H
I
SHIVAJI UNIVERSITY, KOLHAPUR
CENTRE FOR DISTANCE EDUCATION
Algebra-I
(Mathematics)
For
M. Sc. Part-I
K
J
Copyright ©
Registrar,
Shivaji University,
Kolhapur. (Maharashtra)
First Edition 2008
Second Edition 2010
Prescribed for M. Sc. Part-I
All rights reserved, No part of this work may be reproduced in any form by mimeography or
any other means without permission in writing from the Shivaji University, Kolhapur (MS)
Copies : 1,000
Published by:
Dr. D. V. Muley
Registrar,
Shivaji University,
Kolhapur-416 004
Printed by :
Shri. A. S. Mane,
I/c. Superintendent,
Shivaji University Press,
Kolhapur-416 004
ISBN-978-81-8486-080-1
H
Further information about the Centre for Distance Education & Shivaji University may be
obtained from the University Office at Vidyanagar, Kolhapur-416 004, India.
H
This material has been produced with the developmental grant from DEC-IGNOU, New
Delhi.
(ii)
Centre for Distance Education
Shivaji University, Kolhapur
n EXPERT COMMITTEE n
Dr. D. V. Muley
Prof. (Dr.) N. J. Pawar
Vice-Chancellor,
Shivaji University, Kolhapur
Registrar,
Shivaji University, Kolhapur.
n ADVISORY COMMITTEE n
Prof. (Dr.) N. J. Pawar
Vice-Chancellor,
Shivaji University, Kolhapur.
Dr. D. V. Muley
Registrar,
Shivaji University, Kolhapur.
Dr. A. B. Rajge
Director BCUD,
Shivaji University, Kolhapur.
Shri. B. S. Patil
Finance and Accounts Officer,
Shivaji University, Kolhapur.
Dr. B. M. Hirdekar
Prof. (Dr.) U. B. Bhoite
Lal Bahadur Shastri Marg,
Bharati Vidyapeeth, Pune.
Controller of Examination
Shivaji University, Kolhapur.
Prof. (Dr.) A. N. Joshi
Director, School of Education,
Y. C. M. O. U. Nashik.
Dr. (Smt.) Vasanti Rasam
Dean, Faculty of Social Sciences,
Shivaji University, Kolhapur.
Shri. J. R. Jadhav
Dean, Faculty of Arts & Fine Arts,
Shivaji University, Kolhapur.
Prof. (Dr.) B. S. Sawant
Dean, Faculty of Commerce,
Shivaji University, Kolhapur.
Prof. (Dr.) S. A. Bari
Director, Distance Education,
Kuvempu University, Karnataka.
Dr. T. B. Jagtap
Dean, Faculty of Science,
Shivaji University, Kolhapur.
Prof. Dr. (Smt.) Cima Yeole
(Member Secretary)
Director, Centre for Distance Education,
Shivaji University, Kolhapur.
Dr. K. N. Sangale
Dean, Faculty of Education,
Shivaji University, Kolhapur.
n B. O. S. MEMBERS OF MATHEMATICS n
Chairman- Prof. S. R. Bhosale
P.D.V.P. Mahavidyalaya, Tasgaon, Dist. Sangli.
l
Dr. L. N. Katkar
Head, Dept. of Mathematics,
Shivaji University, Kolhapur.
l
Dr. A. D. Lokhande
Yashavantrao Chavan Warana Mahavidyalaya,
Warananagar.
l
Dr. H. T. Dinde
Karmveer Bhaurao Patil College, Urun-Islampur,
Tal. Walwa, Dist. Sangli.
l
Prof. S. P. Patankar
Vivekanand College, Kolhapur.
l
l
Dr. T. B. Jagtap
Yashwantrao Chavan Institute of Science, Satara.
Prof. V. P. Rathod
Dept. of Mathematics, Gulbarga University,
Gulbarga, (Karnataka State.)
l
Shri. L. B. Jamale
Krishna Mahavidyalaya, Rethare Bk., Karad,
Dist. Satara.
l
Prof. S. S. Benchalli
l
Shri. Santosh Pawar,
1012, 'A' Ward Sadashiv Jadhav, Housing
Society, Radhanagari Road, Kolhapur-416 012.
Dept. of Mathematics,Karnataka University, Dharwad.
(iii)
Centre for Distance Education
Shivaji University,
Kolhapur.
Algebra-I
Writing Team
Unit No.
Dr. Y. S. Powar
Dept. of Mathematics,
Shivaji University, Kolhapur.
All
n
Editor n
Dr. Y. S. Powar
Department of Mathematics,
Shivaji University, Kolhapur.
Maharashtra.
(iv)
Preface
This book in the form of "Notes of Algebra-I" is a natural outgrowth of the lectures
delivered for M. Sc. Part-I students of Shivaji University. The primary purpose of this
book is to facilitate the post graduate education in Algebra. The topics in the book will
cover the syllabus of Algebra-I in detail for M. Sc. (Part-I) external students. For the
basic ideas in Group theory and Ring theory students are advised to read in detail the
other text books of Algebra.
First chapter deals with Group theory and it covers the following articles 1)
Isomorphism theorems, 2) Soluable groups, 3) Series of Groups, 4) Sylow theorems.
The second Chapter is on Ring theory and it especially deals with polynomial
rings.
In the third chapter we discuss Module theory, where modules are the
generalization of vector spaces which students have studied in their B. Sc. course.
The list of the articles in this chapter is as follows.
1) Modules 2) Sum and direct sum of submodules 3) Noetherian and Artenian
Modules.
We owe a deep sense of gratitude to the Vice-Chancellor Dr. N. J. Pawar who has
given impetus to go ahead with ambitious projects like the present one. Dr. L. N. Katkar,
Head, Department of Mathematics, Shivaji University has to be profusely thanked for
the ovation he has poured to prepare the SIM on Algebra. We also thank the Director
of Distance Education Mode Mrs. Cima Yeole and Deputy Director Shri. S. S. Patil for
their help and keen interest in completion of the SIM.
Prof. S. R. Bhosale
Chairman BOS in Mathematics
Shivaji University, Kolhapur-416004.
(v)
M. Sc. (Mathematics)
Algebra-I
Contents
Chapter 1 : Groups
1
1) Isomorphism Theorems
2) Solvable Groups
3) Series of A Group
4) Sylow Theorems
Chapter 2 : Ring of Polynomials
80
Chapter 3 : Theory of Modules
123
1) Modules
2) Sum and Direct Sum of Submodules
3) Noetherian and Artinian Modules
(vii)
CHAPTER I - GROUPS
Unit 1 : Isomorphism theorems :
1.1 Basic definitions and results
1.2 Isomorphism Theorems
1.1 Basic Definitions and Results :
Definition 1.1.1: A group โฉ๐บ, โโช is a set G together with a binary operation โ defined on ๐บ,
satisfying the following axioms.
(i)
๐ โ (๐ โ ๐) = (๐ โ ๐) โ ๐
(ii)
There exists an element ๐ โ ๐บ such that ๐ โ ๐ = ๐ = ๐ โ ๐.
(iii)
For each ๐ โ ๐บ, there is an element ๐โฒ โ ๐บ such that ๐ โ ๐โฒ = ๐ = ๐โฒ โ ๐.
for all ๐, ๐ โ ๐บ.
The element ๐ is called an identity element for โ in ๐บ and the element ๐โฒ is called
the inverse of ๐ with respect to โ in ๐บ.
Generally, we use โ โ โ for a binary operation in a group ๐บ and ๐ฅ โ ๐ฆ is denoted by ๐ฅ๐ฆ simply.
Definition 1.1.2: A group ๐บ is abelian if its binary operation โ is commutative.
i.e.
๐๐ = ๐๐
for all ๐, ๐ โ ๐บ
Definition 1.1.3: Let H be a subset of a group ๐บ. If H is itself a group under the induced
binary operation defined on ๐บ, then H is a sub group of ๐บ. We denote this by ๐ป โค ๐บ.
๐บ is the improper subgroup of ๐บ. All other subgroups of ๐บ are proper subgroups. Also {๐}
is the trivial subgroup of ๐บ. All other subgroups are non trivial.
Definition 1.1.4: Let ๐บ be a group and let ๐ โ ๐บ. Then the subgroup ๐ป = {๐ / ๐ โ ๐} of ๐บ
is called the cyclic subgroup of ๐บ generated by ๐ and it is denoted by < ๐ >.
(here ๐ = ๐ โ ๐ โ โฆ โ ๐ ๐ times)
Definition 1.1.5: An element ๐ of group ๐บ generates ๐บ (or ๐ is generator for ๐บ)
if < ๐ > = ๐บ.
Algebra
Page No. 1
A group ๐บ is cyclic if there is some element a in ๐บ that generates ๐บ.
Definition 1.1.6: A permutation of a set ๐ด is a function from ๐ด into ๐ด that is both one-one
and onto.
Definition 1.1.7: If ๐ด is a finite set {1, 2, . . . , ๐}, then the group of all permutations of ๐ด is the
symmetric group of ๐ letters and is denoted by ๐ . [ Note that |๐ | = ๐ ! ].
Definition 1.1.8: The subgroup of ๐ consisting of even permutations of ๐ letters is the
alternating group ๐ด of ๐ letters. [Note that, |๐ด | =
!
]
Definition 1.1.9: Let ๐บ and ๐บ be any groups. A mapping ๐ โถ ๐บ โถ ๐บ is a homomorphism
if
๐(๐ฅ๐ฆ) = ๐(๐ฅ) โ ๐(๐ฆ)
for all ๐ฅ, ๐ฆ โ ๐บ
An isomorphism of a group ๐บ with a group ๐บ is a one to one homomorphism of
๐บ onto ๐บ .
Definition 1.1.10: Let ๐ป and ๐พ be subgroups of a group ๐บ. The join ๐ป โจ ๐พ of ๐ป and ๐พ is the
intersection of all subgroups of ๐บ containing ๐ป๐พ = {โ๐ / โ โ ๐ป, ๐ โ ๐พ}.
๐ป โจ ๐พ is the smallest subgroup of ๐บ containing both ๐ป and ๐พ.
Definition 1.1.11: Let ๐ป and ๐พ be subgroups of a group ๐บ. ๐บ is the internal direct product of
the subgroups ๐ป and ๐พ if the mapping ๐ โถ ๐ป × ๐พ โถ ๐บ defined by ๐(โ, ๐) = โ โ ๐ is an
isomorphism.
In this case any ๐ โ ๐บ can be uniquely written as ๐ = โ โ ๐, โ โ ๐ป and ๐ โ ๐พ. We
can generalize this definition for any finite ๐.
Definition 1.1.12: Let ๐บ be group and let ๐ โ ๐บ, for ๐ โ ๐ผ (๐ผ is an indexing set). The smallest
subgroup of ๐บ containing {๐ / ๐ โ ๐ผ} is the subgroup generated by {๐ / ๐ โ ๐ผ}. If this
subgroup is all of ๐บ, then we say {๐ / ๐ โ ๐ผ} generates ๐บ and ๐ โฒ๐ are the generators of ๐บ.
If there exists a finite set {๐ / ๐ โ ๐ผ} that generates ๐บ, then we say ๐บ is finitely generated.
Algebra
Page No. 2
Definition 1.1.13: Let ๐ป be subgroup of ๐บ and let ๐ โ ๐บ. The left coset ๐๐ป of ๐ป is the set
{๐โ / โ โ ๐ป}. The right coset ๐ป๐ is similarly defined.
Definition 1.1.14: Let ๐ป be subgroup of group ๐บ. The number of left cosets of ๐ป in ๐บ is the
index of ๐ป in ๐บ and is denoted by (๐บ โถ ๐ป)
If ๐บ is finite, then (๐บ โถ ๐ป) is finite and (๐บ: ๐ป) =
| |
| |
.
Definition 1.1.15: A subgroup ๐ป of group ๐บ is a normal subgroup of ๐บ if ๐ ๐ป๐ = ๐ป for all
๐ โ ๐บ. We denote this by ๐ป โด ๐บ.
Obviously, ๐ป is normal iff ๐โ๐
โ ๐ป for all ๐ โ ๐บ and โ โ ๐ป.
Definition 1.1.16: Two subgroups ๐ป and ๐พ of a group ๐บ are conjugate of each other if
๐ป = ๐ ๐พ๐, for some ๐ โ ๐บ.
Definition 1.1.17: If ๐ is a normal subgroup of a group ๐บ, the group of right/left cosets of
๐ under induced operation is the factor (quotient) group of ๐บ modulo ๐ and is denoted
by
.
Definition 1.1.18: A group ๐บ is simple if it has no proper, nontrivial normal subgroups.
i.e. if ๐ป โค ๐บ then either ๐ป = {๐} or ๐ป = ๐บ.
Definition 1.1.19 : An element ๐๐๐ ๐
in a group G (๐, ๐ โ ๐บ) is called a commutator of
๐ and ๐ in ๐บ.
Definition 1.1.20 : The kernel of a homomorphism ๐ of a group ๐บ into a group ๐บโฒ is the set
of all elements of ๐บ mapped onto the identity element of ๐บโฒ by ๐. This is denoted by
๐๐๐ ๐.
Thus, ๐๐๐ ๐ = {๐ฅ โ ๐บ/๐(๐ฅ) = ๐โฒ}.
Definition 1.1.21: Let ๐บ be a group. ๐ is any non empty subset of ๐บ. The normalizer of ๐ in ๐บ
is the set ๐[๐] = {๐ฅ โ ๐บ/๐ฅ๐๐ฅ
= ๐}.
The normalizer of {๐} is denoted by ๐[๐].
Algebra
Page No. 3
Definition 1.1.22: Let ๐บ be a group and ๐ โ ๐บ. The set ๐ถ(๐) = {๐ฅ๐๐ฅ
/๐ฅ โ ๐บ} is called the
conjugate of ๐ in ๐บ.
Theorem 1.1.23: If ๐ป and ๐พ are subgroup of a group ๐บ, then
|๐ป๐พ| =
| |โ| |
|
โฉ |
Let |๐ป| = ๐, |๐พ| = ๐ and |๐ป โฉ ๐พ| = ๐ก.
Proof :
๐ป๐พ = {โ โ ๐ / โ โ ๐ป and ๐ โ ๐พ}
Then |๐ป๐พ| โค |๐ป| โ |๐พ| = ๐ โ ๐
โ ๐ =โ ๐
(i) Let
๐ฅ=โ
Let
Then ๐ฅ = โ
for some โ โ โ ๐ป and ๐ , ๐ โ ๐พ.
โ =๐ ๐
โ
.
โน ๐ฅ โ ๐ป and ๐ฅ = ๐ ๐
โน ๐ฅ โ ๐พ.
Thus ๐ฅ โ ๐ป โฉ ๐พ and further
Thus
โ =โ ๐ฅ
and
๐ = ๐ฅ๐
โ ๐ =โ ๐
โน โ ๐ฅ โ ๐ป โฉ ๐พ such that โ = โ ๐ฅ
and ๐ = ๐ฅ๐ .
(ii) Suppose โ ๐ฆ โ ๐ป โฉ ๐พ such that
โ =โ ๐ฆ
and ๐ = ๐ฆ๐
But then โ ๐ = โ ๐ฆ
for some โ โ โ ๐ป and ๐ ๐ โ ๐พ.
โ ๐ฆ๐ = โ ๐ .
Thus given ๐ฆ โ ๐ป โฉ ๐พ, โ ๐ฆ
and ๐ฆ๐ in HK will produce the element โ ๐ .
From (1) and (2), we get that there exists a one-one onto correspondence between the
repeated elements in HK and the elements of ๐ป โฉ ๐พ. Thus any element โ๐ โ ๐ป๐พ can be
represented in the form of โ ๐ for โ โ ๐ป and ๐ โ ๐พ for all ๐, 1 โค ๐ โค ๐ก.
Hence
|๐ป๐พ| =
| |โ| |
|
โฉ |
1.2 Isomorphism Theorems:
Theorem 1.2.1: A group ๐บ is the internal direct product of subgroups ๐ป and ๐พ if and
only
if
(i)
๐บ =๐ปโ๐พ
(ii) โ๐ = ๐โ
for all โ โ ๐ป and ๐ โ ๐พ.
(iii) ๐ป โฉ ๐พ = {๐}
Algebra
Page No. 4
Proof : Only if part :
Let G be internal direct product of H and K. Hence ๐: ๐ป × ๐พ โถ ๐บ defined by
๐(โ, ๐) = โ๐
is an isomorphism.
Define
๐ป = {(โ, ๐)/โ โ ๐ป}
and
๐พ = {(๐, ๐)/๐ โ ๐พ}.
and
๐พ โค ๐ป × ๐พ.
Then
๐ป โค๐ป×๐พ
Further
๐ป โ ๐พ = ๐ป × ๐พ; ๐ป โฉ ๐พ = {(๐, ๐)}
(โ, ๐) โ ๐ป and (๐, ๐) โ ๐พ
โน
(โ, ๐)(๐, ๐) = (โ, ๐)
and
(๐, ๐)(โ, ๐) = (โ, ๐).
(โ, ๐)(๐, ๐) = (๐, ๐)(โ, ๐).
Hence,
Therefore we get
(i)
๐ปโ๐พ =๐ป×๐พ
(ii) (โ, ๐)(๐, ๐) = (๐, ๐)(โ, ๐),
for all (โ, ๐) โ ๐ป and (๐, ๐) โ ๐พ .
(iii) ๐ป โฉ ๐พ = {(๐, ๐)}
As ๐ โถ ๐ป × ๐พ โถ ๐บ is an isomorphism we get ๐(๐ป ) = ๐ป and ๐(๐พ ) = ๐พ and
๐(๐ป × ๐พ) = ๐บ. Hence we get
(i)
๐บ = ๐ป โ ๐พ.
for all โ โ ๐ป and ๐ โ ๐พ.
(ii) โ๐ = ๐โ
(iii) ๐ป โฉ ๐พ = {๐}
If part :
Define ๐ โถ ๐ป × ๐พ โถ ๐บ by
๐(โ, ๐) = โ. ๐
To prove that ๐ is an isomorphism.
(i)
๐ is a well defined map.
(โ , ๐ ) = (โ , ๐ ) โน
โน
โ = โ and ๐ = ๐
โ ๐ =โ ๐
โน ๐(โ , ๐ ) = ๐(โ , ๐ )
(ii) ๐ is one one.
Let
๐(โ , ๐ ) = ๐(โ , ๐ )
Then
โ ๐ =โ ๐
and hence
โ
But
โ
and hence โ
Algebra
โ =๐ ๐
โ โ๐ป
and
๐ ๐
โ๐พ
โ โ ๐ป โฉ ๐พ = {๐}
and
๐ ๐
โ ๐ป โฉ ๐พ = {๐}.
Page No. 5
Thus
โ
โ =๐
Hence
(โ , ๐ ) = (โ , ๐ )
and
๐ ๐
= ๐, proving that โ = โ
and ๐ = ๐ .
This shows that ๐ is one-one.
(iii) ๐ is onto.
Let ๐ โ ๐บ. As โ๐ = ๐โ for all โ โ ๐ป and ๐ โ ๐พ. We get HK is a subgroup of ๐บ and
hence ๐ป โจ ๐พ = ๐ป๐พ. But by (i) ๐ป โจ ๐พ = ๐บ. Therefore ๐บ = ๐ป๐พ. Thus ๐ โ ๐บ can be
expressed as ๐ = โ๐ for some โ โ ๐ป and ๐ โ ๐พ. And we get ๐(โ, ๐) = ๐.
This shows that ๐ is onto.
(iv) ๐ is a homomorphism.
๐[(โ , ๐ ) (โ , ๐ )] = ๐(โ โ , ๐ ๐ )
=โ โ ๐ ๐
=โ [๐ โ ]๐
โฆ by (2)
= (โ . ๐ ) (โ . ๐ )
= ๐(โ , ๐ ) ๐(โ , ๐ )
From (i), (ii), (iii) and (iv), we get ๐ is an isomorphism. Hence ๐บ = ๐ป × ๐พ.
Theorem 1.2.2: Let ๐ be a normal subgroup of ๐บ.
Then the map ๐ โถ ๐บ โถ
defined by
๐(๐) = ๐ ,
for ๐ โ ๐บ
is an onto homomorphism.
Proof : ๐ is obviously onto.
Now ๐(๐ ๐ ) = ๐
= ๐
๐
= ๐(๐ ) โ ๐(๐ ) ,
for all ๐ , ๐ โ ๐บ
Shows that ๐ is a homomorphism.
Hence ๐ is an onto homomorphism.
Remark : This map ๐ is called natural or canonical homomorphism.
Theorem 1.2.3: Let ๐บ and ๐บโฒ be any groups. For any homomorphism ๐ โถ ๐บ โถ ๐บโฒ, kernel of
๐ is a normal subgroup of G.
Proof :
(i)
๐๐๐ ๐ = {๐ฅ โ ๐บ | ๐(๐ฅ) = ๐โฒ}. As ๐ โ ๐๐๐๐; ๐๐๐๐ is non empty set.
(ii) Let ๐ฅ, ๐ฆ โ ๐๐๐ ๐.
๐(๐ฅ๐ฆ) = ๐(๐ฅ) โ ๐(๐ฆ)
Algebra
โฆ.. โต
๐ is homomorphism.
Page No. 6
= ๐โฒ โ ๐โฒ
โฆ.. โต
๐ฅ, ๐ฆ โ ๐๐๐ ๐
= ๐โฒ
Thus ๐(๐ฅ๐ฆ) = ๐โฒ.
Hence ๐ฅ. ๐ฆ โ ๐๐๐ ๐.
(iii) Let ๐ฅ โ ๐๐๐ ๐. Then ๐(๐ฅ) = ๐โฒ.
As ๐(๐ฅ
) = [๐(๐ฅ)]
= [๐ ]
= ๐โฒ shows that ๐ฅ
โ ๐๐๐ ๐.
From (i), (ii) and (iii) we get ๐๐๐๐ is a subgroup of ๐บ.
(iv) Let ๐ โ ๐๐๐ ๐ and ๐ โ ๐บ. Then
๐(๐ ๐๐) = ๐(๐ ) ๐(๐) ๐(๐)
= [๐(๐)]
โ ๐โฒ โ ๐(๐)
= ๐โฒ
๐ ๐๐ โ ๐๐๐๐,
Hence
for all ๐ โ ๐บ and ๐ โ ๐.
Thus shows that ๐๐๐๐ is a normal subgroup of ๐บ.
Theorem 1.2.4: Let ๐บ and ๐บโฒ be groups. ๐ โถ ๐บ โถ ๐บโฒ is a homomorphism.
๐ปโค๐บ
โน ๐(๐ป) โค ๐บโฒ
(ii) ๐ป โด ๐บ
โน ๐(๐ป) โด ๐บโฒ
(i)
(iii) ๐พโฒ โค ๐บโฒ โน ๐
(๐พโฒ) โค ๐บ
(iv) ๐พโฒ โด ๐บโฒ โน ๐
(๐พโฒ) โด ๐บ
Proof : Proof is obvious and hence omitted.
โข
First Isomorphism Theorem :
Theorem 1.2.5: Every homomorphic image of a group is isomorphic with its suitable
quotient group.
OR
Let ๐บ and ๐บโฒ be groups and let ๐: ๐บ โถ ๐บโฒ be an onto homomorphism.
Then
๐บโฒ โ
.
Proof : Let ๐: ๐บ โถ ๐บโฒ be onto homomorphism. Then ๐บ = ๐(๐บ) = {๐(๐ฅ)/๐ฅ โ ๐บ}.
Let ๐ = ๐๐๐๐. Then ๐ โด ๐บ (Seer theorem 0.4).
Let ๐ โถ ๐บ โถ
be canonical mapping. Then ๐ is an onto homomorphism. (See theorem
1.2.2).
Define ๐พ โถ
Algebra
โถ ๐บ = ๐(๐บ) by
Page No. 7
๐พ ๐
= ๐(๐) ,
for ๐ โ ๐บ
Claim 1 : ๐ is well defined map.
Let ๐
=๐
๐
for some ๐ , ๐ โ ๐บ
=๐ โน ๐ ๐
โน ๐ ๐
โ๐
โ ๐๐๐๐
โน ๐ (๐ ๐ ) = ๐โฒ
โน ๐ (๐ ) โ ๐( ๐ ) = ๐โฒ
โน ๐ (๐ ) โ [๐( ๐ )]
= ๐โฒ
โน ๐ (๐ ) = ๐( ๐ )
โน ๐พ ๐
=๐พ ๐
This shows that ๐พ is well defined.
Claim 2 : ๐พ is a homomorphism.
๐พ ๐ โ๐
=๐พ ๐
= ๐(๐ ๐ )
= ๐(๐ ) ๐(๐ )
=๐พ ๐
โ๐พ ๐
for any ๐ , ๐
โ
This shows that ๐พ is a homomorphism.
Claim 3 : ๐พ is onto.
Let ๐ฆ โ ๐บโฒ. ๐ being onto, there exists ๐ฅ โ ๐บ such that ๐(๐ฅ) = ๐ฆ. For this ๐ฅ โ ๐บ, ๐ โ
and ๐พ(๐ ) = ๐(๐ฅ) = ๐ฆ. This shows that ๐พ is onto.
Claim 4 : ๐พ is one-one.
Let ๐พ(๐ ) = ๐พ ๐
๐พ(๐ ) = ๐พ ๐
Thus
๐พ(๐ ) = ๐พ ๐
for some ๐ฅ, ๐ฆ โ ๐บ
โน
๐(๐ฅ) = ๐(๐ฆ)
โน
๐ (๐ฅ) โ [๐( ๐ฆ)]
โน
๐ (๐ฅ) โ ๐(๐ฆ
โน
๐ (๐ฅ๐ฆ
โน
๐ฅ๐ฆ
โน
๐ =๐
โน
๐ =๐ .
= ๐โฒ
) = ๐โฒ
) = ๐โฒ
โ ๐๐๐๐ = ๐
Hence ๐พ is one-one.
Algebra
Page No. 8
โ
๐บโฒ.
From claims (i) to (iv) it follows that ๐พ is an isomorphism and hence
Diagrammatically we represent the theorem as follows.
๐
๐
๐(๐)
g
๐
๐พ
๐บ
๐ = ๐๐๐๐
โข
๐
๐บ = ๐(๐บ)
G
๐พ
๐
(๐ = ๐๐๐๐)
Second Isomorphism Theorem :
Theorem 1.2.6: ๐ป is a subgroup of group ๐บ and ๐ is a normal subgroup of a group ๐บ. Then
โ
โฉ
๐ปโค๐บ
and
๐โด๐บ
โน
๐ป๐ โค ๐บ
Further
๐ โค ๐ป๐ and
๐โด๐บ
โน
๐ โด ๐ป๐
Hence
is defined.
Proof :
๐ปโฉ๐ โด๐ป
โน
is defined.
โฉ
Define ๐ โถ ๐ป๐ โถ
by
โฉ
๐(โ๐) = (๐ป โฉ ๐) โ
for โ โ ๐ป and ๐ โ ๐
Claim 1 : ๐ is well defined.
Let โ ๐ = โ ๐
โ ๐ =โ ๐
โ
for โ , โ โ ๐ป and ๐ , ๐ โ ๐.
โน
โ โ ๐ป and ๐ ๐
Hence โ
โ =๐ ๐
โ
โ =๐ ๐
โ ๐.
โน
โ
โ โ๐ปโฉ๐
โน
(๐ป โฉ ๐) โ = (๐ป โฉ ๐) โ
โน
๐ (โ ๐ ) = ๐ (โ ๐ )
This shows that ๐ is well defined.
Claim 2 : ๐ is a homomorphism.
๐ [(โ ๐ )(โ ๐ )]
= ๐ [โ (๐ โ ) ๐ ]
= ๐ [โ (โ ๐ ) ๐ ]
.... โ , โ โ ๐ป and ๐ , ๐ โ ๐
.... ๐ โด ๐บ
โน โ๐ = ๐โ
Hence ๐ โ = โ ๐ for some ๐ โ ๐
= ๐ [(โ โ )(๐ ๐ )]
Algebra
Page No. 9
= (๐ป โฉ ๐) โ โ
= [(๐ป โฉ ๐) โ ] [(๐ป โฉ ๐) โ ]
= ๐ (โ ๐ ) ๐ (โ ๐ )
This shows that ๐ is a homomorphism.
