๐‘ ๐‘ +๐‘ ๐‘
+ โ‹ฏ+ ๐‘ ๐‘
As ๐‘ โˆค ๐‘ ๐‘ , we get ๐‘ โˆค ๐‘Ž .
But then, by data, as ๐‘/๐‘Ž , ๐‘/๐‘Ž ,โ€ฆ, ๐‘/๐‘Ž
and ๐‘ โˆค ๐‘Ž we must have ๐‘˜ = ๐‘›.
Hence, consequently we must have ๐‘  = ๐‘›. This contradicts our assumption that ๐‘  < ๐‘›.
Hence, ๐‘“(๐‘ฅ) does not factor into polynomials in ๐‘[๐‘ฅ].
By result 1,
๐‘“(๐‘ฅ) has no factorization as a product of two polynomials, both of lower degree in
๐‘„[๐‘ฅ].
Hence, ๐‘“(๐‘ฅ) is irreducible over ๐‘„.
[ Result 1 : Let ๐‘“(๐‘ฅ) โˆˆ ๐‘[๐‘ฅ]. ๐‘“(๐‘ฅ) factors into a product of two polynomials of lower degrees
๐‘Ÿ and ๐‘  in ๐‘„[๐‘ฅ] if and only if it has such a factorization with polynomials of same
degrees ๐‘Ÿ and ๐‘  in ๐‘(๐‘ฅ). ]
Remark 1.7.8 :
๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ โ„Ž(๐‘ฅ)
โŸบ
๐‘“(๐‘ฅ + 1) = ๐‘”(๐‘ฅ + 1) โˆ™ โ„Ž(๐‘ฅ + 1),
for ๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ), โ„Ž(๐‘ฅ) โˆˆ ๐‘[๐‘ฅ].
Hence, ๐‘“(๐‘ฅ) is reducible iff ๐‘“(๐‘ฅ + 1) is reducible and ๐‘“(๐‘ฅ) is irreducible iff ๐‘“(๐‘ฅ + 1) is
irreducible.
Note that, we can take any integer in place of 1.
When the constant term in a polynomial ๐‘“(๐‘ฅ) โˆˆ ๐‘[๐‘ฅ] is ±1, we cannot apply Eisenstein
criterion to check the irreducibility of ๐‘“(๐‘ฅ) over ๐‘„. In such cases we find suitable ๐‘ก โˆˆ ๐‘
such that ๐‘“(๐‘ฅ + ๐‘ก) is irreducible over ๐‘„ (if possible).
To illustrate this, consider the following polynomial
๐‘“(๐‘ฅ) = ๐‘ฅ + ๐‘ฅ โˆ’ 2๐‘ฅ โˆ’ 1 โˆˆ ๐‘[๐‘ฅ].
Algebra
Page No. 117
As there exists no prime in ๐‘ that divides 1, we cannot apply the criterion directly in this
case.
๐‘“(๐‘ฅ + 1) = (๐‘ฅ + 1) + (๐‘ฅ + 1) โˆ’ 2(๐‘ฅ + 1) โˆ’ 1
= ๐‘ฅ + 4๐‘ฅ + 3๐‘ฅ โˆ’ 1
Again, we cannot apply the criterion in this case.
๐‘“(๐‘ฅ โˆ’ 1) = (๐‘ฅ โˆ’ 1) + (๐‘ฅ โˆ’ 1) โˆ’ 2(๐‘ฅ โˆ’ 1) โˆ’ 1
= ๐‘ฅ โˆ’ 2๐‘ฅ โˆ’ ๐‘ฅ + 1
We cannot apply the criterion for ๐‘“(๐‘ฅ โˆ’ 1) also.
๐‘“(๐‘ฅ + 2) = ๐‘ฅ + 7๐‘ฅ + 14๐‘ฅ + 7
Here, take ๐‘ = 8. Then ๐‘/๐‘Ž , ๐‘/๐‘Ž , ๐‘/๐‘Ž and ๐‘ โˆค ๐‘Ž and ๐‘ โˆค ๐‘Ž .
Hence, by Eisenstein criterion, ๐‘“(๐‘ฅ + 2) is irreducible over ๐‘„.
Hence, ๐‘“(๐‘ฅ) is irreducible over ๐‘„.
1.7.9 Example
โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Ex 1 : ๐‘“(๐‘ฅ) = 8๐‘ฅ โˆ’ 6๐‘ฅ โˆ’ 1 is irreducible over ๐‘„.
Solution : Here ๐‘Ž = โˆ’1, ๐‘Ž = โˆ’6, ๐‘Ž = 0, ๐‘Ž = 8.
As ๐‘Ž = โˆ’1, Eisenstein criterion cannot be applied.
Hence, consider ๐‘“(๐‘ฅ + 1).
๐‘“(๐‘ฅ + 1) = 8(๐‘ฅ + 1) โˆ’ 6(๐‘ฅ + 1) โˆ’ 1
= 8[๐‘ฅ + 3๐‘ฅ + 3๐‘ฅ + 1] โˆ’ 6๐‘ฅ โˆ’ 6 โˆ’ 1
= 8๐‘ฅ + 24๐‘ฅ + 24๐‘ฅ + 8 โˆ’ 6๐‘ฅ โˆ’ 6 โˆ’ 1
= 8๐‘ฅ + 24๐‘ฅ + 18๐‘ฅ + 1
Again, we cannot apply the criterion for ๐‘“(๐‘ฅ + 1).
Hence, consider ๐‘“(๐‘ฅ โˆ’ 1).
๐‘“(๐‘ฅ โˆ’ 1) = 8(๐‘ฅ โˆ’ 1) โˆ’ 6(๐‘ฅ โˆ’ 1) โˆ’ 1
= 8[๐‘ฅ โˆ’ 3๐‘ฅ + 3๐‘ฅ โˆ’ 1] โˆ’ 6๐‘ฅ + 6 โˆ’ 1
= 8๐‘ฅ โˆ’ 24๐‘ฅ + 24๐‘ฅ โˆ’ 8 โˆ’ 6๐‘ฅ + 6 โˆ’ 1
= 8๐‘ฅ โˆ’ 24๐‘ฅ + 18๐‘ฅ โˆ’ 3
Take ๐‘ = 3.
Then, by Eisenstein criterion, ๐‘“(๐‘ฅ โˆ’ 1) is irreducible over ๐‘„.
Hence, ๐‘“(๐‘ฅ) is irreducible over ๐‘„.
Algebra
Page No. 118
Ex 2 : ๐‘“(๐‘ฅ) = ๐‘ฅ + ๐‘ฅ + ๐‘ฅ + ๐‘ฅ + 1 โˆˆ ๐‘[๐‘ฅ] is irreducible over ๐‘„.
Solution : As the constant term in ๐‘“(๐‘ฅ) is 1 we cannot apply Eisenstein criterion for ๐‘“(๐‘ฅ).
Consider ๐‘“(๐‘ฅ + 1).
Then,
๐‘“(๐‘ฅ + 1) = (๐‘ฅ + 1) + (๐‘ฅ + 1) + (๐‘ฅ + 1) + (๐‘ฅ + 1) + 1
= (๐‘ฅ + 4๐‘ฅ + 6๐‘ฅ + 4๐‘ฅ + 1) + (๐‘ฅ + 3๐‘ฅ + 3๐‘ฅ + 1) +
(๐‘ฅ + 2๐‘ฅ + 1) + ๐‘ฅ + 2
= ๐‘ฅ + 5๐‘ฅ + 10๐‘ฅ + 10๐‘ฅ + 5
For ๐‘“(๐‘ฅ + 1),
๐‘Ž = 5, ๐‘Ž = 10, ๐‘Ž = 10, ๐‘Ž = 5, ๐‘Ž = 1.
Take ๐‘ = 5.
Then, ๐‘/๐‘Ž , ๐‘/๐‘Ž , ๐‘/๐‘Ž , ๐‘/๐‘Ž and ๐‘ โˆค ๐‘Ž and ๐‘ โˆค ๐‘Ž .
Hence, by Eisenstein criterion, ๐‘“(๐‘ฅ + 1) is irreducible over ๐‘„.
Hence, ๐‘“(๐‘ฅ) is irreducible over ๐‘„.
Ex 3 : Show that the polynomial 2๐‘ฅ โˆ’ 5๐‘ฅ + 5 is irreducible over ๐‘„.
Solution : Let
๐‘“(๐‘ฅ) = 2๐‘ฅ โˆ’ 5๐‘ฅ + 5
= 5 + 0 โˆ™ ๐‘ฅ + 0 โˆ™ ๐‘ฅ + 0 โˆ™ ๐‘ฅ โˆ’ 5๐‘ฅ + 2๐‘ฅ
Hence,
๐‘Ž = 5, ๐‘Ž = 0, ๐‘Ž = 0, ๐‘Ž = 0, ๐‘Ž = โˆ’5, ๐‘Ž = 2.
Take ๐‘ = 5, ๐‘ is prime in ๐‘.
๐‘/๐‘Ž , ๐‘/๐‘Ž , ๐‘/๐‘Ž , ๐‘/๐‘Ž and ๐‘ โˆค ๐‘Ž and ๐‘ โˆค ๐‘Ž .
Hence, by Eisenstein criterion, ๐‘“(๐‘ฅ) is irreducible over ๐‘„.
Ex 4 : The cyclotomic polynomial
๐œ™ (๐‘ฅ) =
=๐‘ฅ
+๐‘ฅ
+ โ‹ฏ+ ๐‘ฅ + 1
is irreducible over ๐‘„ for any prime ๐‘.
Solution : Let
๐‘”(๐‘ฅ) = ๐œ™ (๐‘ฅ + 1)
=
=
(๐‘ฅ + 1) โˆ’ 1
(๐‘ฅ + 1) โˆ’ 1
๐‘ฅ + ๐ถ ๐‘ฅ
=๐‘ฅ
Algebra
+ ๐ถ ๐‘ฅ
+ โ‹ฏ+ ๐ถ ๐‘ฅ
๐‘ฅ
โˆ’1
+ โ‹ฏ+ ๐‘
Page No. 119
Let ๐‘”(๐‘ฅ) = ๐‘Ž + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž
๐‘ฅ
. Then ๐‘Ž = ๐‘, ๐‘Ž = ๐ถ
Then, for prime number ๐‘, we get ๐‘/๐‘Ž , โ€ฆ , ๐‘/๐‘Ž
, ๐‘Ž = 1.
and ๐‘ โˆค ๐‘Ž and ๐‘ โˆค ๐‘Ž = 1.
Hence, by Eisenstein criterion, ๐‘”(๐‘ฅ) is irreducible over ๐‘„.
Now, if ๐œ™ (๐‘ฅ) = โ„Ž (๐‘ฅ)โ„Ž (๐‘ฅ) in ๐‘[๐‘ฅ], then ๐œ™ (๐‘ฅ + 1) = โ„Ž (๐‘ฅ + 1)โ„Ž (๐‘ฅ + 1) would be
a factorization of ๐‘”(๐‘ฅ) in ๐‘[๐‘ฅ] and hence by result 1, we get ๐œ™ (๐‘ฅ + 1) has factorization
in ๐‘„[๐‘ฅ] which is not possible by Eisenstein criterion.
Hence, ๐œ™ (๐‘ฅ) is irreducible over ๐‘„.
Extra :
Applying the theory in particular for ๐‘[๐‘ฅ], we get the following result.
Particular case of theorem 1.2.16 (ii) :
Theorem 1.7.10 : Let ๐‘“(๐‘ฅ) โˆˆ ๐‘[๐‘ฅ] be primitive. If ๐‘“(๐‘ฅ) is reducible over ๐‘„, then ๐‘“(๐‘ฅ) is
reducible over ๐‘.
Proof : ๐‘“(๐‘ฅ) is reducible over ๐‘„. Hence ๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ) โˆ™ โ„Ž(๐‘ฅ) where ๐‘”(๐‘ฅ), โ„Ž(๐‘ฅ) โˆˆ ๐‘„[๐‘ฅ] and
๐‘”(๐‘ฅ), โ„Ž(๐‘ฅ) are non constant. Then ๐‘“(๐‘ฅ) =
๐‘” (๐‘ฅ) โˆ™ โ„Ž (๐‘ฅ), where ๐‘” (๐‘ฅ) and โ„Ž (๐‘ฅ)
are primitive polynomials in ๐‘[๐‘ฅ]. But then
๐‘[๐‘“(๐‘ฅ)] = (๐‘Ž) [๐‘” (๐‘ฅ) โˆ™ โ„Ž (๐‘ฅ)]
๐‘“(๐‘ฅ) being primitive in ๐‘[๐‘ฅ], ๐‘ is the g.c.d. of coefficients in ๐‘ ๐‘“(๐‘ฅ).
As the product of two primitive polynomials is a primitive polynomial in
๐‘Ž [๐‘” (๐‘ฅ) โˆ™ โ„Ž (๐‘ฅ)]. Hence ๐‘Ž and ๐‘ are unique upto the units.
As the units in ๐‘ are ±1, we get ๐‘ = ±๐‘Ž.
Hence, ๐‘“(๐‘ฅ) = ±๐‘” (๐‘ฅ) โˆ™ ๐‘” (๐‘ฅ). This shows that ๐‘“(๐‘ฅ) is reducible in ๐‘[๐‘ฅ].
Particular case of theorem 1.4.10:
Theorem 1.7.11 : If ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) are primitive polynomials in ๐‘[๐‘ฅ] then so is their
product.
Proof : Suppose ๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) is not primitive. Let ๐‘ be a prime integer in ๐‘ such that ๐‘
divides all the coefficients of ๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ).
Let
๐‘“(๐‘ฅ) = ๐‘Ž + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ
and
Algebra
๐‘”(๐‘ฅ) = ๐‘ + +๐‘ ๐‘ฅ + โ‹ฏ + ๐‘ ๐‘ฅ .
Page No. 120
๐‘“(๐‘ฅ) is primitive, hence ๐‘ does not divide all ๐‘Ž , ๐‘Ž , โ€ฆ , ๐‘Ž .
Let ๐‘Ž be the first coefficient of ๐‘“ such that ๐‘ โˆค ๐‘Ž .
Similarly, let ๐‘ be the first coefficient in ๐‘”(๐‘ฅ) such that ๐‘ โˆค ๐‘ .
Now, the coefficient of ๐‘ฅ
[๐‘Ž ๐‘
+๐‘Ž ๐‘
in ๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) is
+ โ‹ฏ+ ๐‘Ž
] + ๐‘Ž ๐‘ + [๐‘Ž
๐‘
๐‘
+๐‘Ž
๐‘
+ โ‹ฏ+ ๐‘Ž
๐‘ ]
As
๐‘/๐‘Ž , ๐‘/๐‘Ž , โ€ฆ, ๐‘/๐‘Ž
๐‘/๐‘ , ๐‘/๐‘ , โ€ฆ, ๐‘/๐‘
and
,
we get,
๐‘/[๐‘Ž ๐‘
and
๐‘/[๐‘Ž
๐‘
+๐‘Ž ๐‘
+๐‘Ž
+ โ‹ฏ+ ๐‘Ž
๐‘
+ โ‹ฏ+ ๐‘Ž
]
๐‘
๐‘ ]
As ๐‘ โˆค ๐‘Ž and ๐‘ โˆค ๐‘ and ๐‘ is prime, we get ๐‘ โˆค ๐‘Ž ๐‘ .
Hence, ๐‘ โˆค coefficient of ๐‘ฅ
in ๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ), which is a contradiction.
This in turn shows that ๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) is primitive.
Theorem 1.7.12 : If ๐‘“(๐‘ฅ) โˆˆ ๐‘[๐‘ฅ] is reducible over ๐‘„ then it is also reducible over ๐‘.
๐‘“(๐‘ฅ) โˆˆ ๐‘[๐‘ฅ] is reducible over ๐‘„.
Proof :
Let ๐‘“(๐‘ฅ) = (๐‘) ๐‘“ (๐‘ฅ). Where ๐‘ = g.c.d. of the coefficient of ๐‘“(๐‘ฅ), and ๐‘“ (๐‘ฅ) is a
primitive polynomial in ๐‘[๐‘ฅ].
Then ๐‘“ (๐‘ฅ) is reducible over ๐‘ and hence ๐‘“(๐‘ฅ) is reducible over ๐‘.
Theorem 1.7.13 : ๐‘“(๐‘ฅ) โˆˆ ๐‘[๐‘ฅ]. ๐‘“(๐‘ฅ) is reducible over ๐‘„ iff ๐‘“(๐‘ฅ) is reducible over ๐‘.
Proof : ๐‘“(๐‘ฅ) is reducible over ๐‘ implies ๐‘“(๐‘ฅ) is reducible over ๐‘„ as ๐‘[๐‘ฅ] โІ ๐‘„[๐‘ฅ].
Conversely,
If ๐‘“(๐‘ฅ) is reducible over ๐‘„ then, ๐‘“(๐‘ฅ) is reducible over ๐‘.
Theorem 1.7.14 : Let ๐‘“(๐‘ฅ) = ๐‘Ž + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž
๐‘ฅ
+ ๐‘ฅ โˆˆ ๐‘[๐‘ฅ] be a monic
polynomial. If ๐‘“(๐‘ฅ) has a root ๐‘Ž โˆˆ ๐‘„, then ๐‘Ž โˆˆ ๐‘ and ๐‘Ž/๐‘Ž .
Proof :
๐‘Žโˆˆ๐‘„ โŸน ๐‘Ž=
๐‘“(๐‘Ž) = 0
Algebra
for some relatively prime elements ๐‘, ๐‘ โˆˆ ๐‘.
โŸน
๐‘“
โŸน
๐‘Ž +๐‘Ž
=0
๐‘
+ โ‹ฏ+ ๐‘Ž
๐‘
๐‘
๐‘
+
๐‘
๐‘
=0
Page No. 121
we get, โˆ’
๐‘
+ โ‹ฏ+ ๐‘Ž
๐‘
๐‘
๐‘
=โˆ’
๐‘
๐‘
โŸน
๐‘Ž +๐‘Ž
โŸน
๐‘Ž ๐‘
+ ๐‘Ž ๐‘๐‘
+ โ‹ฏ+ ๐‘Ž
๐‘
=โˆ’
โŸน
๐‘Ž ๐‘
+ ๐‘Ž ๐‘๐‘
+ โ‹ฏ+ ๐‘Ž
๐‘
โˆˆ๐‘
. . . (1)
โˆˆ ๐‘. Hence ๐‘ = ± 1.
Hence, by (1), we get,
๐‘Ž + ๐‘Ž ๐‘ + โ‹ฏ+ ๐‘Ž
๐‘
Hence, ๐‘Ž = โˆ’๐‘[๐‘Ž + ๐‘Ž ๐‘ + โ‹ฏ ± ๐‘
=±๐‘ .
].
This shows that ๐‘/๐‘Ž .
As
๐‘Ž=
=
. . . (2)
±
= ±๐‘
. . . (3)
From (1), (2) and (3), we get ๐‘Ž/๐‘Ž and ๐‘Ž โˆˆ ๐‘.
โ€ขโ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Algebra
Page No. 122
CHAPTER III : THEORY OF MODULES
Unit 1 : Modules :
1.1 Modules โ€“ Definition and examples.
1.2 Submodules.
1.3 Homomorphism
1.4 Fundamental theorem of homomorphism and its applications.
1.1 MODULES โ€“ Definition and Examples :
Definition 1.1.1 : Let ๐‘… be a ring and let โŒฉ๐‘€, +โŒช be an abelian group. Let (๐‘Ÿ, ๐‘š) โŸถ ๐‘Ÿ๐‘š be a
mapping of ๐‘… × ๐‘€ into ๐‘€ such that
i) ๐‘Ÿ(๐‘š + ๐‘š ) = ๐‘Ÿ๐‘š + ๐‘Ÿ๐‘š
ii) (๐‘Ÿ + ๐‘Ÿ )๐‘š = ๐‘Ÿ ๐‘š + ๐‘Ÿ ๐‘š
iii) (๐‘Ÿ ๐‘Ÿ )๐‘š = ๐‘Ÿ (๐‘Ÿ ๐‘š)
iv) 1. ๐‘š = ๐‘š
๐‘–๐‘“ 1 โˆˆ ๐‘…
for all ๐‘š, ๐‘š , ๐‘š โˆˆ ๐‘€ and ๐‘Ÿ, ๐‘Ÿ , ๐‘Ÿ โˆˆ ๐‘…. Then M is called a left R-module.
Remarks 1.1.2 :
a) ๐‘Ÿ๐‘š is called is called the scalar multiplication or just multiplication of ๐‘š by ๐‘Ÿ on the
left.
b) Right R-modules can also be defined similarly.
c) If ๐‘… is a commutative ring, every left module will be a right module or vice versa.
d) In a commutative ring ๐‘… we will not distinguish between left and right R-modules and
we and we simply call them R-modules.
e) If ๐‘… is a field, the R-module is called a vector space.
Examples 1.1.3 :
1. Any ring ๐‘… can be regarded as a left R-module.
Define the scalar multiplication ๐‘Ÿ๐‘š for ๐‘Ÿ, ๐‘š โˆˆ ๐‘… as usual multiplication in R.
2. Any additive abelian group ๐บ is a left L-module. For an abelian group โŒฉ๐บ, +โŒช define
Algebra
Page No. 123
๐‘› ๐‘Ž = ๐‘Ž + ๐‘Ž + . . . + ๐‘Ž (n times) ,
for n > 0
0โ‹…๐‘Ž = 0
and
(โˆ’๐‘›) ๐‘Ž = (โˆ’ ๐‘Ž) + (โˆ’ ๐‘Ž) + . . . + (โˆ’ ๐‘Ž) (n times) ,
for n > 0
Then ๐บ is a L-module.
3. Let โŒฉ๐บ, +โŒช be an abelian group.
๐‘… = {๐‘“/๐‘“: ๐บ โŸถ ๐บ is a group homomorphism. }
โŒฉ๐‘…, +,โˆ˜โŒช is a ring, where ๐‘“ + ๐‘” and ๐‘“ o g are defined by
(๐‘“ + ๐‘”) (๐‘ฅ) = ๐‘“ (๐‘ฅ) + ๐‘” (๐‘ฅ)
and
โˆ€ ๐‘ฅ โˆˆ๐บ
(๐‘“ โˆ˜ ๐‘”) (๐‘ฅ) = ๐‘“ [๐‘” (๐‘ฅ)]
G is a left R-module where the scalar product ๐‘“๐‘ฅ is defined by
๐‘“๐‘ฅ = ๐‘“ (๐‘ฅ)
for ๐‘“ โˆˆ ๐‘… and ๐‘ฅ โˆˆ ๐บ
4. Let ๐‘…[๐‘ฅ] denote a polynomial ring over the ring ๐‘… in an indeterminate ๐‘ฅ. Then ๐‘…[๐‘ฅ] is
a left R-module under the scalar multiplication defined by
๐‘Ÿ โˆ™ ๐‘“(๐‘ฅ) = ๐‘Ÿ (๐‘Ž + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ )
= (๐‘Ÿ๐‘Ž ) + (๐‘Ÿ๐‘Ž )๐‘ฅ + โ‹ฏ + (๐‘Ÿ๐‘Ž )๐‘ฅ
for ๐‘Ÿ โˆˆ ๐‘… and ๐‘“(๐‘ฅ) โˆˆ ๐‘…[๐‘ฅ]
where ๐‘“(๐‘ฅ) = ๐‘Ž + ๐‘Ž ๐‘ฅ + โ‹ฏ + ๐‘Ž ๐‘ฅ
5. Let ๐‘… be any ring and let ๐ผ be a left ideal in ๐‘…. Then โŒฉ๐ผ, +โŒช is an abelian group and for
any ๐‘Ÿ โˆˆ ๐‘… and ๐‘Ž โˆˆ ๐ผ, ๐‘Ÿ๐‘Ž โˆˆ ๐ผ and this scalar multiplication (๐‘Ÿ, ๐‘Ž) โŸถ ๐‘Ÿ๐‘Ž from ๐‘… ×
๐ผ โŸถ ๐ผ satisfies all the conditions stated in the definition. Hence I is a left R-module.
Exercise โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
1. Define right R-module M.
2. Give some examples of right R-modules.
3. Find an example of a left R-module which is not a right R-module.
4. Find an example of a right R-module which is not a left R-module.
โ€ขโ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Algebra
Page No. 124
Simple Properties :
Here onwards all modules are left modules otherwise stated.
Theorem 1.1.4 : Let ๐‘€ be any R-module. Then
0โˆ™๐‘š =0
i)
for all ๐‘š โˆˆ ๐‘€
ii) ๐‘Ÿ โˆ™ 0 = 0
for all ๐‘Ÿ โˆˆ ๐‘…
iii) (โˆ’๐‘Ÿ) โˆ™ ๐‘š = (โˆ’๐‘Ÿ๐‘š) = ๐‘Ÿ โˆ™ (โˆ’๐‘š )
for all ๐‘Ÿ โˆˆ ๐‘…
Proof :
i)
๐‘Ÿ โˆ™ ๐‘š = (๐‘Ÿ + 0) โˆ™ ๐‘š
for all ๐‘Ÿ โˆˆ ๐‘… and ๐‘š โˆˆ ๐‘€
Hence, ๐‘Ÿ๐‘š + 0 = ๐‘Ÿ๐‘š + 0 โˆ™ ๐‘š
(see definition)
This shows that 0 โˆ™ ๐‘š = 0
for all ๐‘š โˆˆ ๐‘€
ii) ๐‘Ÿ โˆ™ ๐‘š = ๐‘Ÿ โˆ™ (๐‘š + 0)
for all ๐‘Ÿ โˆˆ ๐‘… and ๐‘š โˆˆ ๐‘€
Thus, ๐‘Ÿ๐‘š + 0 = ๐‘Ÿ๐‘š + ๐‘Ÿ โˆ™ 0
(see definition)
But then ๐‘Ÿ โˆ™ 0 = 0
for all ๐‘Ÿ โˆˆ ๐‘… as M is a group.
iii) 0 = 0 โˆ™ ๐‘š ,
by (i)
= [๐‘Ÿ + (โˆ’๐‘Ÿ)] ๐‘š
= ๐‘Ÿ๐‘š + (โˆ’๐‘Ÿ)๐‘š
Hence, โˆ’(๐‘Ÿ๐‘š) = (โˆ’๐‘Ÿ) ๐‘š
. . . (1)
Also,
0=๐‘Ÿโˆ™0,
by (ii)
= ๐‘Ÿ(๐‘š + (โˆ’๐‘š))
= ๐‘Ÿ๐‘š + ๐‘Ÿ(โˆ’๐‘š)
Hence,
โˆ’(๐‘Ÿ๐‘š) = ๐‘Ÿ(โˆ’๐‘š)
. . . (2)
From (1) and (2), we get,
(โˆ’๐‘Ÿ) ๐‘š = โˆ’(๐‘Ÿ๐‘š) = ๐‘Ÿ(โˆ’๐‘š),
for all ๐‘Ÿ โˆˆ ๐‘… and ๐‘š โˆˆ ๐‘€
Worked Examples โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Example 1.1.5 : Let M be an R-module. Show that the set ๐‘ฅ โˆˆ ๐‘… / ๐‘ฅ๐‘€ = {0} is an ideal of
R, where ๐‘ฅ๐‘€ = {๐‘ฅ๐‘š / ๐‘š โˆˆ ๐‘€}.
Solution : Let ๐ผ = ๐‘ฅ โˆˆ ๐‘… / ๐‘ฅ๐‘€ = {0} .
(i)
By theorem (1), 0 โˆ™ ๐‘š = 0,
imply
0 โˆ™ ๐‘€ = {0}
and hence
0โˆˆ๐ผ
Algebra
for all ๐‘š โˆˆ ๐‘€.
Page No. 125
๐ผ โ‰  ๐œ™.
Thus,
(ii) Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐ผ
๐‘ฅ, ๐‘ฆ โˆˆ ๐ผ
๐‘ฅ๐‘€ = {0} and ๐‘ฆ๐‘€ = {0}
โŸน
Now, for any ๐‘š โˆˆ ๐‘€, we have
(๐‘ฅ โˆ’ ๐‘ฆ) ๐‘š = [๐‘ฅ + (โˆ’๐‘ฆ)] ๐‘š
= ๐‘ฅ๐‘š + (โˆ’๐‘ฆ) ๐‘š
(by definition)
= ๐‘ฅ๐‘š โˆ’ ๐‘ฆ๐‘š
(by theorem 1.1.4 (iii)
=0 โˆ’ 0
(โˆต ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘… imply xm = 0 and ym = 0
Thus,
(๐‘ฅ โˆ’ ๐‘ฆ) ๐‘š = 0 for all ๐‘š โˆˆ ๐‘€.
Hence,
(๐‘ฅ โˆ’ ๐‘ฆ) ๐‘€ = {0}.
This shows that ๐‘ฅ โˆ’ ๐‘ฆ โˆˆ ๐ผ, for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐ผ.
(iii) Let ๐‘Ÿ โˆˆ ๐‘… and ๐‘ฅ โˆˆ ๐ผ.
๐‘ฅโˆˆ๐ผ
โŸน
๐‘ฅ๐‘€ = {0}
โŸน
๐‘ฅโˆ™๐‘š =0,
Hence,
for each ๐‘š โˆˆ ๐‘€.
{r x} m = (r) (x m) = r . 0 = 0,
(by theorem 1.1.4)
Hence, for ๐‘Ÿ โˆˆ ๐‘… and ๐‘ฅ โˆˆ ๐ผ, we get ๐‘Ÿ๐‘ฅ โˆˆ ๐ผ.
Similarly,
(๐‘ฅ๐‘Ÿ) ๐‘š = ๐‘ฅ (๐‘Ÿ๐‘š) = 0 ,
as ๐‘ฅ โˆˆ ๐ผ and ๐‘Ÿ๐‘š โˆˆ ๐‘€, for any ๐‘Ÿ โˆˆ ๐‘….
Hence, given ๐‘ฅ โˆˆ ๐ผ and ๐‘Ÿ โˆˆ ๐‘…, ๐‘Ÿ๐‘ฅ โˆˆ ๐ผ and ๐‘ฅ๐‘Ÿ โˆˆ ๐ผ.
From (i), (ii) and (iii), we get,
๐ผ is an ideal in ๐‘….
Remark : Let ๐‘€ be an R-module.
If the ideal ๐‘ฅ โˆˆ ๐‘… / ๐‘ฅ๐‘€ = {0} is the zero ideal in ๐‘….
i.e., if ๐‘ฅ โˆˆ ๐‘… / ๐‘ฅ๐‘€ = {0} = {0} , then M is called a faithful module.
Example 1.1.6 : Let ๐‘€ and ๐‘ be an R-modules. Define โ€˜ + โ€™ in ๐‘€ × ๐‘ by
(๐‘ฅ, ๐‘ฆ) + (๐‘ง, ๐‘ก) = (๐‘ฅ + ๐‘ง, ๐‘ฆ + ๐‘ก)
for (๐‘ฅ, ๐‘ฆ), (๐‘ง, ๐‘ก) โˆˆ ๐‘€ × ๐‘
and the scalar multiplication โ€ฒ โˆ™ โ€ฒ by
๐‘Ÿ โˆ™ (๐‘ฅ, ๐‘ฆ) = (๐‘Ÿ โˆ™ ๐‘ฅ, ๐‘Ÿ โˆ™ ๐‘ฆ)
for all ๐‘Ÿ โˆˆ ๐‘…, (๐‘ฅ, ๐‘ฆ) โˆˆ ๐‘… × ๐‘…
Then, it can easily verified that ๐‘€ × ๐‘ is an R-module.
Algebra
Page No. 126
Remarks 1.1.7 :
(1) The R-module ๐‘€ × ๐‘ is called the direct product (external) of R-modules ๐‘€ and ๐‘.
(2) On the same line we can define the direct product (external) of any finite number of Rmodules.
Example 1.1.8 : Let ๐‘… be a ring. Define
๐‘… = {(๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ) / ๐‘ฅ โˆˆ ๐‘…} for ๐‘› โˆˆ ๐‘.
Then show that ๐‘… is a R-module.
Solution : We know that every ring ๐‘… is an R-module. Hence every ring ๐‘… is an R-module.
Hence, ๐‘… = ๐‘… × ๐‘… × โ€ฆ × ๐‘… is an R-module (being the direct product of n R-modules)
by Example 1.1.6.
[Here in ๐‘… , for ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘… and where,
๐‘ฅ = (๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ),
and
๐‘ฆ = (๐‘ฆ , ๐‘ฆ , โ€ฆ , ๐‘ฆ ),
๐‘ฅ โˆˆ๐‘…
๐‘ฆ โˆˆ๐‘…
we have,
๐‘ฅ + ๐‘ฆ = (๐‘ฅ + ๐‘ฆ , ๐‘ฅ + ๐‘ฆ โ€ฆ , ๐‘ฅ + ๐‘ฆ )
and
๐‘Ÿ โˆ™ ๐‘ฅ = ๐‘ฅ = (๐‘Ÿ๐‘ฅ , ๐‘Ÿ๐‘ฅ , โ€ฆ , ๐‘Ÿ๐‘ฅ )]
Exercise โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
1. Let ๐‘… be a field. Let ๐‘‰ = {๐‘“ ๐‘“ โˆถ ๐‘… โŸถ ๐‘… be a ring homomorphism} show that ๐‘‰ is a
vector space over ๐‘….
2. Let ๐‘€ be a left R-module. Define (๐‘š , ๐‘Ÿ) โŸถ ๐‘Ÿ๐‘š for each ๐‘š โˆˆ ๐‘€ and ๐‘Ÿ โˆˆ ๐‘… as a mapping
from ๐‘€ × ๐‘… to ๐‘€. Show that ๐‘€ is a right module.
2.
Let ๐‘€ be an R-module. For ๐‘ฅ โˆˆ ๐‘€, show that {๐‘Ÿ โˆˆ ๐‘… / ๐‘Ÿ๐‘ฅ = 0} is a left ideal in ๐‘….
โ€ขโ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
1.2 SUBMODULES :
Definition 1.2.1: Let ๐‘€ be an R-module. A non empty subset ๐‘ of an R-module ๐‘€ is called
R-submodule (or submodule) of ๐‘€ if
(i)
๐‘Žโˆ’๐‘ โˆˆ๐‘,
for all ๐‘Ž, ๐‘ โˆˆ ๐‘
(ii)
๐‘Ÿโˆ™๐‘Ž โˆˆ๐‘,
for all ๐‘Ÿ โˆˆ ๐‘…, ๐‘Ž โˆˆ ๐‘
Algebra
Page No. 127
Remark 1.2.2 :
(i)
Not every subset of an R-module ๐‘€ is a submodule of ๐‘€.
(ii) If ๐‘ is a R-submodule of an R-module ๐‘€ then โŒฉ๐‘, +โŒช is a (normal) subgroup of โŒฉ๐‘€, +โŒช
which is closed under scalar multiplication.
(iii) If ๐‘ is a R-submodule of an R-module of ๐‘€, then ๐‘ itself is a R-module.
(iv) {0} and ๐‘€ are trivial submodule of an R-module ๐‘€.
Examples 1.2.3 :
1.
Let ๐‘… be a ring. Then we know that the ring ๐‘… is an R-module. Any left ideal ๐ผ of ๐‘… is a
R-submodule.
2.
Let ๐‘€ be any R-module. Let ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ โˆˆ ๐‘€ (๐‘› is finite). Then the set
๐‘=
n
โˆ‘
๐‘Ÿ ๐‘ฅ / ๐‘Ÿ โˆˆ๐‘…
i=1
is a submodule of ๐‘€.
Solution : Let ๐‘Ž, ๐‘ โˆˆ ๐‘ โŸน ๐‘Ž =
n
โˆ‘
๐‘Ÿ ๐‘ฅ and ๐‘ =
i=1
n
โˆ‘
๐‘Ÿโ€ฒ ๐‘ฅ
i=1
where ๐‘Ÿ , ๐‘Ÿโ€ฒ โˆˆ ๐‘….
(i)
๐‘Žโˆ’๐‘ =
n
โˆ‘
๐‘Ÿ ๐‘ฅ โˆ’
i=1
Hence,
n
โˆ‘
๐‘Ÿโ€ฒ ๐‘ฅ
i=1
๐‘Žโˆ’๐‘ =
n
โˆ‘
(๐‘Ÿ โˆ’ ๐‘Ÿ ) ๐‘ฅ
i=1
as
๐‘Ÿ โˆ’๐‘Ÿ โˆˆ๐‘…,
for each i, we get
๐‘Žโˆ’๐‘ โˆˆ๐‘
(ii) ๐‘Ÿ โˆ™ ๐‘Ž = ๐‘Ÿ โˆ™
n
โˆ‘
๐‘Ÿ ๐‘ฅ
i=1
Hence, ๐‘Ÿ โˆ™ ๐‘Ž =
n
โˆ‘
(๐‘Ÿ โˆ™ ๐‘Ÿ ) ๐‘ฅ
i=1
as
๐‘Ÿ, ๐‘Ÿ โˆˆ ๐‘… ,
for each i, we get
๐‘Ÿโˆ™๐‘Ž โˆˆ๐‘
Thus, for any ๐‘Ž, ๐‘ โˆˆ ๐‘ and ๐‘Ÿ โˆˆ ๐‘…, we have,
๐‘Žโˆ’๐‘ โˆˆ๐‘
and
๐‘Ÿ โˆ™ ๐‘Ž โˆˆ ๐‘.
Hence, N is a submodule of R-module M.
Algebra
Page No. 128
Remarks 1.2.4 :
(i)
As a special case for example 2 we get for any R-module M, the set
๐‘…๐‘ฅ = {๐‘Ÿ๐‘ฅ / ๐‘Ÿ โˆˆ ๐‘…}
is a R-module of M, for any ๐‘ฅ โˆˆ ๐‘….
(ii) If 1 โˆˆ ๐‘…, then the submodule Rx will contains the element x as ๐‘ฅ = 1 โˆ™ ๐‘ฅ.
Example 1.2.5 : Let ๐‘€ be an R-module and ๐‘ฅ โˆˆ ๐‘€.
Define
๐‘ = {๐‘Ÿ๐‘ฅ + ๐‘›๐‘ฅ / ๐‘Ÿ โˆˆ ๐‘… ๐‘Ž๐‘›๐‘‘ ๐‘› โˆˆ ๐‘}.
Then, ๐‘ is a R-submodule of ๐‘€ containing ๐‘ฅ.
Solution : Obviously, โŒฉ๐‘, +โŒช is a (abelian) subgroup of โŒฉ๐‘€, +โŒช.
Hence, only to check that ๐‘Ž(๐‘Ÿ๐‘ฅ + ๐‘›๐‘ฅ) โˆˆ ๐‘ for any ๐‘Ž โˆˆ ๐‘… and (๐‘Ÿ๐‘ฅ + ๐‘›๐‘ฅ) โˆˆ ๐‘.
Case I : ๐‘› > 0
๐‘Ž (๐‘Ÿ๐‘ฅ + ๐‘›๐‘ฅ) = ๐‘Ž [ ๐‘Ÿ๐‘ฅ + (๐‘ฅ + ๐‘ฅ + โ‹ฏ + ๐‘ฅ ๐‘› ๐‘ก๐‘–๐‘š๐‘’๐‘ )]
= ๐‘Ž(๐‘Ÿ๐‘ฅ) + (๐‘Ž๐‘ฅ + ๐‘Ž๐‘ฅ + โ‹ฏ + ๐‘Ž๐‘ฅ ๐‘› ๐‘ก๐‘–๐‘š๐‘’๐‘ )] ... by the definition of module
= (๐‘Ž๐‘Ÿ)๐‘ฅ + (๐‘Ž + ๐‘Ž + โ‹ฏ + ๐‘Ž ๐‘› ๐‘ก๐‘–๐‘š๐‘’๐‘ )๐‘ฅ ]
... by the definition of module
= [๐‘Ž๐‘Ÿ + (๐‘Ž + ๐‘Ž + โ‹ฏ + ๐‘Ž ๐‘› ๐‘ก๐‘–๐‘š๐‘’๐‘ )] ๐‘ฅ
... by the definition of module
โ€ฆโ€ฆ. where ๐‘ข = [๐‘Ž๐‘Ÿ + (๐‘Ž + ๐‘Ž + โ‹ฏ + ๐‘Ž ๐‘› ๐‘ก๐‘–๐‘š๐‘’๐‘ )]
=๐‘ขโˆ™๐‘ฅ
As ๐‘ข โˆˆ ๐‘…, we get ๐‘Ž (๐‘Ÿ๐‘ฅ + ๐‘›๐‘ฅ) โˆˆ ๐‘.
Case II : ๐‘› < 0.
๐‘Ž (๐‘Ÿ๐‘ฅ + ๐‘›๐‘ฅ) = ๐‘Ž [ ๐‘Ÿ๐‘ฅ + ((โˆ’๐‘ฅ) + (โˆ’๐‘ฅ) + โ‹ฏ + (โˆ’๐‘ฅ) ๐‘› ๐‘ก๐‘–๐‘š๐‘’๐‘ )]
= ๐‘Ž(๐‘Ÿ๐‘ฅ) + ๐‘Ž (โˆ’๐‘ฅ) + ๐‘Ž (โˆ’๐‘ฅ) + โ‹ฏ + ๐‘Ž (โˆ’๐‘ฅ) ๐‘› ๐‘ก๐‘–๐‘š๐‘’๐‘ )
= (๐‘Ž๐‘Ÿ)๐‘ฅ + (โˆ’๐‘Ž) ๐‘ฅ + (โˆ’๐‘Ž) ๐‘ฅ + โ‹ฏ + (โˆ’๐‘Ž) ๐‘ฅ ๐‘› ๐‘ก๐‘–๐‘š๐‘’๐‘ )๐‘ฅ ]
... by the property of the module Theorem 1.1.4
= [(๐‘Ž๐‘Ÿ) + (โˆ’๐‘Ž) + (โˆ’๐‘Ž) + โ‹ฏ + (โˆ’๐‘Ž)] ๐‘ฅ... by the definition of module
=๐‘กโˆ™๐‘ฅ
โ€ฆโ€ฆ. where ๐‘ก = ๐‘Ž๐‘Ÿ + [(โˆ’๐‘Ž) + (โˆ’๐‘Ž) + โ‹ฏ + (โˆ’๐‘Ž) (๐‘› ๐‘ก๐‘–๐‘š๐‘’๐‘ )]
As ๐‘ก โˆˆ ๐‘… we get ๐‘Ž (๐‘Ÿ๐‘ฅ + ๐‘›๐‘ฅ) โˆˆ ๐‘ when n < 0.
Case III : ๐‘› = 0
๐‘Ž (๐‘Ÿ๐‘ฅ + ๐‘›๐‘ฅ) = ๐‘Ž [ ๐‘Ÿ๐‘ฅ + 0 โˆ™ ๐‘ฅ]
= ๐‘Ž [ ๐‘Ÿ๐‘ฅ + 0]
โ€ฆ since n = 0
โ€ฆ since 0 โˆ™ ๐‘ฅ = 0
= ๐‘Ž (๐‘Ÿ๐‘ฅ) + ๐‘Ž โˆ™ 0
= (๐‘Ž๐‘Ÿ)๐‘ฅ + 0 โˆ™ ๐‘ฅ โˆˆ ๐‘
โ€ฆ as ๐‘Ž๐‘Ÿ โˆˆ ๐‘… and 0 โˆˆ ๐‘
= (๐‘Ž๐‘Ÿ)๐‘ฅ + 0
Algebra
Page No. 129
Thus, from all the cases we get ๐‘Ž (๐‘Ÿ๐‘ฅ + ๐‘›๐‘ฅ) โˆˆ ๐‘.
Hence, ๐‘ is a R-submodule of the module ๐‘€.
Now selecting ๐‘Ÿ = 0 and ๐‘› = 1 (1 โˆˆ ๐‘) we get
0โˆ™๐‘ฅ+1โˆ™๐‘ฅ =๐‘ฅ โˆˆ๐‘
Thus, the R-submodule ๐‘ contains the element ๐‘ฅ.
Remarks 1.2.6:
(1) If ๐‘˜ is a submodule of ๐‘€ containing ๐‘ฅ, then ๐‘ โІ ๐พ. For any ๐‘Ÿ โˆˆ ๐‘…, ๐‘Ÿ๐‘ฅ โˆˆ ๐พ and for any
๐‘› โˆˆ ๐‘,
๐‘›๐‘ฅ = ๐‘ฅ + ๐‘ฅ + โ‹ฏ + ๐‘ฅ (๐‘› ๐‘ก๐‘–๐‘š๐‘’๐‘ ) โˆˆ ๐พ,
K being a submodule of ๐‘€.
But then (๐‘Ÿ๐‘ฅ + ๐‘›๐‘ฅ) โˆˆ ๐พ for any ๐‘Ÿ โˆˆ ๐‘… and ๐‘› โˆˆ ๐‘.
Hence, ๐‘ โІ ๐พ.
Thus, ๐‘ is the smallest submodule of ๐‘€ containing ๐‘ฅ. Generally we denote ๐‘ by โŒฉ๐‘ฅโŒช.
(2) If 1 โˆˆ ๐‘…, then for ๐‘Ÿ โˆˆ ๐‘… and ๐‘› โˆˆ ๐‘
๐‘Ÿ๐‘ฅ + ๐‘›๐‘ฅ = { ๐‘Ÿ + [1 + โ€ฆ + 1(๐‘› ๐‘ก๐‘–๐‘š๐‘’๐‘ ) ] } ๐‘ฅ
= ๐‘ก๐‘ฅ
where ๐‘ก = ๐‘Ÿ + (1 + โ€ฆ + 1) ๐‘› times
as ๐‘ก โˆˆ ๐‘… we get ๐‘Ÿ๐‘ฅ + ๐‘›๐‘ฅ โˆˆ ๐‘…๐‘ฅ
Hence, ๐‘ โІ ๐‘…๐‘ฅ. But ๐‘ฅ โˆˆ ๐‘ implies ๐‘…๐‘ฅ โІ ๐‘.
Thus, ๐‘ = ๐‘…๐‘ฅ = โŒฉ๐‘ฅโŒช;
if 1 โˆˆ ๐‘….
Example 1.2.7 : Let M be an R-module. Define
๐‘…๐‘€ =
n
โˆ‘
๐‘Ÿ ๐‘š / ๐‘Ÿ โˆˆ ๐‘…, ๐‘š โˆˆ ๐‘€ ๐‘Ž๐‘›๐‘‘ ๐‘› ๐‘–๐‘  ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’
i=1
Then RM is a submodule of M.
Solution : Let ๐‘Ž, ๐‘ โˆˆ ๐‘…๐‘€ and ๐‘Ÿ โˆˆ ๐‘….
Then,
๐‘Ž=
n
โˆ‘
๐‘Ÿ ๐‘š,
๐‘Ÿ โˆˆ ๐‘…, ๐‘š โˆˆ ๐‘€ and n is finite.
๐‘  ๐‘ก,
๐‘  โˆˆ ๐‘…, ๐‘ก โˆˆ ๐‘€ and k is finite.
i=1
and
๐‘=
k
โˆ‘
i=1
Algebra
Page No. 130
(i)
๐‘Žโˆ’๐‘ =
n
โˆ‘
๐‘Ÿ ๐‘š โˆ’
i=1
k
โˆ‘
๐‘  ๐‘ก
i=1
= ๐‘Ÿ ๐‘š + ๐‘Ÿ ๐‘š + โ‹ฏ + ๐‘Ÿ ๐‘š + (โˆ’๐‘  ) ๐‘ก + (โˆ’๐‘  ) ๐‘ก + โ‹ฏ + (โˆ’๐‘  ) ๐‘ก
โˆˆ ๐‘…๐‘€
as ๐‘Ÿ โˆˆ ๐‘…, (โˆ’๐‘  ) โˆˆ ๐‘… and the sum contains at most ๐‘› + ๐‘˜ elements.
n
โˆ‘
(ii) ๐‘Ÿ โˆ™ ๐‘Ž = ๐‘Ÿ
๐‘Ÿ ๐‘š
i=1
=
n
โˆ‘
๐‘Ÿ (๐‘Ÿ ๐‘š )
i=1
=
n
โˆ‘
(๐‘Ÿ๐‘Ÿ)๐‘š
i=1
as ๐‘Ÿ ๐‘Ÿ โˆˆ ๐‘… (for each i) we get ๐‘Ÿ โˆ™ ๐‘Ž โˆˆ ๐‘…๐‘€.
Thus, from (i) and (ii), we get, RM is a R-submodule of M.
Theorem 1.2.8 : Let M be an R-module. For any two submodules ๐‘ and
๐‘ of M,
๐‘ + ๐‘ is a submodule of M, containing ๐‘ and ๐‘ both.
Proof :
๐‘ + ๐‘ = {๐‘› + ๐‘› / ๐‘› โˆˆ ๐‘ , ๐‘› โˆˆ ๐‘ }.
Obviously, if ๐‘Ž, ๐‘ โˆˆ ๐‘ + ๐‘
then ๐‘Ž โˆ’ ๐‘ โˆˆ ๐‘ + ๐‘ . (as โŒฉ๐‘ , +โŒช and โŒฉ๐‘ , +โŒช are
subgroups of an abelian group โŒฉ๐‘€, +โŒช).
Hence, โŒฉ๐‘ + ๐‘ , +โŒช is a normal subgroup of โŒฉ๐‘€, +โŒช.
Let
๐‘Ž โˆˆ ๐‘… and ๐‘ฅ โˆˆ ๐‘ + ๐‘ .
๐‘ฅ โˆˆ๐‘ +๐‘
โŸน
๐‘ฅ =๐‘› +๐‘›
๐‘Ž๐‘ฅ = ๐‘Ž (๐‘› + ๐‘› ) = ๐‘Ž ๐‘› + ๐‘Ž๐‘›
for ๐‘› โˆˆ ๐‘ , ๐‘› โˆˆ ๐‘
(Since ๐‘› , ๐‘› โˆˆ ๐‘€ and M is a R-module)
Now, as ๐‘ is a R-submodule, ๐‘Ž ๐‘› โˆˆ ๐‘ .
Similarly,
๐‘ is a R-submodule will imply that ๐‘Ž ๐‘› โˆˆ ๐‘ .
Therefore, ๐‘Ž๐‘› + ๐‘Ž๐‘› โˆˆ ๐‘ + ๐‘ .
Thus,
๐‘Ž๐‘ฅ = ๐‘Ž ๐‘› + ๐‘Ž๐‘› โˆˆ ๐‘ + ๐‘ ,
for any ๐‘Ž โˆˆ ๐‘… and ๐‘ฅ โˆˆ ๐‘ + ๐‘ .
This shows that ๐‘ + ๐‘ is a submodule of an R-module M. ๐‘› โˆˆ ๐‘ can be written as
๐‘› = ๐‘› + 0, 0 โˆˆ ๐‘ .
Hence, ๐‘ โІ ๐‘ + ๐‘ .
Algebra
Page No. 131
Similarly, ๐‘ โІ ๐‘ + ๐‘ .
More generally, we get,
If {๐‘ }, 1 โ‰ค ๐‘– โ‰ค ๐‘˜ is the family of submodules of a module M. Then
k
โˆ‘ Ni = {๐‘ฅ
+ ๐‘ฅ + โ‹ฏ + ๐‘ฅ /๐‘ฅ โˆˆ ๐‘ , 1 โ‰ค ๐‘– โ‰ค ๐‘˜}
i=1
is the smallest submodule of m containing each ๐‘ , (1 โ‰ค ๐‘– โ‰ค ๐‘˜)
Let ๐‘† = {๐‘ฅ + ๐‘ฅ + โ‹ฏ + ๐‘ฅ /๐‘ฅ โˆˆ ๐‘ , 1 โ‰ค ๐‘– โ‰ค ๐‘˜}. Then ๐‘† โ‰  ๐œ™ as ๐‘ โ‰  ๐œ™ โˆ€ ๐‘–.
Proof :
(I) (i) If ๐‘ฅ + ๐‘ฅ + โ‹ฏ + ๐‘ฅ and ๐‘ฆ + ๐‘ฆ + โ‹ฏ + ๐‘ฆ are elements of S, then
(๐‘ฅ + ๐‘ฅ + โ‹ฏ + ๐‘ฅ ) โˆ’ (๐‘ฆ + ๐‘ฆ + โ‹ฏ + ๐‘ฆ )
= (๐‘ฅ โˆ’ ๐‘ฆ ) + (๐‘ฅ โˆ’ ๐‘ฆ ) + โ‹ฏ + (๐‘ฅ โˆ’ ๐‘ฆ )
as (๐‘ฅ โˆ’ ๐‘ฆ ) โˆˆ ๐‘ for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘˜
โˆˆ ๐‘†
(ii)
Further if ๐‘Ÿ โˆˆ ๐‘… and ๐‘ฅ + ๐‘ฅ + โ‹ฏ + ๐‘ฅ โˆˆ ๐‘† then
๐‘Ÿ โˆ™ (๐‘ฅ + ๐‘ฅ + โ‹ฏ + ๐‘ฅ ) = ๐‘Ÿ โˆ™ ๐‘ฅ + ๐‘Ÿ โˆ™ ๐‘ฅ + โ‹ฏ + ๐‘Ÿ โˆ™ ๐‘ฅ
โˆˆ๐‘†,
as ๐‘Ÿ โˆ™ ๐‘ฅ โˆˆ ๐‘ for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘˜
Thus, from (i) and (ii), S is a submodule of M.
(II) Let ๐‘ฅ โˆˆ ๐‘ then ๐‘ฅ = 0 + 0 + โ‹ฏ + 0 + ๐‘ฅ + 0 + โ‹ฏ + 0
โ†‘๐‘–
place
Hence, ๐‘ฅ โˆˆ ๐‘†. This shows that ๐‘ โІ ๐‘†.
Thus, we get, ๐‘ โІ ๐‘†
Hence,
k
โˆ‘ Ni
โˆ€ ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘˜.
โІ ๐‘†, S being a submodule of M.
i=1
(III) Let T is any other submodules o M containing each ๐‘ , 1 โ‰ค ๐‘– โ‰ค ๐‘˜. Then obviously
๐‘† โІ ๐‘‡.
From (I), (II) and (III) we get, S is the smallest submodule of M containing each ๐‘ ,
1 โ‰ค ๐‘– โ‰ค ๐‘˜.
Hence,
๐‘†=
k
โˆ‘ Ni .
i=1
Theorem 8.2.9 :
Let M be an R-module. If ๐‘ and ๐‘ are R-submodules of M, then
๐‘ โˆฉ ๐‘ is a submodule of M.
Proof : As 0 โˆˆ ๐‘ โˆฉ ๐‘ , we get ๐‘ โˆฉ ๐‘ โ‰  ๐œ™.
Algebra
Page No. 132
Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘ โˆฉ ๐‘ then ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘ and ๐‘ is a submodule of M will give ๐‘ฅ โˆ’ ๐‘ฆ โˆˆ ๐‘ .
Similarly,
๐‘ฅ, ๐‘ฆ โˆˆ ๐‘ and ๐‘ is a submodule of M will give ๐‘ฅ โˆ’ ๐‘ฆ โˆˆ ๐‘ .
Thus, ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘ โˆฉ ๐‘ โŸน ๐‘ฅ โˆ’ ๐‘ฆ โˆˆ ๐‘ โˆฉ ๐‘
Again, for any ๐‘Ÿ โˆˆ ๐‘… and any ๐‘ฅ โˆˆ ๐‘ โˆฉ ๐‘ , we get,
๐‘Ÿ๐‘ฅ โˆˆ ๐‘ and ๐‘Ÿ๐‘ฅ โˆˆ ๐‘ , as ๐‘ and ๐‘ are submodules of M.
But then ๐‘Ÿ๐‘ฅ โˆˆ ๐‘ โˆฉ ๐‘ .
Thus,
๐‘ฅโˆ’๐‘ฆ โˆˆ๐‘ โˆฉ๐‘ ,
for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘ โˆฉ ๐‘
and
๐‘Ÿ๐‘ฅ โˆˆ ๐‘ โˆฉ ๐‘ ,
for all ๐‘ฅ โˆˆ ๐‘ โˆฉ ๐‘ , ๐‘Ÿ โˆˆ ๐‘…
Hence, ๐‘ โˆฉ ๐‘ is a R-submodules of M.
Remark 1.2.10 : More generally, any arbitrary intersection of R-submodules of a given Rmodule M is a R-submodules of M.
i.e.
if {๐‘ / ๐›ผ โˆˆ ฮ”} is a family of R-submodules of a given R-submodule M, then
๐‘
is a R โˆ’ submodule of M.