Claim 3 : ๐ is onto.
Let (๐ป โฉ ๐) โ โ
. Then โ โ ๐ป.
โฉ
As โ โ ๐ป โน โ โ ๐ โ ๐ป๐
and ๐(โ๐) = (๐ป โฉ ๐) โ .
This shows that ๐ is onto.
From claim 1, claim 2 and claim 3, ๐ is an onto homomorphism. Hence by 1st
isomorphism theorem,
โ
. . . (1)
โฉ
Now,
๐๐๐๐ = {โ๐ โ ๐ป๐ / ๐(โ๐) = (๐ป โฉ ๐)}
= {โ๐ โ ๐ป๐ / (๐ป โฉ ๐)โ = (๐ป โฉ ๐)}
= {โ๐ โ ๐ป๐ / โ โ (๐ป โฉ ๐)}
=๐
... โต โ โ ๐ป โฉ ๐
โน โโ๐
โน โโ๐ โ๐
Thus
๐๐๐๐ = ๐
for โ โ ๐ป and ๐ โ ๐
. . . (2)
From (1) and (2) we get
โ
โข
โฉ
Third Isomorphism Theorem :
Theorem 1.2.7: Let ๐ป and ๐พ be normal subgroups of a group ๐บ with ๐พ โค ๐ป. Then
/
โ
/
Proof : Let ๐ป and ๐พ are normal in ๐บ and ๐พ โค ๐ป. Therefore ๐พ is a normal subgroup of ๐ป.
Thus
,
,
are all defined.
Define ๐ โถ ๐บ โถ
/
/
๐(๐) =
Algebra
by
โ ๐พ
for each ๐ โ ๐บ.
Page No. 10
Claim 1 : ๐ is well defined.
Let ๐ = ๐ in ๐บ.
๐ =๐
โน
๐พ
=๐พ
โน
โน
โ๐พ
=
โ๐พ
๐ (๐ ) = ๐ (๐ )
Hence ๐ is well defined.
Claim 2 : ๐ is homomorphism..
Let ๐ , ๐ โ ๐บ.
๐(๐ ๐ ) =
โ๐พ
=
โ ๐พ
=
โ ๐พ๐
โ๐พ
โ ๐พ๐
1
2
= ๐(๐ ) โ ๐(๐ )
This shows that ๐ is homomorphism.
Claim 3 : ๐ is onto.
Let
โ ๐พ๐ โ
/
. Then ๐ โ ๐บ. For this ๐ โ ๐บ we get ๐(๐) =
/
๐ป
โ๐พ .
๐พ
Therefore ๐ is onto.
From claim 1, claim 2 and claim 3, ๐ is an onto homomorphism. Hence by 1st
isomorphism theorem,
โ
/
/
. . . (1)
Now,
๐๐๐๐ = {๐ฅ โ ๐บ / ๐(๐ฅ) = (๐ป/๐พ)}
= {๐ฅ โ ๐บ / (๐ป/๐พ)(๐พ ) = (๐ป/๐พ)}
= {๐ฅ โ ๐บ / ๐พ โ (๐ป/๐พ)}
= {๐ฅ โ ๐บ / ๐ฅ โ ๐ป}
Thus
๐๐๐๐ = ๐ป
. . . (2)
From (1) and (2) we get
โ
Algebra
/
/
Page No. 11
โข
Zassenhaus Lemma :
Theorem 1.2.8: Let ๐ป and ๐พ be subgroups of group ๐บ. ๐ป โ and ๐พ โ be normal subgroups of ๐ป
and ๐พ respecively. Then
(i)
๐ป โ (๐ป โฉ ๐พ โ ) is a normal subgroup of ๐ป โ (๐ป โฉ ๐พ).
(ii)
๐พ โ (๐ป โ โฉ ๐พ) is a normal subgroup of ๐พ โ (๐ป โฉ ๐พ).
(iii)
โ(
โฉ )
โ( โฉ โ)
โ
โ(
โ(
โฉ )
)
โโฉ
โ
(
โ
โฉ
โฉ )โ(
โ
โฉ )
Proof :
(i)
๐ป โฉ ๐พ โค ๐ป, ๐ป โ โด ๐ป
โน
๐ป โ โ (๐ป โฉ ๐พ) โค ๐ป.
(ii)
๐ป โฉ ๐พ โค ๐พ, ๐พ โ โด ๐พ
โน
๐พ โ โ (๐ป โฉ ๐พ) โค ๐พ.
(iii)
๐ป โ โฉ ๐พ โด ๐ป and ๐ป โ โฉ ๐พ โค ๐พ
Hence
๐ป โ โฉ ๐พ โด ๐ป โฉ ๐พ.
Similarly, ๐พ โ โฉ ๐ป โด ๐ป โฉ ๐พ.
Hence
Therefore
(๐ป โ โฉ ๐พ) โ (๐พ โ โฉ ๐ป) โด (๐ป โฉ ๐พ).
(
โ
โฉ
โฉ )โ(
โ
โฉ )
is defined.
Put ๐ฟ = (๐ป โ โฉ ๐พ) โ (๐พ โ โฉ ๐ป). Thus ๐ฟ โด (๐ป โฉ ๐พ).
(iv)
Define ๐ โถ ๐ป โ (๐ป โฉ ๐พ) โถ
( โฉ )
by
๐(โ๐ฅ) = ๐ฟ๐ฅ
where โ โ ๐ป โ and ๐ฅ โ ๐ป โฉ ๐พ.
Claim 1 : ๐ is well defined.
Let
for โ , โ โ ๐ป โ and ๐ฅ โ ๐ป โฉ ๐พ.
โ ๐ฅ =โ ๐ฅ
for โ โ โ ๐ป โ and ๐ฅ ๐ฅ
Then โ โ = ๐ฅ ๐ฅ
Hence โ โ = ๐ฅ ๐ฅ
โน
โ โ โ ๐ป โ โฉ (๐ป โฉ ๐พ)
โน
โ โ โ ๐ปโ โฉ ๐พ โ ๐ฟ
โน
โ โ โ๐ฟ
โน
๐ฅ ๐ฅ
โน
๐ฟ
โน
๐ (โ ๐ฅ ) = ๐(โ ๐ฅ )
โ ๐ป โฉ ๐พ.
โ๐ฟ
=๐ฟ
This shows that ๐ is a well defined map.
Claim 2 : ๐ is homomorphism.
Algebra
Page No. 12
Let โ ๐ฅ , โ ๐ฅ โ ๐ป โ (๐ป โฉ ๐พ). Then โ , โ โ ๐ป โ and ๐ฅ , ๐ฅ โ ๐ป โฉ ๐พ.
As ๐ป โ โด ๐ป and ๐ฅ โ ๐ป we get ๐ฅ ๐ป โ = ๐ป โ ๐ฅ . Thus ๐ฅ โ โ ๐ฅ ๐ป โ implies ๐ฅ โ โ ๐ป โ ๐ฅ .
Hence ๐ฅ โ = โ ๐ฅ for some โ โ ๐ป โ . Hence we get
๐ [(โ ๐ฅ )(โ ๐ฅ )] = ๐ [โ (๐ฅ โ )๐ฅ ]
... By associativity.
= ๐ [โ (โ ๐ฅ )๐ฅ ]
... ๐ฅ โ = โ ๐ฅ .
= ๐ [(โ โ ) (๐ฅ ๐ฅ )]
... By associativity.
= ๐ฟ
... By definition of ๐.
= ๐ฟ
โ๐ฟ
= ๐ (โ ๐ฅ ) ๐(โ ๐ฅ )
This shows that ๐ is a homomorphism.
Claim 3 : ๐ is onto.
Let ๐ฟ โ
โฉ
. Then ๐ฅ โ ๐ป โฉ ๐พ.
Hence, ๐ โ ๐ฅ โ ๐ป โ โ (๐ป โฉ ๐พ) and ๐ (๐๐ฅ) = ๐ฟ . This shows that ๐ is onto.
Thus, from claim 1, claim 2 and claim 3 we get
โฉ
is a homomorphic image of
๐ป โ โ (๐ป โฉ ๐พ).
Hence, by first isomorphism theorem,
โฉ
โ โ(
โ
โฉ )
. . . (1)
Now,
๐๐๐๐ = {โ๐ฅ โ ๐ป โ โ (๐ป โฉ ๐พ)/๐(โ๐ฅ) = ๐ฟ}
= {โ๐ฅ โ ๐ป โ โ (๐ป โฉ ๐พ)/๐ฟ = ๐ฟ}
= {โ๐ฅ โ ๐ป โ โ (๐ป โฉ ๐พ)/๐ฅ โ ๐ฟ}
= {โ๐ฅ / โ โ ๐ป โ ๐๐๐ ๐ฅ โ (๐ป โฉ ๐พ) โฉ ๐ฟ}
= {โ๐ฅ / โ โ ๐ป โ ๐๐๐ ๐ฅ โ ๐ฟ}
= {โ๐ฅ / โ๐ฅ โ ๐ป โ โ ๐ฟ}
= {โ๐ฅ / โ๐ฅ โ ๐ป โ โ (๐ป โฉ ๐พ โ )}
= ๐ป โ โ (๐ป โฉ ๐พ โ )
. . . (2)
[ ๐ป โ ๐ฟ = ๐ป โ โ (๐ป โ โฉ ๐พ) โ (๐ป โฉ ๐พ โ ) = ๐ป โ โ (๐ป โฉ ๐พ โ ) as ๐ป โ โฉ ๐พ โค ๐ป โ ]
From (1) and (2), we get,
โฉ
โ
โ
( โฉ )
โฉ โ)
โโ (
๐๐๐๐ being a normal subgroup of ๐ป โ โ (๐ป โฉ ๐พ โ ), we get
Algebra
Page No. 13
๐ป โ โ (๐ป โฉ ๐พ โ ) โฒ ๐ป โ โ (๐ป โฉ ๐พ)
(v) As in (iv) we can prove
โฉ
โ
( โฉ )
โโ ( โ โฉ )
โ
and ๐พ โ โ (๐ป โ โฉ ๐พ) is a normal subgroup of ๐พ โ โ (๐ป โฉ ๐พ).
This completes the proof of Zassenhaus Lemma.
Theorem 1.2.9:
Let ๐บ be a group.
(i) For any non empty subset ๐ of ๐บ, ๐[๐] is a subgroup of ๐บ.
Further, for any subgroup ๐ป of ๐บ.
(ii) ๐[๐ป] is the largest subgroup of ๐บ in which ๐ป is normal.
(iii) If ๐พ is a subgroup of ๐[๐ป], then ๐ป is a normal subgroup of ๐พ๐ป.
Proof :
(i) ๐[๐] = {๐ฅ โ ๐บ/๐ฅ๐๐ฅ
= ๐}. As ๐๐๐
= ๐ we get ๐ โ ๐[๐].
Let ๐ฅ, ๐ฆ โ ๐[๐]
๐ฆ) ๐ (๐ฅ
(๐ฅ
๐ฆ)
= (๐ฅ
๐ฆ) ๐ (๐ฆ
=๐ฅ
(๐ฆ ๐ ๐ฆ
=๐ฅ
๐๐ฅ
๐ฅ)
)๐ฅ
=๐
This shows that ๐ฅ
๐ฆ โ ๐[๐] whenever ๐ฅ, ๐ฆ โ ๐[๐].
Hence N[S] is a subgroup of G.
(ii) Let H be a subgroup of G.
๐ป โ ๐[๐ป],
as โ๐ปโ
=๐ป
for any โ โ ๐ป
Let ๐ป โฒ ๐พ where K is any subgroup of G. Then ๐๐ป๐
=๐ป
for any ๐ โ ๐พ.
Hence ๐พ โ ๐[๐ป].
Now for any ๐ โ ๐[๐ป] we get ๐๐ป๐
= ๐ป. This shows that ๐ป โด ๐[๐ป] and if ๐ป โฒ ๐พ for
some ๐พ โค ๐บ, then ๐พ โ ๐[๐ป].
Hence N [H] is the largest subgroup of G in which H is normal.
(iii) ๐พ โค ๐[๐ป]. Hence for all ๐ โ ๐พ, ๐๐ป๐
= ๐ป. Hence HK = KH. This shows that HK is a
subgroup of G.
๐ป โฒ ๐[๐ป] and ๐พ โค ๐[๐ป]
๐ป โด ๐[๐ป]
Algebra
โน
โน
๐ป๐พ โค ๐[๐ป]
๐ป โด ๐พ๐ป as ๐ป โค ๐ป๐พ
Page No. 14
Theorem 1.2.10: ๐บ is a group and ๐ป is a subgroup of ๐บ such that (๐บ: ๐ป) = 2. Then ๐ป is a
normal subgroup of ๐บ.
Proof : Select any ๐ โ ๐บ such that ๐ โ ๐ป.
๐บ = ๐ป โช ๐ป๐ and
๐ป โฉ ๐ป๐ = ๐.
Similarly, ๐บ = ๐ป โช ๐๐ป and
๐ป โฉ ๐๐ป = ๐.
Then,
Hence, this is possible iff ๐ป๐ = ๐๐ป. Thus for any ๐ โ ๐ป we get ๐ป๐ = ๐๐ป.
But, as for any โ โ ๐ป, we have, ๐ปโ = โ๐ป. It follows that ๐ป๐ = ๐๐ป, for each ๐ โ ๐บ.
Hence, ๐ป โด ๐บ.
Theorem 1.2.11 : Let ๐บ be a group. Then following statements are true.
(i)
The set of conjugate classes of ๐บ is a partition of ๐บ.
(ii)
|๐(๐)| = [๐บ: ๐(๐)].
(iii) If ๐บ is finite, |๐บ| = โ|๐บ: ๐(๐)|, ๐ is running over exactly one element from each
conjugate class.
Proof :
(i)
Define a relation 'โผ' on ๐บ by ๐ โผ ๐ iff ๐ = ๐ฅ๐๐ฅ
. Then 'โผ' is an equivalence relation
on ๐บ and the equivalence class containing ๐ is ๐(๐). Hence, ๐บ = โ ๐ถ(๐) (disjoint
union). Hence, {๐ถ(๐) / ๐ โ ๐บ} forms a partition of ๐บ.
(ii)
To prove |๐(๐)| = (๐บ: ๐(๐)) .
Let โ denote the set of all right cosets of ๐[๐] in ๐บ.
Define a map ๐ โถ ๐ถ(๐) โถ โ by
๐(๐๐๐ ) = ๐(๐)๐
(i)
๐ is well defined (obviously true.)
(ii)
๐ is one-one.
Let (๐ ) ๐ฅ = (๐ ) ๐ฆ ,
(๐ ) ๐ฅ = (๐ ) ๐ฆ
Thus ,
๐(๐ฅ
โน
๐ฅ
๐๐ฅ) = ๐(๐ฆ
๐๐ฅ = ๐ฆ
for some ๐ฅ, ๐ฆ โ ๐บ
โน
๐ฅ๐ฆ
โ ๐(๐)
โน
(๐ฅ๐ฆ
) ๐ (๐ฅ๐ฆ
โน
๐ฅ๐ฆ
๐ = ๐๐ฅ๐ฆ
โน
๐ฆ
๐๐ฆ=๐ฅ
)
=๐
๐๐ฅ
๐ ๐ฆ)
๐๐ฆ
Hence, ๐ is one-one.
Algebra
Page No. 15
(iii) ๐ is onto.
Let (๐ )๐ โ โ. Then for this ๐ โ ๐บ, ๐ ๐๐ โ ๐ถ(๐) and ๐(๐ ๐๐) = (๐ )๐. This
shows that ๐ is onto.
From (i), (ii) and (iii) we get โ a mapping ๐ โถ ๐ถ(๐) โถ โ which is both one-one and
onto. Hence |๐(๐)| = |โ| = [๐บ: ๐(๐)] .
(iii) Let ๐บ be finite. As ๐บ =
U C(a) (disjoint union) we get
a
G = โ C( a ) = โ ( G : N ( a ))
a
a
where a runs over exactly one element from each conjugate class.
Algebra
Page No. 16
Unit 2 : Solvable Groups :
2.1
Derived subgroup of a group ๐บ.
2.2
Isomorphism Theorems.
2.1 Derived subgroup of a group G :
Definition 2.1.1: Let G be a group. Define ๐ = {๐๐๐ ๐
/ ๐, ๐ โ ๐บ}.
The subgroup generated by ๐ i.e. โฉ๐โช is called the derived subgroup of ๐บ and it is denoted
by ๐บโฒ.
Remarks 2.1.2:
(i)
U is the set of commutators in G.
(ii) ๐ฅ โ ๐บโฒ
โน
๐ฅ = ๐ฆ ๐ฆ โฆ ๐ฆ where n is a finite integer and ๐ฆ โ ๐ for each ๐.
(iii) ๐บโฒ is also called commutator subgroup of G.
(iv) ๐บ is abelian iff ๐บ = {๐}.
Theorem 2.1.3: Let ๐บ be a group and let ๐บโฒ be the derived subgroup of ๐บ. Then
(i)
๐บโฒ โฒ ๐บ
(ii)
is abelian.
(iii) ๐ โด ๐บ.
is abelian iff ๐บโฒ โค ๐.
Proof :
(1) By definition, ๐บโฒ is a subgroup of ๐บ only to prove ๐บโฒ is normal in ๐บ.
Let ๐ โ ๐บ and ๐ฅ โ ๐บโฒ.
Case I :
๐ฅ โ ๐บโฒ and ๐ฅ = ๐๐๐ ๐
.
Then
๐ ๐ฅ๐ = ๐ (๐๐๐ ๐
)๐
= (๐ ๐๐) (๐ ๐๐) (๐ ๐ ๐) (๐ ๐ ๐)
= (๐ ๐๐) (๐ ๐๐) (๐ ๐๐)
This shows that ๐๐ฅ๐
โ ๐ and hence ๐๐ฅ๐
(๐ ๐๐)
โ ๐บโฒ.
Case II : Let ๐ฅ โ ๐บโฒ and ๐ฅ = ๐ฆ ๐ฆ โฆ ๐ฆ where n is finite and ๐ฆ โ ๐ for each ๐ and hence
๐ ๐ฅ๐, being the finite product of elements of U. is in ๐บโฒ.
Thus, for ๐ โ ๐บ and ๐ฅ โ ๐บโฒ we get ๐๐ฅ๐
Algebra
โ ๐บโฒ and hence ๐บโฒ is a normal subgroup of ๐บ.
Page No. 17
(2) ๐บ โด ๐บ
โน
To prove that
Let ๐บ , ๐บ โ
is defined.
is abelian.
. Then ๐, ๐ โ ๐บ.
[(๐บ ) (๐บ )] [(๐บ ) (๐บ )]
= [๐บ ] [๐บ ]
= [๐บ ] ๐บ(
โฆ by the definition of โ in
.
)
= [๐บ ] ๐บ
= ๐บ
=๐บ
as ๐๐๐ ๐
= identity element of
.
(๐บ ) (๐บ ) = (๐บ ) (๐บ ) .
But this shows that
Hence
โ๐บ
is abelian.
(3)
Only if part :
is abelian
(๐ )(๐ ) = (๐ )(๐ )
โน
=๐
for all ๐, ๐ โ ๐บ.
for ๐, ๐ โ ๐บ
Hence
๐
โน
(๐ )(๐ )
โน
(๐ ) ๐(
โน
(๐ )(๐
โน
๐
=๐
for ๐, ๐ โ ๐บ
โน
๐๐๐ ๐
โ๐
for ๐, ๐ โ ๐บ
=๐
for ๐, ๐ โ ๐บ
=๐
for ๐, ๐ โ ๐บ
)=๐
for ๐, ๐ โ ๐บ
)
This shows that ๐ โ ๐. By the definition of subgroups generated by U, we get โฉ๐โช โ ๐.
Therefore ๐บโฒ โ ๐.
If part :
Let ๐ โด ๐บ and ๐บโฒ โ ๐. To prove that
As ๐บโฒ โ ๐ we get we get ๐๐๐ ๐
Thus
๐
i.e.
(๐ ) ๐(
Algebra
is abelian.
โ ๐ for all ๐, ๐ โ ๐บ.
=๐
)
=๐
Page No. 18
i.e.
(๐ )(๐ )[(๐ )(๐ )]
i.e.
(๐ )(๐ ) = (๐ )(๐ )
=๐
Thus, for all ๐, ๐ โ ๐บ, we have (๐ )(๐ ) = (๐ )(๐ ) and hence
is abelian.
Example 2.1.4 : For any n, the derived subgroup ๐ of ๐ is ๐ด .
Solution :
Case I : n = 1, 2
For n = 1, 2 we know ๐ = {๐} and ๐ด = {๐}. Hence ๐ = ๐ด .
Case II : n > 2
We know ๐ = (1, 2) โ ๐ and ๐ = (1, 2, 3) โ ๐ .
๐
โ๐
โ ๐.
Hence,
๐๐๐
Thus,
(1 2) (1 2 3) (2 1) (3 2 1) โ ๐
But
(1 2)(1 2 3)(2 1)(3 2 1) = (1 2 3)
for each n.
(1 2 3) โ ๐ .
Hence,
As ๐ is normal subgroup of ๐ for each n (See theorem 1.3), we get ๐ ๐ฅ๐ โ ๐ for any
๐ โ ๐ and ๐ฅ โ ๐ .
Hence, in particular
As
๐(1 2 3)๐
โ๐
i.e. ๐ โ ๐ด
๐(1 2 3)๐
=๐
for each ๐ โ ๐ด , we get ๐ด โ ๐ .
Now ๐๐๐
๐
is an even permutation for any ๐, ๐ โ ๐ , we get ๐ โ ๐ด .
By combining both the inclusions, we get ๐ = ๐ด and this completes the solution.
Example 2.1.5 : (i) |๐บ| = ๐ (p is prime)
(ii) |๐บ| = ๐
(p is prime)
โน ๐บ = {๐}.
โน ๐บ = {๐}.
Solution :
(i) |๐บ| = ๐
โน G is abelian.
Select any ๐ โ ๐บ such that ๐ โ ๐.
Then โฉ๐โช is a subgroup of ๐บ and ๐[โฉ๐โช] | ๐[๐บ].
Hence ๐[โฉ๐โช] | ๐.
As ๐ โ ๐. We get ๐[โฉ๐โช] = ๐. i.e. โฉ๐โช = ๐บ.
Thus ๐บ is a cyclic and hence abelian.
โน ๐บ = {๐}.
Algebra
Page No. 19
(ii) |๐บ| = ๐
โน G is abelian.
(See ex. 2.16, result 4)
โน ๐บ = {๐}.
2.2 Solvable Groups :
Definition 2.2.1: Let ๐บ be any group. For any positive integer ๐, we define the ๐
subgroup of ๐บ, written as ๐บ (
๐บ(
)
)
derived
as follows :
= ๐บ , ๐บ(
)
= ๐บ(
)
, โฆ , ๐บ(
)
= ๐บ(
)
โฆ
where ๐บโฒ denotes the derived subgroup of ๐บ.
Definition 2.2.2: A group ๐บ is said to be solvable, if there exists some positive integer ๐ such
that ๐บ (
)
= {๐}.
Example 2.2.3:
(i)
Any abelian group ๐บ is solvable as ๐บ (
)
= ๐บ = {๐}
(ii) Let ๐ be a prime number. The groups of order p, ๐ are solvable (See example 1.5)
(iii) Any finite group ๐บ with |๐บ| โค 5 is solvable. (Since any group ๐บ with |๐บ| โค 5 is
abelian).
(iv) ๐ is solvable.
๐ = โฉ {(1)(1 2)(1 3)(2 3)(1 2 3)(1 3 2)}, โ โช
Then, ๐ = ๐ด = โฉ {(1), (1 2 3), (1 3 2)}, โ โช
As
โฆ See example 2.1.4
(1 2 3)(1 3 2)(1 2 3) (1 3 2)
= (1 2 3)(1 3 2)(3 2 1)(2 3 1)
= (1 )
We get, ๐ด = {๐} โต
Hence, ๐
( )
( )
=๐ด
an identity element of in ๐ .
= {๐}. This shows that ๐ is solvable.
(v) ๐ is not solvable for ๐ โฅ 5.
We need the following result.
Result : If ๐ โด ๐ (๐ โฅ 5) then N contains each 3-cycles.
As (๐ ) is a normal subgroup of ๐ . (๐ ) will contain all the 3-cycles in ๐ .
Again (๐ ) = (๐ )(
)
is a normal subgroup of (๐ ) and (๐ ) contains all the 3-cycles
in ๐ . Hence, (๐ )( ) must contain each 3-cycles in ๐ .
Algebra
Page No. 20
Continuing this process we will get that (๐ )(
no k such that (๐ )(
)
)
contains each 3-cycle in ๐ and hence โ
= {๐} .
Therefore ๐ is not solvable for ๐ โฅ 5.
Theorem 2.2.4 : Every subgroup of a solvable group is solvable.
Proof : Let G be a solvable group and ๐ป โค ๐บ. Then by the definition of the derived
subgroup, we get ๐ปโฒ โค ๐บโฒ. In general ๐ป (
solvable, โ a positive integer n such that ๐บ (
๐ป(
)
โค ๐บ(
)
= {๐}
)
โค ๐บ(
)
for any positive integer k. As G is
= {๐}. Hence
๐ป(
โน
)
)
= {๐}. Thus H is solvable.
Remark : Converse of theorem 2.2.4 need not be true.
Theorem 2.2.5 : Homomorphic image of a solvable group is solvable.
Proof : Let ๐บ and ๐บ be any two groups such that ๐บ is solvable and ๐บ is a homomorphic
image of ๐บ . Hence โ a positive integer k such that ๐บ
( )
= {๐ } where ๐ is the identity in
๐บ.
As ๐บ is a homomorphic image of ๐บ , there exists an onto homomorphism ๐: ๐บ โถ ๐บ .
Thus ๐บ = ๐(๐บ ) = {๐(๐ฅ) / ๐ฅ โ ๐บ }.
Now ๐(๐๐๐ ๐ ) = ๐(๐)๐(๐)[๐(๐)] [๐(๐)]
for ๐, ๐ โ ๐บ
Define
๐ = {๐๐๐ ๐
/ ๐, ๐ โ ๐บ }
๐ = {๐ฅ๐ฆ๐ฅ
/ ๐ฅ, ๐ฆ โ ๐บ }.
๐ฆ
Then ๐ = {๐(๐ )๐(๐ก)[๐(๐ )] [๐(๐ก)]
= {๐(๐ ๐ก๐
๐ก
) / ๐ , ๐ก โ ๐บ }
and
/ ๐ , ๐ก โ ๐บ }
as ๐บ = ๐(๐บ )
. . . since f is a homomorphism.
= ๐(๐ )
But then we get ๐(๐บ ) = ๐บ .
Continuing in this way we get
๐ ๐บ
As ๐บ
( )
Algebra
= [๐(๐บ )](
)
. . . for any positive integer n.
= {๐} we get
๐ ๐บ
โน
( )
( )
= [๐(๐บ )](
๐({๐ }) = [๐(๐บ )](
)
)
Page No. 21
โน
{๐ } = ๐บ
( )
where ๐ is an identity element in ๐บ .
This shows that ๐บ is solvable.
Corollary 2.2.6 : Any quotient group
of a solvable group G is solvable.
Proof : As is a homomorphic image of G under the natural / canonical mapping ๐ โถ ๐บ โถ
defined by ๐(๐) = ๐๐, the result follows by theorem 2.5.
Remark 2.2.7 : Converse of the corollary 2.2.6 need not be true.
For this consider the group ๐ for ๐ โฅ 5. ๐ is not solvable (See example 2.3 (5)).
๐ด โฒ ๐ and hence
is defined. As
= 2, we get
is solvable but ๐ is not solvable.
Thus the quotient group
Theorem 2.2.8 : Let ๐ โด ๐บ. If both N and
Proof :
is abelian and hence solvable.
are solvable, then G is solvable.