โˆˆฮ”
Theorem 1.2.11 : ๐ด, ๐ต, ๐ถ are R-submodules of an R-submodule ๐‘€ such that ๐ด โІ ๐ต. Then
๐ด + (๐ต โˆฉ ๐ถ) = ๐ต โˆฉ (๐ด + ๐ถ)
Proof :
As ๐ด โІ ๐ต and ๐ด โІ ๐ด + ๐ถ, we get,
๐ด โІ ๐ต โˆฉ (๐ด + ๐ถ)
. . . (1)
Again, ๐ต โˆฉ ๐ถ โІ ๐ต and ๐ต โˆฉ ๐ถ โІ ๐ถ and ๐ถ โІ ๐ด + ๐ถ will imply
๐ต โˆฉ ๐ถ โІ ๐ต โˆฉ (๐ด + ๐ถ)
. . . (2)
From (1) and (2), we get,
๐ด + (๐ต โˆฉ ๐ถ) โІ ๐ต โˆฉ (๐ด + ๐ถ)
. . . (I)
(Since ๐ด and ๐ต โˆฉ ๐ถ are normal subgroups of โŒฉ๐‘€, +โŒช )
Now, let ๐‘ฅ โŠ‚ ๐ต โˆฉ (๐ด + ๐ถ) then ๐‘ฅ โŠ‚ ๐ต and ๐‘ฅ โŠ‚ ๐ด + ๐ถ.
Hence,
๐‘ฅ = ๐‘Ž + ๐‘,
for some ๐‘Ž โŠ‚ ๐ด and ๐‘ โŠ‚ ๐ถ
๐‘Ž โˆˆ ๐ด and
๐ดโІ ๐ต
โŸน
๐‘Žโˆˆ๐ต
๐‘ฅ โˆˆ ๐ต and
๐‘Žโˆˆ ๐ต
โŸน
๐‘ฅ โˆ’ ๐‘Ž โˆˆ ๐ต (Since B is submodule)
Thus, c = x โ€“ a will imply ๐‘ โˆˆ ๐ต. But then x = a + c will imply ๐‘ฅ โˆˆ ๐ด + (๐ต โˆฉ ๐ถ).
As ๐‘Ž โˆˆ ๐ด and ๐‘ โˆˆ ๐ต โˆฉ ๐ถ.
Algebra
Page No. 133
This shows that
๐ต โˆฉ (๐ด + ๐ถ) โІ ๐ด + (๐ต โˆฉ ๐ถ)
. . . (II)
From (I) and (II), we get
๐ด + (๐ต โˆฉ ๐ถ) = ๐ต โˆฉ (๐ด + ๐ถ)
Worked Examples 1.2.12 โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Example 1 : Show by an example that union of any two submodules of an R-module need
not be a submodule.
Solution : Consider Z as Z-module and let
๐‘ =< 2 > = {0, ±2, ±4, โ€ฆ }
๐‘ =< 3 > = {0, ±3, ±6, โ€ฆ }
Then ๐‘ and ๐‘ are submodules of the Z-module Z but ๐‘ โ‹ƒ๐‘ is not a Z-module.
Example 2 : Show that union of any chain of submodules of a given R-module M is a Rsubmodule of M.
Solution : Let ๐‘ โІ ๐‘ โІ โ‹ฏ be any chain of submodules of a given R-module M. to prove
that
U
๐‘ is a submodule of M.
i=1
(i) Obviously,
U
๐‘ โ‰  ๐œ™.
i=1
(ii)
Let ๐‘Ž, ๐‘ โˆˆ
U
๐‘ . Then ๐‘Ž โˆˆ ๐‘ and ๐‘ โˆˆ ๐‘ for some i and j.
i=1
If ๐‘– โ‰ค ๐‘— then ๐‘ โІ ๐‘ and hence ๐‘Ž, ๐‘ โˆˆ ๐‘ is a submodule of M, ๐‘Ž โˆ’ ๐‘ โˆˆ ๐‘ and
hence
๐‘Ž โˆ’๐‘ โˆˆU ๐‘ .
i=1
(iii)
Let ๐‘Ÿ โˆˆ ๐‘… and ๐‘Ž โˆˆ
U
๐‘ implies ๐‘Ž โˆˆ ๐‘ for some i.
i=1
As ๐‘ is a submodule of M, ๐‘Ÿ๐‘Ž โˆˆ ๐‘ and hence ๐‘Ÿ๐‘Ž โˆˆ
U
๐‘.
i=1
From (i), (ii) and (iii) we get
U
๐‘ is a submodule of M.
i=1
Example 3 : Give examples of three R-submodules A, B, C such that
Algebra
Page No. 134
๐ด โˆฉ (๐ต + ๐ถ) โ‰  (๐ด โˆฉ ๐ต) + (๐ด โˆฉ ๐ถ)
Solution : Consider the module โ„( ) over โ„. [โ„( ) is a vector space over the field โ„ ].
Let ๐ต = {(๐‘ฅ, 0)/ ๐‘ฅ โˆˆ โ„}, ๐ถ = {(0, ๐‘ฆ)/ ๐‘ฆ โˆˆ โ„} and
๐ด = {(๐‘ง, ๐‘ง) / ๐‘ง โˆˆ โ„}
Clearly, A, B, C are submodules of the R-module โ„( ) .
Then,
๐ต + ๐ถ = โ„(
)
and
๐ด โˆฉ (๐ต + ๐ถ) = ๐ด โˆฉ โ„(
Now,
๐ด โˆฉ B = (0, 0)
)
=๐ด
and
. . . (I)
๐ด โˆฉ ๐ถ = (0, 0)
Hence,
(๐ด โˆฉ ๐ต) + (๐ด โˆฉ ๐ถ) = {(0, 0)}
. . . (II)
Hence, from (I) and (II), we get,
๐ด โˆฉ (๐ต + ๐ถ) โ‰  (๐ด โˆฉ ๐ต) + (๐ด โˆฉ ๐ถ)
Definition 1.2.13 : Simple Module :
A R-module M is called simple if its only submodules are {0} and M.
Theorem 1.2.14 : Let R be a ring with unity. Let ๐‘€ โ‰  {0}, be am R-module. Then M is
simple iff M = Rx for any ๐‘ฅ โ‰  0 in M.
Proof : Only if part :
Let M be a simple R-module. Let ๐‘ฅ โ‰  0. Then ๐‘…๐‘ฅ = {๐‘Ÿ๐‘ฅ / ๐‘Ÿ โˆˆ ๐‘…} is a submodule of M
containing x. (See remark (1) of example 2).
As ๐‘…๐‘ฅ โ‰  {0} and as M is a simple module, Rx = M. Thus M = Rx for any ๐‘ฅ โ‰  0 in M.
If part :
Let M = Rx for each ๐‘ฅ โ‰  0 in M.
To prove that M is a simple module.
Let N be a nonzero submodule of M. Select any ๐‘ฅ โ‰  0 in N.
Then by assumption, M = Rx. As ๐‘ฅ โˆˆ ๐‘ we get ๐‘…๐‘ฅ โІ ๐‘
i.e.
๐‘€ โІ ๐‘ and hence N = M.
This shows that M is a simple module.
We know that intersection of any number of submodules of a given R-module ๐‘€ is a
submodule of ๐‘€. as any non-empty subset ๐‘† of an R-module ๐‘€ need not be a R-module, we
introduce the concept of submodule generated by ๐‘†.
Algebra
Page No. 135
Let ๐‘† be any nonempty subset of an R-module ๐‘€. The submodule
Definition 1.2.15 :
generated by ๐‘† in ๐‘€ is the smallest submodule of ๐‘€ containing ๐‘†.
This is denoted by โŒฉ๐‘†โŒช.
Thus,
โŒฉ๐‘†โŒช = โ‹‚{๐‘ / ๐‘ is a submodule containing S}
If ๐‘† = {๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ } is a finite set, then โŒฉ๐‘†โŒช is also written as โŒฉ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ โŒช.
An R-module ๐‘€ is called finitely generated if ๐‘€ = โŒฉ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ โŒช for
Definition 1.2.16 :
each ๐‘ฅ โˆˆ ๐‘€, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
The elements ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ are said to generate ๐‘€.
An R-module ๐‘€ is called a cyclic module if ๐‘€ = โŒฉ๐‘ฅโŒช, for some ๐‘ฅ โˆˆ ๐‘€.
Definition 1.2.17 :
Theorem 1.2.18 : Let ๐‘€ be an R-module. Let ๐‘€ = โŒฉ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ โŒช. Then
๐‘€ = {๐‘Ÿ ๐‘ฅ + ๐‘Ÿ ๐‘ฅ + โ‹ฏ + ๐‘Ÿ ๐‘ฅ / ๐‘Ÿ โˆˆ ๐‘…, 1 โ‰ค ๐‘– โ‰ค ๐‘›}
In this case we write ๐‘€ =
n
โˆ‘ Rxi .
i=1
Proof : Let ๐‘† = {๐‘Ÿ ๐‘ฅ + ๐‘Ÿ ๐‘ฅ + โ‹ฏ + ๐‘Ÿ ๐‘ฅ / ๐‘Ÿ โˆˆ ๐‘…, 1 โ‰ค ๐‘– โ‰ค ๐‘›} then S is a submodule of M.
1โˆˆ๐‘…
โŸน
1 โˆ™ ๐‘ฅ โˆˆ ๐‘…๐‘ฅ
Again ๐‘…๐‘ฅ โІ ๐‘†
Hence
๐‘ฅ โˆˆ๐‘†
for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
If ๐‘ is any other submodule containing {๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ } then by the definition of
submodule it follows that
๐‘Ÿ ๐‘ฅ + ๐‘Ÿ ๐‘ฅ + โ‹ฏ + ๐‘Ÿ ๐‘ฅ โˆˆ ๐‘ for ๐‘Ÿ โˆˆ ๐‘…
This will imply ๐‘† โІ ๐‘.
Thus, we have proved that S is the submodule of M containing {๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ }.
Hence, โŒฉ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ โŒช = ๐‘†.
Hence, by data ๐‘€ = ๐‘†.
Remark 1.2.19 : The set of generators of a module need not be unique.
Let ๐‘€ = {๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] / degree of ๐‘“(๐‘ฅ) โ‰ค ๐‘›}. Then M is a vector space over the field.
Then both {1, ๐‘ฅ, ๐‘ฅ , โ€ฆ , ๐‘ฅ } and {1, 1 + ๐‘ฅ, ๐‘ฅ , โ€ฆ , ๐‘ฅ } will generate M.
Algebra
Page No. 136
Definition 1.2.20 : Quotient Modules :
Let ๐‘€ be an R-module and N be a submodule of ๐‘€. Then โŒฉ๐‘, +โŒช is a normal subgroup of
โŒฉ๐‘€, +โŒช and hence consider
= the set of cosets [right / left] of N in M
= {๐‘š + ๐‘› / ๐‘š โˆˆ ๐‘€}
Define addition and the Scalar multiplication on
by
(i) (๐‘š + ๐‘) + (๐‘š + ๐‘) = (๐‘š + ๐‘š ) + ๐‘
(ii) ๐‘Ÿ โˆ™ (๐‘š + ๐‘) = ๐‘Ÿ โˆ™ ๐‘š + ๐‘
for ๐‘š , ๐‘š , ๐‘š โˆˆ ๐‘€ and ๐‘Ÿ โˆˆ ๐‘….
๐‘€
๐‘
Then it can be easily verified that โŒฉ , +, โˆ™โŒช is a R-module. This R-module is called the
quotient module of ๐‘€ by the submodule ๐‘.
Definition 1.2.21 : Submodule Generated by A :
Let ๐‘€ be an R-module and let ๐ด โІ ๐‘€. The smallest submodule of ๐‘€ containing the set ๐ด
is called the submodule generated by ๐ด and is denoted by โŒฉ๐ดโŒช. Thus,
โŒฉ๐ดโŒช = โ‹‚ {๐‘ / ๐‘ is a submodule of M such that ๐ด โІ ๐‘}
. . . (1)
As ๐‘€ is a submodule of ๐‘€ containing ๐ด the family of sets representing R.H.S. of (1) is
non empty.
1.3 Homomorphism :
Definition 1.3.1 : Let ๐‘€ and ๐‘ be R-modules. A mapping ๐‘“: ๐‘€ โŸถ ๐‘ is called Rhomorphism or a module homorphism if it satisfy the following conditions.
(i)
๐‘“(๐‘ฅ + ๐‘ฆ) = ๐‘“(๐‘ฅ) + ๐‘“(๐‘ฆ)
(ii) ๐‘“(๐‘Ÿ๐‘ฅ) = ๐‘Ÿ โˆ™ ๐‘“(๐‘ฅ)
for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€ and ๐‘Ÿ โˆˆ ๐‘….
Remarks 1.3.2:
(i)
If ๐‘“: ๐‘€ โŸถ ๐‘ is a module homorphism, then f(0) = 0, ๐‘“(โˆ’๐‘ฅ) = โˆ’ ๐‘“(๐‘ฅ) and hence
๐‘“(๐‘ฅ โˆ’ ๐‘ฆ) = ๐‘“(๐‘ฅ) โˆ’ ๐‘“(๐‘ฆ) ,
for ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€.
(ii)
The collection of all R-homorphisms ๐‘“: ๐‘€ โŸถ ๐‘ is denoted by Hom (M, N).
(iii)
A R-homorphism ๐‘“: ๐‘€ โŸถ ๐‘€ is called an endomorphism on ๐‘€ and the set of
Algebra
Page No. 137
endomorphism on ๐‘€ is denoted by ๐‘’๐‘›๐‘‘ (๐‘€, ๐‘€).
Examples 1.3.3 :
Ex 1. Let ๐‘€ and ๐‘ be R-modules and define ๐‘“: ๐‘€ โŸถ ๐‘ by f(m) = 0 for each ๐‘š โˆˆ ๐‘€. Then f
is an R-homomorphism and is called a zero homorphism.
Ex 2. Let ๐‘€ be an R-module. Define ๐‘– โˆถ ๐‘€ โŸถ ๐‘€ by i(m) = m for each ๐‘š โˆˆ ๐‘€. Then the
identity map is an R-endomorphism.
Ex 3. Let ๐‘… be a commutative ring and let ๐‘€ be an R-module. Fix up any ๐‘Ÿ โˆˆ ๐‘…. Define the
map ๐‘“ โˆถ ๐‘€ โŸถ ๐‘€ by
๐‘“(๐‘š) = ๐‘Ÿ โˆ™ ๐‘š,
for each ๐‘š โˆˆ ๐‘€
Then f is an endomorphism.
Solution : Let ๐‘š , ๐‘š โˆˆ ๐‘€.
Then ๐‘“(๐‘š + ๐‘š ) = ๐‘Ÿ โˆ™ (๐‘š + ๐‘š )
= ๐‘Ÿ๐‘š + ๐‘Ÿ๐‘š
Thus, ๐‘“(๐‘š + ๐‘š ) = ๐‘“(๐‘š ) + ๐‘“(๐‘š )
Again for ๐‘š โˆˆ ๐‘€ and ๐‘Ÿ โˆˆ ๐‘… we get,
๐‘“(๐‘Ÿ ๐‘š ) = ๐‘Ÿ โˆ™ (๐‘Ÿ ๐‘š )
= (๐‘Ÿ โˆ™ ๐‘Ÿ ) ๐‘š
= (๐‘Ÿ โˆ™ ๐‘Ÿ) ๐‘š
... Since R is commutative.
= ๐‘Ÿ โˆ™ (๐‘Ÿ ๐‘š )
= ๐‘Ÿ โˆ™ ๐‘“(๐‘š )
Thus, ๐‘“(๐‘š + ๐‘š ) = ๐‘“(๐‘š ) + ๐‘“(๐‘š )
๐‘“(๐‘Ÿ ๐‘š ) = ๐‘Ÿ โˆ™ ๐‘“(๐‘š )
and
... for all ๐‘š , ๐‘š โˆˆ ๐‘€, ๐‘Ÿ โˆˆ ๐‘…
Hence, f is an R-endomorphism.
Ex 4. Let R be a ring. Consider the module ๐‘… (
1.1.4 problem 4). Define ๐‘“ โˆถ ๐‘…(
)
)
over R and the ring R as an R-module. (See
โŸถ ๐‘… by
๐‘“(๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ) = ๐‘ฅ
for a fixed ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›
Then f is a R-homomorphism.
Solution :
Let (๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ) โˆˆ ๐‘… (
)
and (๐‘ฆ , ๐‘ฆ , โ€ฆ , ๐‘ฆ ) โˆˆ ๐‘…( ) .
Then
๐‘“ [(๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ) + (๐‘ฆ , ๐‘ฆ , โ€ฆ , ๐‘ฆ )] = ๐‘“ [(๐‘ฅ + ๐‘ฆ , ๐‘ฅ + ๐‘ฆ , โ€ฆ , ๐‘ฅ + ๐‘ฆ )]
=๐‘ฅ +๐‘ฆ
Algebra
Page No. 138
= ๐‘“ (๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ) + ๐‘“(๐‘ฆ , ๐‘ฆ , โ€ฆ , ๐‘ฆ )
Further for any ๐‘Ÿ โˆˆ ๐‘… and (๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ) โˆˆ ๐‘…(
)
we get
๐‘“ [๐‘Ÿ โˆ™ (๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ )] = ๐‘“(๐‘Ÿ๐‘ฅ , ๐‘Ÿ๐‘ฅ , โ€ฆ , ๐‘Ÿ๐‘ฅ )
=๐‘Ÿโˆ™๐‘ฅ
= ๐‘Ÿ โˆ™ ๐‘“(๐‘ฅ)
Thus,
๐‘“ [(๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ) + (๐‘ฆ , ๐‘ฆ , โ€ฆ , ๐‘ฆ )] = ๐‘“ (๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ) + ๐‘“(๐‘ฆ , ๐‘ฆ , โ€ฆ , ๐‘ฆ )
๐‘“ [๐‘Ÿ โˆ™ (๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ )] = ๐‘Ÿ โˆ™ ๐‘“(๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ )
and
... for all (๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ), (๐‘ฆ , ๐‘ฆ , โ€ฆ , ๐‘ฆ ) โˆˆ ๐‘…( ) , ๐‘Ÿ โˆˆ ๐‘…
Hence, f is a R-homomorphism.
Ex 5. Let M be R-module and N be R-submodule of M. Define ๐‘“: ๐‘€ โŸถ
by
๐‘“(๐‘š) = ๐‘š + ๐‘
Then f is an epimorphism.
Solution : For ๐‘š , ๐‘š โˆˆ ๐‘€ we get
๐‘“(๐‘š + ๐‘š ) = (๐‘š + ๐‘š ) + ๐‘
= (๐‘š + ๐‘) + (๐‘š + ๐‘)
= ๐‘“(๐‘š ) + ๐‘“(๐‘š )
... by definition of f
... by definition of + in
... by definition of f
Further, for any ๐‘Ÿ โˆˆ ๐‘… and ๐‘š โˆˆ ๐‘€ we get
๐‘“(๐‘Ÿ๐‘š) = ๐‘Ÿ๐‘š + ๐‘
... by definition of f
= ๐‘Ÿ (๐‘š + ๐‘)
... by definition of โˆ™ in
= ๐‘Ÿ ๐‘“(๐‘š)
... by definition of f
Thus,
๐‘“(๐‘š + ๐‘š ) = ๐‘“(๐‘š ) + ๐‘“(๐‘š )
and
๐‘“(๐‘Ÿ๐‘š) = ๐‘Ÿ ๐‘“(๐‘š)
... for all ๐‘š , ๐‘š , ๐‘š โˆˆ ๐‘€, ๐‘Ÿ โˆˆ ๐‘…
Hence, ๐‘“ is a R-homomorphism.
Clearly, ๐‘“ is onto as for ๐‘š + ๐‘ โˆˆ
, we get ๐‘š โˆˆ ๐‘€ and ๐‘“(๐‘š) = ๐‘š + ๐‘.
Thus, f is an epimorphism.
Remark :
(i) This epimorphism ๐‘“: ๐‘€ โŸถ
Algebra
defined by ๐‘“(๐‘š) = ๐‘š + ๐‘ is called a natural or
Page No. 139
canonical homomorphism.
(ii)
of M by the submodule N is always a homomorphic
Any quotient module
image of M under the canonical mapping.
Theorem 1.3.4 : Let M be an R-module and let N be R-submodule of M. The submodules
of the quotient module
are of the form , where U is a submodule of M containing
N.
Let ๐‘“: ๐‘€ โŸถ
Proof :
be the canonical mapping. We know that f is an onto
homomorphism (1.2, example 5). Hence
Let T be an R-submodule of
= ๐‘“(๐‘€) = {๐‘“(๐‘š)/ ๐‘š โˆˆ ๐‘€}.
. Define
๐‘ˆ = {๐‘ฅ โˆˆ ๐‘€ / ๐‘“(๐‘ฅ) โˆˆ ๐‘‡}
Claim 1 : U is a R-submodule of M.
(i)
๐‘ˆ โ‰  ๐œ™ as ๐‘‡ โ‰  ๐œ™.
(ii) Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘ˆ. Then ๐‘“(๐‘ฅ), ๐‘“(๐‘ฆ) โˆˆ ๐‘‡.
As T is a submodule of , ๐‘“(๐‘ฅ) โˆ’ ๐‘“(๐‘ฆ) โˆˆ ๐‘‡.
f being a homomorphism,
๐‘“(๐‘ฅ) โˆ’ ๐‘“(๐‘ฆ) โˆˆ ๐‘‡
โŸน
๐‘“(๐‘ฅ โˆ’ ๐‘ฆ) โˆˆ ๐‘‡
By the definition of U, we get ๐‘ฅ โˆ’ ๐‘ฆ โˆˆ ๐‘ˆ.
(iii) Let ๐‘Ÿ โˆˆ ๐‘… and ๐‘ฅ โˆˆ ๐‘ˆ. Then ๐‘“(๐‘ฅ) โˆˆ ๐‘‡.
f being an homomorphism,
๐‘“(๐‘Ÿ๐‘ฅ) = ๐‘Ÿ ๐‘“(๐‘ฅ)
As ๐‘“(๐‘ฅ) โˆˆ ๐‘‡ and ๐‘Ÿ โˆˆ ๐‘…
๐‘Ÿ โˆ™ ๐‘“(๐‘ฅ) โˆˆ ๐‘‡,
i.e.
T being a submodule of
.
๐‘“(๐‘Ÿ๐‘ฅ) โˆˆ ๐‘‡.
This gives ๐‘Ÿ๐‘ฅ โˆˆ ๐‘ˆ .
Form (i), (ii) and (iii) it follows that U is a R-submodule of M.
Claim 2 : ๐‘ โІ ๐‘ˆ.
Let ๐‘› โˆˆ ๐‘. Then ๐‘“(๐‘›) = ๐‘› + ๐‘ = ๐‘ โˆˆ ๐‘‡. (Since N is the identity element of
Algebra
and T
Page No. 140
is a submodule of
).
But then, by the definition of U, ๐‘› โˆˆ ๐‘ˆ and hence ๐‘ โІ ๐‘ˆ.
Claim 3 : T = f (U)
Let
๐‘ฅ + ๐‘ โˆˆ ๐‘‡.
As
๐‘ฅ โˆˆ ๐‘€ and ๐‘“(๐‘ฅ) = ๐‘ฅ + ๐‘ โˆˆ ๐‘‡, we get ๐‘ฅ โˆˆ ๐‘ˆ.
But this shows ๐‘“(๐‘ฅ) โˆˆ ๐‘“(๐‘ˆ).
Thus,
๐‘ฅ+๐‘ โˆˆ๐‘‡
Hence
๐‘‡ โІ ๐‘“(๐‘ˆ).
As
๐‘“(๐‘ˆ) โІ ๐‘‡,
โŸน
๐‘“(๐‘ฅ) โˆˆ ๐‘‡
โŸน
๐‘“(๐‘ฅ) โˆˆ ๐‘“(๐‘ˆ).
By the definition of U, we get T = f (U).
From claims 1, 2 and 3, for any submodule T of the quotient module M, there exists a
submodule U of the module M, containing N and with f (U) = T.
But ๐‘“ being a canonical mapping, f (U) = U + N.
๐‘‡ = ๐‘“ (๐‘ˆ) โŸน ๐‘‡ = ๐‘ˆ + ๐‘.
Hence,
Thus, any submodule T of
is of the form , where U is a submodule of M containing
N.
This completes the proof.
Definition 1.3.5 : Let ๐‘€ and ๐‘ be R-modules. Let ๐‘“: ๐‘€ โŸถ ๐‘ be a R-homomorphism.
The set
ker ๐‘“ = {๐‘š โˆˆ ๐‘€ / ๐‘“(๐‘š) = 0}
is called the kernel of the homomorphism f and the set
im ๐‘“ = {๐‘“(๐‘š) โˆˆ ๐‘ / ๐‘š โˆˆ ๐‘€}
is called the image of f.
Theorem 1.3.6 : For any module homomorphism ๐‘“: ๐‘€ โŸถ ๐‘, ๐‘˜๐‘’๐‘Ÿ๐‘“ is a submodule of the
module M and im f is a submodule of the module N.
Proof :
(I)
To prove that ๐‘˜๐‘’๐‘Ÿ๐‘“ is a submodule of the module M.
(i)
๐‘˜๐‘’๐‘Ÿ๐‘“ โ‰  ๐œ™ as ๐‘“(0) = 0 implies 0 โˆˆ ๐‘˜๐‘’๐‘Ÿ๐‘“.
(ii)
Let ๐‘š , ๐‘š โˆˆ ๐‘˜๐‘’๐‘Ÿ๐‘“. Then ๐‘“(๐‘š ) = 0, ๐‘“(๐‘š ) = 0.
Algebra
Page No. 141
๐‘“(๐‘š โˆ’ ๐‘š ) = ๐‘“(๐‘š + (โˆ’๐‘š ))
= ๐‘“(๐‘š ) + ๐‘“(โˆ’๐‘š )
... โˆต f is a homomorphism
= ๐‘“(๐‘š ) โˆ’ ๐‘“(๐‘š )
... ๐‘“(โˆ’๐‘ฅ) = โˆ’๐‘“(๐‘ฅ) for all ๐‘ฅ โˆˆ ๐‘€
=0โˆ’0
... โˆต ๐‘š , ๐‘š โˆˆ ๐‘˜๐‘’๐‘Ÿ๐‘“
=0
But ๐‘“(๐‘š โˆ’ ๐‘š ) = 0 implies ๐‘š โˆ’ ๐‘š โˆˆ ๐‘˜๐‘’๐‘Ÿ๐‘“.
Thus, ๐‘š โˆ’ ๐‘š โˆˆ ๐‘˜๐‘’๐‘Ÿ๐‘“, for ๐‘š , ๐‘š โˆˆ ๐‘˜๐‘’๐‘Ÿ๐‘“.
(iii) Let ๐‘š โˆˆ ๐‘˜๐‘’๐‘Ÿ๐‘“ and ๐‘Ÿ โˆˆ ๐‘….
Then,
๐‘“(๐‘Ÿ ๐‘š) = ๐‘Ÿ โˆ™ ๐‘“(๐‘š)
... โˆต f is a homomorphism
=๐‘Ÿโˆ™0
... โˆต ๐‘š โˆˆ ๐‘˜๐‘’๐‘Ÿ๐‘“
=0
... See 1.1.3 theorem 1
Thus, ๐‘“(๐‘Ÿ ๐‘š) = 0 implies ๐‘Ÿ๐‘š โˆˆ ๐‘˜๐‘’๐‘Ÿ๐‘“.
Thus, ๐‘Ÿ๐‘š โˆˆ ๐‘˜๐‘’๐‘Ÿ๐‘“, for ๐‘Ÿ โˆˆ ๐‘… and ๐‘š โˆˆ ๐‘€.
From (i), (ii) and (iii), we get ๐‘˜๐‘’๐‘Ÿ๐‘“ is a R-submodule of M.
(II) To prove that imf is a submodule of N.
(i) ๐‘–๐‘š๐‘“ โ‰  ๐œ™
as ๐‘€ โ‰  ๐œ™.
(ii) Let ๐‘“(๐‘š , ), ๐‘“(๐‘š ) โˆˆ ๐‘–๐‘š ๐‘“.
๐‘“(๐‘š ) โˆˆ ๐‘–๐‘š ๐‘“
โŸน
๐‘š โˆˆ ๐‘€.
๐‘“(๐‘š ) โˆˆ ๐‘–๐‘š ๐‘“
โŸน
๐‘š โˆˆ ๐‘€.
As M is a module, ๐‘š โˆ’ ๐‘š โˆˆ ๐‘€. But then ๐‘“(๐‘š โˆ’ ๐‘š ) โˆˆ ๐‘–๐‘š๐‘“.
๐‘“ being an homomorphism,
๐‘“(๐‘š โˆ’ ๐‘š ) = ๐‘“(๐‘š ) โˆ’ ๐‘“(๐‘š )
Thus, ๐‘“(๐‘š , ), ๐‘“(๐‘š ) โˆˆ ๐‘–๐‘š ๐‘“ will imply ๐‘“(๐‘š ) โˆ’ ๐‘“(๐‘š ) โˆˆ ๐‘–๐‘š ๐‘“
(iii) Let ๐‘“(๐‘š) โˆˆ ๐‘–๐‘š ๐‘“ and ๐‘Ÿ โˆˆ ๐‘…. But then ๐‘Ÿ๐‘š โˆˆ ๐‘€ as ๐‘š โˆˆ ๐‘€, ๐‘Ÿ โˆˆ ๐‘… and M is an Rmodule.
Hence, ๐‘“(๐‘Ÿ๐‘š) โˆˆ ๐‘–๐‘š ๐‘“.
As f is a homomorphism,
๐‘“(๐‘Ÿ๐‘š) = ๐‘Ÿ ๐‘“(๐‘š).
Thus, given ๐‘“(๐‘š) โˆˆ ๐‘–๐‘š ๐‘“ and ๐‘Ÿ โˆˆ ๐‘… we get
๐‘Ÿ ๐‘“(๐‘š) โˆˆ ๐‘–๐‘š ๐‘“.
From (i), (ii) and (iii), we get, ๐‘–๐‘š ๐‘“ is a R-submodule of N.
Algebra
Page No. 142
Theorem 1.3.7 : Let ๐‘€ and ๐‘ be R-modules and let ๐‘“: ๐‘€ โŸถ ๐‘ be R-homomorphism. Then
๐‘“ is one-one iff ๐‘˜๐‘’๐‘Ÿ๐‘“ = {0}.
Proof : Only if part :
Let f be one-one.
To prove that ker ๐‘“ = {0}. Let ๐‘ฅ โˆˆ ker ๐‘“. Then
๐‘ฅ โˆˆ ker ๐‘“
โŸน
๐‘“(๐‘ฅ) = 0
โŸน
๐‘“(๐‘ฅ) = ๐‘“(0)
โŸน ๐‘ฅ=0
... as ๐‘“ is one-one.
Thus, ker ๐‘“ = {0}.
If part :
Let ๐‘“: ๐‘€ โŸถ ๐‘ be R-homomorphism such that ker ๐‘“ = {0}.
To prove that f is one-one.
Let ๐‘“(๐‘ฅ) = ๐‘“(๐‘ฆ) for some ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€.
๐‘“(๐‘ฅ) = ๐‘“(๐‘ฆ)
โŸน ๐‘“(๐‘ฅ) โˆ’ ๐‘“(๐‘ฆ) = 0
โŸน
๐‘“(๐‘ฅ โˆ’ ๐‘ฆ) = 0
โŸน
๐‘ฅ โˆ’ ๐‘ฆ โˆˆ ๐‘˜๐‘’๐‘Ÿ ๐‘“
โŸน
๐‘ฅ โˆ’ ๐‘ฆ โˆˆ {0}
โŸน
๐‘ฅโˆ’๐‘ฆ =0
โŸน
๐‘ฅ=๐‘ฆ
Thus, ๐‘“(๐‘ฅ) = ๐‘“(๐‘ฆ) โŸน
๐‘ฅ=๐‘ฆ
Hence, f is one-one.
Definition 1.3.8 : Let ๐‘“ โˆถ ๐‘€ โŸถ ๐‘ be a module homomorphism. If ๐‘“ is both one-one and
onto we say ๐‘“ is an R-isomorphism or module isomorphism.
Remark 1.3.9 :
(i)
If ๐‘“ โˆถ ๐‘€ โŸถ ๐‘€ is an module isomorphism then ๐‘“
โˆถ ๐‘ โŸถ ๐‘€ is also a module
isomorphism.
(ii) Any two R-modules M and N are said to be isomorphic if there exists an module
isomorphism ๐‘“: ๐‘€ โŸถ ๐‘. In this case we write ๐‘€ โ‰… ๐‘.
(iii) The relation โ‰… (being isomorphic) defined on the set of all R-modules is an
equivalence relation.
Algebra
Page No. 143
Theorem 1.3.10 : Let ๐‘€ be a simple R-module. Any non zero homomorphism defined on ๐‘€
is an isomorphism.
Proof :Let ๐‘“: ๐‘€ โŸถ ๐‘€ be R-homomorphism where ๐‘€ is a simple R-module.
To prove that ๐‘“ is an isomorphism.
(I)
We know that ๐‘˜๐‘’๐‘Ÿ ๐‘“ is a sub module of ๐‘€.
๐‘€ being simple, ๐‘˜๐‘’๐‘Ÿ ๐‘“ = {0} or ๐‘˜๐‘’๐‘Ÿ ๐‘“ = ๐‘€.
As f is a non zero homomorphism, ๐‘˜๐‘’๐‘Ÿ๐‘“ โ‰  ๐‘€.
Therefore, ๐‘˜๐‘’๐‘Ÿ ๐‘“ = {0}.
But then ๐‘“ is one-one.
(see Theorem 2).
(II) By Theorem 1, ๐‘–๐‘š ๐‘“ is a submodule of M.
๐‘€ being simple, ๐‘–๐‘š ๐‘“ = {0} or ๐‘–๐‘š ๐‘“ = ๐‘€.
As f is a non zero homomorphism, ๐‘–๐‘š ๐‘“ โ‰  {0}.
Therefore, ๐‘–๐‘š ๐‘“ = ๐‘€.
But then in this case ๐‘“ is onto.
From (I) and (II), we get the non zero homomorphism is both one-one and onto.
Hence, ๐‘“ is an isomorphism.
โ€ข
Shurโ€™s Lemma :
Theorem 1.3.11 : Let ๐‘€ be a simple R-module. Then
๐ป๐‘œ๐‘š (๐‘€, ๐‘€) = {๐‘“: ๐‘€ โŸถ ๐‘€ / ๐‘“ is a R โˆ’ homomorphism}
is a division ring.
Proof :
(I) To prove ๐ป๐‘œ๐‘š (๐‘€, ๐‘€) is a ring under โ€˜ + โ€™ and โ€˜ โˆ™ โ€™ defined by
(๐‘“ + ๐‘”)(๐‘ฅ) = ๐‘“(๐‘ฅ) + ๐‘”(๐‘ฅ) ,
โˆ€ ๐‘ฅโˆˆ๐‘€
(๐‘“ โˆ™ ๐‘”)(๐‘ฅ) = ๐‘“ [๐‘”(๐‘ฅ)] ,
and
โˆ€ ๐‘ฅโˆˆ๐‘€
for all ๐‘“, ๐‘” โˆˆ ๐ป๐‘œ๐‘š (๐‘€, ๐‘€).
(i)
๐‘“ + ๐‘” โˆˆ ๐ป๐‘œ๐‘š (๐‘€, ๐‘€),
for ๐‘“, ๐‘” โˆˆ ๐ป๐‘œ๐‘š (๐‘€, ๐‘€)
๐‘“: ๐‘€ โŸถ ๐‘€ and ๐‘”: ๐‘€ โŸถ ๐‘€. Hence, ๐‘“ + ๐‘” โˆถ ๐‘€ โŸถ ๐‘€ and is well defined map.
Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€. Then, we have
(๐‘“ + ๐‘”)(๐‘ฅ + ๐‘ฆ) = ๐‘“(๐‘ฅ + ๐‘ฆ) + ๐‘”(๐‘ฅ + ๐‘ฆ)
.... By definition of ๐‘“ + ๐‘”.
= [๐‘“(๐‘ฅ) + ๐‘“(๐‘ฆ)] + [๐‘”(๐‘ฅ) + ๐‘”(๐‘ฆ)]
.... Since ๐‘“ and ๐‘” are R-homomorphism.
= [๐‘“(๐‘ฅ) + ๐‘”(๐‘ฅ)] + [๐‘“(๐‘ฆ) + ๐‘”(๐‘ฆ)]
Algebra
Page No. 144
.... Since < ๐‘€, +> is an abelian group.
= (๐‘“ + ๐‘”)(๐‘ฅ) + (๐‘“ + ๐‘”)(๐‘ฆ)
.... By definition of ๐‘“ + ๐‘”.
Again, let ๐‘Ÿ โˆˆ ๐‘… and ๐‘ฅ โˆˆ ๐‘€.
(๐‘“ + ๐‘”)(๐‘Ÿ๐‘ฅ) = ๐‘“ (๐‘Ÿ๐‘ฅ) + ๐‘” (๐‘Ÿ๐‘ฅ)
.... By definition of ๐‘“ + ๐‘”.
= ๐‘Ÿ [๐‘“(๐‘ฅ)] + ๐‘Ÿ [๐‘”(๐‘ฅ)] .... Since ๐‘“ and ๐‘” are R-homomorphism.
= ๐‘Ÿ [๐‘“(๐‘ฅ) + ๐‘”(๐‘ฅ)]
= ๐‘Ÿ (๐‘“ + ๐‘”) (๐‘ฅ)
Thus, we get,
(๐‘“ + ๐‘”)(๐‘ฅ + ๐‘ฆ) = (๐‘“ + ๐‘”)(๐‘ฅ) + (๐‘“ + ๐‘”)(๐‘ฆ)
and
(๐‘“ + ๐‘”)(๐‘Ÿ๐‘ฅ) = ๐‘Ÿ (๐‘“ + ๐‘”) (๐‘ฅ)
for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€ and ๐‘Ÿ โˆˆ ๐‘….
This shows that (๐‘“ + ๐‘”) is a R- homomorphism and hence (๐‘“ + ๐‘”) โˆˆ ๐ป๐‘œ๐‘š (๐‘€, ๐‘€), for
๐‘“, ๐‘” โˆˆ ๐ป๐‘œ๐‘š (๐‘€, ๐‘€).
(ii) To prove ๐‘“ โˆ˜ ๐‘” โˆˆ ๐ป๐‘œ๐‘š (๐‘€, ๐‘€) for ๐‘“, ๐‘” โˆˆ ๐ป๐‘œ๐‘š (๐‘€, ๐‘€)
๐‘“ โˆ˜ ๐‘” is well defined map. ๐‘“ + ๐‘” โˆถ ๐‘€ โŸถ ๐‘€.
Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€. Then we have
(๐‘“ โˆ˜ ๐‘”)(๐‘ฅ + ๐‘ฆ) = ๐‘“[๐‘”(๐‘ฅ + ๐‘ฆ)]
.... By definition of ๐‘“ โˆ˜ ๐‘”.
= ๐‘“ [๐‘”(๐‘ฅ) + ๐‘”(๐‘ฆ)]
.... Since ๐‘” is a homomorphism.
= ๐‘“ [๐‘”(๐‘ฅ)] + ๐‘“ [๐‘”(๐‘ฆ)]
.... Since ๐‘“ is a homomorphism.
= (๐‘“ โˆ˜ ๐‘”)(๐‘ฅ) + (๐‘“ โˆ˜ ๐‘”)(๐‘ฆ)
.... By definition of ๐‘“ + ๐‘”.
Again for any ๐‘Ÿ โˆˆ ๐‘… and ๐‘“ โˆˆ ๐ป๐‘œ๐‘š (๐‘€, ๐‘€), we get
(๐‘“ โˆ˜ ๐‘”)(๐‘Ÿ๐‘ฅ) = ๐‘“ [๐‘” (๐‘Ÿ๐‘ฅ)]
.... By definition of ๐‘“ + ๐‘”.
= ๐‘“ [๐‘Ÿ โˆ™ ๐‘”(๐‘ฅ)]
.... Since ๐‘” is a R-homomorphism.
= ๐‘Ÿ โˆ™ [๐‘“(๐‘”(๐‘ฅ))]
.... Since ๐‘“ is a R-homomorphism.
= ๐‘Ÿ (๐‘“ โˆ˜ ๐‘”) (๐‘ฅ)
Thus, we get
(๐‘“ โˆ˜ ๐‘”)(๐‘ฅ + ๐‘ฆ) = (๐‘“ โˆ˜ ๐‘”)(๐‘ฅ) + (๐‘“ โˆ˜ ๐‘”)(๐‘ฆ)
and
(๐‘“ โˆ˜ ๐‘”)(๐‘Ÿ๐‘ฅ) = ๐‘Ÿ[ (๐‘“ โˆ˜ ๐‘”) (๐‘ฅ)]
for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€ and ๐‘Ÿ โˆˆ ๐‘….
Hence, (๐‘“ โˆ˜ ๐‘”) โˆˆ ๐ป๐‘œ๐‘š (๐‘€, ๐‘€).
(iii) < ๐ป๐‘œ๐‘š (๐‘€, ๐‘€), +> is an abelian group where the zero mapping 0: ๐‘€ โŸถ ๐‘€ defined by
0(๐‘ฅ) = 0 will be the ideal element w. r. t. โ€˜+โ€™ in ๐ป๐‘œ๐‘š (๐‘€, ๐‘€).
Let ๐‘“ โˆˆ ๐ป๐‘œ๐‘š (๐‘€, ๐‘€).
Algebra
Page No. 145
Define (โ€“ ๐‘“) โˆถ ๐‘€ โŸถ ๐‘€ by
(โˆ’๐‘“)(๐‘ฅ) = โˆ’[๐‘“(๐‘ฅ],
โˆ€ ๐‘ฅโˆˆ๐‘€
Then, it can be easily verified that โ€“ ๐‘“ is a R-homomorphism defined on M and (โˆ’๐‘“)
will be additive inverse of f in ๐ป๐‘œ๐‘š (๐‘€, ๐‘€).
(iv) (๐‘“ โˆ˜ ๐‘”) โˆ˜ โ„Ž = ๐‘“ โˆ˜ (๐‘” โˆ˜ โ„Ž) ,
โˆ€ ๐‘“, ๐‘”, โ„Ž โˆˆ ๐ป๐‘œ๐‘š (๐‘€, ๐‘€)
(v) Let ๐‘“, ๐‘”, โ„Ž โˆˆ ๐ป๐‘œ๐‘š (๐‘€, ๐‘€) let ๐‘ฅ โˆˆ ๐‘€, then
๐‘“ โˆ˜ [๐‘” + โ„Ž] (๐‘ฅ) = ๐‘“ [(๐‘” + โ„Ž) (๐‘ฅ)]
= ๐‘“ [๐‘”(๐‘ฅ) + โ„Ž(๐‘ฅ)]
= ๐‘“ [๐‘”(๐‘ฅ)] + ๐‘“ [โ„Ž(๐‘ฅ)]
= (๐‘“ โˆ˜ ๐‘”)(๐‘ฅ) + (๐‘“ โˆ˜ โ„Ž)(๐‘ฅ)]
= [(๐‘“ โˆ˜ ๐‘”) + (๐‘“ โˆ˜ โ„Ž)](๐‘ฅ),
โˆ€ ๐‘ฅ โˆˆ๐‘€
Hence ,
๐‘“ โˆ˜ [๐‘” + โ„Ž] = (๐‘“ โˆ˜ ๐‘”) + (๐‘“ โˆ˜ โ„Ž)
Similarly,
(๐‘” + โ„Ž) โˆ˜ ๐‘“ = (๐‘” โˆ˜ ๐‘“) + (โ„Ž โˆ˜ ๐‘“)
โˆ€ ๐‘“, ๐‘”, โ„Ž โˆˆ ๐ป๐‘œ๐‘š (๐‘€, ๐‘€)
From (i), (ii), (iii) and (iv), we get, โŒฉ๐ป๐‘œ๐‘š (๐‘€, ๐‘€), +,โˆ˜โŒช is a ring.
(II) The identity mapping ๐‘–: ๐‘€ โŸถ ๐‘€ defined by
๐‘–(๐‘ฅ) = ๐‘ฅ,
for all ๐‘ฅ โˆˆ ๐‘€
will be the unity element in ๐ป๐‘œ๐‘š (๐‘€, ๐‘€).
(III) Let ๐œ“ be any non-zero element in ๐ป๐‘œ๐‘š (๐‘€, ๐‘€).
i.e. ๐œ“ is a non-zero R-homomorphism from ๐‘€ into ๐‘€, where ๐‘€ is a simple module.
Hence, ๐œ“ must be a bijective and hence ๐œ“ is an isomorphism.
But this will show that ๐œ“
โˆˆ ๐ป๐‘œ๐‘š (๐‘€, ๐‘€).
Thus, we have proved that, any non-zero R-homomorphism defined on M will have a
multiplicative inverse in ๐ป๐‘œ๐‘š (๐‘€, ๐‘€).
From (I), (II) and (III), we get, ๐ป๐‘œ๐‘š (๐‘€, ๐‘€) is a division ring.
Theorem 1.3.12 : Let M be a R-module and ๐‘ฅ โˆˆ ๐‘€ such that ๐‘Ÿ๐‘ฅ = 0, ๐‘Ÿ โˆˆ ๐‘… implies ๐‘Ÿ = 0.
Then ๐‘…๐‘ฅ โ‰… ๐‘… as R-module.
Proof :
We know that Rx is a R-submodule and hence Rx is a R-module (See 2.2 example
2). Further R is also an R-module (See 1.2 example 1).
Define ๐‘“: ๐‘… โŸถ ๐‘…๐‘ฅ by ๐‘“(๐‘Ÿ) = ๐‘Ÿ โˆ™ ๐‘ฅ.
Algebra
Page No. 146
(I)
Then,
๐‘“(๐‘Ÿ + ๐‘Ÿ ) = (๐‘Ÿ + ๐‘Ÿ ) (๐‘ฅ)
(i)
= ๐‘Ÿ (๐‘ฅ) + ๐‘Ÿ (๐‘ฅ)
= ๐‘“(๐‘Ÿ ) + ๐‘“(๐‘Ÿ )
(ii)
๐‘“(๐‘Ÿ โˆ™ ๐‘Ÿ ) = (๐‘Ÿ ๐‘Ÿ ) (๐‘ฅ)
= ๐‘Ÿ (๐‘Ÿ ๐‘ฅ)
= ๐‘Ÿ โˆ™ ๐‘“(๐‘Ÿ )
For all ๐‘Ÿ, ๐‘Ÿ , ๐‘Ÿ โˆˆ ๐‘….
Hence, ๐‘“ is a R-homomorphism.
(II) f is onto obviously.
(III) Let ๐‘Ÿ โˆˆ ๐‘˜๐‘’๐‘Ÿ ๐‘“. Then ๐‘“(๐‘Ÿ) = 0. i.e. ๐‘Ÿ โˆ™ ๐‘ฅ = 0. But by data ๐‘Ÿ โˆ™ ๐‘ฅ = 0
โ‡’ ๐‘Ÿ = 0.
Hence, ๐‘˜๐‘’๐‘Ÿ ๐‘“ = {0}. But this will imply ๐‘“ is one-one (See Theorem 2).
Form (I), (II) and (III), f is an isomorphism.
Hence, ๐‘… โ‰… ๐‘…๐‘ฅ as R-module.
1.4 Fundamental Theorem for R-homomorphism and It's Application :
1.4.1 Fundamental Theorem for R-homomorphism :
Any homomorphic image of an R-module M is isomorphic with its suitable quotient
module.
Proof :
Let M and N be R-module and let N be a homomorphic image of M. Hence there
exists an onto homomorphism ๐‘“ โˆถ ๐‘€ โŸถ ๐‘. As f is onto ๐‘ = ๐‘“(๐‘€). Let ๐พ = ๐‘˜๐‘’๐‘Ÿ ๐‘“.
Then K is a submodule of M. (See Theorem 1.3.4) and hence the quotient R-module
is defined.
Define a ๐‘” โˆถ
โŸถ ๐‘ = ๐‘“(๐‘€) by
๐‘”(๐‘š + ๐‘˜) = ๐‘“(๐‘š),
(I)
for each ๐‘š + ๐‘˜ โˆˆ
๐‘” is well defined.
Let ๐‘š + ๐‘˜ = ๐‘š + ๐‘˜ in
.
Then ๐‘š , ๐‘š โˆˆ ๐‘€ will imply ๐‘š โˆ’ ๐‘š โˆˆ ๐‘€.
As ๐‘š + ๐‘˜ = ๐‘š + ๐‘˜ we get ๐‘š โˆ’ ๐‘š โˆˆ ๐‘€. i.e.
Hence
๐‘“(๐‘š โˆ’ ๐‘š ) = 0
โŸน
๐‘“(๐‘š ) โˆ’ ๐‘“(๐‘š ) = 0 ,
Algebra
๐‘š โˆ’ ๐‘š โˆˆ ๐‘˜๐‘’๐‘Ÿ ๐‘“.
.... Since f is homomorphism.
Page No. 147
๐‘“(๐‘š ) = ๐‘“(๐‘š )
โŸน
Thus, we get,
๐‘š + ๐พ = ๐‘š + ๐พ in
implies ๐‘”(๐‘š + ๐พ) = ๐‘”(๐‘š + ๐พ)
This shows that ๐‘” is well defined.
(II) ๐‘” is a R-homomorphism.
(i)
Let ๐‘š + ๐‘˜ โˆˆ
๐‘€
and ๐‘š + ๐‘˜ โˆˆ
๐พ
.
Then,
๐‘” [(๐‘š + ๐พ) + (๐‘š + ๐พ)] = ๐‘” [(๐‘š + ๐‘š ) ๐พ] .... by the definition of โ€˜+โ€™ in
= ๐‘“ (๐‘š + ๐‘š )
.... by the definition of ๐‘”.
= ๐‘“ (๐‘š ) + ๐‘“(๐‘š )
.... ๐‘“ is homomorphism.
= ๐‘”(๐‘š + ๐พ) + ๐‘”(๐‘š + ๐พ)
.... by the definition of ๐‘”.
(ii) Let ๐‘Ÿ โˆˆ ๐‘… and ๐‘š + ๐พ โˆˆ
.
. Then,
๐‘” [๐‘Ÿ (๐‘š + ๐พ)] = ๐‘” [๐‘Ÿ๐‘š + ๐พ]
.... by the definition of โ€˜โˆ™โ€™ in
= ๐‘“ (๐‘Ÿ๐‘š)
.... by the definition of ๐‘”.
= ๐‘Ÿ โˆ™ ๐‘“ (๐‘š)
.... ๐‘“ is homomorphism.
= ๐‘Ÿ โˆ™ ๐‘” (๐‘š + ๐พ)
.... by the definition of ๐‘”.
.
From (i) and (ii), we get, ๐‘” is a R-homomorphism.
(III) ๐‘” is one-one.
Let
๐‘” (๐‘š + ๐พ) = ๐‘”(๐‘š + ๐พ) for some ๐‘š + ๐‘˜, ๐‘š + ๐‘˜ โˆˆ
.
๐‘” (๐‘š + ๐พ) = ๐‘”(๐‘š + ๐พ)
Then
๐‘“ (๐‘š ) = ๐‘“(๐‘š )
โŸน
.... by the definition of ๐‘”.
โŸน ๐‘“ (๐‘š ) โˆ’ ๐‘“(๐‘š ) = 0
โŸน
๐‘“ (๐‘š โˆ’ ๐‘š ) = 0
.... ๐‘“ is homomorphism.
โŸน
๐‘š โˆ’ ๐‘š โˆˆ ๐‘˜๐‘’๐‘Ÿ ๐‘“ = ๐พ
.... ๐‘“ is homomorphism.
โŸน
๐‘š +๐พ =๐‘š +๐พ
Thus, ๐‘” (๐‘š + ๐พ) = ๐‘”(๐‘š + ๐พ)
โŸน
๐‘š + ๐พ = ๐‘š + ๐พ and hence ๐‘” is one-one.
(IV) ๐‘” is onto.
Let ๐‘› โˆˆ ๐‘. As ๐‘ = ๐‘“(๐‘€), there exists some ๐‘š โˆˆ ๐‘€ such that ๐‘“(๐‘š) = ๐‘›. But for this
๐‘š โˆˆ ๐‘€, ๐‘š + ๐พ โˆˆ
Algebra
and we get ๐‘”(๐‘š + ๐พ) = ๐‘“(๐‘š) = ๐‘›.
Page No. 148
This shows that ๐‘” is onto.
From (I), (II), (III) and (IV), we get, ๐‘” is an isomorphism. Hence
โ‰… ๐‘.
This completes the proof.
โ‰…
Theorem 1.4.2: Let A and B be R-submodules of an R-module M. Then
โ‹‚
.
๐ด + ๐ต = {๐‘Ž + ๐‘ / ๐‘Ž โˆˆ ๐ด, ๐‘ โˆˆ ๐ต} is a R-module of M and ๐ต โІ ๐ด + ๐ต. Hence B is
Proof :
a submodule of A + B. (See Theorem 1.2.8).
Hence
is defined.
๐ด โˆฉ ๐ต is a R-module of M (See 2.3 theorem 2) and ๐ด โˆฉ ๐ต โІ ๐ต. Hence
Define ๐‘“: ๐ด + ๐ต โŸถ
is defined.
by
โˆฉ
๐‘“(๐‘Ž + ๐‘) = ๐‘ + (๐ด โˆฉ ๐ต),
(I)
โˆฉ
for ๐‘Ž + ๐‘ โˆˆ ๐ด + ๐ต.
๐‘“ is well defined map.
Let
๐‘Ž +๐‘ =๐‘Ž +๐‘
for ๐‘Ž , ๐‘Ž โˆˆ ๐ด and ๐‘ , ๐‘ โˆˆ ๐ต.
Then, ๐‘Ž โˆ’ ๐‘Ž = ๐‘ โˆ’ ๐‘ โˆˆ ๐ด โˆฉ ๐ต.
As ๐‘ โˆ’ ๐‘ โˆˆ ๐ด โˆฉ ๐ต we have ๐‘ + (๐ด โˆฉ ๐ต) = ๐‘ + (๐ด โˆฉ ๐ต)
Thus, ๐‘Ž + ๐‘ = ๐‘Ž + ๐‘ will imply ๐‘ + (๐ด โˆฉ ๐ต) = ๐‘ + (๐ด โˆฉ ๐ต) and hence
๐‘“(๐‘Ž + ๐‘ ) = ๐‘“(๐‘Ž + ๐‘ ).
This shows that ๐‘“ is well defined map.
(II) To prove that ๐‘“ is R-homomorphism.
(i) Let ๐‘Ž + ๐‘ and ๐‘Ž + ๐‘ be any element of ๐ด + ๐ต.
๐‘“[(๐‘Ž + ๐‘ ) + (๐‘Ž + ๐‘ )] = ๐‘“[(๐‘Ž + ๐‘Ž ) + (๐‘ + ๐‘ )]
... โŒฉ๐‘€, +โŒช is an abelian group.
= (๐‘ + ๐‘ ) + (๐ด โˆฉ ๐ต)
... by the definition of ๐‘“.
= [๐‘ + (๐ด โˆฉ ๐ต)] + [๐‘ + (๐ด โˆฉ ๐ต)]
= ๐‘“(๐‘Ž + ๐‘ ) + ๐‘“(๐‘Ž + ๐‘ )
(ii) Let ๐‘Ÿ โˆˆ ๐‘… and ๐‘Ž + ๐‘ โˆˆ ๐ด + ๐ต. Then
๐‘“[๐‘Ÿ (๐‘Ž + ๐‘ )] = ๐‘“[๐‘Ÿ๐‘Ž + ๐‘Ÿ๐‘ ]
= ๐‘Ÿ๐‘ + (๐ด โˆฉ ๐ต)
... ๐‘Ž , ๐‘ โˆˆ ๐‘€ and ๐‘Ÿ โˆˆ ๐‘….
... ๐‘Ÿ๐‘Ž โˆˆ ๐ด and ๐‘Ÿ๐‘ โˆˆ ๐ต.
= ๐‘Ÿ[๐‘ + (๐ด โˆฉ ๐ต)]
= ๐‘Ÿ ๐‘“(๐‘Ž + ๐‘ )
Algebra
Page No. 149
From (i) and (ii), it follows that ๐‘“ is a R-homomorphism.
(III) ๐‘“ is an onto mapping.
Let ๐‘ + (๐ด โˆฉ ๐ต) โˆˆ
โˆฉ
. Then ๐‘ โˆˆ ๐ต.
Consider 0 + ๐‘.