N is solvable
โน
โ a positive integer ๐ such that ๐ (
is solvable
โน
โ a positive integer ๐ such that
()
(N is the identity element of
Now
= the group generated by {๐ ๐ ๐
๐
= the group generated by {๐
/ ๐, ๐ โ ๐บ}
)
= {๐}.
= {๐}.
)
/ ๐, ๐ โ ๐บ}
. . . (1)
Now ๐บโฒ โด ๐บ and ๐ โด ๐บ will imply ๐บโฒ๐ is a normal subgroup of G and ๐ โด ๐บโฒ๐. Hence
the quotient group
is defined.
= {๐ / ๐ฅ โ ๐บโฒ๐ = ๐๐บโฒ}
. . . (2)
From (1) and (2), w get,
=
Continuing in this way we get
( )
()
Hence,
Algebra
=
=
()
( )
,
=
for any positive integer n.
โ
= {๐}.
Page No. 22
But then
๐บ ( ) โ ๐ and hence ๐บ ( )
( )
โ ๐(
)
= {๐} implies ๐บ (
)
= {๐},
establishing that G is solvable.
Combining the result of theorem 2.2.4, 2.2.8 and corollary 2.2.7 we get,
Corollary 2.2.9 : Let ๐ โฒ ๐บ. G is solvable if and only if both N and
are solvable.
Example 2.2.10 : ๐ด and ๐ต are solvable groups iff ๐ด × ๐ต is solvable.
Solution : Only if part :
Let ๐ด and ๐ต be solvable groups.
To prove that ๐ด × ๐ต is solvable.
We know, the mapping ๐: ๐ด × ๐ต โถ ๐ด defined by ๐(๐, ๐) = ๐ is an onto homomorphism.
Hence, by fundamental theorem of homomorphism.
×
โ
๐ด
where ๐๐๐๐ = {๐ } × ๐ต, ๐ denotes the identity element in A.
Thus,
{
×
}×
โ
๐ด.
As A is solvable, by theorem 2.2.5,
{
×
}×
is solvable.
. . . (1)
Further the mapping ๐ โถ {๐ } × ๐ต โถ ๐ต defined by ๐(๐ , ๐) = ๐ for each ๐ โ ๐ต is
isomorphism. Hence {๐ } × ๐ต โ
๐ต.
As B is solvable, by theorem 2.2.5 we get, {๐ } × ๐ต is a solvable group.
As both {๐ } × ๐ต and
{
×
}×
. . . (2)
are solvable groups, by theorem 2.2.8, ๐ด × ๐ต is solvable.
If part :
Let ๐ด × ๐ต be a solvable group. As the mapping ๐: ๐ด × ๐ต โถ ๐ด defined by ๐(๐, ๐) = ๐ is
an onto homomorphism, we get ๐ด is a homomorphic image of a solvable group ๐ด × ๐ต
and hence ๐ด is solvable.
Similarly, we can prove that ๐ต is solvable.
Example 2.2.11 : ๐ป and ๐พ be normal solvable subgroups of group ๐บ. Show that ๐ป๐พ is
solvable.
Solution : ๐ป๐พ is a subgroup of ๐บ. By second isomorphism theorem,
Algebra
Page No. 23
โ
โฉ
Now, any quotient group of a solvable group being solvable, we get
โฉ
is a solvable.
(Since H is solvable). Now isomorphic image of a solvable group is solvable. Hence
is solvable. Thus K and
both are solvable will imply HK is solvable. (See theorem
2.2.8).
Definition 2.2.12 : A finite sequence {๐ , ๐ , โฆ , ๐ } of subgroups of a group G is called a
normal series of ๐บ if
{๐} = ๐ โฒ ๐ โฒ ๐ โฒ โฏ โฒ ๐ = ๐บ.
are called factors of the normal series. (1 โค ๐ โค ๐).
The quotient groups
For detail discussion of normal series see Unit 3.2.
Theorem 2.2.13 : A group G is solvable if and only if G has a normal series with abelian
factors.
Proof : Only f part :
Let G be a solvable group. Hence โ a positive integer ๐ such that ๐บ (
Consider ๐บ ( ) , ๐บ (
)
)
Hence the sequence ๐บ ( ) , ๐บ (
)
)
โฒ ๐บ(
)
()
Further the factors
= {๐}.
, โฆ , ๐บ ( ) , ๐บ . By theorem 1.6, ๐บ ( ) is a normal subgroup of G for
each ๐, 1 โค ๐ โค ๐. Further ๐บ (
{e} = ๐บ (
)
(
)
โฒ ๐บ ( ) , by theorem 1.4 (1).
, โฆ , ๐บ ( ) , ๐บ forms a normal series
โฒ โฏ โฒ ๐บ(
)
โฒ๐บ.
are abelian groups for each ๐, 1 โค ๐ โค ๐ (See theorem 1.4 (2)).
Thus if G is solvable, G has a normal series,
{e} = ๐บ (
)
โฒ ๐บ(
)
โฒ โฏ โฒ ๐บ(
)
โฒ๐บ
with abelian factors.
If part :
Let G has a normal series. {๐ป , ๐ป , โฆ , ๐ป } with ๐ป = {๐} and ๐ป = ๐บ and with abelian
factors. Thus
{๐} = ๐ป โฒ ๐ป โฒ ๐ป โฒ โฏ โฒ ๐ป = ๐บ
Algebra
Page No. 24
is an abelian group with 0 โค ๐ โค ๐.
and
=
Now
โน
is abelian.
๐บโฒ โ ๐ป
โน
๐บโฒโฒ โ (๐ป
i.e.
๐บ(
)โฒ
Hence by transitivity,
๐บโฒโฒ โ (๐ป
)
)
โ๐ป
Continuing in this way, we get
๐บ(
)
โ๐ป
Hence ๐บ (
)
= {๐}, proving that G is Solvable.
= ๐ป = {๐}
Example 2.2.14 :
(i) In ๐ we have a normal series {๐} โฒ ๐ด โฒ ๐ such
that is abelian and such
{ }
that is
abelian. Hence ๐ is solvable.
(ii) Consider the group ๐ . ๐ด โฒ ๐ . Define
๐ = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
Then ๐ โฒ ๐ด .
Consider the sequence {(1)}, ๐ , ๐ด , ๐ . We have {(1)} โฒ ๐ โฒ ๐ด โฒ ๐
. . .
(1)
The factors of the normal series are
{ }
|
{ }
= |{
=
,
|
}|
|
|
|
|
|
|
=|
|
and
.
= =4
โน
=
=3
โน
is abelian.
=
=2
โน
is abelian.
{ }
is abelian.
(Result used : G is abelian if |๐บ| โค 5).
This shows that ๐ has a solvable series and hence ๐ is solvable.
Example 2.2.15 : Let ๐บ be a solvable group. Show that ๐บ contains at least one normal,
abelian subgroup ๐ป.
Solution :
Algebra
Page No. 25
Case I :
๐บ is abelian. In this we take ๐ป = ๐บ.
Case II : ๐บ is non-abelian.
G is solvable โน โ a positive integer ๐ such that ๐บ (
Consider ๐ป = ๐บ (
Then {๐} = ๐บ (
โน
๐บ(
)
)
)
)
= {๐}.
.
โฒ ๐บ(
)
. Hence ๐บ (
is abelian.
)
= {๐}.
(See remark 1.2 (iv))
๐บ(
)
โฒ๐บ
โน
๐บ(
)
โฒ๐บ
๐บ(
)
โฒ๐บ
โน
๐บ(
)
โฒ๐บ
(See example 1.6)
Continuing in this way we get
๐ป = ๐บ(
)
โฒ๐บ
Thus G contains a normal, abelian subgroup H.
Example 2.2.16 : Let ๐บ be a non-abelian group such that |๐บ| = ๐ , where ๐ is any prime
number. Show that ๐บ = ๐(๐บ).
Solution : To solve this problem we mainly use the following result.
Let p be a prime.
Result 1 : |๐บ| = ๐ (๐ > 0)
โน
๐(๐บ) โ {๐}.
Result 2 : |๐บ| = ๐
โน
G is cyclic.
Result 3 :
โน
๐บ is abelian.
( )
is cyclic
Result 4 : Any group of order ๐ is abelian.
is abelian
โน
๐บโฒ โ ๐.
Result 6 : ๐บ is abelian
โบ
๐บโฒ = {๐}.
Result 5 :
Solution of the problem :
(i)
|๐บ| = ๐
โน
๐(๐บ) โ {๐}
โน
|๐(๐บ)| โ 1.
(ii)
G is non-abelian
โน
๐(๐บ) โ ๐บ
โน
|๐(๐บ)| โ ๐ .
(iii) As ๐(๐บ) โฒ ๐บ,
|
|๐(๐บ)| |๐บ| = ๐ .
Hence, |๐(๐บ)| = 1, ๐, ๐ , ๐ .
From (i) and (ii),
|๐(๐บ)| = ๐ or ๐
Algebra
Page No. 26
(iv) |๐(๐บ)| = ๐
Thus
โน
( )
= ๐ and hence
( )
=|
( )
| |
( )|
=
= ๐.
is a cyclic group. Hence G must be abelian.
As this is not true we get |๐(๐บ)| โ ๐ .
Hence, only possible value of |๐(๐บ)| is p. But in this case
(v)
( )
This shows that
=|
( )
| |
( )|
=
=๐ .
is an abelian group. But then ๐บโฒ โ ๐(๐บ).
As ๐บโฒ โค ๐(๐บ) we get |๐บโฒ| | |๐(๐บ)| = ๐ As G is non-abelian, |๐บโฒ| โ 1.
Thus, |๐บโฒ| = ๐ = |๐(๐บ)|. This in turn shows that ๐บ = ๐(๐บ).
Exercise โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
(i)
Show that the groups of order ๐, ๐ , ๐๐, , ๐ ๐ where p and q are distinct primes
are solvable.
(ii) Prove that any group of order ๐๐๐ is solvable when ๐, ๐, ๐ are primes and ๐ > ๐๐.
(iii) Show that a group of order 4p, where p is prime is solvable.
(iv) State whether the following statements are true or false.
1. Every finite group is solvable.
2. Every finite group of prime order is solvable.
3. ๐ is a solvable group.
4. ๐บ is solvable if ๐บ has a normal series.
5. The property of โbeing a solvable groupโ is preserved under isomorphism.
(v) Prove or disprove : ๐ × ๐ is solvable.
โขโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Theorem 2.2.17 : If ๐ โด ๐บ, then the derived subgroup of ๐ is also a normal subgroup of ๐บ.
Proof : ๐ โด ๐บ. ๐ = derived subgroup of ๐บ.
๐ = the subgroup generated by the set {๐ ๐ ๐ ๐ / ๐ , ๐ โ ๐}.
Let ๐ฅ โ ๐ and ๐ โ ๐บ. To prove that ๐ ๐ฅ๐ โ ๐ .
It is enough to prove that ๐ ๐ฅ๐ โ ๐ , when ๐ฅ = ๐ ๐ ๐ ๐
Now,
Algebra
, for some ๐ , ๐ โ ๐.
๐ (๐ ๐ ๐ ๐ )๐
Page No. 27
= (๐ ๐ ๐) (๐ ๐ ๐) (๐ ๐ ๐) (๐ ๐ ๐)
= (๐ ๐ ๐) (๐ ๐ ๐) (๐ ๐ ๐)
(๐ ๐ ๐)
Now, N being a normal subgroup of G, ๐ (๐ ๐ ๐ ๐ )๐ is finite product of the type
๐๐๐ ๐
where ๐, ๐ โ ๐.
Hence, ๐ (๐ ๐ ๐ ๐ )๐ โ ๐โฒ.
Hence ๐โฒ โด ๐บ.
Example 2.2.18 : True or false ? Justify.
If every proper subgroup of ๐บ is solvable, then ๐บ is solvable.
Solution : False. Let ๐บ = ๐ด .
Assume that ๐ด is solvable.
Then
=2 โน
is abelian. (Since
is abelian).
Hence, by theorem 2.2.8, ๐ is solvable; which is not true.
Hence, ๐บ = ๐ด is not solvable.
Claim : All proper subgroups of ๐ด are solvable.
๐(๐ด ) =
(
)
= 60 = 2 โ 3 โ 5
(i)
๐ด is simple โน ๐ด does not have any subgroup of order 30.
(ii)
๐ด may contain subgroups of order 2, 2 , 3, 5, 6 = 2 โ 3, 10 = 2 โ 5, 15 = 3 โ 5,
20 = 2 โ 5.
All these subgroups of ๐ด are solvable by the following result.
Result : Let ๐ and ๐ be distinct primes. Then any groups of order ๐๐ or ๐ ๐ are solvable.
Example 2.2.19 : Show that the set ๐บ of all matrices of the type
1
0
0
๐
1
0
๐
๐
1
๐, ๐, ๐ โ ๐
is non abelian and solvable under the multiplication.
Solution : It is easy to prove that โฉ๐บ, โ โช is a group.
As ๐, ๐, ๐ โ ๐ = {0, 1, 2}, |๐บ| = 27 = 3 . As any group of order power of a prime,
is solvable, G is solvable.
Algebra
Page No. 28
Example 2.2.20 : Show that ๐ โ ๐ด โ {๐} is a normal series in ๐ for ๐ > 4. Deduce that
๐ is not solvable for ๐ > 4.
Solution : We know that ๐ด โฒ ๐ and {๐} โฒ ๐ด . Hence {๐}, ๐ด , ๐
forms a normal series
in ๐ . Let ๐ be solvable for n > 4. Then subgroup of solvable group being solvable, ๐ด
will be a solvable. But ๐ด is not solvable for > 4 as ๐ด is simple for n > 4 and a solvable
group contains non-trivial normal subgroup (See theorem 2.13)
Exercise :
Prove that ๐ × ๐ is solvable.
โขโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Unit 3: Series of A Group
3.1
Subnormal Series, Schreierโs Theorem, Jordan-Holder Theorem
3.2
Normal Series
3.3
Ascending Central Series
3.4
Nilpotent Groups
3.1 Subnormal Series :
Definition 3.1.1 : Let ๐บ be a group. A subnormal series of a group ๐บ is a finite sequence
๐ป , ๐ป , โฆ , ๐ป of subgroups of ๐บ such that ๐ป โฒ ๐ป
for each ๐, 0 โค ๐ < ๐ with ๐ป = {๐}
and ๐ป = ๐บ.
Remarks :
(i) Every group ๐บ has a subnormal series with ๐ป = {๐} and ๐ป = ๐บ.
(ii) The groups
are called factor groups of the series (0 โค ๐ < ๐ โ 1).
Examples 3.1.2 :
(i)
In a group โฉ๐, +โช, {0} < 8๐ < 4๐ < ๐ is a subnormal series where
8๐ = {0, ±8, ±16, ±24, โฆ }
4๐ = {0, ±4, ±8, ±16, ±24, โฆ }
{0} โฒ 8๐, 8๐ โฒ 4๐ and 4๐ โฒ ๐.
Hence, the finite sequence {๐}, 8๐, 4๐, ๐ of subgroups of Z form a subnormal series.
(ii)
Let ๐บ = โฉ๐โช where ๐ = ๐.
Algebra
Page No. 29
Then ๐บ = {๐, ๐ , ๐ , ๐ , ๐ , ๐ , ๐ } with ๐ = ๐.
Define ๐ป = {๐, ๐ } . Then {๐}, ๐ป, ๐บ will form a subnormal series in G.
(iii) In ๐ , {(1), ๐ด , ๐ } will form a subnormal series in ๐ .
(iv) Let ๐บ = โฉ๐โช ,
where ๐
= ๐.
Then
๐ = {๐}, โฉ๐ โช, โฉ๐ โช, G
and
๐ = {๐}, โฉ๐ โช, โฉ๐ โช, G
will be two subnormal series in ๐บ.
Definition 3.1.3 : A subnormal series ๐พ is a refinement of a subnormal series {๐ป } if
{๐ป } โ ๐พ that is each ๐ป = ๐พ for some ๐.
Example 3.1.4 :
(i) The series in ๐ given by
{0} โฒ 72๐ โฒ 24๐ โฒ 8๐ โฒ 4๐ โฒ ๐
is a refinement of the series
{0} โฒ 72๐ โฒ 8๐ โฒ ๐
(ii) Let ๐บ = โฉ๐โช where ๐
= ๐.
The subnormal series
{๐}, โฉ๐ โช, โฉ๐ โช, G
is not a refinement of the series
{๐}, โฉ๐ โช, โฉ๐ โช, G
in ๐บ.
Definition 3.1.5 : Two subnormal series {๐ป } and ๐พ of the same group ๐บ are isomorphic if
there is a one-one correspondence between the collection of factor groups
and
such that the corresponding factor groups are isomorphic.
Remark : The two isomorphic normal series must contain the same number of subgroups.
Example 3.1.6 : Let ๐บ = ๐ .
๐
= โฉ{0, 1, 2, 3, โฆ ,14} , โ โช
< 5 > = the subgroup generated by 5 in ๐
= {0, 5, 10}
< 3 > = the subgroup generated by 3 in ๐
= {0, 3, 6, 9, 12}
Consider the two subnormal series in ๐
Algebra
given by
Page No. 30
๐ = {0}, โฉ5โช, ๐
๐ = {0}, โฉ3โช, ๐
and
The set of factor groups for ๐ is
๐ =
โฉ โช
,
โฉ โช
{ }
The set of factor groups for ๐ is
๐ =
Now,
โฉ โช
and
โฉ โช
โฉ โช
,
โฉ โช
{ }
โ
๐
and
โ
๐
and
โฉ โช
{ }
โฉ โช
{ }
โ
๐
โ
๐
We establish one-one, onto correspondence between ๐ and ๐ as
โฉ โช
โท
โฉ โช
and
{ }
โฉ โช
{ }
โท
โฉ โช
Then the corresponding factor group being isomorphic we get, the two series ๐ and ๐ of
๐
are isomorphic.
โข Schreierโs Theorem :
Theorem 3.1.7 : Two subnormal series of a group ๐บ have isomorphic refinements.
Proof : Let ๐บ be a group and let
and
{๐} = ๐ป < ๐ป < ๐ป < โฏ < ๐ป = ๐บ
โฆ (1)
{๐} = ๐พ < ๐พ < ๐พ < โฏ < ๐พ = ๐บ
โฆ (2)
be two subnormal series of ๐บ.
Define
๐ป =๐ป โ ๐ป
As
๐ป โฒ๐ป
โฉ๐พ
we get ๐ป โ ๐ป
โฉ๐พ
is a subgroup of ๐บ for each ๐, 0 โค ๐ โค ๐ โ 1
and each ๐, ๐ โค ๐ < ๐.
(i)
๐ป โฒ๐ป
and ๐พ โฒ ๐พ
๐ป โ ๐ป
i.e.
(ii)
. Hence by Zassenhaus Lemma,
โฉ๐พ โฒ๐ป โ ๐ป
โฉ๐พ
๐ป, โด ๐ป,
๐ป , = ๐ป โ (๐ป
= ๐ป โ (๐ป
โฉ๐พ )
โฉ {๐})
= ๐ป โ {๐}
Algebra
Page No. 31
=๐ป
(iii) ๐ป , = ๐ป โ (๐ป
โฉ๐พ )
= ๐ป โ (๐ป
โฉ ๐บ)
=๐ป โ๐ป
=๐ป
as ๐ป โ ๐ป
From (i), (ii) and (iii), we get a chain containing ๐๐ + 1 elements not necessarily distinct
groups which is as follows.
{๐} = ๐ป = ๐ป
โค๐ป
,
โค๐ป
,
,
โคโฏโค๐ป
โคโฏโค๐ป
,
=๐ป
=๐ป
,
=๐ป
,
=๐ป
,
โฆโฆโฆโฆโฆ
โค๐ป
โค๐ป
,
โคโฏโค๐ป
,
=๐ป =๐บ
,
. . . (3)
This chain refines the chain in (1). The set of factor groups of the chain represented in (3)
is
,
/ 1 โค ๐ โค ๐, 1 โค ๐ โค ๐ โ 1
,
. . . (4)
Similarly, by defining
๐พ, = ๐พ โ ๐พ
โฉ๐ป
for 0 โค ๐ โค ๐ โ 1 and 0 โค ๐ โค ๐.
We obtain a subnormal chain containing ๐๐ + 1 element as follows.
{๐} = ๐พ = ๐พ
,
โค๐พ
,
โคโฏโค๐พ
,
=๐พ
,
=๐พ
โค๐พ
,
โคโฏโค๐พ
,
=๐พ
,
=๐พ
โฆโฆโฆโฆโฆ
โค๐พ
โค๐พ
,
,
โคโฏโค๐พ
,
=๐พ =๐บ
. . . (5)
Note that the two chains represented in (4) and (5) not necessarily contain distinct groups.
The chain (5) refines the chain (2). The set of factor groups of the chain represented in (5)
is
,
,
Again as ๐ป โฒ ๐ป
/ 0 โค ๐ โค ๐, 0 โค ๐ < ๐ โ 1
and ๐พ โฒ ๐พ
โ
โฉ
โ
i.e.
Algebra
,
,
โ
, by Zassenhaus Lemma,
โ
โฉ
,
,
. . . (6)
โ
โฉ
โ
โฉ
for 0 โค ๐ โค ๐ โ 1 and 0 โค ๐ โค ๐ โ 1.
Page No. 32
This isomorphism establishes one to one onto correspondence between the two sets
represented in (4) and (6). Deleting the repeated groups from the chains represented in (3)
and (5) we get subnormal series of distinct groups that are isomorphic refinements of the
subnormal series represented in (1) and (2) respectively.
This establishes that any two subnormal series of a group G have isomorphic
refinements.
Example 3.1.8 : Give the isomorphic refinements of the two subnormal series of โฉ๐, +โช.
(i) {0} โฒ 60๐ โฒ 20๐ โฒ ๐
(ii) {0} โฒ 245๐ โฒ 49๐ โฒ ๐
Solution : Define
๐ป = {0},
๐ป = 60๐,
๐ป = 20๐,
๐ป =๐
๐พ = {0},
๐พ = 245๐,
๐พ = 49๐,
๐พ =๐
Define ๐ป , = ๐ป โ ๐ป
โฉ๐พ
โ
0 โค ๐ โค 2, 0 โค ๐ โค 3.
Then,
๐ป
,
= ๐ป = {0}
๐ป
,
= ๐ป โ (๐ป โฉ ๐พ ) = ๐ป โฉ ๐พ = 60๐ โฉ 245๐
( 2940 = ๐. ๐. ๐. (60, 245) )
= 2940๐
๐ป
,
= ๐ป โ (๐ป โฉ ๐พ ) = ๐ป โฉ ๐พ = 60๐ โฉ 49๐ = 2940๐
๐ป
,
= ๐ป โ (๐ป โฉ ๐พ ) = ๐ป โฉ ๐พ = ๐ป = 60๐
๐ป
,
= ๐ป โ (๐ป โฉ ๐พ ) = 60๐ โ {0} = 60๐
๐ป
,
= ๐ป โ (๐ป โฉ ๐พ ) = 60๐ โ (20๐ โฉ 245๐) = 60๐
๐ป
,
= ๐ป โ (๐ป โฉ ๐พ ) = 60๐ โ (20๐ โฉ 49๐) = 60๐
๐ป
,
= ๐ป โ (๐ป โฉ ๐พ ) = ๐ป โ ๐ป = 60๐ โ 20๐ = 20๐ = ๐ป
๐ป
,
= ๐ป โ (๐ป โฉ ๐พ ) = ๐ป โ {0} = ๐ป = 20๐
๐ป
,
= ๐ป โ (๐ป โฉ ๐พ ) = 20๐ โฉ 245๐ = 5๐
๐ป
,
= ๐ป โ (๐ป โฉ ๐พ ) = ๐ป โ ๐พ = 20๐ โ 49๐ = ๐
๐ป
,
= ๐ป โ (๐ป โฉ ๐พ ) = ๐ป โ ๐ = ๐
Hence, the refinement of the series represented in (1) is
{0} = ๐ป
,
โค๐ป
,
โค๐ป
,
โค๐ป
,
=๐ป =๐ป
,
โค๐ป
,
โค๐ป
,
โค๐ป
,
=๐ป =๐ป
,
โค๐ป
,
โค๐ป
,
โค๐ป
,
=๐ป
{0} โค 2940๐ โค 2940๐ โค 60๐ โค 60๐ โค 60๐ โค 20๐ โค 5๐ โค ๐ โค ๐ .
Algebra
Page No. 33
Deleting the repeated factors, we get,
{0} โฒ 2940๐ โฒ 60๐ โฒ 20๐ โฒ 5๐ โฒ ๐.
This is refinement of the series
{0} โฒ 60๐ โฒ 60๐ โฒ 20๐ โฒ ๐.
Similarly, defining ๐พ , = ๐พ ๐พ
โฉ ๐ป , we can obtain the refinement of the series,
{0} = ๐พ โฒ ๐พ โฒ ๐พ โฒ ๐พ = ๐
which is as follows.
{0} โฒ 2940๐ โฒ 980๐ โฒ 245๐ โฒ 49๐ โฒ ๐.
Definition 3.1.9 : A subnormal series {๐ป } = {๐ป , โฆ , ๐ป } of a group ๐บ is a composition
are simple. (๐ป = {๐} and ๐ป = ๐บ)
series if all the factor groups
Remark : In a composition series {๐ป }, ๐ป will be a maximal normal subgroup of ๐ป
.
Examples 3.1.10 :
(i) Consider the group ๐ for ๐ โฅ 5.
The series {๐} < ๐ด < ๐ is a composition series in ๐ .
Here
{ }
โ
๐ด
=2
and
โน
โ
๐
Now for ๐ โฅ 5, ๐ด is a simple (as any normal subgroup ๐ โ {๐} of ๐ด will contain each
3-cycle in ๐ and hence ๐ = ๐ด ).
Hence
{ }
is a simple group.
Similarly, ๐ being simple we get
is simple.
Hence {๐} โฒ ๐ด โฒ ๐ is a composition series of ๐ for ๐ โฅ 5.
(ii) Consider the group ๐บ = ๐ .
The series {0} < โฉ5โช < ๐
{0} < โฉ5โช < ๐
โฉ โช
{ }
โฉ โช
Algebra
is a composition series in ๐
.
is a subnormal series.
โ
๐
โน
โ
๐
โน
โฉ โช
{ }
โฉ โช
is a simple group.
is a simple group.
Page No. 34
Hence {0} < โฉ5โช < ๐
is a composition series in ๐ .
(iii) Consider the group ๐บ = โฉ๐โช where |๐บ| = 6. Hence ๐ = ๐.
๐ป = โฉ๐ โช = {๐, ๐ }
Define
and
๐ป = โฉ๐ โช = {๐, ๐ , ๐ }.
Then {๐}, ๐ป , ๐บ and {๐}, ๐ป , ๐บ will form two composition series in ๐บ.
(iv) ๐ has no composition series.
Let us assume that โ a composition series
As
{0} = ๐ป โฒ ๐ป โฒ โฏ โฒ ๐ป = ๐
in ๐.
{0} < ๐ป < ๐
for some positive integer n.
โน
๐ป = ๐๐
โ
๐๐ , we must have ๐๐ is simple.
But this is not true as ๐๐ contains many nontrivial proper normal subgroups. Hence our
assumption is wrong.
Thus ๐ has no composition series.
โข Existence of Composition series :
Theorem 3.1.11 : Every finite group ๐บ has at least one composition series.
Proof : If ๐บ is a simple group, then {๐} โฒ ๐บ is a composition series in ๐บ.
If ๐บ is not simple group, then ๐บ has at least one proper normal subgroup ๐ป โ {๐}.
If ๐ป is a maximal normal subgroup then {๐} will be maximal subgroup of ๐ป.
Hence
and
{ }
are simple subgroups. This shows that {๐}, ๐ป, ๐บ will form a
composition series in ๐บ.
Let ๐ป be not maximal in ๐บ. It means that there exists a maximal normal subgroup ๐พ
such that ๐ป โ ๐พ โ ๐บ. Hence {๐}, ๐ป, ๐พ, ๐บ will form a composition series.
If ๐ป is maximal in ๐บ, but {๐} is not maximal in H then find a maximal normal
subgroup ๐ฟ such that {๐} โ ๐ฟ โ ๐ป. In this case {๐}, ๐ฟ, ๐ป, ๐บ will be the composition
series of the group ๐บ.
Proceeding like this, we always find a composition series for ๐บ. Since ๐บ is a finite
group, the number of its subgroups is also finite. Hence the composition series obtained
finally contains a finite number of elements.
Algebra
Page No. 35
This proves that any finite group ๐บ has at least one composition series.
Remark : An infinite group may or may not have a composition series.
e.g.
โข
The group โฉ๐, +โช has no composition series. (See example 3.1.10 (4)).
Jordan-Hölder Theorem :
Theorem 3.1.12 : Any two composition series of a group ๐บ are isomorphic.
Proof :
Let {๐ป } and ๐พ be any two composition series of ๐บ.
is a simple group for each ๐, 1 โค ๐ โค ๐ โ 1 and
Hence
is a simple group for each ๐, 1 โค ๐ โค ๐ โ 1.
But we know that
is a simple group if and only if ๐ is a maximal normal subgroup
of ๐บ.
Hence,
is a simple implies ๐ป is a maximal normal subgroup of ๐ป
, for 1 โค ๐ โค ๐ โ 1.
Thus, intersection of any normal subgroups in between implies ๐ป and ๐ป
is not
possible.
Similarly, further refinement of the of the composition series ๐พ is not possible.
Thus, {๐ป } and ๐พ must be already isomorphic and ๐ = ๐.
Theorem 3.1.13 : If a group ๐บ has a composition series and if ๐ is a proper normal subgroup
of ๐บ then there exist a composition series containing ๐.
Proof : Let {๐ป } be a composition series of ๐บ. Then
{๐} = ๐ป โฒ ๐ป โฒ โฏ โฒ ๐ป = ๐บ
and
. . . (1)
is a simple group for each ๐, 1 โค ๐ โค ๐ โ 1.
Consider the subnormal series of G given by,
{๐} โฒ ๐ โฒ ๐บ
Define
๐พ = {๐}, ๐พ = ๐, ๐พ = ๐บ.
Define
๐พ, = ๐พ ๐พ
. . . (2)
โฉ๐ป
for 0 โค ๐ < 2 and 0 โค ๐ โค ๐.
Algebra
Page No. 36
Then {0} = ๐พ = ๐พ
,
<๐พ
,
<โฏ<๐พ
,
=๐พ =๐พ
<๐พ
,
<โฏ<๐พ
,
=๐พ =๐บ
=๐
,
. . . (3)
The series in (3) is a refinement of the subnormal series (2). The refinement of (1) being
impossible (as {๐ป } is a composition series) we get the two subnormal series represented
by (1) and (3) must be isomorphic. As the isomorphic image of simple groups is a simple
group, we get all the factor groups of the subnormal series (3) will be simple groups.
Hence, the subnormal series (3) containing ๐ is a composition series.
Example 3.1.14 : Find the composition series for ๐ × ๐ .
๐ป = {๐} × {๐}
Solution :
๐ป = ๐ด × {๐}
๐ป =๐ด ×๐ด
๐ป =๐ ×๐ด
๐ป =๐ ×๐
{๐} × {๐} = ๐ป โฒ ๐ป โฒ ๐ป โฒ ๐ป โฒ ๐ป = ๐ × ๐
Then
is a composition series in
๐ ×๐ .
Example 3.1.15 : Show that if {๐} = ๐ป < ๐ป < ๐ป < โฏ < ๐ป = ๐บ is a subnormal series of
a group G and if ๐
=๐
then G is of finite order ๐ . ๐ . โฆ . ๐ .
Solution : By data
๐
=๐
Thus
(
)
(
)
=๐
๐
=
(
)
(
)
=๐
โน
๐(๐ป ) = ๐ โ ๐(๐ป ) = ๐ โ 1 = ๐
โน
๐(๐ป ) = ๐ โ ๐(๐ป ) = ๐ โ ๐
โน
๐(๐ป ) = ๐ โ ๐(๐ป
Continuing in this way, we get
(
(
โน
)
)
=๐
=๐
)
๐(๐บ) = ๐ โ ๐(๐ป
(โต
=๐ โ๐
โ๐
โ โฆโ ๐
=๐ โ๐
โ๐
โ โฆโ ๐
)
๐บ=๐ป )
Hence, ๐บ is a finite group and ๐(๐บ) = ๐ โ ๐ โ โฆ โ ๐ .
Algebra
Page No. 37
Example 3.1.16 : Show that an abelian group has a composition series iff it is finite.
Solution : Only if part :
Let ๐บ be an abelian group. Let {๐ป } be a composition series of ๐บ.
Then {๐} = ๐ป โฒ ๐ป โฒ โฏ โฒ ๐ป = ๐บ and
is a simple group for each ๐, 1 โค ๐ โค
๐ โ 1.
We know that if a group G is abelian then any subgroup of G is also abelian.
is abelian for each ๐,
Hence
Thus
1 โค ๐ โค ๐ โ 1.
is abelian and simple group for each ๐, 1 โค ๐ โค ๐ โ 1.
is a cyclic group of prime order say ๐
Hence
.
By example 3.1.15, we get |๐บ| = ๐ . ๐ . โฆ . ๐ and hence ๐บ is a finite group.
If part :
Let ๐บ be a finite group.
By theorem 3.1.11, ๐บ has a composition series.
Example 3.1.17 : Show that infinite abelian group can have no composition series.
Solution : By an example 3.1.16, if an abelian group ๐บ contains a composition series, then ๐บ
must be finite. Hence no infinite abelian group will contain a composition series.
3.2. Normal Series :
Definition 3.2.1 : Let ๐บ be a group. A normal series of ๐บ is a finite sequence ๐ , ๐ , โฆ , ๐ of
normal subgroups of ๐บ such that ๐ < ๐
, ๐ = {๐} and ๐ = ๐บ.
Remark 3.2.2 : Every normal series of a group G is a subnormal series but not conversely.
For this consider the group ๐บ = ๐ท where ๐ท = โฉ{๐ , ๐ , ๐ , ๐ , ๐ , ๐ , ๐ฟ , ๐ฟ }, 0โช and
1 2 3 4
1 2 3 4
1 2 3 4
๐ =
2 3 4 1
1 2 3 4
๐ =
3 4 1 2
1 2 3 4
๐ =
4 1 2 3
๐ =
1
2
1
๐ =
4
1
๐ฟ =
3
1
๐ฟ =
1
๐ =
2
1
2
3
2
2
2
4
3
4
3
2
3
1
3
3
4
3
4
1
4
4
4
2
This group ๐ท is called the group of symmetries of a square.
Algebra
Page No. 38
The series ๐ท given by
{๐ } < {๐ , ๐ } < {๐ , ๐ , ๐ , ๐ } < ๐ท
is a subnormal series but it is not a normal series as {๐ , ๐ } is not a normal subgroup of
๐ท.
Remark 3.2.3 : As every subgroup of an abelian group is normal, every subnormal series in
an abelian group will be a normal series. Thus the two concepts of normal and subnormal
series coincide in an abelian group.
Example 3.2.4 : {0} < 26๐ < 13๐ < ๐
{0} < 14๐ < 7๐ < ๐
and
are normal series in a group โฉ๐, +โช.
Definition 3.2.5 : Let {๐ } be a normal series of a group G. The normal series ๐พ
of a
group G is a refinement of the normal series {๐ } if {๐ } โ ๐พ . i.e. ๐ = ๐พ for each ๐.
Example 3.2.6 : The normal series
{0} < 72๐ < 24๐ < 8๐ < 4๐ < ๐
is a refinement of the normal series
{0} < 72๐ < 8๐ < ๐
in an abelian group โฉ๐, +โช.
Definition 3.2.7 : Two normal series {๐ } and ๐พ of a group G are said to be isomorphic if
there exists a one to one, onto correspondence between the collection of factor groups
๐ป๐+1
๐ป๐
and
Example 3.2.8 :
๐พ๐+1
. So that the corresponding factor groups are abelian.
๐พ๐
The two normal series
{0} < โฉ5โช < ๐
and
{0} < โฉ3โช < ๐
in a group ๐
are isomorphic.
Definition 3.2.9 : A normal series {๐ } of a group G is principal if all the factor groups
are simple.
Algebra
Page No. 39
Now we list the properties of normal series, the proofs of which are similar to those for
subnormal series.
3.2.10 Properties of Normal Series :
(i) Two normal series of a group G are isomorphic (Schreierโs Theorem).
(ii) Every finite group G has at least one principal series.
(iii)Any two principal series of a group G are isomorphic. (Jordan Hölder Theorem)
(iv) If a group G has a principal series and if N is a proper normal subgroup of G, then there
exists a principal series in G containing N.
Exercise โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
(1) State whether the following statements are true or false.
(i)
Every normal series is a principal series.
(ii)
Every principal series is a composition series.
(iii)
Every composition series is a principal series.
(iv)
Every normal series is a subnormal series.
(v)
Every subnormal series is a normal series.
(vi)
Every group has a composition series.
(vii) Every group has a principal series.
(viii) Any two subnormal / normal series of the same group G are always isomorphic.
(ix)
Given any two normal series we can obtain the refinements for both the series.
(x)
Every abelian group has a composition series.
(2) Find all composition series for ๐ .
โขโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
3.3 Ascending Central Series :
Definition 3.3.1 : The center of a group G is the set {๐ฅ โ ๐บ / ๐ฅ๐ = ๐๐ฅ โ ๐ โ ๐บ}.
Remark 3.3.2 :
(i)
The center of a group G is generally denoted by Z or Z(G).
(ii) As ๐ โ ๐(๐บ), ๐(๐บ) โ ๐ or |๐(๐บ)| โฅ 1.
(iii) G is abelian โบ
๐(๐บ) = ๐บ.
(iv) ๐(๐บ) is always a normal subgroup of G.
Algebra
Page No. 40
3.3.3 Ascending Central Series :
Let ๐(๐บ) denote the center of a group G. As ๐(๐บ) โด ๐บ, the quotient group
is defined. Consider the canonical / natural map ๐: ๐บ โถ
( )
( )
. Then ๐ is an onto
homomorphism.
Consider ๐
๐บ
๐บ
. ๐ ( ) is a normal subgroup of the group
.
๐(๐บ)
๐๐บ
( )
Hence, ๐
๐
๐บ
๐(๐บ)
is a normal subgroup of G containing ๐(๐บ). Denote this by ๐ (๐บ).
Thus we have,
{๐} < ๐(๐บ) < ๐ (๐บ) < ๐บ
. . . (1)
Now ๐ (๐บ) โฒ ๐บ and hence the quotient group
( )
Consider the canonical/natural map ๐ โถ ๐บ โถ
is defined.
( )
.
Surely ๐
is an onto
homomorphism.
As ๐
๐บ
โด
๐1 (๐บ)
( )
,๐
๐
๐บ
๐1 (๐บ)
is a normal subgroup of G. Denote it by ๐ (๐บ).
Thus, continuing in this process, we can construct a sequence of normal subgroups of G
๐(๐บ), ๐ (๐บ), ๐ (๐บ), โฆ such that {๐} โค ๐(๐บ) โค ๐ (๐บ) โค ๐ (๐บ) โค โฏ .
i.e.
This series is called the ascending central series of the group ๐บ.
Example 3.3.4 : Find the ascending central series for (i) ๐ and (ii) ๐ท .
Solution :
๐(๐บ) = {๐} where ๐ is the identity map.
โน
(i) ๐บ = ๐
Hence the ascending central series of ๐ is
{๐} โค {๐} โค โฏ โค {๐} โค โฏ
(ii) ๐บ = ๐ท
๐(๐บ) = {๐ , ๐ }
โน
where
1
1
1
๐ =
3
๐ =
Now,
Algebra
(
)
=
2
2
2
4
3
3
3
1
4
4
4
2
=4
Page No. 41
As
we get,
(
)
(
)
๐: ๐ท โถ
โค5
is abelian and hence ๐
)
(
๐ being onto, ๐
๐ท4
๐ (๐ท 4 )
๐ท
= ๐(๐ท4 ) .
4
be a canonical mapping.
๐ท4
๐ (๐ท 4 )
=๐ท
Thus, the ascending central series in ๐ท is
{๐ } โค {๐ , ๐ } โค ๐ท โค ๐ท โค โฏ
3.4 Nilpotent Groups:
Thus we obtain normal subgroups ๐ (๐บ), ๐ (๐บ), . . . , ๐ (๐บ), . .. of ๐บ such that
( )
( )
= ๐
๐ (๐บ) is called the ๐
( )
,
for every positive integer n > 1.
center of ๐บ.
Define ๐ (๐บ) = {๐}. Then
( )
( )
= ๐
( )
,
for all positive integers n.
Again by definition,
๐ (๐บ) = {๐ฅ โ ๐บ ๐ฅ๐ฆ๐ฅ
๐ฆ
โ๐
(๐บ) / for all ๐ฆ โ ๐บ}
Hence,
[๐ (๐บ)] โ ๐
(๐บ).
Definition 3.4.1: A group ๐บ is said to be nilpotent if ๐ (๐บ) = ๐บ for some ๐. The smallest ๐
such that ๐ (๐บ) = ๐บ is called the class of nilpotency of ๐บ.
Remark : Every abelian group is nilpotent. If ๐บ is abelian, then ๐ (๐บ) = ๐(๐บ). Hence ๐บ is
nilpotent.
Theorem 3.4.2:
Subgroup of a nilpotent group is nilpotent.
Proof :Let ๐บ be a nilpotent group.
Hence, โ a positive integer ๐ such that ๐ (๐บ) = ๐บ.
Let ๐ป โค ๐บ.
To prove that ๐ป is nilpotent.
When ๐ป = {๐} or ๐ป = ๐บ. The result is obviously true.
Algebra
Page No. 42
Let {๐} < ๐ป < ๐บ.
Now let ๐ฅ โ ๐ป โฉ ๐(๐บ). Then ๐๐ฅ = ๐ฅ๐ for all ๐ โ ๐บ will imply โ๐ฅ = ๐ฅโ for all โ โ ๐ป.
Hence ๐ฅ โ ๐(๐ป). Thus ,
๐ป โฉ ๐(๐บ) โ ๐(๐ป)
As ๐(๐บ) = ๐ (๐บ) and ๐(๐ป) โค ๐ป we get
๐ป โฉ ๐(๐บ) โค ๐ (๐ป)
. . . (1)
Now, let ๐ฅ โ ๐ป โฉ ๐ (๐บ).
Then
๐ฅ โ ๐ (๐บ) will imply ๐ฅ๐ฆ๐ฅ
But then
๐ฅ๐ฆ๐ฅ
๐ฆ
๐ฆ
โ ๐ (๐บ)
for all ๐ฆ โ ๐บ
โ ๐ (๐บ)
for all ๐ฆ โ ๐ป
As ๐ฅ โ ๐ป and ๐ฆ โ ๐ป we get ๐ฅ๐ฆ๐ฅ
๐ฆ
โ ๐ (๐บ)
for all ๐ฆ โ ๐ป.
But this in turn will imply ๐ฅ โ ๐ (๐ป). This shows that
๐ป โฉ ๐ (๐บ) โค ๐ (๐ป)
. . . (2)
Continuing in this way, we get
๐ป โฉ ๐ (๐บ) โ ๐ (๐ป)
for all n.
Hence in particular,
๐ป โฉ ๐ (๐บ) โ ๐ (๐ป)
i.e.
๐ป โฉ ๐บ โ ๐ (๐ป)
i.e.
๐ป โ ๐ (๐ป)
But as always, ๐ (๐ป) โ ๐ป, we get ๐ (๐ป) = ๐ป.
This proves that H is nilpotent.
Theorem 3.4.3: Every homomorphic image of a nilpotent group is nilpotent.
Proof : Let ๐บ be a nilpotent group. Let ๐ โถ ๐บ โถ ๐บ be an onto homomorphism.
To prove that the group ๐บ is nilpotent.
As ๐บ is nilpotent, โ a positive integer m such that ๐ (๐บ) = ๐บ.
(i) ๐(๐บ) = {๐ฅ โ ๐บ / ๐ฅ๐ = ๐๐ฅ โ ๐ โ ๐บ}
๐(๐บ ) = {๐ฅ โ ๐บ / ๐ฅ๐ = ๐๐ฅ โ ๐ โ ๐บ }
= {๐(๐ฅ) โ ๐บ / ๐(๐ฅ) โ ๐(๐) = ๐(๐) โ ๐(๐ฅ) โ ๐(๐) โ ๐บ }
โฆ โต ๐ in onto.
But this shows that
๐[๐(๐บ)] โ ๐(๐บ )
Let ๐ฅ โ ๐ (๐บ).
Algebra
Then ๐ฅ๐ฆ๐ฅ
๐ฆ
โ ๐ (๐บ)
. . . (1)
for all ๐ฆ โ ๐บ.
Page No. 43
Hence,
๐ (๐ฅ๐ฆ๐ฅ
๐ฆ
) โ ๐[๐ (๐บ)]
[๐(๐ฆ)]
๐(๐ฅ) ๐(๐ฆ) [๐(๐ฅ)]
i.e.
for all ๐ฆ โ ๐บ.
โ ๐[๐ (๐บ)]
for all ๐(๐ฆ) โ ๐บ .
But this in turn will imply ๐(๐ฅ) โ ๐ (๐บ ).
๐ฅ โ ๐ (๐บ)
Thus,
โน
๐(๐ฅ) โ ๐ (๐บ ).
Therefore,
๐ [๐ (๐บ)] โ ๐ (๐บ )
. . . (2)
Continuing in this way, we get for all ๐
๐ [๐ (๐บ)] โ ๐ (๐บ )
. . . (3)
Hence in particular,
๐ [๐ (๐บ)] โ ๐ (๐บ )
Hence,
๐ (๐บ) โ ๐ (๐บ )
But ๐ being onto,
๐ (๐บ) = ๐บ
Hence ,
๐บ โ ๐ (๐บ ) โ ๐บ
โน
๐ (๐บ ) = ๐บ
Hence, the group ๐บ in nilpotent.
Theorem 3.4.4: Any group of order ๐ is nilpotent. OR Any p-group is nilpotent.
Proof : Let ๐บ be a group with |๐บ| = ๐ .
To prove that ๐บ is nilpotent.
If ๐บ = ๐(๐บ) then we are through. Assume that ๐บ โ ๐(๐บ).
|
Then as ๐ |๐บ| we get ๐(๐บ) โ {๐}. Hence |๐(๐บ)| โ 1 .
|
Further |๐(๐บ)| |๐บ| as ๐(๐บ) โค ๐บ we have |๐(๐บ)| = ๐ for some ๐ < ๐.
But then
|๐บ|
๐บ
=
=๐
|๐(๐บ)|
๐(๐บ)
will imply ๐
Hence, ๐
|
( )
.
๐บ
is non trivial.
๐(๐บ)
i.e. ๐
๐บ
โ ๐(๐บ).
๐(๐บ)
Hence, by definition of ๐ (๐บ) we get ๐(๐บ) โ ๐ (๐บ).
i.e.
|๐ (๐บ)| < |๐ (๐บ)|.
Continuing in this way we get,
Algebra
Page No. 44
|๐ (๐บ)| < |๐ (๐บ)| < โฏ โค |๐บ| = ๐
Hence, there must exists some positive integer m such that |๐ (๐บ)| = ๐ .
This shows that ๐บ is nilpotent.
Theorem 3.4.5: A group ๐บ is nilpotent iff ๐บ has a normal series.
{๐} = ๐ โฒ ๐ โฒ โฏ โฒ ๐ = ๐บ
such that
โ๐
for all ๐, 1 โค ๐ โค ๐ โ 1.
Proof : Only if part :
Let ๐บ be nilpotent then โ a positive integer m such that ๐ (๐บ) = ๐บ.
Consider the series
๐ (๐บ) = {๐} < ๐ (๐บ) < ๐ (๐บ) < โฏ โค ๐ (๐บ) = ๐บ
Then
(i)
๐ (๐บ) is a normal subgroup of G for each ๐.
โ๐
(ii)
(iii)
๐ โฒ๐
for each ๐, 0 โค ๐ โค ๐ โ 1.
for each ๐, 0 โค ๐ โค ๐ โ 1.
Hence
๐ (๐บ) = {๐} < ๐ (๐บ) < ๐ (๐บ) < โฏ โค ๐ (๐บ) = ๐บ
will form the required series.
If part :
Let ๐บ be group and let ๐บ have a normal series
{๐} = ๐บ < ๐บ < ๐บ < โฏ โค ๐บ = ๐บ
such that
โ๐
To prove that ๐บ is nilpotent.
As
โ๐
we get
{ }
โ๐
{ }
.
Thus, ๐บ โ ๐[๐บ]
i.e.
Algebra
๐บ โ ๐ [๐บ]
. . . (1)
Page No. 45
โ๐
Again by assumption,
.
. Hence ๐บ ๐ฅ โ ๐
Now, for any ๐ฅ โ ๐บ we get ๐บ ๐ฅ โ
.
Hence,
[๐บ ๐ฅ] [๐บ ๐ฆ] = [๐บ ๐ฆ] [๐บ ๐ฅ]
for all ๐บ , ๐ฆ โ
i.e.
๐ฅ๐ฆ๐ฅ
๐ฆ
โ๐บ
for all ๐ฆ โ ๐บ.
i.e.
๐ฅ๐ฆ๐ฅ
๐ฆ
โ ๐ [๐บ]
โฆ by (1)
Thus,
๐ฅโ๐บ
โน
๐ฅ๐ฆ๐ฅ
๐ฆ
โ ๐ [๐บ]
โน
๐ฅ โ ๐ [๐บ]
๐บ โ ๐ [๐บ]
Hence,
. . . (2)
Continuing in this way we get
๐บ = ๐บ โ ๐ (๐บ) โ ๐บ.
๐ (๐บ) = ๐บ
Hence,
Hence ๐บ is nilpotent.
Worked Examples โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Example 3.4.6 : ๐บ = ๐ is not nilpotent.
Solution: For ๐ , ๐(๐ ) = {๐ } where ๐ is the identity element of ๐ .
๐ (๐ ) = {๐ }.
Hence,
๐
{
}
= {๐ }
๐ (๐ ) = {๐ }.
Hence,
Continuing in this way we get, ๐ (๐ ) = {๐ }
for any ๐ โฅ 0.
Hence, ๐ is not nilpotent.
Example 3.4.7: ๐ท is nilpotent.
Solution : We know that ๐ (๐ท ) = {๐ , ๐ }.
Hence
As
Hence,
Hence,
Algebra
)
(
{
(
)
,
={
}
,
}
= |{
|
|
,
}|
= =4
is abelian. Therefore ๐
๐ท4
๐ (๐ท 4 )
๐ท
= ๐(๐ท4 )
4
๐ (๐ท ) = ๐ท . Hence, ๐ท is nilpotent.
Page No. 46
Example 3.4.8 : Show that ๐ is not nilpotent for ๐ โฅ 3.
Solution : For ๐ โฅ 3, ๐[๐ ] = {๐} where e is the identity element in ๐ .
Thus ๐ (๐ ) = {๐}. But then ๐ (๐ ) = {๐} for all positive integers m.
Hence ๐ is nilpotent for ๐ โฅ 3.
โขโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Remark : ๐ is solvable but ๐ is not nilpotent. This shows that every solvable group need
not be nilpotent. But converse is always true. i.e. every nilpotent group is solvable.
Theorem 3.4.9: Every nilpotent group is solvable.
Proof :
Let ๐บ be nilpotent group. Then by theorem 3.4.5, there exists a normal series
{๐} = ๐ป โฒ ๐ป โฒ โฏ โฒ ๐ป = ๐บ
such that
โ๐
As ๐
is abelian, we get
is abelian.
Hence by theorem 2.2.13, G is solvable.
Worked Examples โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Example 3.4.10 : Give an example of a group G such that G has a normal subgroup N with
both N and
nilpotent but G is non-nilpotent.
Solution: Consider ๐บ = ๐ .
We know, ๐ is not nilpotent (See example3.4.8).
๐ = {(1), (1, 2, 3), (1, 3, 2)} is a normal subgroup of ๐ .
N is an abelian subgroup of ๐ ( โต |๐| = 3 )
Hence N is nilpotent.
Again
Thus both N and
= =2
โน
is abelian.
โน
is nilpotent.
are nilpotent but ๐ is not nilpotent.
Example 3.4.11 : Show that the product of two nilpotent groups is a nilpotent group.
Solution : Let ๐ป and ๐พ be any two nilpotent groups.
Algebra
Page No. 47
Then โ positive integers m and n such that ๐ (๐ป) = ๐ป and ๐ (๐พ) = ๐พ.
Let ๐บ = ๐ป × ๐พ.
๐ฅ โ ๐(๐บ)
โน
๐ฅ๐ = ๐๐ฅ
๐ฅ = (๐ฅ , ๐ฅ ) and
for all ๐ โ ๐บ.
๐ = (๐ , ๐ )
Then ๐ฅ๐ = (๐ฅ ๐ , ๐ฅ ๐ )
๐๐ฅ = (๐ ๐ฅ , ๐ ๐ฅ )
Thus, ๐ฅ๐ = ๐๐ฅ โน
๐ฅ ๐ =๐ ๐ฅ
and ๐ฅ ๐ = ๐ ๐ฅ
for all ๐ โ ๐ป, ๐ โ ๐พ
But this will imply ๐ฅ โ ๐(๐ป) and ๐ฅ โ ๐(๐พ).
Thus, ๐ฅ = (๐ฅ , ๐ฅ ) โ ๐(๐บ) = ๐(๐ป × ๐พ)
โน
(๐ฅ , ๐ฅ ) โ ๐(๐ป) × ๐(๐พ)
Similarly, we can prove that
(๐ฅ , ๐ฅ ) โ ๐(๐ป) × ๐(๐พ)
โน
๐ฅ = (๐ฅ , ๐ฅ ) โ ๐(๐บ) = ๐(๐ป × ๐พ)
Hence,
๐(๐ป × ๐พ) = ๐(๐ป) × ๐(๐พ).
By iteration,
๐ (๐ป × ๐พ) = ๐ (๐ป) × ๐ (๐พ)
Hence, if ๐ > ๐ then ๐ (๐พ) = ๐พ
for each positive integer ๐.
โน
๐ (๐พ) = ๐พ.
Thus, ๐ (๐ป × ๐พ) = ๐ (๐ป) × ๐ (๐พ) = ๐ป × ๐พ.
This shows that ๐ (๐บ) = ๐บ and ๐บ = ๐ป × ๐พ is nilpotent.
โขโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Unit 4 : Sylow Theorems :
4.1 Group action on a set.
4.2 Class equation of a group.
4.3 ๐-groups
4.4 Three Sylow theorems.
4.1 Group action on a set :
Definition 4.1.1: Let ๐บ be any group and let ๐ be any non-empty set. An action of ๐บ on ๐ is
a mapping ๐: ๐ × ๐บ โถ ๐ satisfying the following conditions
(i) ๐(๐ฅ, ๐) = ๐ฅ
for all ๐ฅ โ ๐บ
(ii) ๐(๐ฅ, ๐ ๐ ) = ๐(๐(๐ฅ, ๐ ), ๐ )
for all ๐ฅ โ ๐บ and ๐ , ๐ โ ๐บ
Under these conditions we say ๐ is a ๐บ-set. Note that every ๐บ-set need not be a group.
Algebra
Page No. 48
Examples 4.1.2 :
(i)
Let ๐ = {1, 2, โฆ , ๐} and ๐บ = โฉ๐ , 0โช. Define ๐ โถ ๐ × ๐บ โถ ๐ by
๐(๐ฅ, ๐) = ๐(๐ฅ)
for ๐ฅ โ ๐ and ๐ โ ๐ .
Then
(1)
๐(๐ฅ, ๐) = ๐(๐ฅ) = ๐ฅ
where ๐ = identity map defined on X.
(2)
๐(๐ฅ, ๐ โ ๐ ) = (๐ โ ๐ )(๐ฅ) = ๐ [๐ (๐ฅ)]
= ๐[๐(๐ฅ, ๐ ), ๐ ]
From (1) and (2) we get X is a G-set.
(ii)
Let G be any group and let ๐ป โค ๐บ. โ denotes the set of all right cosets of H in G.