Then, as 0 โˆˆ ๐ด we get 0 + ๐‘ โˆˆ ๐ด + ๐ต and ๐‘“(0 + ๐‘) = ๐‘ + (๐ด โˆฉ ๐ต)
But this shows that ๐‘“ is onto.
From (I), (II) and (III), ๐‘“ is onto homomorphism.
Hence, the R-module
โˆฉ
is a homomorphic image of the R-module ๐ด + ๐ต under the
homomorphism ๐‘“.
Hence, by fundamental theorem of homomorphism (See 1.4 theorem 5)
โ‰…
. . . (1)
โˆฉ
Now
๐‘˜๐‘’๐‘Ÿ๐‘“ = {๐‘ฅ โˆˆ ๐ด + ๐ต / ๐‘“(๐‘ฅ) = 0}
= {๐‘Ž + ๐‘ โˆˆ ๐ด + ๐ต / ๐‘“(๐‘Ž + ๐‘) = 0}
= {๐‘Ž + ๐‘ โˆˆ ๐ด + ๐ต / ๐‘ + (๐ด โˆฉ ๐ต) = ๐ด โˆฉ ๐ต}
= {๐‘Ž + ๐‘ โˆˆ ๐ด + ๐ต / ๐‘ โˆˆ (๐ด โˆฉ ๐ต)}
= {๐‘Ž + ๐‘/๐‘Ž โˆˆ ๐ด and ๐‘ โˆˆ ๐ต} = ๐ด
๐‘˜๐‘’๐‘Ÿ๐‘“ = ๐ด
Thus,
. . . (2)
From (1) and (2), we get,
โ‰…
โˆฉ
This completes the proof of the theorem.
Theorem 1.4.3: Let A and B be submodule of R-module M and N respectively. Then
×
×
Proof :
×
๐‘€ × ๐‘ is an R-module (See 1.4, problem 2). A is a submodule of an R-module M
and hence the quotient R-module
defined. Hence
×
is defined. Similarly the quotient R-module
is
is an R-module.
Define the map ๐‘“ โˆถ ๐‘€ × ๐‘ โŸถ
Algebra
โ‰…
×
by
Page No. 150
๐‘“(๐‘š, ๐‘›) = (๐‘š + ๐ด, ๐‘› + ๐ต),
(I)
for all (๐‘š, ๐‘›) โˆˆ ๐‘€ × ๐‘
๐‘“ is well defined.
Let (๐‘š , ๐‘› ) = (๐‘š , ๐‘› ) in ๐‘€ × ๐‘.
Then, ๐‘š = ๐‘š and ๐‘› = ๐‘› .
Therefore,
๐‘š โˆ’ ๐‘š = 0 โˆˆ ๐ด and ๐‘› โˆ’ ๐‘› = 0 โˆˆ ๐ต
But then
๐‘š +๐ด=๐‘š +๐ด
and
๐‘› +๐ต =๐‘› +๐ต
This shows that (๐‘š + ๐ด, ๐‘› + ๐ต) = (๐‘š + ๐ด, ๐‘› + ๐ต)
i.e.
๐‘“(๐‘š , ๐‘› ) = ๐‘“(๐‘š , ๐‘› )
Hence, ๐‘“ is a well defined map.
(II) ๐‘“ is a homomorphism.
(i) Let (๐‘š , ๐‘› ), (๐‘š , ๐‘› ) โˆˆ ๐‘€ × ๐‘
๐‘“[(๐‘š , ๐‘› ) + (๐‘š , ๐‘› )]
= ๐‘“[(๐‘š + ๐‘š , ๐‘› + ๐‘› )]
โ€ฆ by the definition of + in ๐‘€ × ๐‘
= [(๐‘š + ๐‘š ) + ๐ด, (๐‘› + ๐‘› ) + ๐ต]
... by the definition of ๐‘“
= [(๐‘š + ๐ด) + (๐‘š + ๐ด), (๐‘› + ๐ต) + (๐‘› + ๐ต)]
โ€ฆ by the definition of + in
and
= (๐‘š + ๐ด, ๐‘› + ๐ต) + (๐‘š + ๐ด, ๐‘› + ๐ต)
โ€ฆ by the definition of + in
×
= ๐‘“(๐‘š , ๐‘› ) + ๐‘“(๐‘š , ๐‘› )
โ€ฆ by the definition of ๐‘“
(ii) Let ๐‘Ÿ โˆˆ ๐‘… and (๐‘š, ๐‘›) โˆˆ ๐‘€ × ๐‘. Then
๐‘“[๐‘Ÿ (๐‘š, ๐‘›)] = ๐‘“[(๐‘Ÿ๐‘š, ๐‘Ÿ๐‘›)]
โ€ฆ by the definition of โˆ™ in ๐‘€ × ๐‘
= (๐‘Ÿ๐‘š + ๐ด, ๐‘Ÿ๐‘› + ๐ต)
โ€ฆ by the definition of ๐‘“
= (๐‘Ÿ(๐‘š + ๐ด), ๐‘Ÿ(๐‘› + ๐ต))
โ€ฆ by the definition of โˆ™ in
= ๐‘Ÿ (๐‘š + ๐ด, ๐‘› + ๐ต)
โ€ฆ by the definition of โˆ™ in ๐‘€ × ๐‘
= ๐‘Ÿ ๐‘“ (๐‘š, ๐‘›)
โ€ฆ by the definition of ๐‘“
and
From (i) and (ii), we get ๐‘“ is homomorphism.
(III) ๐‘“ is onto.
Let (๐‘š + ๐ด, ๐‘› + ๐ต) โˆˆ
×
.
Then obviously, (๐‘š, ๐‘›) โˆˆ ๐‘€ × ๐‘ and ๐‘“(๐‘š, ๐‘›) = (๐‘š + ๐ด, ๐‘› + ๐ต).
Algebra
Page No. 151
But this shows that ๐‘“ is onto.
From (I), (II) and (III), it follows that
×
is a homomorphic image of ๐‘€ × ๐‘.
Hence, by the fundamental theorem of homomorphism,
×
โ‰…
×
. . . (1)
Now,
๐‘˜๐‘’๐‘Ÿ๐‘“ = {(๐‘š, ๐‘›) โˆˆ ๐‘€ × ๐‘ / ๐‘“(๐‘š, ๐‘›) = 0}
= {(๐‘š, ๐‘›) โˆˆ ๐‘€ × ๐‘ / (๐‘š + ๐ด, ๐‘› + ๐ต) = (๐ด, ๐ต)}
= {(๐‘š, ๐‘›) โˆˆ ๐‘€ × ๐‘ / ๐‘š + ๐ด = ๐ด and ๐‘› + ๐ต = ๐ต}
= {(๐‘š, ๐‘›) โˆˆ ๐‘€ × ๐‘ / ๐‘š โˆˆ ๐ด and ๐‘› โˆˆ ๐ต}
Thus,
๐‘˜๐‘’๐‘Ÿ๐‘“ = ๐ด × ๐ต
. . . (2)
From (1) and (2), we have,
×
×
โ‰…
×
This completes the proof.
Let M be an R-module. We know that, if there exists ๐‘ฅ โˆˆ ๐‘€ such that ๐‘€ = ๐‘…๐‘ฅ then M is
called cyclic module generated by x. Here ๐‘…๐‘ฅ = {๐‘Ÿ๐‘ฅ / ๐‘Ÿ โˆˆ ๐‘…}.
e.g. The ring R is a R-module. As ๐‘… = ๐‘… โˆ™ 1, we get R is a cyclic module.
Theorem 1.4.4 : Let an R-module M be a cyclic module Rx. Then ๐‘€ โ‰…
Proof :
.
๐‘€ = ๐‘…๐‘ฅ = {๐‘Ÿ๐‘ฅ / ๐‘Ÿ โˆˆ ๐‘…}.
Define ๐‘“: ๐‘… โŸถ ๐‘…๐‘ฅ by
๐‘“(๐‘Ÿ) = ๐‘Ÿ โˆ™ ๐‘ฅ,
for each ๐‘Ÿ โˆˆ ๐‘…
[Here the ring R is considered as an R-module]. Then f is an epimorphism (See 1.3,
theorem 5). Hence by the fundamental theorem of homomorphism,
โ‰… ๐‘…๐‘ฅ
. . . (1)
Now,
๐‘˜๐‘’๐‘Ÿ๐‘“ = {๐‘Ÿ โˆˆ ๐‘… / ๐‘“(๐‘Ÿ) = 0}
= {๐‘Ÿ โˆˆ ๐‘… / ๐‘Ÿ๐‘ฅ = 0}
๐‘˜๐‘’๐‘Ÿ ๐‘“ is a submodule of an R-module ๐‘… and hence it is a left ideal of ๐‘…. This ideal is
called the annihilator ideal of ๐‘ฅ in ๐‘… and it is denoted by ๐‘Ž๐‘›๐‘› ๐‘ฅ.
Algebra
Page No. 152
Hence, for a cyclic module ๐‘€ = ๐‘…๐‘ฅ, we get,
๐‘…๐‘ฅ = ๐‘€ โ‰…
.
Theorem 1.4.5 : Let ๐‘… be a ring such that 1 โˆˆ ๐‘…. An R-module ๐‘€ is cyclic iff ๐‘€ โ‰…
for
some left ideal ๐ผ of ๐‘….
Proof : Only if part :
Let ๐‘€ be cyclic.
Hence, ๐‘€ = ๐‘…๐‘ฅ for some ๐‘ฅ โˆˆ ๐‘€. By Theorem 1.4.4, ๐‘€ โ‰…
ideal in ๐‘… and thus we get ๐‘€ โ‰…
where ๐‘Ž๐‘›๐‘› ๐‘ฅ is a left
for left ideal ๐ผ = ๐‘Ž๐‘›๐‘› ๐‘ฅ in ๐‘….
If part :
Let ๐‘€ โ‰…
, where I is left ideal of R.
1โˆˆ๐‘…
โŸน
1+๐ผ โˆˆ
Further,
๐‘…(1 + ๐ผ) = {๐‘Ÿ(1 + ๐ผ) / ๐‘Ÿ โˆˆ ๐‘…}
.
= {๐‘Ÿ + ๐ผ / ๐‘Ÿ โˆˆ ๐‘…}
=
This shows that,
is a cyclic module generated by (1 + ๐ผ). As ๐‘€ โ‰…
and
is cyclic,
we get, ๐‘€ is a cyclic module (Since isomorphic image of a cyclic module is a cyclic
module).
Theorem 1.4.6 : Let ๐‘… be a ring with unity 1. Let ๐‘€ โ‰  (0) be an R-module. Then ๐‘€ is
simple iff ๐‘€ โ‰…
where ๐ผ is a maximal left ideal of ๐‘….
Proof : Only if part :
Let ๐‘€ be a simple R-module.
As ๐‘€ โ‰  (0) and M is we get ๐‘€ = ๐‘…๐‘ฅ for any ๐‘ฅ โ‰  0 in M.
As ๐‘€ = ๐‘…๐‘ฅ, a cyclic module then ๐‘€ โ‰…
where I is a left ideal of R. by theorem 1.4.4.
As isomorphic image of a simple module is a simple module, we get
Algebra
is a simple
Page No. 153
module. Now the submodules of
are of the form
where U is a submodule of the
module ๐‘… containing ๐ผ. But the submodules of an R-module ๐‘… are the left ideals in ๐‘….
being simple there do not exists any left ideal in ๐‘… containing I. But this shows
Hence
that ๐ผ is a maximal left ideal in ๐‘…. Hence ๐‘€ is a simple module and ๐‘€ โ‰  {0} will imply
๐‘€โ‰…
,
where ๐ผ is a maximal left ideal in ๐‘….
If part :
Let ๐‘€ โ‰…
,
where ๐ผ is a maximal left ideal in ๐‘…. But this in turn will imply that there
does not exists any proper ideal in
. Hence
must be a simple R-module.
As ๐‘€ โ‰… , we get ๐‘€ is a simple r-module (since isomorphic image of a simple module
is a simple module).
Algebra
Page No. 154
Unit 2 : SUM AND DIRECT SUM OF SUBMODULES :
2.1
Sum of modules
2.2
Direct sum of modules
2.3
Free modules
2.4
Completely reducible modules
2.1 Sum of submodules :
Definition 2.1.1: Let ๐‘€ be an R-module. Let ๐‘€ , ๐‘€ , โ€ฆ , ๐‘€ (k finite) be R-submodules of ๐‘€.
k
The submodule generated by U M is called the sum of submodules ๐‘€ , 1 โ‰ค ๐‘– โ‰ค ๐‘˜
i
i =1
and is denoted by ๐‘€ + โ‹ฏ + ๐‘€ or simply
k
โˆ‘M i .
i =1
k
Note that the submodule generated by U M is the smallest R-submodule of ๐‘€,
i
i =1
containing each ๐‘€ , 1 โ‰ค ๐‘– โ‰ค ๐‘˜.
Theorem 2.1.2 : For the submodules ๐‘€ , ๐‘€ , โ€ฆ , ๐‘€ of an R-module M
k
โˆ‘ M = {x + x + ... + x / x โˆˆ M }
i
1 2
k i
i
i =1
Let ๐‘‡ = {๐‘ฅ + ๐‘ฅ +. . . +๐‘ฅ /๐‘ฅ โˆˆ ๐‘€ }.
Proof :
(I)
๐‘‡ โ‰  ๐œ™ as ๐‘€ โ‰  ๐œ™ for each i.
(II) Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‡. Then
๐‘ฅ = ๐‘ฅ + ๐‘ฅ +. . . +๐‘ฅ
and
๐‘ฆ = ๐‘ฆ + ๐‘ฆ +. . . +๐‘ฆ ,
where ๐‘ฅ , ๐‘ฆ โˆˆ ๐‘€ for each i.
Now,
๐‘ฅ โˆ’ ๐‘ฆ = (๐‘ฅ + ๐‘ฅ +. . . +๐‘ฅ ) โˆ’ (๐‘ฆ + ๐‘ฆ +. . . +๐‘ฆ )
= (๐‘ฅ โˆ’ ๐‘ฆ ) + (๐‘ฅ โˆ’ ๐‘ฆ ) + โ‹ฏ + (๐‘ฅ โˆ’ ๐‘ฆ )
... Since ๐‘ฅ , ๐‘ฆ โˆˆ ๐‘€ for all i and <M, +> is an abelian group.
But as ๐‘€ is a submodule of M, ๐‘ฅ โˆ’ ๐‘ฆ โˆˆ ๐‘€ for each i.
Hence, ๐‘ฅ โˆ’ ๐‘ฆ โˆˆ ๐‘‡.
This shows that ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‡
โŸน
๐‘ฅ โˆ’ ๐‘ฆ โˆˆ ๐‘‡.
(III) Let ๐‘ฅ โˆˆ ๐‘‡ and ๐‘Ÿ โˆˆ ๐‘…. Then ๐‘ฅ = ๐‘ฅ + ๐‘ฅ + โ‹ฏ + ๐‘ฅ ,
Now
Algebra
๐‘ฅ โˆˆ๐‘€, โˆ€ ๐‘–
๐‘Ÿ๐‘ฅ = ๐‘Ÿ(๐‘ฅ + ๐‘ฅ + โ‹ฏ + ๐‘ฅ )
Page No. 155
= ๐‘Ÿ๐‘ฅ + ๐‘Ÿ๐‘ฅ + โ‹ฏ + ๐‘Ÿ๐‘ฅ
โ€ฆ By the definition of module
As ๐‘€ is a R-submodule of M, ๐‘Ÿ โˆˆ ๐‘… and ๐‘ฅ โˆˆ ๐‘€ will imply ๐‘Ÿ โˆ™ ๐‘ฅ โˆˆ ๐‘€ for each i.
Hence, ๐‘Ÿ๐‘ฅ โˆˆ ๐‘‡.
Thus, for any ๐‘Ÿ โˆˆ ๐‘… and ๐‘ฅ โˆˆ ๐‘‡ we get ๐‘Ÿ๐‘ฅ โˆˆ ๐‘‡.
From (I), (II) and (III), we get, T is a R-submodule of ๐‘€.
(IV) Let ๐‘ฅ โˆˆ ๐‘€ . Then 0 โˆˆ ๐‘€ for each i will imply,
๐‘ฅ = 0 + 0 + โ‹ฏ+ ๐‘ฅ + 0 + โ‹ฏ+ 0 โˆˆ ๐‘‡
โ†‘๐‘–
place
Hence, ๐‘€ โІ ๐‘‡, for each i, 1 โ‰ค ๐‘– โ‰ค ๐‘˜.
k
Therefore, U M โІ ๐‘‡.
i
i =1
k
(V) Let ๐ฝ be any other submodule of ๐‘€ containing U M . Then each ๐‘€ โІ ๐ฝ.
i
i =1
Let ๐‘ฅ โˆˆ ๐‘‡. Then ๐‘ฅ = ๐‘ฅ + ๐‘ฅ + โ‹ฏ + ๐‘ฅ where ๐‘ฅ โˆˆ ๐‘€ for each i, 1 โ‰ค ๐‘– โ‰ค ๐‘˜. As ๐‘€ โІ ๐ฝ
we get, ๐‘ฅ โˆˆ ๐ฝ for each i, 1 โ‰ค ๐‘– โ‰ค ๐‘˜.
Hence, ๐ฝ being a submodule of a module ๐‘€,
๐‘ฅ + ๐‘ฅ + โ‹ฏ+ ๐‘ฅ โˆˆ ๐ฝ ,
i.e. ๐‘ฅ โˆˆ ๐ฝ
This shows that ๐‘‡ โІ ๐ฝ.
k
Thus, we have proved that T is a submodule of an R-module M containing U M and
i
i =1
k
is the smallest submodule of M containing U M .
i
i =1
k
Hence, by the definition, T = โˆ‘ M i .
i =1
Therefore,
k
โˆ‘ M = {x + x + ... + x / x โˆˆ M }
i
1 2
k i
i
i =1
Definition 2.1.3: Let {๐‘€ / ๐›ผ โˆˆ โˆ†} be any family of submodules of an R-module M. The
submodule generated by
Algebra
U M
ฮฑ โˆˆฮ”
ฮฑ
is called the sum of submodules ๐‘€ and is denoted
Page No. 156
by
โˆ‘ Mฮฑ .
ฮฑ โˆˆฮ”
โˆ‘ Mฮฑ
Remark 2.1.4:
is the smallest submodule of an R-module M containing each
ฮฑ โˆˆฮ”
submodule ๐‘€ .
Theorem 2.1.5 : Let {๐‘€ / ๐›ผ โˆˆ โˆ†} be a family of R-submodules of an R-module M. Then
โŽงโŽช
โŽซโŽช
โˆ‘ M = โŽจ โˆ‘ x / x โˆˆM โŽฌ
ฮฑ
i i
i
โŽชโŽฉ finite
ฮฑ โˆˆฮ”
โŽญโŽช
Where
Proof :
โˆ‘ x denotes any finite sum of elements of ๐‘€ ,
i
finite
๐‘–โˆˆโˆ†.
Define
โŽงโŽช
โŽซโŽช
T = โŽจ โˆ‘ x / x โˆˆM โŽฌ
i i
i
โŽชโŽฉ finite
โŽชโŽญ
As in theorem 1, we can prove that T is a submodule of M containing each ๐‘€ , (๐›ผ โˆˆ โˆ†)
and is the smallest submodule of an R-module M containing each ๐‘€ , (๐›ผ โˆˆ โˆ†).
Hence, T = โˆ‘ M .
ฮฑ
ฮฑ โˆˆฮ”
2.1.6 Worked Examples โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Example 1 : Let ๐‘‰ = โ„ be a vector space over the field โ„. Let ๐‘ฅ = (1, 0, 0), ๐‘ฅ = (1, 1, 0),
๐‘ฅ = (1, 1, 1). Show that ๐‘‰ = โ„๐‘ฅ + โ„๐‘ฅ + โ„๐‘ฅ .
Solution : We know that โ„๐‘ฅ , โ„๐‘ฅ and โ„๐‘ฅ are submodules of an R-module โ„ . (Note that
every vector space is a module). Hence โ„๐‘ฅ + โ„๐‘ฅ + โ„๐‘ฅ is a submodule of โ„ = ๐‘‰.
Hence, โ„๐‘ฅ + โ„๐‘ฅ + โ„๐‘ฅ โІ ๐‘‰. Let ๐‘ฅ โˆˆ ๐‘‰ then (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐‘‰ = โ„ .
Further,
(๐‘Ž, ๐‘, ๐‘) = (๐‘Ž โˆ’ ๐‘) ๐‘ฅ + (๐‘ โˆ’ ๐‘) ๐‘ฅ + ๐‘ ๐‘ฅ
will imply
๐‘ฅ = (๐‘Ž, ๐‘, ๐‘) โˆˆ โ„๐‘ฅ + โ„๐‘ฅ + โ„๐‘ฅ .
By theorem 1.3.4, (as ๐‘Ž, ๐‘, ๐‘ โˆˆ ๐‘… we get ๐‘Ž โˆ’ ๐‘, ๐‘ โˆ’ ๐‘ โˆˆ ๐‘….
Hence, (๐‘Ž โˆ’ ๐‘) ๐‘ฅ โˆˆ โ„๐‘ฅ ,
(๐‘ โˆ’ ๐‘) ๐‘ฅ โˆˆ โ„๐‘ฅ and ๐‘ฅ โˆˆ โ„๐‘ฅ ).
But this shows that ๐‘‰ โІ โ„๐‘ฅ + โ„๐‘ฅ + โ„๐‘ฅ .
Algebra
Page No. 157
Combining both the inclusions, we get,
๐‘‰ = โ„ = โ„๐‘ฅ + โ„๐‘ฅ + โ„๐‘ฅ
โ€ขโ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
2.2 Direct Sum of Submodules :
Definition 2.2.1: Let ๐‘€ be an R-module. Let ๐‘€ , ๐‘€ , โ€ฆ , ๐‘€ be submodules of the module
๐‘€. The sum
k
k
i =1
i =1
โˆ‘ M i is a direct sum if each element x โˆˆ โˆ‘ M i can be uniquely expressed
as ๐‘ฅ = ๐‘ฅ + ๐‘ฅ + โ‹ฏ + ๐‘ฅ , where ๐‘ฅ โˆˆ ๐‘€ for each i, 1 โ‰ค ๐‘– โ‰ค ๐‘˜.
k
In this case we write โŠ• โˆ‘ M i or ๐‘€ โจ ๐‘€ โจ โ€ฆ โจ ๐‘€ .
i =1
Each ๐‘€ is called the direct summand of the direct sum ๐‘€ โจ ๐‘€ โจ โ€ฆ โจ ๐‘€ .
Theorem 2.2.2 : Let M be an R-module and let ๐‘€ = ๐‘€ โจ ๐‘€ .
Then ๐‘€ โ‰…
and ๐‘€ โ‰…
.
Proof : Let ๐‘€ = ๐‘€ โจ ๐‘€ . Hence, any ๐‘ฅ โˆˆ ๐‘€ has a unique representation as ๐‘ฅ = ๐‘ฅ + ๐‘ฅ ,
where ๐‘ฅ โˆˆ ๐‘€ and ๐‘ฅ โˆˆ ๐‘€ .
Define
๐‘“ โˆถ ๐‘€ โŸถ ๐‘€ by
๐‘“(๐‘ฅ) = ๐‘ฅ
i.e.
๐‘“(๐‘ฅ + ๐‘ฅ ) = ๐‘ฅ ,
for each ๐‘ฅ โˆˆ ๐‘€.
By the uniqueness of the expression, ๐‘“ is a well defined map.
(i) Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€. Let ๐‘ฅ = ๐‘ฅ + ๐‘ฅ and ๐‘ฆ = ๐‘ฆ + ๐‘ฆ where ๐‘ฅ , ๐‘ฆ โˆˆ ๐‘€ and ๐‘ฅ , ๐‘ฆ โˆˆ ๐‘€ be
unique expressions of x and y.
๐‘“(๐‘ฅ + ๐‘ฆ) = ๐‘“(๐‘ฅ + ๐‘ฆ + ๐‘ฅ + ๐‘ฆ )
= ๐‘“(๐‘ฅ + ๐‘ฅ + ๐‘ฆ + ๐‘ฆ )
=๐‘ฅ +๐‘ฆ
โ€ฆ Since <M, +> is an abelian group
โ€ฆ ๐‘ฅ , ๐‘ฆ โˆˆ๐‘€
โŸน ๐‘ฅ +๐‘ฆ โˆˆ๐‘€ ,
๐‘€ being a submodule.
= ๐‘“(๐‘ฅ) + ๐‘“(๐‘ฆ)
Thus, ๐‘“(๐‘ฅ + ๐‘ฆ) = ๐‘“(๐‘ฅ) + ๐‘“(๐‘ฆ)
โ€ฆ By definition of ๐‘“.
โ€ฆ for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€.
(ii) Now, let ๐‘ฅ โˆˆ ๐‘€ and ๐‘Ÿ โˆˆ ๐‘…. Assume that ๐‘ฅ = ๐‘ฅ + ๐‘ฅ where ๐‘ฅ โˆˆ ๐‘€ and ๐‘ฅ โˆˆ ๐‘€ .
Then,
๐‘Ÿ๐‘ฅ = ๐‘Ÿ(๐‘ฅ + ๐‘ฅ ) = ๐‘Ÿ๐‘ฅ + ๐‘Ÿ๐‘ฅ
Algebra
Page No. 158
As ๐‘€ and ๐‘€ are submodules of M, we get ๐‘Ÿ๐‘ฅ โˆˆ ๐‘€ and ๐‘Ÿ๐‘ฅ โˆˆ ๐‘€ .
Hence, by the definition of ๐‘“,
๐‘“(๐‘Ÿ๐‘ฅ) = ๐‘Ÿ๐‘ฅ = ๐‘Ÿ ๐‘“(๐‘ฅ)
Thus, ๐‘“(๐‘Ÿ๐‘ฅ) = ๐‘Ÿ ๐‘“(๐‘ฅ) for each ๐‘Ÿ โˆˆ ๐‘… and ๐‘ฅ โˆˆ ๐‘‹.
From (i) and (ii), we get, ๐‘“ is a R-homomorphism.
Hence, by the fundamental theorem of homomorphism,
โ‰…๐‘€
. . . (I)
Now,
๐‘˜๐‘’๐‘Ÿ๐‘“ = {๐‘ฅ โˆˆ ๐‘€ / ๐‘“(๐‘ฅ) = 0}
= {๐‘ฅ + ๐‘ฅ โˆˆ ๐‘€ / ๐‘“(๐‘ฅ + ๐‘ฅ ) = 0, ๐‘ฅ โˆˆ ๐‘€ , ๐‘ฅ โˆˆ ๐‘€ }
= {๐‘ฅ + ๐‘ฅ โˆˆ ๐‘€ / ๐‘ฅ = 0, ๐‘ฅ โˆˆ ๐‘€ , ๐‘ฅ โˆˆ ๐‘€ }
= {0 + ๐‘ฅ โˆˆ ๐‘€ / ๐‘ฅ โˆˆ ๐‘€ }
=๐‘€
Thus,
๐‘˜๐‘’๐‘Ÿ๐‘“ = ๐‘€
. . . (II)
From (I) and (II), we get,
โ‰…๐‘€
Similarly, we can prove that
โ‰…๐‘€ .
This completes the proof of the theorem.
Theorem 2.2.3 : Let ๐‘€ be an R-module. Let ๐‘€ contains submodules ๐‘€ , ๐‘€ , โ€ฆ , ๐‘€ having
the property,
For each i, 1 โ‰ค ๐‘– โ‰ค ๐‘˜,
๐‘€ โˆฉ [๐‘€ + ๐‘€ + โ‹ฏ + ๐‘€
+๐‘€
+ โ‹ฏ + ๐‘€ ] = {0}
. . . (A)
k
Then, the sum
โˆ‘M i
is a direct sum.
i =1
k
Proof :
Let x โˆˆ โˆ‘ M i , have two expressions say
i =1
๐‘ฅ = ๐‘ฅ + ๐‘ฅ + โ‹ฏ+ ๐‘ฅ
and
๐‘ฅ = ๐‘ฆ + ๐‘ฆ + โ‹ฏ+ ๐‘ฆ
where ๐‘ฅ , ๐‘ฆ โˆˆ ๐‘€ for each i, 1 โ‰ค ๐‘– โ‰ค ๐‘˜.
Algebra
Page No. 159
Then, 0 = (๐‘ฅ โˆ’ ๐‘ฆ ) + (๐‘ฅ โˆ’ ๐‘ฆ ) + โ‹ฏ + (๐‘ฅ โˆ’ ๐‘ฆ ).