Define ๐ โถ โ × ๐ป โถ โ by
๐(๐ป , โ) = ๐ป
for ๐ป โ โ and โ โ ๐ป.
Then
(1)
๐(๐ป , ๐) = ๐ป
(2)
๐(๐ป , โ โ ) = ๐ป
=๐ป
(
where ๐ = identity map defined on X.
)
= ๐ป(
)
= ๐[๐(๐ป , โ ), โ ]
From (1) and (2) we get โ is a H-set.
(iii) Let G be any group and X be the set of all subgroups of G. Define ๐: ๐ × ๐บ โถ ๐บ by
๐(๐, ๐) = ๐ ๐๐
for ๐ โ ๐ and ๐ โ ๐บ.
Then
๐๐ = ๐
(1)
๐(๐, ๐) = ๐
(2)
๐(๐, ๐ ๐ ) = (๐ ๐ ) ๐(๐ ๐ )
=๐
[๐ ๐๐ ] ๐
= ๐[๐(๐, ๐ ), ๐ ]
Hence X is a G - set.
(iv) Let ๐บ be a group and ๐ป โค ๐บ. Define ๐: ๐บ × ๐ป โถ ๐บ by
๐(๐, โ) = โ ๐โ
for ๐ โ ๐บ and โ โ ๐ป.
Then
(1)
๐(๐, ๐) = ๐
(2)
๐(๐, โ โ ) = (โ โ )
๐๐ = ๐
=โ
Algebra
[โ
๐ (โ โ )
๐โ ]โ
Page No. 49
= ๐[๐(๐, โ ), โ ]
Hence G is a H - set.
(v)
Any group ๐บ is a G โ set under the action ๐: ๐บ × ๐บ โถ ๐บ defined by
๐(๐ , ๐ ) = ๐ โ ๐ ,
for all ๐ , ๐ โ ๐บ.
Remark : Let ๐ be a ๐บ โ set. Then by definition 4.1.1, there exists ๐ โถ ๐ × ๐บ โถ ๐
satisfying the conditions,
(1) ๐(๐ฅ, ๐) = ๐ฅ
and
(2) ๐(๐ฅ, ๐ ๐ ) = ๐[๐(๐ฅ, ๐ ), ๐ ].
Here onwards we write ๐(๐ฅ, ๐) = ๐ฅ๐ ,
for all ๐ฅ โ ๐ and ๐ โ ๐บ.
Thus, ๐ฅ๐ = ๐ฅ and ๐ฅ(๐ ๐ ) = (๐ฅ๐ )๐ ,
for all ๐ฅ โ ๐ and ๐ , ๐ โ ๐บ.
Let ๐ be a ๐บ โ set. For a fixed ๐ฅ โ ๐, define
๐บ = {๐ โ ๐บ / ๐ฅ๐ = ๐ฅ}
and for a fixed ๐ โ ๐บ, define
๐ = {๐ฅ โ ๐ / ๐ฅ๐ = ๐ฅ}.
As an important property of the set ๐บ , we prove
Theorem 4.1.3 : Let ๐ be a ๐บ โ set. for any ๐ฅ โ ๐, ๐บ โค ๐บ.
Proof :
โน ๐บ โ ๐.
(i)
๐ฅ๐ = ๐ฅ
โน ๐โ๐บ
(ii)
๐ , ๐ โ ๐บ โน ๐ฅ๐ = ๐ฅ and
๐ฅ๐ = ๐ฅ.
Hence, ๐ฅ(๐ ๐ ) = (๐ฅ๐ )๐ = ๐ฅ๐ = ๐ฅ.
This shows that ๐ ๐ โ ๐บ .
(iii) Let ๐ โ ๐บ . Then ๐ฅ๐ = ๐ฅ
โน (๐ฅ๐)๐
= ๐ฅ๐
โน ๐ฅ(๐๐ ) = ๐ฅ๐
โน ๐ฅ โ ๐ = ๐ฅ๐
โน ๐ฅ = ๐ฅ๐
Hence ๐ โ ๐บ
โน
๐
โ๐บ
From (i), (ii) and (iii) we get ๐บ is a sub group of G.
Definition 4.1.4 : Let X be a G โ set. For any ๐ฅ โ ๐, the subgroup ๐บ of ๐บ is called the
isotropy subgroup of ๐บ.
Algebra
Page No. 50
Example 4.1.5 : Let ๐ = {1, 2, 3}. Then X is a ๐ - set. (See example 4.1.2 (1)). We have
๐ = {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}
The isotropy subgroup of 2 is {(1), (1 3)}.
On each ๐บ-set ๐, the group ๐บ induces an equivalence relation. This we prove in the following
theorem.
Theorem 4.1.6 : Let ๐ be a ๐บ โ set. Define a relation โ~โ on ๐ by
๐ฅ~๐ฆ
โน ๐ฅ =๐ฆโ๐,
for some ๐ โ ๐บ.
Then the relation โ~โ is an equivalence relation on ๐.
Proof :
(i)
๐ฅ๐ = ๐ฅ for all ๐ฅ โ ๐
โน
(ii)
โน ๐ฅ~๐ฅ,
the relation โ~โ is reflexive.
Let ๐ฅ ~ ๐ฆ. Hence ๐ฅ = ๐ฆ๐ ,
๐ฅ๐
for all ๐ฅ โ ๐.
= (๐ฆ๐) ๐
for some ๐ โ ๐บ.
= ๐ฆ(๐๐ ) = ๐ฆ๐ = ๐ฆ
This shows that ๐ฅ ~ ๐ฆ
โน y~๐ฅ,
for x, ๐ฆ โ ๐.
Hence the relation โ~โ is symmetric.
(iii) Let ๐ฅ ~ ๐ฆ and ๐ฆ ~ ๐ง.
Then ๐ฅ = ๐ฆ๐ and ๐ฆ = ๐ง๐
for some ๐ , ๐ โ ๐บ.
Thus, ๐ฅ = ๐ฆ๐ = (๐ง๐ )๐ = ๐ง(๐ ๐ ).
As ๐ , ๐ โ ๐บ, we get ๐ฅ ~ ๐ง.
This shows that ๐ฅ ~ ๐ฆ, ๐ฆ ~ ๐ง โน ๐ฅ ~ ๐ง
for ๐ฅ, ๐ฆ, ๐ง โ ๐.
Hence the relation โ~โ is transitive.
From (i), (ii) and (iii) we get โ~โ is an equivalence relation on X.
Definition 4.1.7 : Let X be a ๐บ โ set. Each equivalence class produced by the equivalence
relation โ~โ defined on ๐, described in Theorem 4.1.6, is called an orbit in ๐ under ๐บ.
The equivalence class containing ๐ฅ โ ๐ is orbit of ๐ฅ and we denote it by ๐ฅ๐บ.
Thus,
๐ฅ๐บ = {๐ฆ โ ๐ / ๐ฅ ~ ๐ฆ}
= {๐ฆ โ ๐ / ๐ฅ = ๐ฆ๐ ๐๐๐ ๐ ๐๐๐ ๐ โ ๐บ}
A relation between the orbit ๐ฅ๐บ and the subgroup ๐บ in a ๐บ โ set ๐ is as follows.
Theorem 4.1.8 : Let ๐ be any ๐บ โ set. Then |๐ฅ๐บ| = (๐บ: ๐บ ), for any ๐ฅ โ ๐.
Algebra
Page No. 51
Proof :
Fix up any ๐ฅ โ ๐. Let โ denote the collection of all right cosets of the subgroup
๐บ in ๐บ. We will show that โ is equipotent with the set ๐ฅ๐บ.
Now ๐ฆ โ ๐ฅ๐บ โน ๐ฆ ~ ๐ฅ โน ๐ฆ = ๐ฅ๐
for some ๐ โ ๐บ.
Define ๐ โถ ๐ฅ๐บ โถ โ by
๐(๐ฆ) = ๐บ ๐
where ๐ฆ = ๐ฅ๐, ๐ โ ๐บ.
(i) ๐ is well defined.
Let ๐ฆ = ๐ฆ in ๐ฅ๐บ.
Then
๐ฆ = ๐ฅ๐
and
๐ฆ = ๐ฅ๐
for some ๐ , ๐ โ ๐บ.
Thus
๐ฆ =๐ฆ
โน
๐ฅ๐ = ๐ฅ๐
โน
(๐ฅ๐ ) ๐
โน
๐ฅ(๐ ๐ ) = ๐ฅ(๐ ๐ )
โน
๐ฅ๐ = ๐ฅ(๐ ๐ )
โน
๐ฅ = ๐ฅ(๐ ๐ )
= (๐ฅ๐ ) ๐
โน
๐ ๐
โ๐บ
โน
(๐บ )๐ = (๐บ )๐
โน
๐(๐ฆ ) = ๐(๐ฆ )
This shows that ๐ is well defined map.
(ii)
๐ is one-one.
Let
๐(๐ฆ ) = ๐(๐ฆ ) ,
for some ๐ฆ , ๐ฆ โ ๐ .
Let
๐(๐ฆ ) = (๐บ )๐ ,
where ๐ฆ = ๐ฅ ๐
and
๐(๐ฆ ) = (๐บ )๐ ,
where ๐ฆ = ๐ฅ ๐ .
Thus,
๐(๐ฆ ) = ๐(๐ฆ )
โน
(๐บ )๐ = (๐บ )๐
โน
๐๐
โน
๐ฅ (๐ ๐ ) = ๐ฅ
โน
(๐ฅ๐ ) ๐
โน
๐ฅ๐ = ๐ฅ๐
โน
๐ฆ =๐ฆ
โ๐บ
=๐ฅ
This shows that ๐ is one-one.
(iii) ๐ is onto.
Let (๐บ )๐ โ โ. Then ๐ โ ๐บ and for this ๐, consider the element ๐ฆ โ ๐ defined by
๐ฆ = ๐ฅ๐.
Algebra
Page No. 52
Then ๐(๐ฆ) = (๐บ )๐ shows that ๐ is onto.
From (i), (ii) and (iii) we get ๐ is an one-one, onto mapping. Hence ,
|๐ฅ๐บ| = |โ|
But
|โ|= Number of right cosets of ๐บ in G = (๐บ โถ ๐บ ).
Hence, |๐ฅ๐บ| = (๐บ โถ ๐บ ),
โ ๐ฅ โ ๐.
Corollary 4.1.9 : Let ๐บ be a finite group and let ๐ be a finite ๐บ-set. Then
(i) |๐บ| = |๐ฅ๐บ| โ |๐บ | ,
(ii) |๐| =
for any ๐ฅ โ ๐.
โ ( G : Gx ) ,
where ๐ถ denotes the subset of ๐ containing exactly one
xโC
element from each orbit.
Proof :
(i)
From theorem 4.1.8, we have,
|๐ฅ๐บ| = (๐บ: ๐บ ) ,
(ii)
| |
Hence
|๐ฅ๐บ| =
Hence
|๐บ| = |๐ฅ๐บ| โ |๐บ |
|
|
for any ๐ฅ โ ๐.
โฆ Since G is a finite group.
Let C denote the subset of X containing exactly one element from each orbit of X under
G.
Then
โ xG
|๐| =
xโC
Since
๐=
๐ฅ๐บ
โ
and this union is a disjoint union.
As by theorem 4.1.8,
|๐ฅ๐บ| = (๐บ: ๐บ )
we get,
|๐| =
โ ( G : Gx )
xโC
Algebra
Page No. 53
The following theorem gives a tool for determining the number of orbits in a G-set X
under G.
โข
Burnside Theorem :
Theorem 4.1.10 : Let G be a finite group and let X be a finite G-set. If ๐ is the number of
orbits in X under G, then
โ
๐. |๐บ| =
g โG
Proof :
Xg
Let N = number of ordered pairs (๐ฅ, ๐) โ ๐ × ๐บ for which ๐ฅ๐ = ๐ฅ. Then for a
with pairs with ๐ as a second member and ๐ฅ๐ = ๐ฅ. Hence
fixed ๐ โ ๐บ, there are ๐
โ
N=
g โG
Xg
. . . (1)
Similarly, for a fixed ๐ฅ โ ๐, there are |๐บ | pairs with ๐ฅ as a first member and ๐ฅ๐ = ๐ฅ.
Hence,
โ
N=
xโ X
Gx
. . . (2)
From (1) and (2) we get,
๐
|๐บ |
=
โ
โ
=
โ
|๐บ|
|๐ฅ๐บ|
= |๐บ|
โ
โต |๐ฅ๐บ| = (๐บ: ๐บ ) =
1
|๐ฅ๐บ|
|๐บ|
|๐บ |
. . . (3)
r
Now, let ๐ , ๐ , ๐ , โฆ , ๐ be r orbits of X under G. Then X = U Oi and this union is
i =1
disjoint. Hence we get,
โ
1
=
|๐ฅ๐บ|
r
1
|๐ฅ๐บ|
x โ U Oi
i =1
=
โ
Now consider
โ
xโO1
1
xG
โ
1
+โฏ +
|๐ฅ๐บ|
โ
1
|๐ฅ๐บ|
.
Let ๐ = {๐ก , ๐ก , ๐ก , โฆ , ๐ก }
Algebra
1
+
|๐ฅ๐บ|
( ๐ is finite as X is finite )
Page No. 54
Hence,
โ
1
1
1
1
=
+
+โฏ+
|๐ก ๐บ| |๐ก ๐บ|
|๐ก ๐บ|
|๐ฅ๐บ|
=
1
1
+
+โฏ
|๐ | |๐ |
+
1
|๐ |
(๐ times) โฆ by the definition of orbit
1
1 1
+ + โฏ+
๐
๐ ๐
๐
= =1
๐
=
โฆ ๐ times
Generalizing this result we get,
โ
1
=1
|๐ฅ๐บ|
for each ๐, 1 โค ๐ โค ๐
Hence,
โ
1
= 1 +1 +โฏ+ 1
|๐ฅ๐บ|
=๐
(๐ times)
. . . (4)
From (3) and (4) we get,
๐
= |๐บ| โ ๐
โ
i.e.
๐ โ |๐บ| =
โ
g โG
Xg
This completes the proof.
4.2
Class Equation of a Group :
As an application of the Burnside theorem, we derive an equation which is called class
equation of a group.
Let ๐บ be a finite group and let ๐ be a finite ๐บ set. Let ๐ , ๐ , ๐ , โฆ , ๐ be different ๐orbits in ๐ by ๐บ. Select ๐ฅ โ ๐ for each ๐. Then ๐ being the disjoint union of
๐ , ๐ , ๐ , โฆ , ๐ , we get
|๐| =
Algebra
|๐ |
Page No. 55
|๐ฅ ๐บ|
=
โฆ (1)
Define ๐ = {๐ฅ โ ๐ / ๐ฅ๐ = ๐,
for all ๐ โ ๐บ}
Let ๐ denote an one element orbit i.e. ๐ = {๐ฅ }. Then
๐ = {๐ฆ โ ๐ / ๐ฆ ~ ๐ฅ }
= {๐ฆ โ ๐ / ๐ฆ = ๐ฅ ๐ for some ๐ โ ๐บ}
= {๐ฅ ๐ / ๐ โ ๐บ}
= {๐ฅ }
โฆ by assumption.
Thus, ๐ = {๐ฅ } if and only if ๐ฅ = ๐ฅ ๐ for all ๐ โ ๐บ. Hence the set ๐ is precisely the
union of one element orbit in ๐. Assume that there are โsโ one element orbits in ๐ under
๐บ.
Then,
r
|๐| = ๐ +
โ
i = s +1
xi G
r
i.e.
|๐| = |๐ | +
โ
i = s +1
Again,
xi G
. . . (2)
|๐ฅ ๐บ| = ๐บ: ๐บ
โฆ by Burnside theorem.
Hence, from (2) we get,
r
|๐| = |๐ | +
โ
i = s +1
( G : Gx )
. . . (3)
i
Now, for a finite group ๐บ we can consider ๐บ as a ๐บ set under conjugation.
i.e. ๐ฅ๐ = ๐ ๐ฅ๐
for ๐ฅ, ๐ โ ๐บ.
Then by (2) we get,
r
|๐บ| = |๐ | +
โ
i = s +1
xi G
โฆ (4)
Consider the set ๐ in (4)
๐ = {๐ฅ โ ๐ / ๐ฅ๐ = ๐ฅ, โ
๐ โ ๐บ}
= {๐ฅ โ ๐ / ๐ ๐ฅ๐ = ๐ฅ, โ ๐ โ ๐บ}
(โต
๐ฅ๐ = ๐ ๐ฅ๐)
= {๐ฅ โ ๐ / ๐ฅ๐ = ๐๐ฅ, โ ๐ โ ๐บ}
= ๐(๐บ)
๐(๐บ) = center of ๐บ
Substituting |๐ | = |๐(๐บ)| in (4) we get
Algebra
Page No. 56
r
|๐บ| = |๐(๐บ)| +
โ
i = s +1
r
= |๐(๐บ)| +
โ
i = s +1
Let
๐ = ๐บ: ๐บ
Then ๐
| |๐บ|
xi G
(G : Gx )
i
for each ๐.
for each ๐.
Hence,
|๐บ| = |๐(๐บ)| + ๐
i.e.
|๐บ| = ๐ถ + ๐
+๐
+๐
+. . . +๐
+. . . +๐
. . . (5)
where ๐ถ = |๐(๐บ)|
The equation (5) is called the class equation of the group ๐บ.
Recall that, for any ๐ฅ โ ๐บ the set
๐ถ(๐ฅ) = {๐ ๐ฅ๐ / ๐ โ ๐บ}
is called the conjugate class of x in G and the set
๐(๐ฅ) = {๐ โ ๐บ / ๐ ๐ฅ๐ = ๐ฅ}
is a normalizer of x in G. ๐(๐ฅ) is a subgroup of G and |๐ถ(๐ฅ)| = ๐บ โถ ๐(๐ฅ) . If ๐ฅ๐บ
denote the orbit of G under conjugation of G containing the element x; then
๐ฅ๐บ = {๐ฆ โ ๐ / ๐ฆ ~ ๐ฅ}
= {๐ฆ โ ๐บ / ๐ฆ = ๐ฅ๐, for some ๐ โ ๐บ}
= {๐ฆ โ ๐บ / ๐ฆ = ๐ ๐ฅ๐, for ๐ โ ๐บ}
= ๐ถ(๐ฅ)
Thus |๐ฅ๐บ| = |๐ถ(๐ฅ)| = (๐บ: ๐(๐ฅ))
. . . (6)
From the equation (5) we get,
|๐บ| = |๐(๐บ)| +
|๐ฅ ๐บ|
Where ๐ฅ ๐บ represents the orbit in ๐บ under conjugation by ๐บ, containing more than one
element.
Hence, from (5) and (6) we get
|๐บ| = |๐(๐บ)| +
(๐บ: ๐(๐ฅ))
โ
Algebra
Page No. 57
where ๐ถ contains exactly one element from each conjugate class with more than one
element.
Example : Consider the group ๐บ = ๐ . The centre of the group ๐ contains only one element
and the class equation of ๐ is 6 = 1 + 2 + 3.
With the help of class equation we derive the following important property of |๐(๐บ)|.
Theorem 4.2.1 : Let ๐บ be a finite group with |๐บ| = ๐ where ๐ is a prime number. Then the
centre of ๐บ is non trivial.
Proof :
|๐บ| = ๐ . to prove that ๐(๐บ) โ {๐}.
We know that the class equation of G is
|๐บ| = ๐ถ + ๐
where ๐
+๐
+. . . +๐
. . . (1)
| |๐บ| for each ๐ and
๐ = cardinality of the conjugate class in ๐บ and ๐ถ = |๐(๐บ)|.
Now,
| |๐บ|
โน
Hence, ๐
|๐
+๐
Again ๐
| |๐บ| = ๐ .
๐
|
Hence, ๐ [|๐บ| โ (๐
๐
|๐
โน
๐
|๐
,
for each ๐, ๐ + 1 โค ๐ โค ๐.
+. . . +๐ .
+๐
+. . . +๐ )]
|
From (1) we get, ๐ ๐.
i.e.
|
๐ |๐(๐บ)|.
Hence, |๐(๐บ)| > 1.
i.e.
๐(๐บ) โ {๐}
We know that if |๐บ| = ๐, (p is prime) then ๐บ is cyclic and hence abelian. In the next
theorem we prove that if |๐บ| = ๐ then also ๐บ is abelian.
Algebra
Page No. 58
Theorem 4.2.2 : If ๐(๐บ) = ๐ , (p is prime), then ๐บ is an abelian group.
Proof : Let ๐บ be a non abelian group. Then ๐บ โ ๐(๐บ).
Hence, |๐(๐บ)| โ ๐ .
As |๐บ| = ๐ , by the theorem 2.1, ๐(๐บ) โ {๐} and hence |๐(๐บ)| โ 1.
|
As ๐(๐บ) |๐บ|, (๐บ being finite) we get |๐(๐บ)| = 1, ๐, ๐ .
Hence, the only possible value is |๐(๐บ)| = ๐.
Select any ๐ โ ๐บ such that ๐ โ ๐(๐บ). (Such ๐ exists as ๐(๐บ) โ ๐บ).
Consider ๐(๐) = {๐ฅ โ ๐บ / ๐ฅ๐๐ฅ
Then
= ๐}.
๐(๐) โค ๐บ. Further ๐ฅ โ ๐(๐บ).
โน ๐ฅ๐ = ๐๐ฅ
for all ๐ โ ๐บ.
โน ๐ฅ๐ = ๐๐ฅ
as ๐ โ ๐บ.
โน ๐ฅ๐๐ฅ
=๐
โน ๐ฅ โ ๐(๐)
Thus, ๐(๐บ) โค ๐(๐).
But ๐ โ ๐(๐) and ๐ โ ๐(๐บ) gives ๐(๐บ) โ ๐(๐).
Thus, we have ๐(๐บ) < ๐(๐) โค ๐บ.
As ๐(๐) โค ๐บ and |๐บ| = ๐ , we must have |๐(๐)| = ๐ .
But then ๐(๐) = ๐บ. Then by definition of ๐(๐), ๐๐ฅ = ๐ฅ๐ for all ๐ฅ โ ๐บ.
But this in turn will imply ๐ โ ๐(๐บ), a contradiction.
Hence ๐บ must be abelian.
An important property of a finite ๐บ โ set is proved in the following theorem.
Theorem 4.2.3 : Let ๐บ be a finite group and ๐ is a finite ๐บ โ set. If |๐บ| = ๐ (n > 0), (or if
|
๐ |๐บ| ) then |๐| โก |๐ | (mod ๐).
Proof : Let ๐ be a ๐บ - set. ๐ and ๐บ both are finite. We know that
r
|๐| = |๐ | +
โ
i = s +1
xi G
where
๐ = {๐ฅ โ ๐ / ๐ฅ๐ = ๐๐ฅ ๐๐๐ ๐๐๐โ ๐ โ ๐บ}
and
|๐ | = ๐ .
. . . (1)
๐ฅ ๐บ denotes the orbit in X under the action of ๐บ containing more than one element.
๐ = number of orbits in X.
Algebra
Page No. 59
By theorem 4.1.8,
|๐ฅ ๐บ| = (๐บ โถ ๐บ )
Hence ๐บ being a finite group
| |๐บ|
(๐บ โถ ๐บ )
|๐ฅ ๐บ|
Thus,
for each ๐.
| |๐บ|
As |๐บ| = ๐ we get ๐
for each ๐.
| |๐ฅ ๐บ| for each ๐. Hence
r
๐
| โ
xi G
i = s +1
. . . (2)
From (1) we get,
r
โ
i = s +1
Hence, by (2) we get ๐
xi G = X โ X G
| |๐| โ |๐ |.
|๐| โก |๐ | (mod ๐)
i.e.
We know that converse of Lagrangeโs theorem need not be true.
i.e. if ๐บ is a finite group and if ๐/๐(๐บ) then ๐บ not necessarily contains a subgroup of order
๐. But if ๐ is a prime number then surely ๐บ contains a subgroup of order ๐ if ๐/|๐บ|.
This is proved by Cauchy in the following theorem.
โข Cauchy theorem :
Theorem 4.2.4 : Let G be a finite group and ๐ be a prime number such that ๐
| |๐บ|. Then
there exists an element ๐ โ ๐บ such that ๐ = ๐.
Proof :
(i) Define ๐ =
๐ ,๐ ,โฆ,๐
/ ๐ โ ๐ โ โฆ โ ๐ = ๐ ๐๐๐ ๐ โ ๐บ
๐ โ ๐ โ โฆโ ๐ = ๐ โน ๐
= ๐ ๐ โฆ๐
Hence in p-tuple ๐ , ๐ , โฆ , ๐
๐ ,๐ ,โฆ,๐
|
As ๐ |๐บ|
Algebra
we have a freedom to select only ๐ โ 1 elements
. Therefore |๐| = |๐บ|
we get
.
.
|
๐ |๐|.
Page No. 60
(ii) Let ๐ โ ๐ given by ๐ = (1,2, โฆ , ๐).
Define ๐ป = โฉ๐โช. Then H is subgroup in ๐ .
Define ๐ โถ ๐ × ๐ป โถ ๐ by
๐
๐ ,๐ ,โฆ,๐ , ๐
= ๐
( ), ๐
( ), โฆ , ๐
( )
Then
(i) ๐
๐ , ๐ , โฆ , ๐ , ๐ = ๐ ( ), ๐ ( ), โฆ , ๐ (
)
= ๐ ,๐ ,โฆ,๐
(ii) ๐
๐ ,๐ ,โฆ,๐ , ๐ โ ๐
= ๐
โ
( ), ๐
โ
,๐
( ), โฆ , ๐
โ
,โฆ,๐
= ๐
( )
=๐ ๐
๐ ,๐ ,โฆ,๐ , ๐ , ๐
( )
( )
( )
Hence, from (1) and (2) we get X is a H โ set.
Hence, by theorem 2.3, we get,
|๐| โก |๐ | (mod ๐)
Since ๐(๐ป) = ๐.
(โต |๐| = |๐บ| )
|
๐| |๐| โ |๐ | we must have ๐| |๐ |.
๐ |๐|
(iii) As
and
Now ๐ =
๐ ,๐ ,โฆ,๐
Hence ๐ , ๐ , โฆ , ๐
โน
/๐
๐ ,๐ ,โฆ,๐ , ๐
๐
โ ๐ โ๐ป
โ๐
๐ ๐ ,๐ ,โฆ,๐ , ๐ = ๐ ,๐ ,โฆ,๐
โน
= ๐ ,๐ ,โฆ,๐
( ), ๐ ( ), โฆ , ๐ ( )
as ๐ โ ๐ป
= ๐ ,๐ ,โฆ,๐
(๐ , ๐ , โฆ , ๐ ) = ๐ , ๐ , โฆ , ๐
โน
But then ๐ = ๐ = โฏ = ๐ .
This shows that an element of the type (๐, ๐, โฆ , ๐) โ ๐
i.e. ๐ = ๐.
|
As ๐ |๐ | we must have |๐ | > 1.
Hence, โ ๐ โ ๐บ such that ๐ โ ๐ and (๐, ๐, โฆ , ๐) โ ๐ .
But then we have an element ๐ โ ๐บ, ๐ โ ๐ such that ๐ = ๐.
This completes the proof.
Algebra
Page No. 61
An immediate application of Cauchyโs theorem is
|
Theorem 4.2.5 : Let ๐บ be a finite group and let ๐ be any prime number. If ๐ |๐บ|, then there
exists a subgroup of order ๐ in ๐บ.
Proof : By Cauchyโs theorem, โ ๐ โ ๐บ such that ๐ โ ๐ and ๐ = ๐.
Define ๐ป = โฉ๐โช.
Then ๐ป will be the subgroup of ๐บ of order ๐.
4.3.
p โ Groups :
Definition 4.3.1 : A group ๐บ is a ๐ โ group if every element in ๐บ has order a power of the
prime ๐. A subgroup of a group ๐บ is a p-subgroup of ๐บ if the subgroup is itself a ๐-group.
The characterization of ๐-groups is given in the following theorem.
Theorem 4.3.1 : Let ๐บ be a finite group. Then ๐บ is a p-group if and only if |๐บ| is a power of
prime p.
Proof : Only if part :
Let ๐บ be a ๐-group. Hence order of each element in ๐บ is a power of ๐. Let ๐ be a prime
|
number different from ๐. If ๐ |๐บ|, then by Cauchyโs theorem, there exists an element
๐ โ ๐บ such that ๐(๐) = ๐.
By assumption,
๐(๐) = ๐
for some k.
Thus, ๐ = ๐ ; which is impossible. Hence no prime number other than ๐ will be a divisor
of |๐บ|.
Hence, |๐บ| = ๐
for some n.
If part :
Let |๐บ| = ๐ for some n.
|
For any ๐ โ ๐บ, we know ๐(๐) ๐(๐บ).
|
Hence, ๐(๐) ๐ implies ๐(๐) must be ๐ for some ๐.
Hence, ๐บ is a ๐ โ group.
Theorem 4.3.2 : Let G be a finite group. Let H be a p โ subgroup of G. Then
(๐[๐ป] โถ ๐ป) โก (๐บ โถ ๐ป) ๐๐๐ ๐
Proof :
๐[๐ป] = {๐ โ ๐บ / ๐๐ป๐
= ๐ป}
We know that ๐[๐ป] is a subgroup of ๐บ containing H.
Algebra
Page No. 62
Let โ denote the set of all right cosets of ๐ป in ๐บ.
Define ๐ โถ โ × ๐ป โถ โ by
๐(๐ป , โ) = ๐ป
Then, โ is a H โ set (See example 4.1.2 (2)).
As H is a p โ subgroup |๐ป| = ๐ ,
for some ๐
|
As ๐ |๐ป| we get
|โ| โก |๐ | (mod ๐) ,
(See theorem 4.2.3)
But
|โ| = (๐บ: ๐ป)
Hence,
(๐บ: ๐ป) = |๐ | (mod ๐)
Now,
๐ = {๐ป โ โ / ๐(๐ป , โ) = ๐ป
. . . (1)
for each โ โ ๐ป}
= {๐ป โ โ / ๐ป
=๐ป
= {๐ป โ โ / ๐ฅ
โ๐ฅ โ ๐ป for each โ โ ๐ป}
= ๐ป โโ
๐ป๐ฅ = ๐ป
๐ฅ
for each โ โ ๐ป}
= {๐ป โ โ / ๐ฅ โ ๐[๐ป]}
= the set of all right cosets of H in ๐[๐ป].
Hence,
|๐ | = (๐[๐ป] โถ ๐ป)
. . . (2)
From (1) and (2), we get,
(๐บ: ๐ป) โก (๐[๐ป] โถ ๐ป) (mod ๐)
|
Corollary 4.3.3 : Let ๐ป be a ๐ โ subgroup of a group ๐บ. If ๐ (๐บ: ๐ป), then ๐[๐ป] โ ๐ป.
Proof : By theorem 4.3.2, we get
(๐บ: ๐ป) โก (๐[๐ป] โถ ๐ป) (mod ๐)
As ๐
| (๐บ: ๐ป) we get
๐
Hence,
(๐[๐ป] โถ ๐ป) โ 1.
i.e.
๐ป โ ๐[๐ป]
| (๐[๐ป] โถ ๐ป).
4.4. Sylow Theorems :
โข
First Sylow Theorem :
Theorem 4.4.1 : Let G be a finite group with |๐บ| = ๐ โ ๐ where ๐ is a prime number and
๐ โค ๐. Then
(i)
๐บ contains a subgroup of order ๐ for each ๐, 1 โค ๐ โค ๐.
(ii)
Every subgroup of order ๐ is a normal subgroup of a subgroup of order ๐
Algebra
for
Page No. 63
1 โค ๐ โค ๐ โ 1.
Proof :
(i) By Cauchyโs theorem (see theorem 4.2.4) there exists a subgroup of order ๐ in ๐บ as
|
๐ |๐บ|. Assume that there exists a subgroup of order ๐ for each ๐ < ๐.
Let ๐ป be a subgroup of order ๐ .
Now
( )
(๐บ โถ ๐ป) =
(
โ
=
)
=๐
โ ๐.
|
As ๐ < ๐ we get ๐ (๐บ โถ ๐ป).
Hence, by theorem 4.3.2,
(๐บ: ๐ป) โก (๐[๐ป] โถ ๐ป) (mod ๐)
|
As ๐ (๐บ: ๐ป) we get
Hence, ๐
| | |[ | ]|
|
๐ (๐[๐ป] โถ ๐ป).
Hence, by Cauchyโs theorem,
Let ๐พ โถ ๐[๐ป] โถ
๐
i.e.
[ ]
[ ]
|๐
๐[๐ป]
๐ป
.
contains a subgroup of order ๐. Let it be ๐.
be the canonical mapping.
Then ๐พ is an onto homomorphism.
๐พ
(๐) = {๐ฅ โ ๐[๐ป] / ๐พ(๐ฅ) โ ๐} is the subgroup of ๐[๐ป] of order ๐
This shows that there exists a subgroup of order ๐
.
in ๐บ.
By induction on ๐, the result follows.
(ii) By the construction explained in (i) we get,
๐ป<๐พ
(๐) โค ๐[๐ป]
where ๐(๐ป) = ๐ and ๐ ๐พ
(๐) = ๐
As ๐ป โฒ ๐[๐ป]. We must get ๐ป โฒ ๐พ
.
(๐).
This shows that the subgroup of order ๐ is normal in a subgroup of a subgroup of order
๐
.
Example 4.4.2 : If ๐(๐บ) = 2 โ 3 โ 7 then ๐บ contains subgroup ๐ป , ๐ป , ๐ป and ๐ป such that
๐(๐ป ) = 2, ๐(๐ป ) = 2 , ๐(๐ป ) = 2 and ๐(๐ป ) = 2 and ๐ป โฒ ๐ป , ๐ป โฒ ๐ป , ๐ป โฒ ๐ป .
There also exists a subgroup ๐พ of order 3 and a subgroup ๐ of order 7 in G.
Definition 4.4.3 : A Sylow p โ subgroup of a group ๐บ is a maximal p โ subgroup of ๐บ.
Algebra
Page No. 64
Example 4.4.4 : In example 4.4.2,
๐ป is a Sylow 2 โ subgroup.
๐พ is a Sylow 3 โ subgroup.
๐ is a Sylow 7 โ subgroup.
Remarks 4.4.5 :
(i) If |๐บ| = ๐ โ ๐ and ๐ โค ๐ then the subgroup of order ๐ will be a Sylow p โ subgroup in
G.
(ii) If P is a Sylow p โ subgroup in G, then ๐(๐ ๐๐) = ๐(๐) will imply ๐ ๐๐ is also
Sylow p โ subgroup of ๐บ, for any ๐ โ ๐บ. i. e. any conjugate of a Sylow p โ subgroup of
๐บ is also a Sylow p โ subgroup of ๐บ.
Conjugate of a Sylow p โ subgroup is a Sylow p โ subgroup in a finite group ๐บ. But any
two Sylow p โ subgroups of ๐บ must be conjugates of each other. This we prove in the
following theorem.
โข
Second Sylow Theorem :
Theorem 4.4.6 : Let G be a finite group with |๐บ| = ๐ โ ๐ where ๐ is a prime number and
๐ โค ๐. Let ๐ and ๐ be any two Sylow p โ subgroups of ๐บ. Then ๐ and ๐ are conjugate
subgroups of ๐บ.
Proof : Let โ denote the set of all right cosets of ๐ in ๐บ.
Define ๐ โถ โ × ๐ โถ โ by
๐(๐ , ๐ฆ) = ๐ ๐ฅ๐ฆ.
Then
(i) ๐(๐ , ๐) = ๐ ๐ฅ๐ = ๐ ๐ฅ
and
(ii) ๐(๐ , ๐โ) = ๐ ๐ฅ๐โ = ๐ (๐ฅ๐)โ = ๐(๐(๐ , ๐), โ)
for ๐, โ โ ๐ .
Hence โ is a ๐ set.
|
As ๐ is a Sylow p โ subgroup, ๐ |๐ |.
Hence, by theorem 4.2.3
|โ| โก โ
Now
(mod ๐)
. . . (1)
โ = the set of all right cosets of ๐ in ๐บ.
Hence, |โ| = (๐บ โถ ๐ ).
Therefore, |โ| = (๐บ โถ ๐ ) =
Algebra
| |
|
=
|
โ
= ๐ and ๐ โค ๐.
Page No. 65
Hence,
โ
โ 0
Hence
โ
โฅ1
Now, โ
= {๐ ๐ฅ โ โ / ๐(๐ ๐ฅ, ๐) = ๐ ๐ฅ
โฆ by (1)
โฆ (2)
= {๐ ๐ฅ โ โ / ๐ ๐ฅ๐ = ๐ ๐ฅ
for all ๐ โ ๐ }
= {๐ ๐ฅ โ โ / ๐ฅ
๐๐ฅ โ ๐
for all ๐ โ ๐ }
= {๐ ๐ฅ โ โ / ๐ฅ
๐๐ฅโ๐}
= {๐ ๐ฅ โ โ/๐ฅ
By (2),
for all ๐ โ ๐ }
โ
๐๐ฅ=๐}
(As |๐ฅ
๐ ๐ฅ| = |๐ | = |๐ | = ๐ )
โฅ 1.
Hence, there exists ๐ฅ โ ๐บ such that ๐ฅ
๐ ๐ฅ = ๐ . Hence the proof.
The existence and the nature of Sylow ๐ โ subgroups is proved in the First Sylow theorem
and the Second Sylow theorem respectively. The third Sylow theorem deals with the number
of Sylow ๐ โ subgroups in a group ๐บ.
โข
Third Sylow Theorem :
Theorem 4.4.7 : Let ๐บ be a finite group and ๐/|๐บ| (p is any prime number).
Let ๐ = number of Sylow ๐ โ subgroups in ๐บ. Then
|
(ii) ๐ |๐บ|
(i) ๐ โก 1(mod ๐)
Proof :
(i) Let ๐ = number of Sylow ๐ โ subgroups in ๐บ.
Hence ๐ โ 0
(by First Sylow theorem)
Let โ denote the set of all Sylow p โ subgroups in G. Then |โ| = ๐.
Fix up any Sylow p โ subgroup say ๐ in ๐บ. Then for any ๐ โ โ we have
๐ = ๐ ๐๐
for some ๐ โ ๐บ (by Second Sylow theorem)
Define ๐: โ × ๐ โถ โ by
๐(๐, ๐ฅ) = ๐ฅ
๐๐ฅ
for any ๐ โ ๐บ. (See remark 4.4.5 (2))
Now,
๐(๐, ๐) = ๐
๐๐ = ๐
and
๐(๐, ๐ฅ๐ฆ) = (๐ฅ๐ฆ) ๐(๐ฅ๐ฆ)
=๐ฆ
โน
(๐ฅ
๐๐ฅ)๐ฆ
๐(๐, ๐ฅ๐ฆ) = ๐[๐(๐, ๐ฅ), ๐ฆ] ,
for all ๐ฅ, ๐ฆ โ ๐
Hence, โ is a P โ set.
As ๐ is a Sylow p โ subgroup, ๐/๐(๐).
Algebra
Page No. 66
Hence, by theorem 2.3, we have,
|โ| โก |โ | (mod ๐)
. . . (1)
Consider the set โ .
โ = {๐ โ โ / ๐(๐, ๐ฅ) = ๐ for all ๐ฅ โ ๐}
= {๐ โ โ / ๐ฅ
๐๐ฅ = ๐ for all ๐ฅ โ ๐}
= {๐ โ โ / ๐ฅ โ ๐[๐] for all ๐ฅ โ ๐}
Thus, ๐ โ โ
iff ๐ โ ๐[๐].
Thus, ๐ โ โ
iff ๐ โค ๐[๐].
Thus, ๐ and ๐ both are subgroup of ๐[๐] and hence they are ๐ โ subgroups of ๐[๐].
By Second Sylow theorem, P and T are conjugates.
Hence, for some ๐ โ ๐[๐],
๐ ๐๐ = ๐.
As ๐ โด ๐[๐], ๐ ๐๐ = ๐. Hence ๐ = ๐.
Thus, ๐ โ โ
iff ๐ = ๐. This shows that โ = {๐}.
|โ | = 1
Hence
. . . (2)
From (1) and (2) we get
|โ| โก 1 (mod ๐)
๐ โก 1 (mod ๐)
i.e.
|
(ii) To prove ๐ |๐บ|.
Let โ denote the set of all Sylow ๐ โ subgroups of ๐บ. As in (i) we can prove โ is a ๐บ โ set
under the action ๐ โถ โ × ๐บ โถ โ defined by
๐(๐, ๐) = ๐ ๐๐
By second Sylow theorem, elements of โ are conjugates of each other.
Hence, โ contains only one orbit.
Therefore
|โ| = | orbit of P |
(๐ โ โ)
โน
|โ| = | ๐โ |
( orbit of ๐ = ๐โ under G)
โน
๐= ๐บโถ ๐บ
( theorem 1.3 )
But
๐บโถ ๐บ
||๐บ| and hence ๐||๐บ|.
Examples 4.4.8 :
(๐) A Sylow 3 โ subgroup of a group of order 12 has order 3 as 12 = 2 × 3 .
Algebra
Page No. 67
(2) A Sylow 3 โ subgroup of a group of order 54 has order 3 = 27 as
54 = 2 × 27 = 2 × 3 .
(3) By third Sylow theorem, a group of order 24 must have either 1 or 3 Sylow
2 โ subgroups.
Let ๐ = number of Sylow 3 โ subgroups.
|
(i) ๐ |๐บ|
โน
๐/24
(ii) ๐ โก 1(mod 2)
โน
๐ = 1, 2,3, 4, 6, 8, 12, 24
|
โน
2 ๐โ1
โน
๐ = 1, 3
(4) A group of order 255 must have either 1 or 85 Sylow 3 - subgroups.
255 = 3 × 5 × 17
Let ๐ = number of Sylow 3 โ subgroups.
|
(i) ๐ |๐บ|
โน
(ii) ๐ โก 1(mod 3)
โน
|
3 |๐ โ 1
๐ 255
โน
๐ = 1, 3, 5, 15, 17, 51, 85, 255
โน
๐ = 1 or 85
(5) |๐บ| = 45. Show that G contains only one Sylow 3 โ subgroups. Is ๐บ simple ?
Solution : |๐บ| = 45 = 3 × 5.
By 1st Sylow theorem G contains Sylow 3 โ subgroups each of order 3 = ๐.
Let ๐ = number of Sylow 3 โ subgroups in G.
By 3rd Sylow theorem,
|
๐ |๐บ|
๐ โก 1(mod 3)
and
Hence
|
|
(i) ๐ |๐บ|
โน
๐ 45
(ii) ๐ โก 1(mod 3)
โน
๐=1
โน
๐ โ {1, 3, 5, 9, 15, 45}
This shows that there exists only one Sylow 3 โ subgroups of order 3 = 9 say H.
By Second Sylow theorem,
๐ป = ๐ ๐ป๐
for any ๐ โ ๐บ
Hence, H is a proper normal subgroup of G.
Hence, G is not simple.
Algebra
Page No. 68
(6) Show that a group of order 255 is not simple.
Solution : Let G be a group of order 255.
|๐บ| = 255
|๐บ| = 17 × 5 × 3 = 17 × 15 and 17 โค 15.
โน
Hence, By 1st Sylow theorem there exists Sylow 17 โ subgroups in G each of order 17.
Let ๐ = number of Sylow 17 โ subgroups.
Then, by 3rd Sylow theorem,
|
๐ |๐บ|
๐ โก 1(mod 17)
and
Hence,
|
(i) ๐ |๐บ|
๐ โ {1, 3, 5, 15, 17,51, 85, 255}
โน
(ii) ๐ โก 1(mod 17) โน
๐=1
Thus, there exists only one Sylow 17 โ subgroups in G say H.
Then, by Second Sylow theorem, H must be normal in G.
As |๐ป| = 17, H is a proper normal subgroup of G.
Hence, G is not simple.
(7) Show that no group of order 30 is simple.
Solution : Let G be a group with |๐บ| = 30 = 5 × 3 × 2.
(i) Hence, By 1st Sylow theorem, G contains Sylow 5 โ subgroups each of order 5.
Let ๐ = number of Sylow 5 โ subgroups of G.
Then, by 3rd Sylow theorem,
|
๐ |๐บ|
๐ โก 1(mod 5)
and
Hence,
|
(i) ๐ |๐บ| = 30 โน
(ii) ๐ โก 1(mod 5)
๐ โ {1, 2, 3, 5, 6, 10, 15, 30}
|
โน
5 ๐ โ 1. Hence ๐ = 1 or 6.
Suppose G contains six Sylow 5 โ subgroups. Let they be ๐ป , ๐ป , ๐ป , ๐ป , ๐ป and ๐ป be
distinct Sylow 5 โ subgroups.
Then, ๐(๐ป ) = 5 โ
๐ป โฉ ๐ป = {๐}
๐, 1 โค ๐ โค 6.
for ๐ โ ๐
[ If ๐ฅ โ ๐ป โฉ ๐ป and if ๐ฅ โ ๐, then โฉ๐ฅโช = ๐ป = ๐ป ; # ]
Hence, each ๐ป contains four elements each of order 5. Hence, there exists 6 × 4 = 24
elements in G each of order 5.
Algebra
Page No. 69
(ii) By 1st Sylow theorem G contains Sylow 3 โ subgroups each of order 3.
Let ๐ = number of Sylow 3 โ subgroups of G.
Then, by 3rd Sylow theorem,
|
๐ |๐บ|
๐ โก 1(mod 3)
and
Hence,
|
(i) ๐ |๐บ| = 30 โน
(ii) ๐ โก 1(mod 3)
๐ โ {1, 2, 3, 5, 6, 10, 15, 30}
|
โน
3 ๐ โ 1. Hence ๐ = 1 or 10.
Suppose G contains ten Sylow 3 โ subgroups each of order 3. Let ๐พ , ๐พ , โฆ , ๐พ
denote
distinct Sylow 3 โ subgroups of G. As in (i) we can prove that ๐บ contains 20 distinct
elements each of order 3.
(iii)Thus, from (i) and (ii), if ๐บ contains six Sylow 5 โ subgroups and ten Sylow 3 โ
subgroups then ๐บ must contain 24 + 20 = 44 distinct elements which is not true as
|๐บ| = 30.
Hence, ๐บ must contain either only one Sylow 5 โ subgroup or only one Sylow
3โsubgroup. Thus in either the case, ๐บ contains a proper normal subgroup by 2nd Sylow
theorem.
Hence, ๐บ is not simple.
(8) No group of order 36 is simple.
Solution : Let G be a group with |๐บ| = 36.
|๐บ| = 36 = 3 × 2 and 3 โค 4.
By 1st Sylow theorem, G contains Sylow 3 โ subgroups each of order 9.
Let ๐ = number of Sylow 3 โ subgroups of G.
Then, by 3rd Sylow theorem,
|
๐ |๐บ|
๐ โก 1(mod 3)
and
Hence,
|
(i) ๐ |๐บ| = 36 โน
(ii) ๐ โก 1(mod 3)
๐ โ {1, 2, 3, 4, 6, 9, 12, 18, 36}
โน
|
3 ๐ โ 1. Hence ๐ = 1 or 4.
Suppose ๐บ contains four Sylow 3 โ subgroups each of order 9. Let ๐ป, ๐พ be any two
distinct Sylow 3 โ subgroups. Then |๐ป| = 9 and |๐พ| = 9.
We know that,
Algebra
Page No. 70
|๐ป๐พ| =
| |โ| |
|
โฉ |
Hence, ๐ป๐พ โ ๐บ implies |๐ป โฉ ๐พ| = 3.
[
๐ปโฉ๐พ โค๐ป
|
โน
๐(๐ป โฉ ๐พ) ๐(๐ป)
โน
๐(๐ป โฉ ๐พ) โ {1, 3, 9}
But ๐(๐ป โฉ ๐พ) = 1
and
๐(๐ป โฉ ๐พ) = 9
โน
|
๐(๐ป โฉ ๐พ) 9
โน
|๐ป๐พ| = 81;
โน
๐ป = ๐พ; which is not true. ]
impossible.
Consider the group ๐[๐ป โฉ ๐พ].
|
As 3 ๐(๐ป โฉ ๐พ), ๐ป โฉ ๐พ < ๐[๐ป โฉ ๐พ] and hence |๐[๐ป โฉ ๐พ]| โ {18, 36} as
|
|๐[๐ป โฉ ๐พ]| |๐บ| = 36.
If ๐(๐ป โฉ ๐พ) = 18 then index of ๐(๐ป โฉ ๐พ) in G is 2 and then ๐(๐ป โฉ ๐พ) is a proper
normal subgroup G, proving that G is not simple.
If |๐(๐ป โฉ ๐พ)| = 36, then ๐[๐ป โฉ ๐พ] = ๐บ.
In this case, ๐ป โฉ ๐พ will be a proper normal subgroup of G.
Hence, G is not simple, in either the case.
(9) Show that Sylow p-subgroups of a finite group G is unique if and only if it is normal.
Solution :
Only if part :
Let G has a unique Sylow p-subgroup say ๐ป.
To prove that ๐ป โฒ ๐บ.
H is a Sylow p-subgroup
โน ๐๐ป๐
is also a Sylow subgroup of G. By uniqueness
we get,
๐ป = ๐ ๐ป๐
for all ๐ โ ๐บ.
Hence, H is normal in ๐บ.
If part :
Let ๐ป be a Sylow p-subgroup in a group of ๐บ.
Let ๐ป be normal. If ๐พ is another Sylow p-subgroup of G then, by 2nd Sylow theorem,
๐พ = ๐๐ป๐
for some ๐ โ ๐บ.
But ๐ป being normal,
๐ ๐ป๐ =H
Thus, ๐พ = ๐ป. This shows that H is the unique Sylow p-subgroup.
Algebra
Page No. 71
(10) Let ๐ป โฒ ๐บ such that index of ๐ป in ๐บ is prime to p. (p is any prime number). Show that ๐ป
contains every Sylow p-subgroup of ๐บ.
Solution : Let |๐บ| = ๐ โ ๐, ๐ โค ๐. i.e. (๐, ๐) = 1.
By data, index of ๐ป in ๐บ is prime to ๐.
โด
| |
is prime to p.
| |
โ
| |
โด
|
is prime to p and |๐ป| ๐ โ ๐
Assume that |๐ป| = ๐ โ ๐ where (๐, ๐) = 1.
As |๐ป| = ๐ โ ๐, ๐ป contains a Sylow p-subgroup say ๐พ.
Then |๐พ| = ๐ , hence we get ๐พ is also a Sylow p-subgroup of ๐บ. If T is another Sylow psubgroup of ๐บ we get ๐ = ๐ ๐พ๐ for some ๐ โ ๐บ. Hence
๐ = ๐ ๐พ๐ โ ๐ ๐ป๐ = ๐ป
(as ๐ป โฒ ๐บ)
shows that ๐ โ ๐ป.
Thus, ๐ป contains all the Sylow p-subgroups of ๐บ.
(11) |๐บ| = 108. Show that ๐บ contains a normal subgroup of order 27 or 9.
Solution : |๐บ| = 108 = 3 × 2 = 3 โ 4 and 3 โค 4.
Hence, by Sylow first theorem, โ Sylow 3-subgroups each of order 27.
Let ๐ = number of Sylow 3-subgroups in G.
|
Then ๐ |๐บ| and ๐ โก 1(mod 3).
Hence, ๐ โ {1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108}
|
3 ๐โ1
โน ๐ = 1 or 4.
Case I : ๐ = 1.
Then G contains only one Sylow subgroup of order 27 which is normal. (by second
Sylow theorem).
Case II : ๐ = 4.
Then G contains four Sylow 3-subgroups of order 27.
Let ๐ป and ๐พ denote any two distinct Sylow 3-subgroups. Then
|๐ป๐พ| =
will imply
|๐ป๐พ| =
| |โ| |
|
โฉ |
×
|
โฉ |
i.e.
×
< |๐ป โฉ ๐พ|.
Further,
Algebra
Page No. 72
|
โน |๐ป โฉ ๐พ| |๐บ|
๐ปโฉ๐พ โค๐บ
|
โน |๐ป โฉ ๐พ| 108.
Hence, |๐ป โฉ ๐พ| = 9 or 27.
|๐ป โฉ ๐พ| = 27
But
โน
๐ป = ๐พ, which is not true.
Hence, |๐ป โฉ ๐พ| = 9.
Now consider ๐[๐ป โฉ ๐พ].
as
(๐ป โฉ ๐พ) โฒ ๐ป
and
(๐ป โฉ ๐พ) โฒ ๐พ
๐(๐ป โฉ ๐พ) = 3
and
๐(๐ป) = 3 .
[ Any subgroup of order ๐
is normal in a subgroup of group of order ๐ ]
Hence, ๐ป โ ๐[๐ป โฉ ๐พ]
and
๐พ โ ๐[๐ป โฉ ๐พ] .
Hence, the normal subgroup ๐ป๐พ is properly contained in ๐[๐ป โฉ ๐พ].
But then |๐ป๐พ| =
| |โ| |
| โฉ |
=
×
= 81.
Therefore, |๐[๐ป โฉ ๐พ]| > |๐ป๐พ| = 81
|
Hence, |๐[๐ป โฉ ๐พ]| = 108 as |๐[๐ป โฉ ๐พ]| |๐บ| and |๐[๐ป โฉ ๐พ]| > 81.
Thus, ๐[๐ป โฉ ๐พ] = ๐บ. But this shows that ๐ป โฉ ๐พ is normal in ๐บ.
Theorem 4.4.9 : Let ๐บ be a finite group with |๐บ| = ๐๐ where ๐ and ๐ are distinct primes and
๐ < ๐.
(i)
๐บ contains a normal subgroup of order ๐.
(ii) ๐บ is not simple.
(iii) If ๐ โค ๐ โ 1, then ๐บ is cyclic and abelian.
Proof :
(i)
|๐บ| = ๐๐, ๐ โค ๐.
Hence, by 1st Sylow theorem ๐บ contains Sylow ๐-subgroups of order ๐.
|
Let ๐ = number of Sylow ๐-subgroups . Then ๐ |๐บ| and ๐ โก 1(mod ๐)
Hence, ๐ โ {1, ๐, ๐, ๐๐}
|
๐ ๐โ1
โน ๐ = 1.
Thus, there exists only one Sylow ๐-subgroups of ๐บ.
As ๐บ contains only one Sylow ๐-subgroup say ๐ป then ๐(๐ป) = ๐ and ๐ป โด ๐บ by 2nd
Sylow theorem.
(ii) As ๐บ contains a proper subgroup normal subgroup ๐ป, ๐บ is not simple.
(iii) |๐บ| = ๐๐ and ๐ โค ๐, by 1st Sylow theorem ๐บ contains Sylow ๐-subgroup of order ๐.
Algebra
Page No. 73
Let ๐ = number of Sylow ๐-subgroups.
|
Then ๐ |๐บ| and ๐ โก 1(mod ๐) by 3rd Sylow theorem
Hence, ๐ โ {1, ๐, ๐, ๐๐}. As ๐ | ๐ โ 1 we get ๐ = 1. ( โต ๐ โค ๐ โ 1 by data)
Thus, there exists only one Sylow ๐-subgroups in ๐บ of order ๐.
Let ๐ป denote the Sylow ๐-subgroup and ๐พ denote the Sylow p-subgroup of ๐บ.
Then
๐ป โฉ ๐พ = {๐}.
(i)
If ๐ฅ โ ๐ป โฉ ๐พ and if ๐ฅ โ ๐ then
๐ฅโ๐ป
โน ๐(๐ฅ) = ๐
๐ฅโ๐พ
โน ๐(๐ฅ) = ๐.
As ๐ โ ๐ we must have ๐ป โฉ ๐พ = {๐}.
(ii) ๐ป โจ ๐พ โ ๐ป and ๐ป โจ ๐พ โ ๐พ
|
โน
๐ปโจ๐พ =๐บ
|
|
[ โต ๐(๐ป โจ ๐พ) ๐๐, ๐(๐ป) ๐(๐ป โจ ๐พ), ๐(๐พ) ๐(๐ป โจ ๐พ) โน
๐(๐ป โจ ๐พ) = ๐๐ ]
Hence, ๐บ โ
๐ป × ๐พ โ
๐ × ๐ .