But this shows that
โˆ’ ( xi โˆ’ y i ) =
k
โˆ‘ ( xjโˆ’ y j )
. . . (1)
j=1
j โ‰ 1
As ๐‘€ is a submodule of M,
โˆ’(๐‘ฅ , โˆ’ ๐‘ฆ ) โˆˆ ๐‘€
Now,
k
โˆ‘ ( xjโˆ’ y j )
j=1
. . . (2)
โˆˆ M 1 + M 2 + ... + M i โˆ’1 + M i +1 + ... + M k
j โ‰ 1
From (1), we get,
โˆ’(๐‘ฅ , โˆ’ ๐‘ฆ ) โˆˆ ๐‘€ + ๐‘€ + โ‹ฏ + ๐‘€
+๐‘€
+ โ‹ฏ + ๐‘€ . . . (3)
From (2) and (3), we have,
โŽก
โŽค
โŽข k
โŽฅ
โˆ’( xi โˆ’ yi ) โˆˆM i I โŽข โˆ‘ M j โŽฅ ={0}
โŽขj = 1 โŽฅ
โŽข
โŽฅ
โŽฃโŽข j โ‰ 1 โŽฆโŽฅ
Hence,
โ€ฆ by (A)
๐‘ฅ =๐‘ฆ.
As this is true for each i, 1 โ‰ค ๐‘– โ‰ค ๐‘˜ , we get the expression for x is unique.
k
Hence, the sum
โˆ‘M i
is a direct sum.
i =1
Theorem 2.2.4 : Let ๐‘€ be an R-module and let ๐‘€ , โ€ฆ , ๐‘€ be submodules of an R-module
๐‘€. The following statements are equivalent.
k
(i)
The sum
โˆ‘M i
is a direct sum.
i =1
(ii)
For any i, 1 โ‰ค ๐‘– โ‰ค ๐‘˜ ,
๐‘€ โˆฉ [๐‘€ + ๐‘€ + โ‹ฏ + ๐‘€
+๐‘€
+ โ‹ฏ + ๐‘€ ] = {0}
Proof :
(i) โŸน (ii) :
Let ๐‘ฅ โˆˆ ๐‘€ โˆฉ [๐‘€ + ๐‘€ + โ‹ฏ + ๐‘€
๐‘ฅ = ๐‘ฆ + ๐‘ฆ + โ‹ฏ+ ๐‘ฆ
Algebra
+๐‘ฆ
+๐‘€
+ โ‹ฏ + ๐‘€ ]. Then ๐‘ฅ โˆˆ ๐‘€ and
+ โ‹ฏ + ๐‘ฆ where ๐‘ฆ โˆˆ ๐‘€ , 1 โ‰ค ๐‘— โ‰ค ๐‘˜.
Page No. 160
Thus, we have
๐‘ฆ + ๐‘ฆ + โ‹ฏ+ ๐‘ฆ
k
As 0 โˆˆ โˆ‘ M i and
i =1
+ (โˆ’๐‘ฅ) + ๐‘ฆ
+ โ‹ฏ+ ๐‘ฆ = 0
k
โˆ‘M i
is a direct sum, the expression 0 = 0 + 0 + โ€ฆ + 0 of
i =1
k
0 โˆˆ โˆ‘ M i must be unique.
i =1
Hence, โ€“ ๐‘ฅ = 0 ,
i.e. ๐‘ฅ = 0. This shows that
๐‘€ โˆฉ [๐‘€ + ๐‘€ + โ‹ฏ + ๐‘€
+๐‘€
+ โ‹ฏ + ๐‘€ ] = {0}
(ii) โŸน (i) :
Proof of this implication follows from theorem 1.3.10.
Hence, (i) โŸบ (ii).
Theorem 2.2.5 : Let ๐‘€ be an R-module. Let ๐‘€ , ๐‘€ , โ€ฆ , ๐‘€ be submodules of an R-module
๐‘€. The following statements are equivalent.
k
(i)
โˆ‘M i
is a direct sum.
i =1
(ii)
k
0 = โˆ‘ xi ,
๐‘ฅ โˆˆ ๐‘€ โˆ€ ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘˜
โŸน ๐‘ฅ =0
for each i, 1 โ‰ค ๐‘– โ‰ค ๐‘˜
i =1
(iii)
โŽก
โŽค
โŽข k
โŽฅ
โŽข
M i I โˆ‘ M j โŽฅ ={0}
โŽขj = 1 โŽฅ
โŽข
โŽฅ
โŽฃโŽข j โ‰ 1 โŽฆโŽฅ
Proof :
(i) โŸน (ii) :
The implication (i) โŸน (ii) follows directly by the definition of the direct sum.
(ii) โŸน (iii) :
โŽก
โŽค
โŽข k
โŽฅ
โŽข
Let ๐‘ฅ โˆˆ M i I โˆ‘ M j โŽฅ
โŽขj = 1 โŽฅ
โŽข
โŽฅ
โŽฃโŽข j โ‰ 1 โŽฆโŽฅ
Algebra
Page No. 161
Then, ๐‘ฅ โˆˆ ๐‘€ and โˆˆ
k
โˆ‘Mj
.
j=1
j โ‰ 1
Hence, ๐‘ฅ = ๐‘ฆ + ๐‘ฆ + โ‹ฏ + ๐‘ฆ
+๐‘ฆ
+ โ‹ฏ+ ๐‘ฆ
where ๐‘ฆ โˆˆ ๐‘€ for 1 โ‰ค ๐‘— โ‰ค ๐‘˜ and
๐‘— โ‰  ๐‘–.
Therefore,
๐‘ฆ + ๐‘ฆ + โ‹ฏ+ ๐‘ฆ
by (ii), we get,
โˆ’๐‘ฅ = 0.
+ (โˆ’๐‘ฅ) + ๐‘ฆ
+ โ‹ฏ+ ๐‘ฆ = 0
i.e. ๐‘ฅ = 0.
But this shows that
k
M I โˆ‘ M = {0}
i
i
i =1
(iii) โŸน (i) :
The implication (iii) โŸน (i) follows by the theorem 1.3.10.
Thus, (i) โŸน (ii) โŸน (iii) โŸน (i) and this completes the proof.
2.2.6 Worked Examples โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Example 1 : Let ๐‘€ be an R-module and let ๐‘€ , ๐‘€ , โ€ฆ , ๐‘€ be submodules of ๐‘€ such that
k
M = โˆ‘ M and the triangular set of conditions
i
i =1
๐‘€ โˆฉ ๐‘€ = {0},
(๐‘€ + ๐‘€ ) โˆฉ ๐‘€ = {0},
โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆ
(๐‘€ + โ‹ฏ + ๐‘€
hold. Show that M = โŠ•
) โˆฉ ๐‘€ = {0}
k
โˆ‘ Mi .
i =1
Solution : By corollary 6, it is enough to prove that if ๐‘ฅ โˆˆ ๐‘€ for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘˜ and if
๐‘ฅ + ๐‘ฅ + โ‹ฏ + ๐‘ฅ = 0 then ๐‘ฅ = 0 for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘˜.
๐‘ฅ + ๐‘ฅ + โ‹ฏ+ ๐‘ฅ = 0
โ€ฆ (1)
Hence, โˆ’๐‘ฅ = ๐‘ฅ + ๐‘ฅ + โ‹ฏ + ๐‘ฅ
As โˆ’๐‘ฅ โˆˆ ๐‘€ and ๐‘ฅ + ๐‘ฅ + โ‹ฏ + ๐‘ฅ
โˆˆ
k โˆ’1
โˆ‘
i =1
Algebra
M
i
Page No. 162
We get, โˆ’๐‘ฅ โˆˆ ๐‘€ โˆฉ [๐‘€ + ๐‘€ + โ‹ฏ + ๐‘€
Hence,
โˆ’๐‘ฅ โˆˆ {0} โ€ฆ by data
Thus,
๐‘ฅ =0
]
โ€ฆ (2)
Substituting ๐‘ฅ = 0 in (1), we get,
๐‘ฅ + ๐‘ฅ + โ‹ฏ+ ๐‘ฅ
Therefore,
โ€“ (๐‘ฅ
Hence,
๐‘ฅ
=0
) โˆˆ [๐‘€ + ๐‘€ + โ‹ฏ + ๐‘€
]โˆฉ๐‘€
=0
= {0}
โ€ฆ (3)
Continuing in this way, we get,
๐‘ฅ =๐‘ฅ =โ‹ฏ=๐‘ฅ =0
k
Hence, the sum
โˆ‘ Mi
is a direct sum.
i =1
M =โŠ•
i.e.
k
โˆ‘ Mi
i =1
Example 2 : Let ๐‘‰ = โ„ be a vector space over the field โ„. Let ๐‘ฅ = (1, 0, 0), ๐‘ฅ =
(1, 1, 0),
๐‘ฅ = (1, 1, 1). Show that V = โŠ•
3
โˆ‘
โ„๐‘ฅ .
i =1
3
Solution : We have proved that V =
โˆ‘
โ„๐‘ฅ .
i =1
3
Hence, only to prove that V = โŠ•
โˆ‘
โ„๐‘ฅ .
i =1
Let 0 = ๐‘Ÿ ๐‘ฅ + ๐‘Ÿ ๐‘ฅ + ๐‘Ÿ ๐‘ฅ ,
for some ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ โˆˆ โ„.
Then,
(0, 0, 0) = ๐‘Ÿ (1, 0, 0) + ๐‘Ÿ (1, 1, 0) + ๐‘Ÿ (1, 1, 1)
Hence,
(0, 0, 0) = (๐‘Ÿ + ๐‘Ÿ + ๐‘Ÿ , ๐‘Ÿ + ๐‘Ÿ , ๐‘Ÿ ).
This shows,
๐‘Ÿ = 0,
๐‘Ÿ + ๐‘Ÿ = 0,
๐‘Ÿ +๐‘Ÿ +๐‘Ÿ =0
Solving the three equations, we get,
๐‘Ÿ = 0, ๐‘Ÿ = 0, ๐‘Ÿ = 0.
Algebra
Page No. 163
Thus,
0=๐‘Ÿ ๐‘ฅ +๐‘Ÿ ๐‘ฅ +๐‘Ÿ ๐‘ฅ
โŸน
๐‘Ÿ = ๐‘Ÿ = ๐‘Ÿ = 0.
Hence, by corollary 6, we get
๐‘‰ = โ„๐‘ฅ + โ„๐‘ฅ + โ„๐‘ฅ
Example 3 : Let M be an R-module. Let ๐พ โŠ‚ ๐‘ โŠ‚ ๐‘€ be submodules of M. Show that if N
is a direct summand of M, then
is a direct summand of
.
Solution : Let ๐‘€ = ๐‘ โŠ• ๐‘ . ๐พ โІ ๐‘.
๐‘ ๐‘
๐‘€ ๐‘ + ๐‘
=
= +
๐พ
๐พ ๐พ
๐พ
{0}
๐‘ ๐‘
๐‘โˆฉ๐‘
โˆฉ
=
=
= {๐พ}
๐พ
๐พ
๐พ
๐พ
as ๐‘ โˆฉ ๐‘ = {0}. Hence,
๐‘€ ๐‘ ๐‘
= โŠ•
๐พ ๐พ
๐พ
Example 4 : Let M be an R-module. Let ๐พ โŠ‚ ๐‘ โŠ‚ ๐‘€. If K is a direct summand of N and N
is a direct summand of M then K is a direct summand of M.
Solution : Let ๐‘ = ๐พ โŠ• ๐พ , and ๐‘€ = ๐‘ โŠ• ๐‘ .
Hence, ๐‘€ = ๐พ โŠ• ๐พโ€ฒ โŠ• ๐‘โ€ฒ.
Hence, K is a direct summand of M.
Example 5 : ๐‘€ is a R-module. ๐พ โŠ‚ ๐‘ โŠ‚ ๐‘€ are submodules of ๐‘€. If ๐พ is a direct summand
of ๐‘€, then ๐พ is direct summand of ๐‘.
Solution : Let ๐‘€ = ๐พ โŠ• ๐พโ€ฒ. ๐‘ = ๐‘€ โˆฉ ๐‘ = (๐พ โŠ• ๐พโ€ฒ) โˆฉ ๐‘.
Claim : ๐‘ = ๐พ โŠ• (๐พ โˆฉ ๐‘)
(i) ๐‘ = ๐พ + (๐พ โˆฉ ๐‘)
Let ๐‘ฅ โˆˆ ๐‘€ โŸน ๐‘ฅ = ๐พ + ๐พโ€ฒ,
where ๐‘˜ โˆˆ ๐พ and ๐‘˜โ€ฒ โˆˆ ๐พ.
Then, ๐‘˜ โˆˆ ๐พ = ๐พ โˆฉ ๐‘
๐‘˜ = ๐พโ€ฒ
๐‘ฅโˆ’๐‘˜ =๐‘˜
โŸน ๐‘˜โ€ฒ โˆˆ ๐‘
Hence, ๐‘˜โ€ฒ โˆˆ ๐พโ€ฒ โˆฉ ๐‘.
Thus, ๐‘ฅ = ๐‘˜ + ๐‘˜ , ๐‘˜ โˆˆ ๐พ and ๐‘˜ โˆˆ ๐พ โˆฉ ๐‘
โŸน
Algebra
๐‘ฅ โˆˆ ๐พ + (๐พโ€ฒ โˆฉ ๐‘).
Page No. 164
Thus, ๐‘ โІ ๐พ + (๐พโ€ฒ โˆฉ ๐‘).
Obviously, ๐พ + (๐พโ€ฒ โˆฉ ๐‘) โІ ๐‘.
Hence, ๐‘ = ๐พ + (๐พโ€ฒ โˆฉ ๐‘)
(ii) ๐พ โˆฉ (๐พ โˆฉ ๐‘) = ๐œ™
๐พ โˆฉ (๐พ โˆฉ ๐‘) = (๐พ โˆฉ ๐พ ) โˆฉ ๐‘ = ๐œ™ โˆฉ ๐พ โˆฉ ๐‘ = ๐œ™.
Since (๐พ โˆฉ ๐พ ) = ๐œ™ as ๐‘€ = ๐พ โŠ• ๐พโ€ฒ.
From (i) and (ii), we get,
๐‘ = ๐พ โŠ• (๐พ โˆฉ ๐‘)
This shows that ๐พ is a direct summand of ๐‘.
Example 6 : Let ๐‘€ be a R-module. Let ๐พ โŠ‚ ๐‘ โŠ‚ ๐‘€. If ๐พ is a direct summand of ๐‘€ and if
is a direct summand of
then ๐‘ is direct summand of ๐‘€.
Solution : As K is a direct summand of M, we have
๐‘€ =๐พโŠ•๐พ .
โŸน
โ‰…๐พ
. . . (1)
By example (5), ๐‘ = ๐พ โŠ• (๐พ โˆฉ ๐‘)
โŸน
โ‰…๐พ โˆฉ๐‘
From (1) and (2), we get, if
. . . (2)
is a direct summand of
, then ๐พ โˆฉ ๐‘ must be the direct
summand of ๐พโ€ฒ. Hence let us assume that
๐พ = (๐พ โˆฉ ๐‘) โŠ• ๐ฟ
. . . (3)
Again ๐‘€ = ๐พ โŠ• ๐พโ€ฒ will imply
๐‘€ = ๐พ โŠ• (๐พ โˆฉ ๐‘) โŠ• ๐ฟ
Hence,
๐‘€ = ๐‘โŠ•๐ฟ ,
(Since ๐‘ = ๐พ โŠ• (๐พ โˆฉ ๐‘))
This shows that ๐‘ is a direct summand of ๐‘€.
Example 7 : Let ๐‘€ = ๐พ โŠ• ๐พ = ๐‘€ = ๐ฟ โŠ• ๐ฟโ€ฒ . If K = L, then show that ๐พโ€ฒ โ‰… ๐ฟโ€ฒ.
Solution : Let ๐‘š โˆˆ ๐‘€. Then m can be uniquely expressed by ๐‘š = ๐‘˜ + ๐‘  where ๐‘˜ โˆˆ ๐พ and
๐‘ โˆˆ๐‘†
Then,
๐‘  = ๐‘š โˆ’ ๐‘˜ โˆˆ ๐พโ€ฒ.
Algebra
Page No. 165
As ๐พ = ๐ฟ we get ๐‘š โˆ’ ๐‘˜ โˆˆ ๐ฟโ€ฒ.
Define
๐‘“ โˆถ ๐พ โŸถ ๐ฟ by
๐‘“(๐‘ ) = ๐‘š โˆ’ ๐‘˜
(i)
๐‘“ is well defined.
๐‘  =๐‘ 
Then,
Let
๐‘š =๐‘˜ +๐‘  .
๐‘“(๐‘  ) = ๐‘š โˆ’ ๐‘˜
and
๐‘“(๐‘  ) = ๐‘š โˆ’ ๐‘˜ .
Then, ๐‘š = ๐‘˜ + ๐‘  is the unique representation of ๐‘š .
Hence, ๐‘  = (๐‘š โˆ’ ๐‘˜ ) = ๐‘  = ๐‘š โˆ’ ๐‘˜ will imply ๐‘“(๐‘  ) = ๐‘“(๐‘  ).
โ€ขโ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Definition 2.2.7 : The sum
โˆ‘ M ฮฑ of the family {๐‘€ / ๐›ผ โˆˆ โˆ†} of submodules of an R-
ฮฑ โˆˆฮ”
module M is a direct sum if each x โˆˆ โˆ‘ M ฮฑ can be uniquely expressed as ๐‘ฅ = โˆ‘ ๐‘ฅ
ฮฑ โˆˆฮ”
where ๐‘ฅ โˆˆ ๐‘€ and ๐‘ฅ = 0 for almost all ๐‘– .
Generalizing the result of Theorem 2.2.5, we get the following theorem.
Theorem 2.2.8 : Let {๐‘€ / ๐›ผ โˆˆ โˆ†} be a family of submodules of an R-module ๐‘€. The
following statements are equivalent.
(i)
โˆ‘ M ฮฑ is a direct sum.
ฮฑ โˆˆฮ”
(ii)
0 = โˆ‘ xi โˆˆ
i
(iii)
โ€ข
โˆ‘ Mฮฑ
, โŸน ๐‘ฅ =0 ,
for all ๐‘–
ฮฑ โˆˆฮ”
โŽก
โŽค
โŽข k
โŽฅ
โŽข
M i I โˆ‘ M j โŽฅ ={0}
โŽข iโ‰  j
โŽฅ
โŽข
โŽฅ
โŽขโŽฃi, jโˆˆฮ” โŽฅโŽฆ
Fundamental Structure Theorem for Finitely generated Modules over P. I. D. :
Result 2.2.9 : Let ๐ท be P.I.D. Any submodule ๐พ of the free module ๐ท (
)
is free with base of
๐‘š โ‰ค ๐‘› elements.
Algebra
Page No. 166
Result 2.2.10 : If ๐ด is any ๐‘š × ๐‘› matrix with entries in p.i.d. ๐ท, then there exits an invertible
matrix ๐‘ƒ of order ๐‘š × ๐‘š with entries in ๐ท and an invertible matrix ๐‘„ with entries in ๐ท
such that ๐‘ƒ๐ด๐‘„ = ๐‘‘๐‘–๐‘Ž๐‘” {๐‘‘ , ๐‘‘ , โ€ฆ , ๐‘‘ , 0,0, โ€ฆ ,0} where ๐‘‘ โ‰  0 and ๐‘‘ /๐‘‘ if ๐‘– โ‰ค ๐‘—.
โ€ข
Fundamental Structure Theorem :
Theorem 2.2.11 : Let ๐‘€ โ‰  0 be a finitely generated module over a p.i.d. ๐ท. ๐‘€ is a direct sum
of cyclic modules.
๐‘€ = ๐ท๐‘ โŠ• ๐ท๐‘ โŠ• โ€ฆ โŠ• ๐ท๐‘
such that the order ideals ๐‘Ž๐‘›๐‘› ๐‘ satisfy
๐‘Ž๐‘›๐‘› ๐‘ โŠƒ ๐‘Ž๐‘›๐‘› ๐‘ โŠƒ โ‹ฏ โŠƒ ๐‘Ž๐‘›๐‘› ๐‘ ,
where ๐‘Ž๐‘›๐‘› ๐‘ โ‰  ๐ท .
Proof : ๐‘€ โ‰  (0) is a finitely generated D-module. Let {๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ } be the set of generators
of ๐‘€.
Then,
๐‘€ = ๐ท๐‘ฅ + ๐ท๐‘ฅ + โ‹ฏ + ๐ท๐‘ฅ .
i. e.
๐‘€=
๐ท๐‘ฅ
We know that, ๐ท(
)
= {(๐‘Ÿ , ๐‘Ÿ , โ€ฆ , ๐‘Ÿ ) / ๐‘Ÿ โˆˆ ๐ท} is a free D-module with base
(๐‘’ , ๐‘’ , โ€ฆ , ๐‘’ ), where ๐‘’ = (0, 0, โ€ฆ , 0, 1, 0, โ€ฆ , 0).
โ†‘ ๐‘–
Define ๐‘“ โˆถ ๐ท(
)
place
โŸถ ๐‘€ by
๐‘”(๐‘ฅ) = ๐‘”
=
๐‘Ÿ ๐‘’
๐‘Ÿ ๐‘ฅ,
๐‘Ÿ โˆˆ ๐ท,
for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›
Claim 1 : ๐‘” is an epimorphism.
(i)
๐‘” is obviously well defined as (๐‘’ , ๐‘’ , โ€ฆ , ๐‘’ ) is a base for ๐ท(
uniquely expressed as
n
โˆ‘ ri ei where ๐‘Ÿ
)
any ๐‘ฅ โˆˆ ๐ท(
)
can be
โˆˆ ๐ท for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
i=1
(ii) ๐‘” is a homomorphism.
Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐ท ( ) . Then,
x=
n
โˆ‘ ri ei
i=1
Algebra
and
y=
n
โˆ‘ r'i ei
i=1
Page No. 167
where ๐‘Ÿ , ๐‘Ÿ โˆˆ ๐ท for each ๐‘– .
๐‘”(๐‘ฅ + ๐‘ฆ) = ๐‘”
๐‘Ÿ ๐‘’ +
๐‘Ÿ ๐‘’
(๐‘Ÿ + ๐‘Ÿ ) ๐‘’
=๐‘”
=
(๐‘Ÿ + ๐‘Ÿ ) ๐‘ฅ ,
=
๐‘Ÿ ๐‘ฅ +
(by the definition of ๐‘”)
๐‘Ÿ ๐‘ฅ
= ๐‘”(๐‘ฅ) + ๐‘”(๐‘ฆ)
Now, let ๐‘Ÿ โˆˆ ๐ท and x =
n
โˆ‘ ri ei โˆˆ ๐ท( ) with ๐‘Ÿ โˆˆ ๐ท.
i=1
๐‘”(๐‘Ÿ โˆ™ ๐‘ฅ) = ๐‘” ๐‘Ÿ โˆ™
(๐‘Ÿ โˆ™ ๐‘Ÿ ) ๐‘’
=๐‘”
=
๐‘Ÿ ๐‘’
(๐‘Ÿ โˆ™ ๐‘Ÿ ) ๐‘ฅ ,
=๐‘Ÿ โˆ™
(by the definition of ๐‘”)
๐‘Ÿ ๐‘ฅ
= ๐‘Ÿ โˆ™ ๐‘”(๐‘ฅ)
Thus, for any ๐‘ฅ, ๐‘ฆ โˆˆ ๐ท(
)
and ๐‘Ÿ โˆˆ ๐ท, we get
๐‘”(๐‘ฅ + ๐‘ฆ) = ๐‘”(๐‘ฅ) + ๐‘”(๐‘ฆ)
and
๐‘”(๐‘Ÿ โˆ™ ๐‘ฅ) = ๐‘Ÿ โˆ™ ๐‘”(๐‘ฅ)
Hence, ๐‘” is a homomorphism.
As ๐‘” is obviously onto, we get ๐‘” is an epimorphism.
Thus, the D-module ๐‘€ is a homomorphic image of the D-module ๐ท( ) .
Hence, by fundamental theorem of homomorphism,
๐ท( )
๐‘€โ‰…
๐‘˜๐‘’๐‘Ÿ๐‘”
Let ๐พ = ๐‘˜๐‘’๐‘Ÿ๐‘”. Then ๐พ is a submodule of the free module ๐ท ( ) .
Algebra
Page No. 168
Hence, by Result 2.2.9, ๐พ is a free module with base containing ๐‘š elements, where
๐‘š โ‰ค ๐‘›.
Let {๐‘“ , ๐‘“ , โ€ฆ , ๐‘“ } be the set of generators in term of the base {๐‘’ , ๐‘’ , โ€ฆ , ๐‘’ } (as ๐‘“ โˆˆ ๐ท(
)
for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›).
๐‘“ =๐‘Ž ๐‘’
+ ๐‘Ž ๐‘’ + โ‹ฏ+ ๐‘Ž ๐‘’
๐‘“ = ๐‘Ž ๐‘’ + ๐‘Ž ๐‘’ + โ‹ฏ+ ๐‘Ž ๐‘’
โ€ฆโ€ฆโ€ฆ
๐‘“ =๐‘Ž
Define
๐‘’ +๐‘Ž
๐‘’ + โ‹ฏ+ ๐‘Ž
๐‘’
๐ด = (๐‘Ž ).
Then, ๐ด is a matrix of order ๐‘š × ๐‘› with entries in ๐ท.
Hence, there exists an invertible matrix ๐‘ƒ = (๐‘ ) of order ๐‘› × ๐‘› and an invertible
matrix ๐‘„ = (๐‘ž ) of order ๐‘š × ๐‘š such that ๐‘„๐ด๐‘ƒ
is a diagonal matrix given by,
๐‘‘๐‘–๐‘Ž๐‘” {๐‘‘ , ๐‘‘ , โ€ฆ , ๐‘‘ , 0,0, โ€ฆ ,0}
โ€ฆโ€ฆ By result 2.2.10
n
Define
e'i = โˆ‘ pij e j . Then {๐‘’โ€ฒ , ๐‘’โ€ฒ , โ€ฆ , ๐‘’โ€ฒ } will form an another base for ๐ท ( ) .
j=1
Define
'
f =
k
m
โŽ›
โˆ‘q
i=1 kl
q* f ' =
kl k
โŽž
f . If Q โˆ’1= โŽœ q* โŽŸ , then
m
โŽ kl โŽ 
l
โˆ‘ q*
q
f
k=1 rk kl l
= f
r
But this shows that {๐‘“ , ๐‘“ , โ€ฆ , ๐‘“ } is contained in the submodule generated by
{๐‘“โ€ฒ , ๐‘“โ€ฒ , โ€ฆ , ๐‘“โ€ฒ }. Hence {๐‘“โ€ฒ , ๐‘“โ€ฒ , โ€ฆ , ๐‘“โ€ฒ } generates K.
Now,
f' =
k
where
m
โˆ‘ qkl fl
k=1
=
โˆ‘ qkl alj e j = โˆ‘ qkl alj
l,j
l,j,i
p* e'
jl i
( )
P โˆ’1= p*ij .
Hence, the new relation matrix is ๐ด = ๐‘„๐ด๐‘ƒ .
But by the choice of P and Q,
๐‘„๐ด๐‘ƒ
= ๐‘‘๐‘–๐‘Ž๐‘” {๐‘‘ , ๐‘‘ , โ€ฆ , ๐‘‘ , 0,0, โ€ฆ ,0}
Hence ,
๐‘“ =๐‘‘ ๐‘’ ,
Algebra
๐‘“ = ๐‘‘ ๐‘’ , โ€ฆ.,
๐‘“ =๐‘‘ ๐‘’
Page No. 169
๐‘“
= 0,
= 0, โ€ฆ.,
๐‘“ =0
โˆ‘ pij x j .
i
j=1
n
โˆ‘ p*rk y k = โˆ‘ p*rk pki xi = xi ; where
Then
โ€ฆ (1)
n
y =
Define
๐‘“
j=1
( )
P โˆ’1= p*ij ; shows that the submodule
generated by {๐‘ฆ , ๐‘ฆ , โ€ฆ , ๐‘ฆ } contains {๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ }.
Hence, {๐‘ฆ , ๐‘ฆ , โ€ฆ , ๐‘ฆ } generates M.
Thus, ๐‘€ = ๐ท๐‘ฆ + ๐ท๐‘ฆ + โ‹ฏ + ๐ท๐‘ฆ
i.e.