Hence, ๐บ is cyclic and abelian.
Example 4.4.10 : |๐บ| = 15 โน ๐บ is abelian and not simple.
Solution : |๐บ| = 15 = 5 โ 3. 5 and 3 are distinct primes and 3 โค 5 โ 1.
Hence, by theorem 4.4.9, ๐บ is abelian and not simple.
Example 4.4.11 : Let ๐บ be a finite group. Prove that
Solution: Assume that
โน
( )
( )
= 11 โ 7
( )
โ 77.
= 77.
7 โค 11 โ 1 .
and
Hence, by theorem, If ๐(๐บ) = ๐ โ ๐, where ๐, ๐ are prime numbers such that ๐ โค ๐ โ 1
then ๐บ is cyclic,
But
( )
is cyclic
( )
is cyclic.
โน
G is abelian
โน
๐(๐บ) = ๐บ
โน
โน
Algebra
( )
=1
a contradiction.
Page No. 74
Hence
โ 77.
( )
Example 4.12 :
Solution : Let
Prove that
( )
( )
( )
( )
( )
is abelian and Cyclic.
is Cyclic, G is abelian.
But then ๐(๐บ) = ๐บ and in this case
Hence,
3 โค (11 โ 1 = 10) .
= 33 = 11 โ 3 and
As 3 โค (11 โ 1) by theorem 4.9,
Hence, as
โ 33 for any finite group.
( )
= 1, a contradiction.
โ 33 for any finite group ๐บ.
Example 4.4.13 : |๐บ| = 255 โน ๐บ is abelian and not simple.
Solution : |๐บ| = 255 = 17 × 5 × 3 = 17 × 15 and 17 โค 15.
(i) By 1st Sylow theorem, G contains Sylow 17 โ subgroups each of order 17.
Let ๐ = number of Sylow 17 โ subgroups of G.
Then by 3rd Sylow theorem,
|
๐ |๐บ|
and
๐ โก 1(mod 17)
Hence, ๐ โ {1, 3, 5, 15, 17, 51, 85, 255}.
|
17 ๐ โ 1 โน
๐ = 1.
Thus, there exists only one Sylow 17-subgroup in ๐บ of order 17.
Hence, by 2nd Sylow theorem, ๐บ is not simple.
Let us denote by ๐ป the Sylow 17 โ subgroups of G.
| |
=|
Hence
|
=
is defined.
= 15.
is abelian. (See theorem 4.4.10)
Hence, ๐บโฒ โ ๐ป
(See theorem 2.1.5(iii))
Hence, ๐บโฒ โค ๐ป.
|
By Lagrangeโs theorem, |๐บโฒ| |๐ป| = 17
โน
|๐บโฒ| = 1 or 17.
(ii) By 1st Sylow theorem, G contains Sylow 3 โ subgroups each of order 3.
Algebra
Page No. 75
Let ๐ = number of Sylow 3 โ subgroups in G.
By 3rd Sylow theorem,
|
๐ |๐บ|
๐ โก 1(mod 3)
and
Hence, ๐ = 1 or 85.
(iii)By 1st Sylow theorem, G contains Sylow 5 โ subgroups each of order 5.
Let ๐ = number of Sylow 5 โ subgroups in G.
By 3rd Sylow theorem,
|
๐ |๐บ|
๐ โก 1(mod 5)
and
Hence, ๐ = 1 or 51.
(iv) ๐พ โด ๐บ and hence
is defined.
Now, if ๐พ is Sylow 3-subgroup then
| |
=|
=
|
× ×
= 17 × 5.
and if ๐พ is Sylow 5-subgroup then
| |
=|
=
|
× ×
= 17 × 3.
Thus, in either the case by theorem 4.4.9
is abelian.
Hence, ๐บโฒ โ ๐พ.
|
Hence, ๐บโฒ โค ๐พ and |๐บโฒ| |๐พ| .
If ๐พ is Sylow 5-subgroup then |๐บโฒ| = 1 or 5
and if ๐พ is Sylow 3-subgroup then |๐บโฒ| = 1 or 3.
As ๐บโฒ โด ๐บ we get |๐บโฒ| โ {1, 3, 5, 17}.
Hence, |๐บโฒ| = 1. i.e. ๐บ = {๐}.
But then G must be an abelian. ( |๐บโฒ| = 1 iff G is abelian).
Thus, the group of order 255 is abelian and not simple.
Example 4.4.14: Find all the Sylow 3-subgroups of ๐ . Verify that they are all conjugate.
Solution : Let ๐บ = ๐ . Then |๐บ| = 24 = 2 × 3.
By 1st Sylow theorem, G contains Sylow 3-subgroups of order 3.
Let ๐ = number of Sylow 3-subgroups.
Then, by 3rd Sylow theorem,
Algebra
Page No. 76
|
and
๐||๐บ| = ๐|24
โน
๐ โ {1, 2, 3, 4, 6, 8, 12, 24}
๐ โก 1(mod 3)
โน
3 ๐ โ 1. Hence ๐ = 1 or 4.
๐ |๐บ|
๐ โก 1(mod 3)
|
Case I : ๐ = 1.
Then ๐บ contains only one Sylow 3-subgroup. It must be normal by 2nd Sylow theorem.
Case II : ๐ = 4.
Let ๐บ contains four Sylow 3-subgroups each of order 3 Hence each must be a cyclic
group generated by the 3-cycles
(1, 2, 3),
(1, 2, 4),
(1, 3, 4)
and
(2, 4, 3)
These cyclic groups are conjugate to each other and they are distinct.
Example 4.4.15: |๐บ| = 2๐, p is prime, show that either ๐บ is cyclic or ๐บ is generated by
{๐, ๐} with the relation ๐ = ๐ = ๐ and ๐๐๐ = ๐ .
Solution : |๐บ| = 2 × ๐ and ๐ โค 2. Hence by 1st Sylow theorem, ๐บ contains Sylow ๐subgroups, each of order ๐.
Let ๐ = number of Sylow ๐-subgroups.
Then by 3rd Sylow theorem,
|
๐||๐บ|
๐ |๐บ|
๐ โก 1(mod ๐)
and
๐ โก 1(mod ๐)
โน
๐ โ {1, 2, ๐, 2๐}
โน
๐ ๐ โ 1. Hence ๐ = 1.
|
Thus, ๐บ contains only one Sylow p-subgroup say ๐ป.
|๐ป| = ๐
โน
Let ๐ป = โฉ๐โช. Then
Hence,
๐ป is cyclic.
| |
=|
|
=
= 2.
is Cyclic group of order 2.
๐(๐ป) = ๐
โน
๐ป โ ๐บ.
Select ๐ โ ๐บ such that ๐ โ ๐ป. Then ๐บ = {๐, ๐, โฆ , ๐
, ๐, ๐๐, โฆ , ๐๐
}.
|
As ๐ โ ๐บ, ๐(๐) ๐(๐บ) and hence ๐(๐) = 2 or ๐.
If ๐(๐) = ๐, then ๐ โ โฉ๐โช = ๐ป as ๐ป is the only subgroup of ๐บ of order p; which is not
true. Hence,
Algebra
๐(๐) โ ๐.
Page No. 77
Hence, ๐(๐) = 2. Then ๐ = ๐.
Thus,
๐ =๐=๐
. . . (1)
Now, consider the element ๐๐๐
Thus, ๐๐๐
=๐
๐ =๐โ1
Case I :
๐๐๐
๐๐๐
โน
๐ (๐๐๐ )๐ = ๐ ๐ ๐
โน
(๐
โน
๐๐๐=๐
โน
๐=๐ ๐ ๐
โน
๐ = (๐ ๐ ๐)
โน
๐ = (๐ )
โน
๐
โน
๐ ๐ โ1
๐) ๐ (๐
๐) = ๐
๐ ๐
=๐
โน
โน
(๐ โ 1) = ๐ or (๐ + 1) = ๐
โน
๐ =1+๐
โน
โ ๐ป = โฉ๐โช.
๐ ๐
|
๐|(๐ โ 1)(๐ + 1)
=๐ =๐
Case II : ๐ = ๐ + 1
. As โฉ๐โช is normal in ๐บ, ๐๐๐
=๐ โ๐ =๐ โ๐ =๐
๐ =๐โ1
=๐ =๐
=๐ โ๐
=๐
or
๐๐๐
Thus, ๐๐ = ๐๐
or
๐๐๐ = ๐
Thus, if ๐ = ๐ โ 1
i.e.
๐ = 1 + ๐, ๐บ is a non abelian group generated by {๐, ๐}
Thus, ๐๐๐
=๐โ๐
=๐
=๐
(โต ๐ = ๐ โน ๐
= ๐).
with the relations ๐ = ๐ = ๐ and ๐๐๐ = ๐ .
If ๐ = ๐ + 1 then ๐บ is abelian and ๐(๐๐) = 2๐. i.e. ๐บ is cyclic of order 2๐.
Example 4.4.16 : ๐(๐บ) = ๐ , ๐ is a prime. Show that G is cyclic or G is isomorphic to
direct product of two cyclic groups each of order ๐.
Solution : ๐(๐บ) = ๐ โน ๐บ is abelian.
If G is cyclic then we are through.
Let G be not cyclic.
|
As ๐ ๐(๐บ), by Cauchyโs theorem โ ๐ โ ๐บ such that ๐(๐) = ๐. Let ๐ป = โฉ๐โช.
Then ๐(๐ป) = ๐. Hence, ๐ป โ ๐บ.
|
Select ๐ โ ๐บ such that ๐ โ ๐ป. As ๐(๐) ๐(๐บ) we get, ๐(๐) = 1, ๐, ๐ .
Algebra
Page No. 78
As ๐ โ ๐ป we get, ๐ โ ๐.
Hence ๐(๐) โ 1.
If ๐(๐) = ๐ , then ๐บ will be cyclic, not true.
Hence, ๐(๐) = ๐. Let ๐พ = โฉ๐โช.
๐ปโฉ๐พ โค๐ป
|
โน
๐(๐ป โฉ ๐พ) ๐(๐ป) = ๐.
Hence, ๐(๐ป โฉ ๐พ) = 1 or ๐.
If ๐(๐ป โฉ ๐พ) = ๐ will imply ๐ป = ๐พ, which is not true. Hence ๐(๐ป โฉ ๐พ) = 1.
Now, ๐บ is abelian โน ๐ป โฒ ๐บ and ๐พ โฒ ๐บ. Hence ๐ป๐พ โฒ ๐บ.
|๐ป๐พ| =
| || |
| โฉ |
=
โ
= ๐ = ๐(๐บ)
(See theorem 1.2.6)
But ๐ป๐พ = ๐บ.
As ๐ป and ๐พ are normal subgroups of ๐บ with ๐ป โฉ ๐พ = {๐} and ๐ป โจ ๐พ = ๐บ we get
๐บ โ
๐ป × ๐พ. (see theorem 1.2.1)
This completes the proof.
Exercise โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
1. Show that a group of order 148 cannot be simple.
2. Show that a group of order 108 cannot be simple.
3 Show that a group of order 144 cannot be simple.
โขโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Algebra
Page No. 79
CHAPTER II : RING OF POLYNOMIALS
Unit 1 :
1.1
Ring of Polynomials ๐
[๐ฅ] : Definition and Examles.
1.2
Basic Properties of ๐
[๐ฅ].
1.3
Division Algorithm.
1.4
Euclidean Domain and Unique Factorization Domain.
1.5
Zero of the Polynomial.
1.6
Irreducible Polynomials in ๐
[๐ฅ].
1.7
Factorization in ๐น[๐ฅ] and Eisenstein Criterion.
1.1 Ring of Polynomials R[x] :
Definition 1.1.1 : Let ๐
be a ring. A polynomial ๐(๐ฅ) with coefficients in ๐
and in an
indeterminate ๐ฅ is an infinite formal sum
๐ ๐ฅ = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ+ ๐ ๐ฅ +โฏ
where, ๐ โ ๐
and ๐ = 0 for all but finite number of values of ๐. The ๐ are called
coefficients of ๐(๐ฅ). We simply write ๐(๐ฅ) as
๐(๐ฅ) = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ
when ๐
= 0 for all ๐ โฅ 1.
Examples :
(i)
๐(๐ฅ) = ๐ฅ + 2๐ฅ + 5 is a polynomial with coefficients in ๐.
(ii)
๐(๐ฅ) = ๐ฅ + 1 is a polynomial with coefficients in ๐ .
( Here ๐(๐ฅ) = 1 โ ๐ฅ + 0 โ ๐ฅ + 1 )
Definition 1.1.2: Let
๐(๐ฅ) = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ
be
a
polynomial
with
coefficients in a ring ๐
. If there exists some ๐ > 0 such that ๐ โ 0, then the largest
value of such ๐ is called the degree of the polynomial ๐(๐ฅ). If no such ๐ > 0 exists, then
we say that ๐(๐ฅ) is of zero degree.
Algebra
Page No. 80
Examples :
The degree of the polynomial ๐(๐ฅ) = ๐ฅ + 4๐ฅ + 3๐ฅ + 2๐ฅ + 7 with coefficients
(i)
in ๐ is of degree 5.
(ii) ๐(๐ฅ) = + 0 โ ๐ฅ + 0 โ ๐ฅ . ๐(๐ฅ) is a polynomial with coefficients in ๐. The degree
of ๐(๐ฅ) is zero.
Definition 1.1.3: Let ๐
be a ring and let ๐
[๐ฅ] denote the set of polynomials with coefficients
in ๐
and in an indeterminate ๐ฅ. Let ๐(๐ฅ), ๐(๐ฅ) โ ๐
[๐ฅ] where
and
๐(๐ฅ) = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ ,
(๐ โ ๐
)
๐(๐ฅ) = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ ,
๐ โ๐
We define โฒ + โฒ and โฒ โ โฒ of ๐(๐ฅ) and ๐(๐ฅ) as follows.
(๐ < ๐),
๐(๐ฅ) + ๐(๐ฅ) = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ ,
(i)
where, ๐ = ๐ + ๐ , โ ๐.
[ Here ๐
(ii) ๐(๐ฅ) โ ๐(๐ฅ) = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐
where,
๐ =
โ
i + j =k
i.e.
= 0 for ๐ โฅ 1 ]
๐ฅ
,
ai b j , (1 โค ๐ โค ๐, 1 โค ๐ โค ๐)
๐ =๐ ๐ +๐ ๐
+ โฏ+ ๐ ๐ .
Obviously,
๐(๐ฅ) + ๐(๐ฅ) โ ๐
[๐ฅ]
and
๐(๐ฅ) โ ๐(๐ฅ) โ ๐
[๐ฅ].
Remark 1.1.4 : โฉ๐
[๐ฅ], +, โ โช is a ring where โฒ + โฒ and โฒ โ โฒ are as defined in (i) and (ii) in the
definition 1.1.3. This ring is called the polynomial ring over the ring ๐
.
If ๐
is a ring and ๐ฅ and ๐ฆ are two indeterminates, then we can form the ring
(๐
[๐ฅ])(๐ฆ), that is, the ring of polynomials in ๐ฆ, with coefficients that are polynomials in
๐ฅ.
As (๐
[๐ฅ])(๐ฆ) โ
(๐
[๐ฆ])(๐ฅ), we denote this ring by ๐
[๐ฅ, ๐ฆ], the ring of polynomials in
two variables ๐ฅ and ๐ฆ with coefficients in ๐
. We can similarly define the ring
๐
[๐ฅ , ๐ฅ , โฆ , ๐ฅ ] of polynomials in the โฒ๐โฒ indeterminate ๐ฅ with coefficients in ๐
.
1.2 Properties of ๐[๐ฑ] :
Theorem 1.2.1:
Let ๐
be a ring. Then ๐
is a sub-ring of the ring of polynomials ๐
[๐ฅ].
Algebra
Page No. 81
Proof : Let ๐ โ ๐
, we write
๐(๐ฅ) = ๐ + 0 โ ๐ฅ + 0 โ ๐ฅ + โฏ + 0 โ ๐ฅ
( ๐ finite)
Then ๐(๐ฅ) โ ๐
[๐ฅ] and is called a constant polynomial over the ring ๐
.
Thus, if ๐, ๐ โ ๐
, then ๐, ๐ are constant polynomials in ๐
[๐ฅ] and as members of ๐
[๐ฅ],
their addition ๐ + ๐ and multiplication ๐ โ ๐ are again the constant polynomials in ๐
[๐ฅ].
Hence, ๐
is a subring of ๐
[๐ฅ].
Theorem 1.2.2 : ๐
[๐ฅ] is a ring of polynomials over a ring ๐
. ๐
[๐ฅ] is commutative iff R is
commutative.
Proof : Only if part :
Let ๐
[๐ฅ] be commutative. As, sub-ring of a commutative ring is commutative, we get
๐
is commutative.
If part :
Let ๐
be commutative.
Let
where,
and
๐(๐ฅ), ๐(๐ฅ) โ ๐
[๐ฅ] ,
(๐ โ ๐
)
๐(๐ฅ) = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ ,
๐(๐ฅ) = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ ,
๐ โ๐
.
Then,
๐(๐ฅ) โ ๐(๐ฅ) = ๐ ๐ + (๐ ๐ + ๐ ๐ ) ๐ฅ + โฏ +
โ
ai b j ๐ฅ + โฏ + ๐ ๐ ๐ฅ
โ
ai b j =
i+ j =k
.
As ๐
is commutative,
๐ ๐ =๐ ๐ ,๐ ๐ +๐ ๐ =๐ ๐ +๐ ๐ , โฆ,
i + j =k
โ
j + i =k
b j ai , โฆ,
๐ ๐ =๐ ๐ .
Hence,
๐(๐ฅ) โ ๐(๐ฅ) = ๐ ๐ + (๐ ๐ + ๐ ๐ )๐ฅ + โฏ +
โ
i+ j =k
= ๐ ๐ + (๐ ๐ + ๐ ๐ )๐ฅ + โฏ +
โ
j +i=k
ai b j ๐ฅ + โฏ + ๐ ๐ ๐ฅ
b j ai ๐ฅ + โฏ + ๐ ๐ ๐ฅ
= ๐(๐ฅ) โ ๐(๐ฅ)
This shows that ๐
[๐ฅ] is commutative.
Algebra
Page No. 82
Theorem 1.2.3 : Let ๐
be a ring. ๐
[๐ฅ] has unity iff ๐
has unity.
Proof :
Only if part :
Let ๐
[๐ฅ] be a ring with unity.
Define
๐ โถ ๐
[๐ฅ] โถ ๐
by
๐ [๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ ] = ๐
is an onto homomorphism, we get ๐
has unity. [ Since homomorphic image of a ring
with unity contains the unity. ]
If part :
Let the ring ๐
contain the unity element say 1.
Then, consider the constant polynomial 1 + 0 โ ๐ฅ + 0 โ ๐ฅ + โฏ + 0 โ ๐ฅ ( ๐ finite) will
be the unity element of ๐
[๐ฅ].
Definition 1.2.4 : Let ๐(๐ฅ) = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ be a non zero polynomial in
๐
[๐ฅ]. We say that degree of ๐(๐ฅ) is ๐ if ๐ โ 0 and ๐
= 0 for ๐ โฅ 1.
We write, deg ๐(๐ฅ) = ๐.
Note that, the degree of a zero polynomial is not defined.
deg ๐(๐ฅ) = 0 if ๐(๐ฅ) = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ
with ๐ = 0 for ๐ โฅ 1 and
๐ โ 0.
i.e.
deg ๐(๐ฅ) = 0 if ๐(๐ฅ) is a constant polynomial in ๐
[๐ฅ].
Theorem 1.2.5 : Let ๐
be a ring and ๐(๐ฅ), ๐(๐ฅ) be non zero polynomials in ๐
[๐ฅ], where
deg ๐(๐ฅ) = ๐ and deg ๐(๐ฅ) = ๐. If ๐(๐ฅ) + ๐(๐ฅ) and ๐(๐ฅ) โ ๐(๐ฅ) are non zero
polynomials in ๐
[๐ฅ], then
(i) deg [๐(๐ฅ) + ๐(๐ฅ)] โค max(๐, ๐)
(ii) deg [๐(๐ฅ) โ ๐(๐ฅ)] โค ๐ + ๐
(iii) If ๐
is an integral domain, deg [๐(๐ฅ) โ ๐(๐ฅ)] = ๐ + ๐
Proof : Let
๐(๐ฅ) = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ
where ๐ โ ๐
for 0 โค ๐ โค ๐ and ๐ โ 0 and ๐
Let
๐(๐ฅ) = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ
where ๐ โ ๐
for 0 โค ๐ โค ๐ and ๐ โ 0 and ๐
Algebra
= 0, for each ๐ โฅ 1.
= 0 for each ๐ โฅ 1.
Page No. 83
(i)
๐(๐ฅ) + ๐(๐ฅ) = (๐ + ๐ ) + (๐ + ๐ )๐ฅ + โฏ + ๐ ๐ฅ , where ๐ก = max (๐, ๐).
Hence, deg [๐(๐ฅ) + ๐(๐ฅ)] โค ๐ก = max(๐, ๐)
(ii) ๐(๐ฅ) โ ๐(๐ฅ) = (๐ ๐ ) + (๐ ๐ + ๐ ๐ )๐ฅ + โฏ + (๐ ๐ )๐ฅ
.
This shows that
deg [๐(๐ฅ) โ ๐(๐ฅ)] โค ๐ก = ๐ + ๐
(iii) Let ๐
be an integral domain.
Then, deg ๐(๐ฅ) = ๐
deg ๐(๐ฅ) = ๐
โน ๐ โ 0.
โน ๐ โ 0.
As ๐
is an integral domain,
๐ โ 0, ๐ โ 0 โน ๐ ๐ โ 0.
Hence, deg [๐(๐ฅ) โ ๐(๐ฅ)] = ๐ + ๐.
โฆ See (ii)
Theorem 1.2.6 : ๐
is an integral domain iff ๐
[๐ฅ] is an integral domain.
Proof :
Only if part :
Let ๐
be an integral domain.
To prove that ๐
[๐ฅ] is an integral domain.
Let
๐(๐ฅ) โ 0, ๐(๐ฅ) โ 0 in ๐
[๐ฅ]
Let
๐(๐ฅ) = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ
and
๐(๐ฅ) = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ .
such that
๐(๐ฅ) โ ๐(๐ฅ) = 0.
Let ๐(๐ฅ) and ๐(๐ฅ) both be constant polynomials.
Let ๐(๐ฅ) = ๐
and
๐(๐ฅ) = ๐ .
Then, ๐(๐ฅ) โ 0 โน ๐ โ 0
and
๐(๐ฅ) โ 0 โน ๐ โ 0.
As ๐
is an integral domain, ๐ ๐ โ 0.
i.e.
๐(๐ฅ) โ ๐(๐ฅ) โ 0; which is not true.
Hence, one of ๐(๐ฅ), ๐(๐ฅ) must be a non constant polynomial.
Let ๐(๐ฅ) be a non constant polynomial. Hence deg ๐(๐ฅ) โฅ 1.
Hence, deg ๐(๐ฅ) + deg ๐(๐ฅ) โฅ 1.
As ๐
is an integral domain
deg(๐(๐ฅ) โ ๐(๐ฅ)) = deg ๐(๐ฅ) + deg ๐(๐ฅ) โฅ 1
This leads to the contradiction as ๐(๐ฅ) โ ๐(๐ฅ) = 0.
Hence,
Algebra
๐(๐ฅ) โ ๐(๐ฅ) = 0
โน
๐(๐ฅ) = 0 or ๐(๐ฅ) = 0.
Page No. 84
i.e.
๐
[๐ฅ] is an integral domain.
If part :
Let ๐
[๐ฅ] be an integral domain. As the ring ๐
is a subring of ๐
[๐ฅ], ๐
must be an integral
domain.
Remark 1.2.7 : If ๐น is a field then ๐น[๐ฅ] may not be a field.
Proof : As ๐น is a field, ๐น is an integral domain. [ Result : Every field is an integral domain. ]
Hence, by theorem 1.2.6, ๐น[๐ฅ] is an integral domain.
Consider the non-zero polynomial ๐(๐ฅ) โ ๐น(๐ฅ) given by
๐(๐ฅ) = 0 + 1 โ ๐ฅ + 0 โ ๐ฅ + โฏ + 0 โ ๐ฅ .
We will prove that ๐(๐ฅ) has no multiplicative inverse in ๐น[๐ฅ].
Let, if possible, ๐(๐ฅ) โ ๐น[๐ฅ] such that
๐(๐ฅ) = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ
๐(๐ฅ) โ ๐(๐ฅ) = unity in ๐
[๐ฅ].
and
= 1 + 0 โ ๐ฅ + 0 โ ๐ฅ + โฏ+ 0 โ ๐ฅ
Thus, by comparing the coefficients, we get
1 = 0;
a contradiction.
Hence, ๐(๐ฅ) does not have a multiplicative inverse in ๐น[๐ฅ]. Hence ๐น[๐ฅ] is not a field.
Theorem 1.2.8 : Let ๐น be a field then ๐น[๐ฅ] is an Euclidian domain.
Proof :
(I)
๐น is a field
โน
๐น is an integral domain.
โน
๐น[๐ฅ] is an integral domain.
โฆ See theorem 1.2.6
(II) Let ๐(๐ฅ) โ ๐น[๐ฅ] be a non-zero polynomial. Define ๐ ๐(๐ฅ) = deg ๐(๐ฅ).
Then, ๐ ๐(๐ฅ) is a non-negative integer.
For ๐(๐ฅ) โ 0 and ๐(๐ฅ) โ 0 in ๐น[๐ฅ], we get
(i)
๐ ๐(๐ฅ) โ ๐(๐ฅ) = ๐ ๐(๐ฅ) + ๐ ๐(๐ฅ)
โฆ See theorem 1.2.5
Hence, ๐ ๐(๐ฅ) โค ๐ ๐(๐ฅ) โ ๐(๐ฅ) as ๐ ๐(๐ฅ) โฅ 0.
(ii) Let ๐(๐ฅ), ๐(๐ฅ) be non zero polynomials in ๐น[๐ฅ].
To prove that โ ๐(๐ฅ), ๐(๐ฅ) โ ๐น[๐ฅ] such that
๐(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ) + ๐(๐ฅ)
where
Algebra
๐(๐ฅ) = 0
or
๐ ๐(๐ฅ) < ๐ ๐(๐ฅ) .
Page No. 85
Case I : ๐ ๐(๐ฅ) < ๐ ๐(๐ฅ) . Then ๐(๐ฅ) = 0 โ ๐(๐ฅ) + ๐(๐ฅ)
and the result follows in this case.
Case II : ๐ ๐(๐ฅ) < ๐ ๐(๐ฅ) ,
Let
๐(๐ฅ) = ๐ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ ,
( ๐ โ ๐น and ๐ โ 0 )
and
๐(๐ฅ) = ๐ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ ,
( ๐ โ ๐น and ๐ โ 0 )
๐ ๐(๐ฅ) < ๐ ๐(๐ฅ)
โน
๐ < ๐.
Define ๐(๐ฅ) = ๐(๐ฅ) โ [๐ ๐ ๐ฅ
] ๐(๐ฅ).
Hence,
๐(๐ฅ) = [๐ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ ] โ [๐ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ ] [๐ ๐
shows that the coefficient of ๐ฅ in ๐(๐ฅ) is ๐ โ (๐ ๐
]
๐ฅ
โ ๐ ) = ๐ โ ๐ = 0.
Hence, ๐(๐ฅ) = zero polynomial or ๐ ๐(๐ฅ) < deg ๐(๐ฅ) = ๐.
Subcase I : ๐(๐ฅ) is a zero polynomial.
Then, ๐(๐ฅ) = ๐(๐ฅ) โ ๐ ๐ ๐ฅ
Hence, ๐(๐ฅ) = ๐ ๐ ๐ฅ
Taking ๐(๐ฅ) = ๐ ๐
โ ๐(๐ฅ) will imply 0 = ๐(๐ฅ) โ ๐ ๐ ๐ฅ
โ ๐(๐ฅ).