M=
n
โˆ‘ Dy k
โ€ฆ (2)
k=1
Let
n
โˆ‘ bi yi = 0 for ๐‘
โˆˆ ๐ท,
for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
i=1
Consider ๐‘”(๐‘’ ).
๐‘“(๐‘’ ) = ๐‘”
n
โˆ‘ pij e j
j=1
=
n
โˆ‘ pij x j
,
by the definition of ๐‘”.
๐‘”(๐‘’ ) = ๐‘ฆ ,
for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
j=1
=๐‘ฆ.
Thus,
Hence,
n
โˆ‘ bi yi = 0
โŸน
โ€ฆ (3)
n
โˆ‘ bi g ( e'i ) = 0
i=1
i=1
โŽกn
โŽค
โŸน g โŽข โˆ‘ bi e'i โŽฅ = 0
โŽขโŽฃ i=1
โŽฅโŽฆ
โŸน
โ€ฆ ๐‘” is a homomorphism
n
โˆ‘ bi e'i โˆˆ k
i=1
As ๐‘˜ = (๐‘“ , ๐‘“ , โ€ฆ , ๐‘“ ) we get
n
โˆ‘ bi e'i
i=1
Algebra
=
m
โˆ‘ ci fi'
,
for ๐‘ โˆˆ ๐ท, โˆ€ ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘š.
i=1
Page No. 170
=
m
โˆ‘ ci ( di e'i )
i=1
n
โˆ‘
Thus,
i=1
b e'
i i
=
(โˆต
๐‘“ = ๐‘‘ ๐‘’โ€ฒ )
,
m
โˆ‘ ( ci di ) e'i
i=1
n
โˆ‘ ( bi โˆ’ ci di ) e'i = 0
โˆด
i=1
As {๐‘’โ€ฒ , ๐‘’โ€ฒ , โ€ฆ , ๐‘’โ€ฒ } forms a base for ๐ท (
๐‘ โˆ’ ๐‘ ๐‘‘ = 0.
But
)
we must have
i.e. ๐‘ = ๐‘ ๐‘‘ ,
for ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
๐‘ = ๐‘ ๐‘‘ for each ๐‘– will imply
๐‘ ๐‘ฆ = (๐‘ ๐‘‘ ) ๐‘ฆ
= ๐‘ (๐‘‘ ๐‘ฆ )
= ๐‘ ๐‘‘ ๐‘”(๐‘’โ€ฒ )
โ€ฆ by 2,
๐‘”(๐‘’โ€ฒ ) = ๐‘ฆ
= ๐‘ [๐‘”(๐‘‘ ๐‘’โ€ฒ )]
โ€ฆ Since ๐‘” is a homomorphism.
= ๐‘ [๐‘”(๐‘“โ€ฒ )]
โ€ฆ by 1.
=๐‘ โˆ™0
โ€ฆ Since ๐‘“โ€ฒ โˆˆ ๐‘˜๐‘’๐‘Ÿ๐‘“
=0
Hence, ๐‘ ๐‘ฆ = 0 for each ๐‘– .
Thus, we have proved that
n
โˆ‘ bi yi = 0 then ๐‘
๐‘ฆ = 0, for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
i=1
But this in turn shows that the sum M =
n
โˆ‘ Dyi
is a direct sum.
i=1
i.e.
n
M = โŠ• โˆ‘ Dy
i=1
i
Thus,
๐‘€ = ๐ท๐‘ฆ โŠ• ๐ท๐‘ฆ โŠ• โ€ฆ โŠ• ๐ท๐‘ฆ .
Now,
๐‘ =๐‘ ๐‘‘
Again ๐‘ ๐‘ฆ = 0
Hence,
โŸน
๐‘ โˆˆ (๐‘‘ ).
โŸน
(๐‘ ๐‘‘ ) ๐‘ โˆˆ (๐‘‘ )
โŸน
๐‘ (๐‘‘ ๐‘ฆ ) = 0
โŸน
๐‘‘ ๐‘ฆ =0
๐‘Ž๐‘›๐‘› ๐‘ฆ = (๐‘‘ ).
As ๐‘‘ /๐‘‘ , ๐‘‘ /๐‘‘ , โ€ฆ we get,
(๐‘‘ ) โŠƒ (๐‘‘ ) โŠƒ โ‹ฏ โŠƒ (๐‘‘ )
Algebra
Page No. 171
If ๐‘‘ is a unit element in ๐ท, then ๐‘‘ ๐‘ฆ = 0
โŸน
๐‘ฆ = 0. ( โˆต ๐ท is a domain)
Hence, drop those elements ๐‘ฆ from the set {๐‘ฆ , ๐‘ฆ , โ€ฆ , ๐‘ฆ } for which ๐‘ฆ = 0.
Assume without loss of generality, ๐‘‘ , ๐‘‘ , โ€ฆ , ๐‘‘ are units and ๐‘‘
in ๐ท. Put ๐‘ = ๐‘ฆ
,โ€ฆ.,๐‘
,๐‘‘
, โ€ฆ are not units
= ๐‘ฆ . We get,
๐‘€ = ๐ท๐‘ โŠ• ๐ท๐‘ โŠ• โ€ฆ โŠ• ๐ท๐‘
where ๐ท๐‘ = (0) and
๐‘Ž๐‘›๐‘› ๐‘ โŠƒ ๐‘Ž๐‘›๐‘› ๐‘ โŠƒ โ‹ฏ โŠƒ ๐‘Ž๐‘›๐‘› ๐‘
where ๐‘  = ๐‘› โˆ’ ๐‘ก and ๐‘Ž๐‘›๐‘› ๐‘ โ‰  ๐ท .
2.3 Free Module :
Throughout this section ๐‘… denotes a ring with unity 1.
Definition 2.3.1 : Let ๐‘€ be an R-module. A finite sequence ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ
of distinct
elements of ๐‘€ is said to be linearly independent if for any ๐‘Ž , ๐‘Ž , โ€ฆ , ๐‘Ž
n
โˆ‘ ai xi = 0 implies ๐‘Ž
in ๐‘…,
=๐‘Ž =โ‹ฏ=๐‘Ž =0.
i=1
A finite sequence ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ of distinct elements in M is said to be linearly
dependent if it is not linearly independent.
A subset S of an R-module is called linearly independent if for every finite
sequence of distinct elements of S is linearly independent. Otherwise S is called linearly
dependent.
Definition 2.3.2 : Let ๐‘€ be an R-module. ๐ด subset ๐ต of ๐‘€ is called a basis if
(i)
๐‘€ is generated by ๐ต.
(ii)
๐ต is linearly independent set.
Example 2.3.3 : Let ๐‘… be a ring with unity 1. Define ๐‘…(
Then ๐‘…(
)
)
= {(๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ) / ๐‘ฅ โˆˆ ๐‘… }.
is an R-module with {๐‘’ , ๐‘’ , โ€ฆ , ๐‘’ } as a base, where
๐‘’ = (0, 0, โ€ฆ , 1, 0, โ€ฆ , 0)
โ†‘๐‘–
Solution : ๐‘…(
)
place.
= {(๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ) / ๐‘ฅ โˆˆ ๐‘… }. Define addition, 0-element and scalar
multiplication in ๐‘…(
)
as
(๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ) + (๐‘ฆ , ๐‘ฆ , โ€ฆ , ๐‘ฆ ) = (๐‘ฅ + ๐‘ฆ , ๐‘ฅ + ๐‘ฆ , โ€ฆ , ๐‘ฅ + ๐‘ฆ )
Algebra
Page No. 172
0 = (0, 0, โ€ฆ , 0)
๐‘Ÿ โˆ™ (๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ) = (๐‘Ÿ โˆ™ ๐‘ฅ , ๐‘Ÿ โˆ™ ๐‘ฅ , โ€ฆ , ๐‘Ÿ โˆ™ ๐‘ฅ )
for ๐‘Ÿ โˆˆ ๐‘… and (๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ), (๐‘ฆ , ๐‘ฆ , โ€ฆ , ๐‘ฆ ) โˆˆ ๐‘…( ) .
Then, it can be easily verified that โŒฉ๐‘…( ) , +, โˆ™โŒช is a module over ๐‘….
๐‘’ = (0, 0, โ€ฆ , 1, 0, โ€ฆ , 0),
Put
โ†‘๐‘–
for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
place.
(i) Let ๐‘Ž โˆˆ ๐‘… , for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘› and
n
โˆ‘ ai ei = 0 .
i=1
But
n
โˆ‘ ai ei = ( a1 , a2 ,..., an )
i=1
Hence,
n
โˆ‘ ai ei = 0
โ‡’ ( a1 , a2 ,..., an ) = ( 0 , 0 ,..., 0 ) .
i=1
โŸน
๐‘Ž = 0, ๐‘Ž = 0, โ€ฆ , ๐‘Ž = 0
(ii) Again any ๐‘ฅ โˆˆ ๐‘…(
)
can be written as ๐‘ฅ = (๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ) where ๐‘ฅ โˆˆ ๐‘…, โˆ€ ๐‘–, 1 โ‰ค ๐‘– โ‰ค
๐‘›. In this case,
๐‘ฅ = ๐‘ฅ ๐‘’ + ๐‘ฅ ๐‘’ + โ‹ฏ+ ๐‘ฅ ๐‘’
as ๐‘ฅ ๐‘’ = (0, 0, โ€ฆ , ๐‘ฅ , 0, โ€ฆ , 0)
โ†‘๐‘–
place.
But this in turn shows that, the set ๐ต = {๐‘’ , ๐‘’ , โ€ฆ , ๐‘’ } generates ๐‘…( ) .
From (i) and (ii), we get, B is a base for an R-module ๐‘…( ) .
Theorem 2.3.4 : Let ๐‘€ be an R-module (1 โˆˆ ๐‘…). Let {๐‘ข , ๐‘ข , โ€ฆ , ๐‘ข } be a base for ๐‘€. Then
๐‘€ โ‰… ๐‘…( ) .
Proof : We know that, ๐‘…(
)
is an R-module with base {๐‘’ , ๐‘’ , โ€ฆ , ๐‘’ }, where
๐‘’ = (0, 0, โ€ฆ , 1, 0, โ€ฆ , 0)
โ†‘๐‘–
place.
for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
Hence, any ๐‘ฅ โˆˆ ๐‘…(
)
can be expressed as x =
n
โˆ‘ ri ei where ๐‘Ÿ
โˆˆ ๐‘…,
โˆ€ ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
i=1
As {๐‘ข , ๐‘ข , โ€ฆ , ๐‘ข } is a base for M,
n
โˆ‘ ri ui where ๐‘Ÿ
โˆˆ ๐‘… is an element of M.
i=1
Define ๐‘“: ๐‘…(
Algebra
)
โŸถ ๐‘€ by
Page No. 173
โŽ› n
โŽž n
f ( x ) = f โŽœ โˆ‘ ri ei โŽŸ = โˆ‘ ri ui
โŽœ
โŽŸ
โŽ i=1
โŽ  i=1
(I) ๐‘“ is well defined map.
Let ๐‘ฅ = ๐‘ฆ in ๐‘… ( ) .
Then, let x =
n
โˆ‘ ri ei and y =
i=1
n
โˆ‘ r'i ei
i=1
n
โˆ‘ ri ei =
๐‘ฅ=๐‘ฆ โŸน
n
โˆ‘ r'i ei
i=1
i=1
n
n
โˆ‘ ri ei โˆ’
โŸน
where ๐‘Ÿ , ๐‘Ÿโ€ฒ โˆˆ ๐‘…, โˆ€ ๐‘– .
i=1
โˆ‘ r'i ei = 0
i=1
n
โˆ‘ ( ri โˆ’ r'i ) ei = 0
โŸน
i=1
โŸน
๐‘Ÿ โˆ’ ๐‘Ÿโ€ฒ = 0
โˆ€ ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
As {๐‘’ , ๐‘’ , โ€ฆ , ๐‘’ } is a base for ๐‘…( ) .
As ๐‘Ÿ = ๐‘Ÿโ€ฒ for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘› we get
n
โˆ‘ ri ui =
i=1
n
โˆ‘ r'i ui
i=1
Thus ,
๐‘ฅ=๐‘ฆ
n
โŸน
โˆ‘ ri ei =
i=1
n
โˆ‘ r'i ei
i=1
โŸน
n
โˆ‘ ri ui =
i=1
n
โˆ‘ r'i ui
โŸน ๐‘“(๐‘ฅ) = ๐‘“(๐‘ฆ)
i=1
This shows that ๐‘“ is well defined.
(II) ๐‘“ is a R-homomorphism.
(i) Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘…
( )
n
n
i=1
i=1
. Let x = โˆ‘ ri ei and y = โˆ‘ ri,ei
n
โŽ› n
โŽž
f(x+y) = f โŽœ โˆ‘ ri ei + โˆ‘ ri, ei โŽŸ
โŽœ
โŽŸ
i=1
โŽ i=1
โŽ 
โŽ› n
โŽž
= f โŽœ โˆ‘ ri + ri, ei โŽŸ
โŽœ
โŽŸ
โŽ i=1
โŽ 
(
=
)
n
โˆ‘ ( ri + ri, ) ui
i=1
Algebra
Page No. 174
=
n
n
i=1
i=1
โˆ‘ ri ui + โˆ‘ ri, ui
= f(x) + f(y)
Thus, ๐‘“(๐‘ฅ + ๐‘ฆ) = ๐‘“(๐‘ฅ) + ๐‘“(๐‘ฆ) for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘… ( ) .
n
(ii) Let ๐‘Ÿ โˆˆ ๐‘… and ๐‘ฅ โˆˆ ๐‘…( ) . Let x = โˆ‘ ri ei , ri โˆˆ R
i=1
โŽ› n
โŽž
f(rx) = f โŽœ r โˆ‘ ri ei โŽŸ
โŽœ
โŽŸ
โŽ i=1
โŽ 
โŽ› n
โŽž
= f โŽœ โˆ‘ ( r ri ) ei โŽŸ
โŽœ
โŽŸ
โŽ i=1
โŽ 
=
n
โˆ‘ ( r ri ) ui
i=1
= r
n
โˆ‘ ri ui
i=1
= r f(x)
Thus, ๐‘“(๐‘Ÿ๐‘ฅ) = ๐‘Ÿ ๐‘“(๐‘ฅ) for all ๐‘Ÿ โˆˆ ๐‘… and ๐‘ฅ โˆˆ ๐‘… ( ) .
From (i) and (ii), we get, ๐‘“ is a R- homomorphism.
(III) ๐‘“ is an onto mapping.
As ๐‘“(๐‘’ ) = ๐‘ข for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›, we get ๐‘–๐‘š ๐‘“ = {๐‘“(๐‘ฅ)/ ๐‘ฅ โˆˆ ๐‘…( ) } contains ๐‘ข for
each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
Thus, ๐‘–๐‘š ๐‘“ is a submodule of M containing ๐‘ข , ๐‘ข , โ€ฆ , ๐‘ข .
By data {๐‘ข , ๐‘ข , โ€ฆ , ๐‘ข } is a base for ๐‘€ and hence it generates ๐‘€.
Thus, ๐‘–๐‘š ๐‘“ = ๐‘€. But this shows that ๐‘“ is onto.
(IV) ๐‘“ is one-one.
Let ๐‘ฅ โˆˆ ๐‘˜๐‘’๐‘Ÿ๐‘“ then ๐‘“(๐‘ฅ) = 0.
Let x =
n
โˆ‘ ri ei
. Then
i=1
โŽ› n
โŽž
f(x) = f โŽœ โˆ‘ ri ei โŽŸ
โŽœ
โŽŸ
โŽ i=1
โŽ 
Algebra
Page No. 175
=
n
โˆ‘ ri ui
i=1
=0
As {๐‘ข , ๐‘ข , โ€ฆ , ๐‘ข } is a base for M,
n
โˆ‘ ri ui = 0
โ‡’ ri =0
i=1
But this in turn shows that x =
for each ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
n
โˆ‘ ri ei = 0 . Thus ๐‘˜๐‘’๐‘Ÿ๐‘“ = {0}.
i=1
This shows that ๐‘“ is one-one. (See 1.3, theorem 3).
From (I), (II), (III) and (IV) we get,
๐‘“: ๐‘…(
)
โŸถ ๐‘€ is an isomorphism and hence ๐‘… (
Remark 2.3.5 :
)
โ‰… ๐‘€.
Thus existence of a base of n-elements for an R-module implies that
๐‘€ โ‰… ๐‘…( ) . In this case we shall say that M is a free R-module of rank n.
Theorem 2.3.6 : If ๐‘€ is a module over commutative ring ๐‘… with unity 1 and if ๐‘€ has bases
of ๐‘š and ๐‘› elements, then ๐‘š = ๐‘›.
Proof : Assume that ๐‘š < ๐‘›.
Let {๐‘’ , ๐‘’ , โ€ฆ , ๐‘’ } and {๐‘“ , ๐‘“ , โ€ฆ , ๐‘“ } be basis for M. As ๐‘“ โˆˆ ๐‘€ and {๐‘’ / 1 โ‰ค ๐‘– โ‰ค ๐‘›}
is a base for M, we get
fj =
n
โˆ‘ a ji ei
where ๐‘Ž โˆˆ ๐‘….
โ€ฆ (1)
i=1
Similarly, as ๐‘’ โˆˆ ๐‘€ and {๐‘“ , ๐‘“ , โ€ฆ , ๐‘“ } is a base for M, we get
ei =
m
โˆ‘ bij f j
where ๐‘ โˆˆ ๐‘… .
โ€ฆ (2)
j=1
From (1) and (2) ,we get,
fj =
and
n
m
โˆ‘ โˆ‘ a ji bij' f j'
. . . (3)
i=1 j'=1
ei =
m
n
โˆ‘ โˆ‘ bij a ji' ei'
. . . (4)
j=1 i'=1
But {๐‘“ / 1 โ‰ค ๐‘— โ‰ค ๐‘š} and {๐‘’ / 1 โ‰ค ๐‘– โ‰ค ๐‘›} are bases for M and hence
Algebra
Page No. 176
n
โŽง1
if j = j'
,
if j โ‰  j'
for 1 โ‰ค ๐‘—, ๐‘—โ€ฒ โ‰ค ๐‘š.
. . . (5)
if i = i'
,
if i โ‰  i'
for 1 โ‰ค ๐‘–, ๐‘–โ€ฒ โ‰ค ๐‘›.
. . . (6)
โˆ‘ a ji bij' ei'= โŽจ0
i=1
โŽฉ
and
m
โŽง1
bij a ji' = โŽจ
โŽฉ0
j=1
โˆ‘
From (1) and (2), we obtain the two ๐‘› × ๐‘š matrices A and B defined as follows.
๐‘Ž
๐‘Ž
โ‹ฏ ๐‘Ž
โŽก๐‘Ž
๐‘Ž
โ‹ฏ ๐‘Ž โŽค
โŽข โ‹ฏ
โ‹ฏ โ‹ฏ โ‹ฏ โŽฅ
โŽข
โŽฅ
๐‘Ž
โ‹ฏ ๐‘Ž โŽฅ
๐ด = โŽข๐‘Ž
0
โ‹ฏ
0 โŽฅ
โŽข 0
โŽข โ‹ฎ
โ‹ฏ โ‹ฏ
โ‹ฎ โŽฅ
โŽฃ 0
0
โ‹ฏ
0 โŽฆ ×
and
๐‘
๐‘
๐ต=
โ‹ฏ
๐‘
๐‘
๐‘
โ‹ฏ
๐‘
โ‹ฏ ๐‘
โ‹ฏ ๐‘
โ‹ฏ โ‹ฏ
โ‹ฏ ๐‘
0
0
0
0
โ‹ฏ
โ‹ฏ
โ‹ฏ
โ‹ฏ
0
0
0
0
×
But form (6), we get, ๐ต๐ด = 1.
Since R is commutative, ๐ต๐ด = 1 โŸน ๐ด๐ต = 1.
But ๐ด๐ต = 1 is impossible as the matrix ๐ด๐ต contains last ๐‘› โ€“ ๐‘š rows zero.
Hence our assumption ๐‘š < ๐‘› is wrong. Therefore ๐‘š โ‰ฅ ๐‘›.
Similarly, we can prove that ๐‘š โ‰ค ๐‘›.
Hence ๐‘š = ๐‘›.
Corollary 2.3.7 : If ๐‘… is commutative, ๐‘…(
)
โ‰… ๐‘…(
)
implies ๐‘š = ๐‘›.
Proof : We know that any free module ๐‘€ with a base containing m elements is isomorphic
with ๐‘…(
)
(See theorem 3.3.4). Thus, if ๐‘…(
)
โ‰… ๐‘…(
)
then we have a free module ๐‘€
which has bases of ๐‘š and ๐‘› elements. By theorem 3.3.6 it follows that, ๐‘š = ๐‘› and we
are through.
Theorem 2.3.8 : Given one ordered base ๐‘’ , ๐‘’ , โ€ฆ , ๐‘’
for a free module
over a
commutative ring R, we obtain another ordered base {๐‘“ , ๐‘“ , โ€ฆ , ๐‘“ } by applying the
Algebra
Page No. 177
n
matrices ๐ด = ๐ฟ (๐‘…) to (๐‘’ , ๐‘’ , โ€ฆ , ๐‘’ ) in the sence that f j = โˆ‘ aij ei , ๐ด = (๐‘Ž ) and
i=1
conversely. Here ๐ฟ (๐‘…) denotes the group of ๐‘› × ๐‘› invertible matrices with entries in
R.
Let (๐‘’ , ๐‘’ , โ€ฆ , ๐‘’ ) and (๐‘“ , ๐‘“ , โ€ฆ , ๐‘“ ) be a bases for a free module M. As ๐‘“ โˆˆ ๐‘€
Proof :
and (๐‘’ , ๐‘’ , โ€ฆ , ๐‘’ ) is a base for M, we get
n
f j = โˆ‘ a ji ei
โˆ€ ๐‘—, 1 โ‰ค ๐‘— โ‰ค ๐‘›, ๐‘Ž โˆˆ ๐‘… โˆ€ ๐‘—, ๐‘– .
i=1
Similarly, ๐‘’ โˆˆ ๐‘€ and (๐‘“ , ๐‘“ , โ€ฆ , ๐‘“ ) is a base for M, will give
n
โˆ‘ bij e j ,
ei =
โˆ€ ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›, ๐‘ โˆˆ ๐‘… โˆ€ ๐‘–, ๐‘—.
j=1
Define ๐ด = (๐‘Ž ) and ๐ต = (๐‘ ).
Then, ๐ด, ๐ต โˆˆ ๐ฟ (๐‘…), as AB = 1 and BA = 1 imply A and B are invertible.
Conversely, suppose that (๐‘’ , ๐‘’ , โ€ฆ , ๐‘’ ) be a base for a free module M and
๐ด = (๐‘Ž ) โˆˆ ๐ฟ (๐‘…).
fj =
Define
n
โˆ‘ a ji ei
โˆ€ ๐‘—, 1 โ‰ค ๐‘— โ‰ค ๐‘›.
,
i=1
Claim : (๐‘“ , ๐‘“ , โ€ฆ , ๐‘“ ) is a base for M.
(i)
Now ๐ด โˆˆ ๐ฟ (๐‘…). Hence ๐ด
(๐‘ )
×
Consider
exists. Let ๐ด
= ๐ต. Then AB = 1 = BA and let ๐ต =
.
n
โˆ‘ bkj f j
. Then ,
j=1
n
n
โˆ‘ bkj f j = โˆ‘
j=1
n
โˆ‘ bkj a ji ei = ek
as BA = 1.
i=1 j=1
As {๐‘’ , ๐‘’ , โ€ฆ , ๐‘’ } generate M we get {๐‘“ , ๐‘“ , โ€ฆ , ๐‘“ } generate M.
(ii) Let
n
โˆ‘ rj f j = 0 for some ๐‘Ÿ
โˆˆ ๐‘…, 1 โ‰ค ๐‘– โ‰ค ๐‘›. Then
i=1
n
n
โˆ‘ โˆ‘ rj โŽกโŽฃ a ji ei โŽคโŽฆ = 0
j=1 i=1
Algebra
Page No. 178
n
n
โˆ‘ โˆ‘ โŽกโŽฃrj a ji โŽคโŽฆ ei = 0
i.e.
i=1 j=1
As {๐‘’ , ๐‘’ , โ€ฆ , ๐‘’ } is a base for M, we get
n
โˆ‘ rj a ji = 0
โˆ€ ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
,
j=1
Hence
n
n
โˆ‘ โˆ‘ rj a ji bih = 0
โˆ€ โ„Ž, 1 โ‰ค โ„Ž โ‰ค ๐‘›.
,
i=1 j=1
But AB = 1 and hence ๐‘Ÿ = 0 for all ๐‘—, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
Thus,
n
โˆ‘ rj f j = 0
j=1
โ‡’ rj = 0 for each ๐‘—, 1 โ‰ค ๐‘– โ‰ค ๐‘›.
From (1) and (2), we get {๐‘“ , ๐‘“ , โ€ฆ , ๐‘“ } is a base for M.
Theorem 2.3.9 : Let D be a p. i. d. and let ๐ท(
every submodule K of ๐ท(
)
)
be the free module of rank n over D. Then
is free with base of ๐‘š โ‰ค ๐‘› elements.
Proof :
Case I : n = 0.
If K = (0), then K is a free module with rank 0 (with empty base). Hence the result is
trivially true for n = 0.
Case II : n = 1.
๐ท(
)
= ๐ท . Hence any submodule of D is an ideal in D, which is a principal ideal. Hence
๐พ = (๐‘“) for some ๐‘“ โˆˆ ๐ท. Obviously {๐‘“} generates K.
If f = 0, then K = (0) and the result follows as rank of K = 0.
Let ๐‘“ โ‰  0. Then ๐‘Ž๐‘“ = 0 for some ๐‘Ž โˆˆ ๐ท will imply ๐‘Ž = 0 as D is an integral domain.
Thus, {๐‘“} will form a base for ๐พ = (๐‘“).
Hence, K is a free module with rank โ‰ค 1.
Case III : n > 1.
Let K be any submodule of ๐ท( ) .
We prove the result my induction on n. Let {๐‘’ , ๐‘’ , โ€ฆ , ๐‘’ } be a base for ๐ท( ) . Let ๐ท(
denote a submodule of ๐ท (
Algebra
)
generated by {๐‘’ , ๐‘’ , โ€ฆ , ๐‘’
, ๐‘’ }. Then ๐ท(
)
)
is a free
Page No. 179
( )
module of rank n โ€“ 1. Hence
{๐‘’ฬ… } where ๐‘’ฬ… = ๐‘’ + ๐ท(
)
(
) is a free module of rank 1. The base for is
( )
(
)
is
.
(
As K is a submodule of ๐ท ( ) ,
(
)
)
is a submodule of
( )
(
)
.
Let
๐พ=
(
(
)
๐ท=
and
)
(I) If ๐พ = (0), then ๐‘˜ + ๐ท(
)
( )
(
โІ ๐ท(
)
)
and hence ๐พ โІ ๐ท (
)
.
By induction, K will be a free module with base containing ๐‘š โ‰ค ๐‘› โˆ’ 1 elements
and hence the result is true in this case.
(II) If ๐พ = {0}, then as in case (I), ๐พ will contain a base consisting of one element say
๐‘“ ฬ… where ๐‘“ ฬ… = ๐‘“ + ๐ท(
Subcase I : ๐พ โˆฉ ๐ท(
Then ๐พ โˆฉ ๐ท(
๐พ โˆฉ ๐ท(
)
)
)
)
. As ๐พ =
(
(
)
)
we select ๐‘“ โˆˆ ๐พ .
โ‰  (0).
โ‰  (0) is a submodule of ๐ท (
)
. Hence by induction hypothesis,
has a base say {๐‘“ , ๐‘“ , โ€ฆ , ๐‘“ } with 0 < ๐‘š โˆ’ 1 < ๐‘› โˆ’ 1.
Claim : {๐‘“ , ๐‘“ , โ€ฆ , ๐‘“ } will form a base for K.
Let ๐‘ฆ โˆˆ ๐พ . Then ๐‘ฆ = ๐‘ฆ + ๐ท(
)
โˆˆ ๐พ . Hence ๐‘ฆ = ๐‘ ๐‘“ ฬ… for some ๐‘ โˆˆ ๐ท.
But this means that
๐‘ฆ โˆ’ ๐‘ ๐‘“ = ๐‘ ๐‘“ + ๐‘ ๐‘“ + โ‹ฏ+ ๐‘ ๐‘“
๐‘ฆ = ๐‘ ๐‘“ + ๐‘ ๐‘“ + ๐‘ ๐‘“ + โ‹ฏ+ ๐‘ ๐‘“
Now, let us assume that
. . . (1)
m
โˆ‘ di f i = 0 for ๐‘‘ โˆˆ ๐ท. Hence d1 f1 = โˆ’
i=1
m
โˆ‘ dj f j .
j=2
This implies
d1 f 1 = โˆ’
m
โˆ‘ dj f j .
j=2
But {๐‘“ , ๐‘“ , โ€ฆ , ๐‘“ } is a base for ๐พ โˆฉ ๐ท(
)
. Hence
n
โˆ‘ dj f j = 0
and therefore
j=2
d1 f 1 = 0 . But {๐‘“ ฬ… } is a base for ๐พ will imply ๐‘‘ = 0.
Thus,
Algebra
Page No. 180
m
โˆ‘ dj f j = 0
(Since d1 f 1 = โˆ’
j=2
As {๐‘“ , ๐‘“ , โ€ฆ , ๐‘“ } is a base for ๐พ โˆฉ ๐ท (
m
โˆ‘ dk f k = 0
โ‡’
)
โˆ‘ dj f j
j=2
we get ๐‘‘ = ๐‘‘ = โ‹ฏ = ๐‘‘ = 0. Thus
dk = 0
k=1
m
โˆ€ ๐‘˜, 1 โ‰ค ๐‘˜ โ‰ค ๐‘š
Hence, {๐‘“ , ๐‘“ , โ€ฆ , ๐‘“ } will form a base K.
Subcase II : ๐พ โˆฉ ๐ท(
If ๐พ โˆฉ ๐ท(
๐‘“ โˆˆ๐พ
)
)
= {0}.
= {0}, then {๐‘“ } will form a base for K.
โŸน
(๐‘“ ) โІ ๐พ , where (๐‘“ ) = ๐ท๐‘“ .
Let ๐‘ฆ โˆˆ ๐พ . Then ๐‘ฆ = ๐‘ฆ + ๐ท(
Hence, ๐‘ฆ = ๐‘ ๐‘“ ฬ…
โŸน
)
โˆˆ ๐พ.
for some ๐‘ โˆˆ ๐ท.
๐‘ฆ โˆ’ ๐‘ ๐‘“ โˆˆ ๐ท(
)
.
As ๐‘“ โˆˆ ๐พ and ๐‘ฆ โˆˆ ๐พ , we get ๐‘ฆ โˆ’ ๐‘ ๐‘“ โˆˆ ๐พ .
Thus, ๐‘ฆ โˆ’ ๐‘ ๐‘“ โˆˆ ๐พ โˆฉ ๐ท(
)
= {0}.
Hence, ๐‘ฆ = ๐‘ ๐‘“ . This shows that ๐พ โІ (๐‘“ ).
Hence, ๐พ = (๐‘“ ) = ๐ท๐‘“ .
Further, ๐‘ ๐‘“ = 0 and ๐‘“ โ‰  0
โŸน ๐‘ = 0.
Hence, {๐‘“ } will form a base for K.
Thus in either cases, K is a free module with base consisting of m elements, where
๐‘š โ‰ค ๐‘›.
2.4 Completely Reducible Modules :
Definition 2.4.1 : An R-module M is called completely reducible if ๐‘€ = โˆ‘ ๐‘€ where ๐‘€ are
simple R-modules.
Theorem 2.4.2 : Let M be a completely reducible R-module. Let M =
โˆ‘ M ฮฑ where ๐‘€
ฮฑ โˆˆฮ”
is a simple R-modules of M. For any submodule K of M, โˆƒ a subset โˆ†โ€ฒ and โˆ† such that
โˆ‘ M ฮฑ is a direct sum and
ฮฑ โˆˆฮ”'
๐‘€=๐พโŠ•
โˆ‘ Mฮฑ .
ฮฑ โˆˆฮ”'
Algebra
Page No. 181
Proof :
โˆ‘ Mฮฑ is a direct sum and ๐พ โˆฉ โˆ‘ Mฮฑ
๐’ฆ= ๐ดโІโˆ† /
ฮฑ โˆˆA
= {0} .
ฮฑ โˆˆฮ”
Then ๐’ฆ is a non empty set as ๐œ™ โˆˆ ๐’ฆ .
As,
๐‘€ = {0}
โˆˆ
โŒฉ๐’ฆ, โІโŒช is partially ordered set.
Let ๐’ž be a chain in ๐’ฆ . Then
๐‘โˆˆ๐’ฆ
โˆˆ๐’ž
Hence, by Zornโ€™s lemma, ๐’ฆ contains a maximum element say ๐ต.
Thus,
โˆ‘ Mฮฑ is a direct sum and ๐พ โˆฉ โˆ‘ Mฮฑ
ฮฑ โˆˆB
= {0}
ฮฑ โˆˆฮ”
Let ๐‘ = ๐พ โŠ•
โˆ‘ Mฮฑ .
ฮฑ โˆˆB
Claim that M = N. i.e. to prove that โŠ•
โˆ‘ Mฮฑ = K โŠ• โˆ‘ Mฮฑ .
ฮฑ โˆˆฮ”
ฮฑ โˆˆB
Let ๐›ฝ โˆˆ โˆ†. Then ๐‘€ is a direct sum and of M and ๐‘€ is simple. Hence ๐‘€ โˆฉ ๐‘ is a
submodule of ๐‘€ will imply ๐‘€ โˆฉ ๐‘ = ๐‘€ or ๐‘€ โˆฉ ๐‘ = {0}.
Let ๐‘€ โˆฉ ๐‘ = {0} then M ฮฒ I
This implies that M ฮฒ I
But then
โˆ‘
ฮฑ โˆˆB U{ฮฒ }
โˆ‘ Mฮฑ โІ M ฮฒ I N = {0} .
ฮฑ โˆˆB
โˆ‘ M ฮฑ = {0} .
ฮฑ โˆˆB
M ฮฑ is a direct sum and
๐พโˆฉ
๐‘€
โˆˆ โˆช{ }
= ๐พโˆฉ
๐‘€
โˆช ๐พโˆฉ๐‘€
โˆˆ
= {0} โˆช {0} = {0}
(as ๐‘€ โˆฉ ๐‘ = {0} โŸน ๐‘€ โˆฉ ๐พ = {0}
Thus, ๐ต โˆช {๐›ฝ} โˆˆ ๐’ฆ .
B being a maximal element of ๐’ฆ we get a contradiction.
Hence,
๐‘€ โˆฉ๐‘ =๐‘€
i.e. ๐‘€ โІ ๐‘
โˆ€ ๐›ฝ โˆˆ โˆ†.
But this will imply
Algebra
Page No. 182
โˆ‘ Mฮฒ
โІ ๐‘.
i.e. ๐‘€ โІ ๐‘.
ฮฒ โˆˆฮ”
Hence, M = N.
Thus, M = K โŠ•
โˆ‘ Mฮฑ
where ๐ต โІ โˆ† such that
ฮฑ โˆˆB
Corollary 2.4.3 : Let M =
โˆ‘ Mฮฑ
is a direct sum.
ฮฑ โˆˆB
โˆ‘ Mฮฑ
where ๐‘€ is a simple R-submodule of M. Then โˆƒ a
ฮฑ โˆˆฮ”
subfamily โˆ†โ€ฒ of โˆ† such that M = โŠ•
โˆ‘ Mฮฑ
.
ฮฑ โˆˆฮ” '
Proof :
We know that for any submodule K of M, โˆƒ โˆ†โ€ฒ โІ โˆ† such that M = K โŠ•
โˆ‘ Mฮฑ
ฮฑ โˆˆฮ” '
and
โˆ‘
ฮฑ โˆˆฮ” '
M ฮฑ is a direct sum.
Now, take ๐พ = {0}. Then M = โŠ•
โˆ‘ Mฮฑ
.
ฮฑ โˆˆฮ” '
2.4.4 Worked Examples โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Example 1 : Let ๐‘€ be a completely reducible module and let ๐พ be a nonzero submodule of
๐‘€. Show that ๐พ is completely reducible. Also show that ๐พ is completely reducible.
Also show that ๐พ is a direct summand of ๐‘€.
Solution : Let M =
โˆ‘ Mฮฑ
where each ๐‘€ is a simple submodule.
ฮฑ โˆˆฮ”
By theorem 2, M = K โŠ•
โˆ‘ Mฮฑ
, โˆ† โІ โˆ† shows that K is a direct summand of M.
ฮฑ โˆˆฮ” '
Again,
and
M
โ‰… โˆ‘ Mฮฑ
K ฮฑ โˆˆฮ”'
M
โ‰…K
โˆ‘ Mฮฑ
ฮฑ โˆˆฮ”'
Thus ,
M
K โ‰…
โˆ‘ Mฮฑ
ฮฑ โˆˆฮ” '
Algebra
โˆ‘
โ‰…
ฮฑ โˆˆฮ” '
Mฮฑ โŠ•
โˆ‘
ฮฑ โˆˆฮ” '
โˆ‘
ฮฑ โˆˆฮ”"
Mฮฑ
Mฮฑ
โ‰…
โˆ‘
ฮฑ โˆˆฮ” "
Mฮฑ
Page No. 183
M
โ‰… โˆ‘ M ฮฑ is a submodule of M. Hence again applying theorem 1, we get,
K ฮฑ โˆˆฮ”'
โŽก
K = โŽข
โŽค
โŽก
โŽค
โŠ• โŽข โˆ‘ Mฮฑ โŽฅ ,
โŽฅโŽฆ
โŽฃโŽข ฮฑ โˆˆฮ”"
โŽฆโŽฅ
โˆ‘ Mฮฑ โŽฅ
โŽฃโŽขฮฑ โˆˆฮ” '
M
โˆ‘ Mฮฑ
โˆ‘
=
ฮฑ โˆˆฮ” '
ฮฑ โˆˆฮ”
Mฮฑ +
โˆ‘
ฮฑ โˆˆฮ” '
โˆ‘
ฮฑ โˆˆฮ”"
for some โˆ†" โІ โˆ†.
Mฮฑ
โ‰…
Mฮฑ
โˆ‘
ฮฑ โˆˆฮ” "
Mฮฑ
Thus ,
K โ‰…
โˆ‘
ฮฑ โˆˆฮ”"
Mฮฑ
(โˆ†" โІ โˆ†.
As each ๐‘€ , ๐›ผ โˆˆ โˆ†" is simple we get
โˆ‘
ฮฑ โˆˆฮ”"
M ฮฑ is completely reducible module. Hence
K is completely reducible being an isomorphic image of a completely reducible module.
Example 2 : Let M be a completely reducible module and let K be a submodule of M. If
๐พ โ‰  ๐‘€ then show that
is completely reducible.
Solution : M be completely reducible. Hence M =
โˆ‘ M ฮฑ where each ๐‘€
is simple. K is a
ฮฑ โˆˆฮ”
submodule of M. Therefore by theorem 1, M = K โŠ•
โˆ‘ Mฮฑ
for some โˆ†โ€ฒ โІ โˆ†.
ฮฑ โˆˆฮ”'
But then
As
โˆ‘
ฮฑ โˆˆฮ” '
M
โ‰… โˆ‘ Mฮฑ .
K ฮฑ โˆˆฮ”'
M ฮฑ is completely reducible, we get
is completely reducible.
โ€ขโ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Algebra
Page No. 184
Unit 3: NOETHERIAN AND ARTINIAN MODULES :
3.1 Noetherian and Artinian module
3.2
Artinian module
3.1 Noetherian Modules :
Definition 3.1.1 : Let ๐‘€ be an R-module. If for every ascending sequence of R-submodules
of ๐‘€, ๐‘€ โІ ๐‘€ โІ โ‹ฏ โІ โ‹ฏ there exists a positive integer ๐‘› such that ๐‘€ = ๐‘€
= โ‹ฏ,
then ๐‘€ is called Noetherian module.
Remark 3.1.2 : If ๐‘€ is a Noetherian module, we say that ascending chain condition (acc) for
submodules hold in ๐‘€ or ๐‘€ has acc.
3.1.3 Examples โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Example 1 : Let ๐‘ denote a Z-module and ๐‘› โˆˆ ๐‘. we know that (n) is a submodule of ๐‘.
Consider the ascending chain of submodules i๐‘› ๐‘ given below.
(๐‘›) โŠ‚ (๐‘› ) โŠ‚ (๐‘› ) โŠ‚ โ‹ฏ
(๐‘›) โŠ‚ (๐‘› )
Then,
(๐‘› ) โŠ‚ (๐‘› )
โŸน ๐‘› |๐‘›
โŸน ๐‘› |๐‘›
Hence, the ascending chain of submodules in Z, starting with (n) will have atmost ๐‘›
distinct elements.
This shows that Z as a Z-module is a Noetherian module.
Example 2 : Let ๐‘‰ be an n-dimensional vector space over a field ๐น . Then any ascending
chain of subspaces of ๐‘‰ cannot have more than ๐‘› + 1 elements. Hence ๐‘‰ must be
Noetherian.
Theorem 3.1.4 : Let ๐‘€ an R-module. The following statements are equivalent.
(i)
๐‘€ is Noetherian.
(ii)
Every submodule of ๐‘€ is finitely generated.
(iii) Any non-empty family of submodules of ๐‘€ has a maximal element.
Algebra
Page No. 185
Proof :
(i) โŸน (ii) :
Let ๐‘ be a submodule of a Noetherian module ๐‘€.
Assume that N is not finitely generated.
Select ๐‘Ž โˆˆ ๐‘. Then ๐‘ โ‰  (๐‘Ž ), by assumption.
Hence, select ๐‘Ž โˆˆ ๐‘ such that ๐‘Ž โˆ‰ (๐‘Ž ) . (This is possible as (๐‘Ž ) โŠ‚ ๐‘ ).
Then, by assumption,
๐‘ โ‰  (๐‘Ž , ๐‘Ž )
and
(๐‘Ž ) โŠ‚ (๐‘Ž , ๐‘Ž ) โŠ‚ ๐‘.
Hence, select ๐‘Ž โˆˆ ๐‘ such that ๐‘Ž โˆ‰ (๐‘Ž , ๐‘Ž ) .
Then ๐‘ โ‰  (๐‘Ž , ๐‘Ž , ๐‘Ž ), by assumption and
(๐‘Ž ) โŠ‚ (๐‘Ž , ๐‘Ž ) โŠ‚ (๐‘Ž , ๐‘Ž , ๐‘Ž ) โŠ‚ ๐‘.
Continuing in this way, we get an infinite ascending chain of submodules of ๐‘ and
hence of ๐‘€.
But this contradicts the fact that ๐‘€ is Noetherian module.
Hence, ๐‘ must be finitely generated.
(ii) โŸน (iii) :
Let ๐’ฆ denote the non empty family of submodules of the module ๐‘€.
Let ๐‘ โˆˆ ๐’ฆ .
If ๐‘ is a maximal ideal of ๐’ฆ , then we are through.
If ๐‘ is not a maximal element of ๐’ฆ , then there exist ๐‘ โˆˆ ๐’ฆ such that ๐‘ โŠ‚ ๐‘ .
If ๐‘ is a maximal element of ๐’ฆ , then we are through.
If ๐‘ is not a maximal element of ๐’ฆ , then there exist ๐‘ โˆˆ ๐’ฆ such that ๐‘ โŠ‚ ๐‘ โŠ‚ ๐‘ .
Thus, if ๐’ฆ does not contain a maximal element, we get an infinite chain of submodules
of ๐‘€ as below
๐‘ โŠ‚๐‘ โŠ‚๐‘ โŠ‚โ‹ฏ
โ€ฆ (I)
Define N = U Ni .
i=1
Then, ๐‘ is a submodule of ๐‘€. By assumption ๐‘ must be finitely generated.
Let (๐‘ฅ , ๐‘ฅ , . . . , ๐‘ฅ ),
where ๐‘ฅ โˆˆ ๐‘, โˆ€ ๐‘– โ‰ค ๐‘– โ‰ค ๐พ .
The finite number of elements ๐‘ฅ , ๐‘ฅ , . . . , ๐‘ฅ
must belong to the finite number of
submodules. ๐‘ (this number โ‰ค ๐‘˜ ), by the definition of ๐‘.
Hence, select a positive integer ๐‘  such that ๐‘ฅ , ๐‘ฅ , . . . , ๐‘ฅ โˆˆ ๐‘ and ๐‘  is the smallest
positive integer satisfying this property. Thus,
Algebra
Page No. 186
๐‘ฅ , ๐‘ฅ , . . . , ๐‘ฅ โˆˆ ๐‘ implies (๐‘ฅ , ๐‘ฅ , . . . , ๐‘ฅ ) โІ ๐‘
and hence ๐‘ โІ ๐‘ โІ ๐‘.
This shows that ๐‘ = ๐‘ .
For the infinite chain in ๐ผ we have ๐‘  > 0 such that
๐‘ =๐‘
=๐‘
= ...= ๐‘
This in turn shows that ๐‘ will be the maximal element in ๐’ฆ and the implication follows.
(iii) โŸน (i) :
Let ๐‘€ โŠ‚ ๐‘€ โŠ‚ . .. be any ascending sequence of submodules of an R-module ๐‘€.
Consider the family ๐’ฆ = {๐‘€ , ๐‘€ , . . . }.
Then, ๐’ฆ is the family of submodules of ๐‘€ and hence by assumption, ๐’ฆ contains a
maximal element say ๐‘€ . But then ๐‘€ = ๐‘€
= . ...
This in turn shows that ๐‘€ is Noetherian.
Thus, we have proved 1 โŸน 2 โŸน 3 โŸน 1.
Hence, all the statements are equivalent.
Theorem 3.1.5 : Every submodule of a Noetherian module is a Noetherian module.
Proof :Let ๐‘€ be Noetherian module. Let ๐‘ be submodule of ๐‘€.
To prove ๐‘ is Noetherian.
Let ๐’ฆ be any non empty family of submodules of ๐‘.
Then obviously, ๐’ฆ is a any non empty family of submodules of ๐‘€.
๐‘€ being Noetherian, ๐’ฆ contains a maximal element (See theorem 3.1.4).
But this in turn will imply ๐‘ is Noetherian.
Theorem 3.1.6 : Every quotient module of a Noetherian module is Noetherian.
Proof :
Let M be a Noetherian module. Let N be any submodule of M.
To prove that
is Noetherian.
Let ๐’ฆ denote a non-empty family of submodules of a module
Let ๐’ฆ =
๐‘ˆ1 ๐‘ˆ2 ๐‘ˆ3
, ๐‘, ๐‘,
๐‘
โ€ฆ . As
is a submodule of
.
, by theorem 1 in 1.3, we get
๐‘ˆ is a submodule of M containing N.
Algebra
Page No. 187
Consider the family โ„ฑ = {๐‘, ๐‘ˆ , ๐‘ˆ , โ€ฆ }. Then โ„ฑ is a nonempty family of submodule
on M (since ๐‘ โˆˆ โ„ฑ ). As M is Noetherian, the family โ„ฑ contains a maximal element say
๐‘ˆ .
will be the maximal element of the family ๐’ฆ .
Then
Hence,
is Noetherian module, by theorem 3.1.4.
Theorem 3.1.7 : Every homomorphic image of a Noetherian module is Noetherian.
Proof :
Let ๐‘“ โˆถ ๐‘€ โŸถ ๐‘€ be R-homomorphism of an R-module ๐‘€ onto the R-module
๐‘€.
Claim 1 : If ๐‘ is a submodule of ๐‘€ then ๐‘“(๐‘) is a submodule of ๐‘€ .
(i)
๐‘“(๐‘) โ‰  ๐œ™ as ๐‘ โ‰  ๐œ™
(ii)
๐‘ฅ, ๐‘ฆ โˆˆ ๐‘“(๐‘). Hence โˆƒ ๐‘Ž, ๐‘ โˆˆ ๐‘ such that ๐‘ฅ = ๐‘“(๐‘Ž) and ๐‘ฆ = ๐‘“(๐‘).
Then ๐‘ฅ โˆ’ ๐‘ฆ = ๐‘“(๐‘Ž) โˆ’ ๐‘“(๐‘)
= ๐‘“(๐‘Ž โˆ’ ๐‘) ,
โ€ฆ Since ๐‘“ is homomorphism.
This shows that ๐‘ฅ โˆ’ ๐‘ฆ โˆˆ ๐‘“(๐‘) as ๐‘Ž โˆ’ ๐‘ โˆˆ ๐‘, N being a module in ๐‘€ .
(iii) Let ๐‘Ÿ โˆˆ ๐‘… and ๐‘ฅ โˆˆ ๐‘“(๐‘). Then ๐‘ฅ = ๐‘“(๐‘Ž) for some ๐‘Ž โˆˆ ๐‘.
As N is a submodule of ๐‘€ ,
๐‘Ÿ โˆ™ ๐‘Ž โˆˆ ๐‘ โŸน ๐‘“(๐‘Ÿ โˆ™ ๐‘Ž) โˆˆ ๐‘“(๐‘).
But as f is an R- homomorphism, ๐‘“(๐‘Ÿ โˆ™ ๐‘Ž) = ๐‘Ÿ โˆ™ ๐‘“(๐‘Ž) = ๐‘Ÿ โˆ™ ๐‘ฅ โˆˆ ๐‘“(๐‘›).
From (i), (ii) and (iii), we get, ๐‘“(๐‘) is a submodule of ๐‘€ .
Claim 2 : If ๐‘‹ is a submodule of ๐‘€ , then ๐‘“
(i)
๐‘“
(ii)
๐‘Ž, ๐‘ โˆˆ ๐‘“
(๐‘‹) is a submodule of ๐‘€ .
(๐‘‹) โ‰  ๐œ™ as ๐‘‹ โ‰  ๐œ™
(๐‘‹). Then ๐‘“(๐‘Ž) โˆˆ ๐‘‹, ๐‘“(๐‘) โˆˆ ๐‘‹.
As X is a submodule, ๐‘“(๐‘Ž) โˆ’ ๐‘“(๐‘) โˆˆ ๐‘‹
๐‘“ being homomorphism, ๐‘“(๐‘Ž) โˆ’ ๐‘“(๐‘) = ๐‘“(๐‘Ž โˆ’ ๐‘).
Thus, ๐‘“(๐‘Ž โˆ’ ๐‘) โˆˆ ๐‘‹ and hence ๐‘Ž โˆ’ ๐‘ โˆˆ ๐‘“
(iii) Let ๐‘Ÿ โˆˆ ๐‘… and ๐‘Ž โˆˆ ๐‘“
(๐‘‹).
(๐‘‹).
Then ๐‘“(๐‘Ž) โˆˆ ๐‘‹, ๐‘‹ being a submodule of M, ๐‘Ÿ โˆ™ ๐‘“(๐‘Ž) โˆˆ ๐‘‹.
As ๐‘“ is a homomorphism ๐‘“(๐‘Ÿ โˆ™ ๐‘Ž) = ๐‘Ÿ โˆ™ ๐‘“(๐‘Ž).
Thus, ๐‘Ÿ โˆ™ ๐‘Ž โˆˆ ๐‘“
(๐‘‹).
From (i), (ii) and (iii), we get, ๐‘“
Algebra
(๐‘‹) is a submodule of ๐‘€ .
Page No. 188
Claim 3 : ๐‘€ is a Noetherian module.
Let ๐’ฆ = {๐‘ , ๐‘ , โ€ฆ } be any nonempty family of submodules of the module ๐‘€ .
Then the family, ๐’ฆ = {๐‘“
(๐‘ ), ๐‘“
(๐‘ ), โ€ฆ } is a non empty family of submodules of
the module ๐‘€ (by claim 2).
As ๐‘€ is Noetherian, ๐’ฆ contains a maximal element (by theorem 3.1.4).
Let it be ๐‘“
(๐‘ ).
Then, ๐‘ will be maximal element in ๐’ฆ (by claim 1). This in turn shows that ๐‘€ is
Noetherian (See theorem 3.1.4).
Thus, homomorphic image of a Noetherian module is Noetherian.
Theorem 3.1.8 : Let M be an R-module and let N be a submodule of M. M is Noetherian iff
both ๐‘ and
are Noetherian.
Proof : Only if part :
Let ๐‘€ be Noetherian. Then both ๐‘ and
are Noetherian (See theorem 3.1.5 and
theorem 3.1.6).
If part :
Let ๐‘ and
both be Noetherian.
To prove that ๐‘€ is Noetherian.
๐‘ is Noetherian implies ๐‘ is finitely generated (See theorem 3.1.4).
Let ๐‘ = (๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ).
is Noetherian implies
Let
is finitely generated (See theorem 3.1.4).
= (๐‘ฆ + ๐‘, ๐‘ฆ + ๐‘, โ€ฆ , ๐‘ฆ + ๐‘)
Then ๐‘€ = (๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ , ๐‘ฆ , ๐‘ฆ , โ€ฆ , ๐‘ฆ )
As M is a finitely generated module, M is Noetherian (See theorem 3.1.4).
Theorem 3.1.9 : Let ๐‘€ be an R-module. Let ๐‘€ and ๐‘€ be submodules of ๐‘€ such that
๐‘€ = ๐‘€ โจ ๐‘€ . If ๐‘€ and ๐‘€ are Noetherian, then ๐‘€ is Noetherian.
Proof : We know that ๐‘€ = ๐‘€ โจ ๐‘€ will imply ๐‘€ โ‰…
Algebra
and ๐‘€ โ‰…
(See theorem 3.1.6).
Page No. 189
Now, ๐‘€ is Noetherian and ๐‘€ โ‰…
Hence, by theorem 3.1.7,
As ๐‘€ and
.
is Noetherian.
both are Noetherian we get ๐‘€ is Noetherian (by theorem 3.1.8).
Corollary 3.1.10 : Let ๐‘€ be an R-module and let ๐‘€ , ๐‘€ , โ€ฆ , ๐‘€ be Noetherian submodules
of ๐‘€ such that
๐‘€ = ๐‘€ โŠ• ๐‘€ โŠ• โ€ฆโŠ• ๐‘€
Then, ๐‘€ is Noetherian.
Proof : The result is true for ๐‘› = 2 by theorem 3.1.9.
[Hence by induction on ๐‘›, we get, if ๐‘€ = ๐‘€ โŠ• ๐‘€ โŠ• โ€ฆ โŠ• ๐‘€ then ๐‘€ is Noetherian
when each ๐‘€ is a Noetherian module].
Let the result be true for all ๐‘˜ โ‰ค ๐‘›.
Then [๐‘€ โŠ• ๐‘€ โŠ• โ€ฆ โŠ• ๐‘€
] = ๐‘ is Noetherian module.
But in this case ๐‘€ = ๐‘ โŠ• ๐‘€ .
As ๐‘ and ๐‘€ both are noertherian, we get ๐‘€ is Noetherian.
3.2 Artinian Module :
Definition 3.2.1 : An R-module ๐‘€ is called Artinian if for every decreasing sequence of
R-submodules of ๐‘€
๐‘€ โЇ๐‘€ โЇโ‹ฏโЇโ‹ฏ
there exists a positive integer ๐‘› such that ๐‘€ = ๐‘€
Remark 3.2.2 :
= โ‹ฏ.
If ๐‘€ is Artinian module, we say that descending chain condition (dcc) for
submodules hold in ๐‘€ or M has dcc.
Example 3.2.3 : Any finite dimensional vector space over the field ๐น is an Artinian module.
Remark 3.2.4 :
Any finite dimensional vector space over the filed ๐น is both Noetherian
and Artinian module. But ๐‘ as Z-module is a Noetherian module which is not Artinian
as the decreasing sequence
Algebra
Page No. 190
(๐‘›) โŠƒ (๐‘› ) โŠƒ โ‹ฏ
is an infinite properly decreasing sequence in ๐‘.
Now we only mention the characterizing properties of Artinian modules, the proof being
similar to the proof of theorem 3.1.4.
Theorem 3.2.5 : Let ๐‘€ be an R-module. Following statements are equivalent.
(i)
๐‘€ is Artinian.
(ii)
Every submodules of ๐‘€ is finitely generated.
(iii) Every non-empty set ๐’ฆ of submodules of ๐‘€ has a minimal element.
Exercise : Show that every submodule and every homomorphic image of an Artinian module
is Artinian.
[Hint : See 3.1, theorem 3.1.5 and theorem 3.1.7].
โ€ขโ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€“โ€ข
Algebra
Page No. 191