โ ๐(๐ฅ) + 0.
๐ฅ
and
๐(๐ฅ) = 0, the result follows.
Subcase II : ๐ (๐ฅ) โ 0 and deg ๐(๐ฅ) < deg ๐(๐ฅ).
Assume that the result is true for all the non zero polynomials in ๐น[๐ฅ] of degree less
than the degree of ๐(๐ฅ) = ๐.
Then, by this assumption,
๐(๐ฅ) = ๐ (๐ฅ) โ ๐(๐ฅ) + ๐(๐ฅ),
where ๐(๐ฅ) = 0
or
deg ๐(๐ฅ) < deg ๐(๐ฅ).
โ ๐(๐ฅ) = ๐ (๐ฅ) โ ๐(๐ฅ) + ๐(๐ฅ).
Hence, ๐(๐ฅ) โ ๐ ๐ ๐ฅ
Thus,
i.e.
๐(๐ฅ) = [๐ ๐
๐ฅ
+ ๐ (๐ฅ)] ๐(๐ฅ) + ๐(๐ฅ)
๐(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ) + ๐(๐ฅ)
where ๐(๐ฅ) = 0
or deg ๐(๐ฅ) < deg ๐(๐ฅ)
This shows that the result is true in this case also.
From (I) and (II), we get ๐น[๐ฅ] is an Euclidean domain.
As every Euclidean domain is a principal ideal domain we get,
Corollary 1.2.9: For a field ๐น, ๐น[๐ฅ] is a P. I. D.
Algebra
Page No. 86
1.3 Division Algorithm in ๐
[๐ฑ]:
Theorem 1.3.1 : Let ๐น be a field. Let
๐(๐ฅ) = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ
๐(๐ฅ) = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ
and
be two polynomials in ๐น[๐ฅ] with ๐ โ 0 and ๐ โ 0 with ๐ > 0.
Then, there are two polynomials ๐(๐ฅ) and ๐(๐ฅ) in ๐น[๐ฅ] such that
๐(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ) + ๐(๐ฅ)
with deg ๐(๐ฅ) < deg ๐(๐ฅ).
These polynomials ๐(๐ฅ) and ๐(๐ฅ) are unique.
Proof : Define ๐ = {๐(๐ฅ) โ ๐(๐ฅ) โ ๐ (๐ฅ) / ๐ (๐ฅ) โ ๐น[๐ฅ}.
Then, ๐ โ ๐.
( as ๐(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ) โ 0 โ ๐ )
Select ๐(๐ฅ) โ ๐ such that deg ๐(๐ฅ) is minimal.
๐(๐ฅ) โ ๐
Then,
โน
๐(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ) โ ๐(๐ฅ), for some ๐(๐ฅ) โ ๐น[๐ฅ].
Hence , ๐(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ) + ๐(๐ฅ).
If ๐(๐ฅ) = 0 then we are through.
If ๐(๐ฅ) โ 0 then let
๐(๐ฅ) = ๐ ๐ฅ + ๐
Hence,
๐ฅ
+ โฏ+ ๐ ,
where ๐ โ ๐น and ๐ โ 0.
deg ๐(๐ฅ) = ๐ก.
We want to prove that ๐ก < ๐.
Let ๐ก โฎ ๐. Then ๐ก โฅ ๐.
Consider the following polynomial in ๐น[๐ฅ].
๐(๐ฅ) โ ๐(๐ฅ) โ ๐(๐ฅ) โ [๐ ๐ ]๐ฅ
= ๐(๐ฅ) โ [๐(๐ฅ) + ๐ ๐ ๐ฅ
โ ๐(๐ฅ)
] โ ๐(๐ฅ)
As
๐(๐ฅ) + ๐ ๐ ๐ฅ
we get,
๐(๐ฅ) โ ๐(๐ฅ) โ ๐(๐ฅ) โ [๐ ๐ ]๐ฅ
But
๐(๐ฅ) โ ๐(๐ฅ) โ ๐(๐ฅ) โ ๐ ๐ ๐ฅ
= ๐(๐ฅ) โ ๐ ๐ ๐ฅ
โ ๐น[๐ฅ] ,
[๐ ๐ฅ + ๐
โ ๐(๐ฅ) โ ๐
โ ๐(๐ฅ)
๐ฅ
+ โฏ+ ๐ ]
= ๐(๐ฅ) โ [๐ ๐ฅ + terms of lower degree]
= [๐ ๐ฅ + ๐
๐ฅ
+ โฏ + ๐ ] โ [๐ ๐ฅ + terms of lower degree]
Here, ๐(๐ฅ) โ ๐(๐ฅ) โ ๐(๐ฅ) โ ๐ ๐ ๐ฅ
โ ๐(๐ฅ) is a polynomial of degree < ๐ก =
deg ๐(๐ฅ) and is a member of S.
This contradicts the fact that ๐(๐ฅ) is a polynomial in S of minimal degree.
Hence, our assumption that ๐ก โฅ ๐ is wrong. Hence ๐ก < ๐. i.e. deg ๐(๐ฅ) < deg ๐(๐ฅ).
Algebra
Page No. 87
Uniqueness :
Let
๐(๐ฅ) = ๐(๐ฅ) โ ๐ (๐ฅ) + ๐ (๐ฅ)
and
๐(๐ฅ) = ๐(๐ฅ) โ ๐ (๐ฅ) + ๐ (๐ฅ)
where
deg ๐ (๐ฅ) < ๐
deg ๐ (๐ฅ) < ๐, ๐ (๐ฅ), ๐ (๐ฅ), ๐ (๐ฅ), ๐ (๐ฅ) โ ๐น[๐ฅ].
and
Subtracting, we get,
๐(๐ฅ)[๐ (๐ฅ) โ ๐ (๐ฅ)] = ๐ (๐ฅ) โ ๐ (๐ฅ)
. . . (1)
deg[๐ (๐ฅ) โ ๐ (๐ฅ)] < deg ๐(๐ฅ)
As
we get (1) holds only when
and
๐ (๐ฅ) โ ๐ (๐ฅ) = 0
โน
๐ (๐ฅ) = ๐ (๐ฅ).
๐ (๐ฅ) โ ๐ (๐ฅ) = 0
โน
๐ (๐ฅ) = ๐ (๐ฅ).
This completes the proof.
1.3.2
Examples โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Ex1 : Let ๐(๐ฅ) = ๐ฅ + 3๐ฅ + 4๐ฅ โ 3๐ฅ + 2 and ๐(๐ฅ) = ๐ฅ + 2๐ฅ โ 3 be in ๐ [๐ฅ]. Find
๐(๐ฅ) and ๐(๐ฅ) in ๐ [๐ฅ] such that ๐(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ) + ๐(๐ฅ) with deg ๐(๐ฅ) < 2.
Solution : Let
and
๐(๐ฅ) = ๐ฅ + 3๐ฅ + 4๐ฅ โ 3๐ฅ + 2
๐(๐ฅ) = ๐ฅ + 2๐ฅ โ 3
be in ๐ [๐ฅ].
q(x)
f(x)
g(x)
x2 + 2 x โ 3
x 6 + 3 x5 + 0 โ
x 4 + 0 โ
x 3 + 4 x 2 โ 3 x + 2
โ
x 4 + x3 + x 2 + x + 5
x 6 + 2 x5 โ 3 x 4
โ
+
x5 + 3 x 4 + 0 โ
x 3
โ
x5 + 2 x 4 โ 3 x 3
โ
+
x 4 + 3 x3 + 4 x 2
โ
x 4 + 2 x3 โ 3x 2
โ
+
x3 + 0 โ
x 2 โ 3 x
โ
x3 + 2 x 2 โ 3 x
โ
+
5x2 + 0 โ
x + 2
โ
5 x 2 + 3x โ 1
โ
+
r ( x) = 4x + 3
Algebra
Page No. 88
Thus,
๐(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ) + ๐(๐ฅ)
where
๐(๐ฅ) = ๐ฅ + ๐ฅ + ๐ฅ + ๐ฅ + 5
. . . (5 = โ2 in ๐ ).
=๐ฅ +๐ฅ +๐ฅ +๐ฅโ2
๐(๐ฅ) = 4๐ฅ + 3
and
Ex 2 : Let ๐(๐ฅ) = ๐ฅ + ๐ฅ + ๐ฅ and ๐(๐ฅ) = ๐ฅ + 2๐ฅ + 2๐ฅ in ๐ [๐ฅ]. Find ๐(๐ฅ) and ๐(๐ฅ) in
๐ [๐ฅ] such that ๐(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ) + ๐(๐ฅ) with deg ๐(๐ฅ) < 4.
Solution :
g(x)
4
f(x)
3
2
x + 2x + 0 โ
x + 2x + 0
5
x + 0โ
x
4
q(x)
3
2
+ x + 0โ
x + x + 0
x +1
x5 + 2 โ
x 4 + 0 โ
x 3 + 2 โ
x 2 + 0 โ
x
โ โ
โ
โ
โ
x 4 + x3 +
โ
x2 + x + 0
x 4 + 2 x3 + 0 โ
x 2 + 2 โ
x + 0
โ
โ
โ
โ
r ( x) = 2x 3+ x 2 + 2x
Thus,
๐(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ) + ๐(๐ฅ) ,
where
๐(๐ฅ) = ๐ฅ + 1 , ๐(๐ฅ) = 2๐ฅ + ๐ฅ + 2๐ฅ and deg ๐(๐ฅ) < 4.
Ex 3 : Let ๐(๐ฅ) = ๐ฅ + 3๐ฅ + 3๐ฅ + ๐ฅ + 2 and ๐(๐ฅ) = 4๐ฅ + 4๐ฅ + 3๐ฅ + 3 in ๐ [๐ฅ]. Find
๐(๐ฅ) and ๐(๐ฅ) in ๐ [๐ฅ] so that ๐(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ) + ๐(๐ฅ) with deg ๐(๐ฅ) < 3.
Solution :
g(x)
f(x)
x 4 + 3 x 3 +3x 2 + x + 2
4 x 3 + 4 x 2 + 3x + 3
โ
q(x)
4x + 3
x4 + x 3 + 2x 2 + 2x
โ โ
โ
2 x3 + x 2 + 4 x + 2
โ
2 x3 + 2 x 2 + 4 x + 4
โ
โ โ
r ( x) = 4x 2 + 3
Thus,
๐(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ) + ๐(๐ฅ) ,
where
๐(๐ฅ) = 4๐ฅ + 3 , ๐(๐ฅ) = 4๐ฅ + 3 and deg ๐(๐ฅ) < 3.
Algebra
Page No. 89
1.4 Euclidean Domain And Unique Factorization Domain :
Definition 1.4.1 : An integral domain is a commutative ring ๐
with unity containing no
divisors of 0.
i.e.
if ๐ โ ๐ = 0
for ๐, ๐ โ ๐
then either ๐ = 0 or ๐ = 0.
Definition 1.4.2 : Let ๐
be a commutative ring ๐, ๐ โ ๐
, ๐ โ 0. We say ๐ divides ๐ if โ
๐ โ ๐
such that ๐ = ๐๐ .
We write this by ๐/๐. In this case ๐ is called a factor of ๐.
Definition 1.4.3 : Let ๐
be a commutative ring. Let ๐, ๐ โ ๐
. An element ๐ โ ๐
is called the
greatest common divisor of ๐ and ๐ if
(i)
๐/๐ and ๐/๐.
(ii)
If โ ๐ โ ๐
such that ๐/๐ and ๐/๐ then ๐/๐ .
We denote this by ๐ = gcd(๐, ๐).
1.4.4 Remark :
(1) gcd(๐, ๐) need not be unique in ๐
.
For this consider ๐
= ๐ . Then
2โ 3=6
โน
2/6
2โ 2=4
โน
2/4
Again, if ๐/6 and ๐/4 then ๐/6 โ 4.
i.e ๐/2.
Thus, 2 = gcd(6, 4).
Again,
1โ 6=6
6โ 6=4
Hence, 6/6 and 6/4.
If ๐/6 and ๐/4 we get ๐/6.
Hence, gcd(6, 4) = 6.
Hence, 2 and 6 are g.c.d. in ๐ for the same pair (4, 6).
(2) Existence of g.c.d. for any pair ๐, ๐ in a commutative ring ๐
is not compulsory.
e.g.
Algebra
Consider the ring ๐
of even integers.
Page No. 90
4, 6 โ ๐
. 2/4 in ๐
but 2 โค 6 in ๐
. As 2 โ 3 = 6 but 3 โ ๐
.
Thus, gcd(4, 6) does not exist in ๐
.
Definition 1.4.5 : Let ๐
be a commutative ring with unity. ๐, ๐ โ ๐
are called associates if
๐ = ๐ข๐ for some unit ๐ข in ๐
.
[ ๐ข is a unit in ๐
means multiplicative inverse ๐ข
of ๐ข exists in ๐
]
Theorem 1.4.6 : Let ๐
be an integral domain with unity. If ๐ = gcd(๐, ๐) in ๐
, then
๐ = gcd(๐, ๐) in ๐
, iff ๐ and ๐ are associates.
Proof :
Only if part :
Let ๐ = gcd(๐, ๐) and ๐ = gcd(๐, ๐).
๐ /๐ and
๐ /๐.
๐ /๐ and
๐ /๐.
Hence,
๐ /๐ and
๐ /๐
Hence,
๐ and ๐ are associates.
Then,
โฆ by the definition of gcd.
If part :
Let ๐ and ๐ be associates and ๐ = gcd(๐, ๐).
๐ =๐ข๐
for some unit ๐ข in ๐
.
Hence,
๐ /๐ .
But
๐ /๐ and
๐ /๐.
Hence,
๐ /๐ and
๐ /๐.
. . . (1)
Let ๐ฅ โ ๐
such that ๐ฅ/๐ and ๐ฅ/๐.
Then ๐ = gcd(๐, ๐)
โน
โน
๐ฅ=๐ ๐ก,
๐ /๐ฅ.
for some ๐ก โ ๐
.
= (๐ข ๐ ) ๐ก
= ๐ (๐ข ๐ก)
But this shows that ๐ /๐ฅ .
Hence,
๐ = ๐๐๐(๐, ๐).
. . . (2)
Definition 1.4.7 : Let ๐ท be UFD. A non constant polynomial
๐(๐ฅ) = ๐ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ
Algebra
Page No. 91
in ๐ท[๐ฅ] is primitive if the only common divisors of all the ๐ are units of ๐ท.
1.4.8 Examples :
(i)
4๐ฅ + 7๐ฅ + 3 is primitive in ๐[๐ฅ].
(ii)
3๐ฅ + 6๐ฅ + 9 is not primitive in ๐[๐ฅ] as 3 is not a unit in ๐.
(iii) Any non constant irreducible in ๐ท[๐ฅ], where ๐ท is UFD, is primitive.
Theorem 1.4.9 : Let ๐ท be a UFD. Let ๐(๐ฅ) โ ๐ท[๐ฅ] be a non constant polynomial.
Then, ๐(๐ฅ) = (๐) โ ๐(๐ฅ), where ๐(๐ฅ) is a primitive in ๐ท[๐ฅ]. The element ๐ is unique
upto a unit factor in ๐ท and the polynomial ๐(๐ฅ) is unique up to a unit factor in ๐ท.
Proof : Let ๐(๐ฅ) = ๐ + +๐ ๐ฅ + โฏ + ๐ ๐ฅ , (๐ โ 0) be a nonconstant polynomial in
๐ท[๐ฅ]. The coefficients ๐ , ๐ , โฆ , ๐
in ๐ท can be factored into a finite product of
irreducible in ๐ท, uniquely upto order and associates.
Assume that each coefficient of ๐(๐ฅ) is factorized in this way. Let ๐ denote the
irreducible in ๐ท appearing in the factorization of one coefficient. If ๐ divides all
coefficients, then ๐ will be in the factorization of all coefficients. Assume that no other
associates of ๐ appears in the factorization of any coefficient of ๐(๐ฅ).
Define
๐=
๐
where ๐ผ is the greatest integer such that ๐
divides all the coefficients of ๐(๐ฅ).
In this case ๐(๐ฅ) = (๐) ๐(๐ฅ) where ๐ โ ๐ท and ๐(๐ฅ) โ ๐ท[๐ฅ] is primitive by construction.
Uniqueness :
Let if possible,
๐(๐ฅ) = (๐) ๐(๐ฅ)
and
๐(๐ฅ) = (๐) โ(๐ฅ)
in ๐ท[๐ฅ].
where ๐(๐ฅ) and โ(๐ฅ) are primitive in ๐ท[๐ฅ] and ๐, ๐ โ ๐ท.
Now,
(๐) ๐(๐ฅ) = (๐) โ(๐ฅ) implies each irreducible factor in ๐ must divide the
irreducible factor in ๐ and conversely.
By cancelling the irreducible factors from ๐ and ๐, we get,
(๐ข) ๐(๐ฅ) = (๐ฃ) โ(๐ฅ)
where ๐ข and ๐ฃ are units in ๐ท.
Algebra
Page No. 92
But this shows that ๐ is unique up to the unit factors and the primitive polynomial ๐(๐ฅ)
is also unique up to unit factors.
Theorem (Gauss) 1.4.10 : Let ๐ท be UFD. ๐(๐ฅ), ๐(๐ฅ) โ ๐ท[๐ฅ] be primitive polynomials.
Then ๐(๐ฅ) โ ๐(๐ฅ) is also primitive in ๐ท[๐ฅ].
Proof : Let
๐(๐ฅ) = ๐ + +๐ ๐ฅ + โฏ + ๐ ๐ฅ , (๐ โ 0)
and
๐(๐ฅ) = ๐ + +๐ ๐ฅ + โฏ + ๐ ๐ฅ , (๐ โ 0)
be two primitive polynomials in ๐ท[๐ฅ].
โ(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ).
Let
Then, โ(๐ฅ) = (๐ ๐ ) + (๐ ๐ + ๐ ๐ )๐ฅ + โฏ +
โ ( ai b j ) ๐ฅ
+ โฏ + (๐ ๐ )๐ฅ
i + j =k
Select any irreducible ๐ in ๐ท. ๐(๐ฅ) and ๐(๐ฅ) being primitive in ๐ท[๐ฅ], ๐ โค ๐ for some ๐
and ๐ โค ๐ for some ๐.
Let ๐ be the first coefficient in ๐(๐ฅ) such that ๐ โค ๐ .
ie. ๐/๐ , ๐/๐ ,โฆ, ๐/๐
.
Let ๐ be the first coefficient in ๐(๐ฅ) such that ๐ โค ๐ .
ie. ๐/๐ , ๐/๐ , โฆ, ๐/๐
.
The coefficient of ๐ฅ
in โ(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ) is
= (๐ ๐
+ โฏ+ ๐
๐
+๐ ๐
) + ๐ ๐ + (๐
๐
๐
+๐
๐
+ โฏ+
๐ )
As ๐/๐ , ๐/๐ ,โฆ, ๐/๐
we get
๐/(๐ ๐
+๐ ๐
Similarly, ๐/๐ , ๐/๐ , โฆ, ๐/๐
๐/(๐
๐
+๐
+ โฏ+ ๐
).
๐
will imply
๐
+ โฏ+ ๐
๐ ).
But ๐ โค ๐ and ๐ โค ๐ imply ๐ โค ๐ ๐ . (See result ****).
Hence, ๐ โค coefficient of ๐ฅ
in โ(๐ฅ).
Thus, we have proved that any irreducible ๐ โ ๐ท will not divide all the coefficients of
โ(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ).
Hence, โ(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ) is a primitive polynomial in ๐ท[๐ฅ].
Generalization of the statement of Gaussโs theorem is as follows.
Corollary 1.4.11: Let ๐ท be UFD. The finite product of primitive polynomials in ๐ท[๐ฅ] is
again a primitive polynomial.
Proof : Let ๐ (๐ฅ), ๐ (๐ฅ), โฆ , ๐ (๐ฅ) โ ๐ท[๐ฅ] be primitive polynomials.
Algebra
Page No. 93
Let ๐(๐ฅ) = ๐ (๐ฅ) โ ๐ (๐ฅ) โ โฆ โ ๐ (๐ฅ).
Then, ๐(๐ฅ) โ ๐ท[๐ฅ].
We will prove the result by induction on โnโ.
The result is true for ๐ = 2 by Gaussโs theorem.
Let the result be true for ๐ = ๐ say.
i.e.
๐ (๐ฅ) โ ๐ (๐ฅ) โ โฆ โ ๐ (๐ฅ) is a primitive polynomials.
Consider ๐ (๐ฅ) โ ๐ (๐ฅ) โ โฆ โ ๐ (๐ฅ) โ ๐
(๐ฅ) then this will be the product of two
primitive polynomials ๐ (๐ฅ) โ ๐ (๐ฅ) โ โฆ โ ๐ (๐ฅ) and ๐
(๐ฅ), and hence a primitive
polynomial in ๐ท[๐ฅ] by Gaussโs theorem.
By principle of mathematical induction, the result follows.
1.5 Zero of the Polynomials :
Definition 1.5.1 : Let ๐(๐ฅ) = ๐ + ๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ be in ๐น[๐ฅ] where ๐น is a field. If
๐ โ ๐น such that ๐(๐) = ๐ + ๐ ๐ + ๐ ๐ + โฏ + ๐ ๐ = 0 ( zero in ๐น ) then ๐ is called
a zero of ๐(๐ฅ) in ๐น .
Example 1.5.2 : Find all zeros of ๐ฅ + 3๐ฅ + ๐ฅ + 2๐ฅ in ๐ [๐ฅ].
Solution : Let ๐(๐ฅ) = ๐ฅ + 3๐ฅ + ๐ฅ + 2๐ฅ and ๐ = {0, 1, 2, 3,4}.
(i)
๐(0) = 0
โน
0 is a zero of ๐(๐ฅ).
(ii)
๐(1) = 1 + 3 + 1 + 2 = 1 โ 0
(iii)
๐(2) = 4 โ 0
(iv)
๐(3) = ๐(โ2) โ 0
(v)
๐(4) = ๐(โ1) = โ1 โ 3 + 1 โ 2 = 0 . Hence 4 is root of ๐(๐ฅ) in ๐ .
โน
โน
1 is not a zero of ๐(๐ฅ) in ๐ .
2 is not a root of ๐(๐ฅ) in ๐ .
Thus, ๐ฅ = 0 and ๐ฅ = 4(= โ1) are roots of ๐(๐ฅ) in ๐ .
Definition 1.5.3 : Let ๐(๐ฅ), ๐(๐ฅ) โ ๐น[๐ฅ] where ๐น is a field. We say ๐(๐ฅ) is a factor of ๐(๐ฅ)
if ๐(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ) for some ๐(๐ฅ) โ ๐น[๐ฅ].
In this case we also say that ๐(๐ฅ) divides ๐(๐ฅ) in ๐น[๐ฅ].
Example : ๐ฅ + 1 is a factor of ๐ฅ + 1 in ๐ [๐ฅ].
Solution :
Algebra
Page No. 94
g(x)
f(x)
q(x)
x +1
x2 +1
x +1
โ
x2 + x
โ
โ x +1
โ
x +1
โ
r ( x) = 0
Thus,
where ๐(๐ฅ) = ๐ฅ + 1 โ ๐ [๐ฅ] .
๐(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ) ,
Hence,
๐ฅ + 1 is a factor of ๐ฅ + 1 in ๐ [๐ฅ].
Theorem 1.5.4 : Let ๐น be a field. An element ๐ โ ๐น is a zero of ๐(๐ฅ) โ ๐น[๐ฅ] iff ๐ฅ โ ๐ is a
factor of ๐(๐ฅ) in ๐น[๐ฅ].
Proof :
Only if part :
Let ๐ โ ๐น be a zero of ๐(๐ฅ) โ ๐น[๐ฅ].
Hence, by definition ๐(๐) = 0. By division algorithm, โ ๐(๐ฅ), ๐(๐ฅ) โ ๐น[๐ฅ] such that
๐(๐ฅ) = (๐ฅ โ ๐) โ ๐(๐ฅ) + ๐(๐ฅ) ,
where deg ๐(๐ฅ) < 1.
Hence, ๐(๐ฅ) must be a constant polynomial in ๐น[๐ฅ]. Let ๐(๐ฅ) = ๐, ๐ โ ๐น .
Thus ,
๐(๐ฅ) = (๐ฅ โ ๐) โ ๐(๐ฅ) + ๐ .
Therefore,
๐(๐) = (๐ โ ๐) โ ๐(๐) + ๐ .
โน
0=0+๐
Hence,
๐(๐ฅ) = (๐ฅ โ ๐) โ ๐(๐ฅ),
โน
๐=0
๐(๐ฅ) โ ๐น[๐ฅ].
This shows that (๐ฅ โ ๐) is a factor of ๐(๐ฅ).
If part :
Let ๐(๐ฅ) = (๐ฅ โ ๐) โ ๐(๐ฅ)
for some ๐(๐ฅ) โ ๐น[๐ฅ].
Then, ๐(๐) = (๐ โ ๐) โ ๐(๐).
โน
๐(๐) = 0.
Hence, ๐ is a zero of ๐(๐ฅ).
Theorem 1.5.5 : Let ๐น be a field and let ๐(๐ฅ) โ ๐น[๐ฅ] be a non zero polynomial of degree
๐. ๐(๐ฅ) has at most ๐ roots in ๐น .
Proof : If ๐(๐ฅ) has no zero in ๐น then the result is obviously true.
Algebra
Page No. 95
Let ๐ โ ๐น be a zero of ๐(๐ฅ). Then by theorem 1.5.4,
๐(๐ฅ) = (๐ฅ โ ๐ ) ๐ (๐ฅ) ,
where deg ๐ (๐ฅ) = ๐ โ 1.
If ๐ (๐ฅ) has no zeros in ๐น , then ๐(๐ฅ) has only one one zero in ๐น and in this case the
result is true.
If ๐ โ ๐น is a zero of ๐ (๐ฅ), then
๐ (๐ฅ) = (๐ฅ โ ๐ ) ๐ (๐ฅ) ,
where deg ๐ (๐ฅ) = ๐ โ 2.
Continuing in this way, we get,
๐(๐ฅ) = (๐ฅ โ ๐ )(๐ฅ โ ๐ ) โฆ (๐ฅ โ ๐ ) ๐ (๐ฅ),
where ๐ (๐ฅ) โ ๐น[๐ฅ] such that ๐ (๐ฅ) has no zeros in ๐น .
Clearly, ๐ โค ๐.
Claim :
๐ โ ๐น such that ๐ โ ๐
i.e.
โ ๐, 1 โค ๐ โค ๐ will not be a zero of ๐(๐ฅ).
no element of ๐น other than ๐ will be a zero of ๐(๐ฅ).
๐(๐) = (๐ โ ๐ )(๐ โ ๐ ) โฆ (๐ โ ๐ ) ๐ (๐),
As ๐ โ ๐ we get ๐ โ ๐ โ 0 โ ๐, 1 โค ๐ โค ๐.
๐ (๐) โ 0 as ๐ (๐ฅ) has no zero in ๐น .
As ๐น is an integral domain (๐น being a field) we get,
(๐ โ ๐ )(๐ โ ๐ ) โฆ (๐ โ ๐ ) ๐ (๐) โ 0
i.e.
๐(๐) โ 0.
Hence, no element ๐ โ ๐น other than ๐ will be a zero of ๐(๐ฅ).
Thus,
๐ , ๐ , โฆ , ๐ (๐ โค ๐) are the only zeros of ๐(๐ฅ).
Hence ๐(๐ฅ) has at most ๐ zeros in ๐น .
1.5.6 Example โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Ex 1 : Consider the polynomial
๐(๐ฅ) = ๐ฅ + 3๐ฅ + 2๐ฅ + 4
in ๐ [๐ฅ].
As
๐(1) = 1 โจ 3 โจ 2 โจ 4 = 0
we get,
1 โ ๐ is a root of ๐(๐ฅ).
Hence,
๐(๐ฅ) = (๐ฅ โ 1) โ ๐ (๐ฅ)
Algebra
in ๐ ,
. . . (1)
Page No. 96
To find ๐๐ (๐) :
๐ (๐ฅ)
f(x)
x โ1
x 4 + 3x 3 + 0 โ
x 2 + 2 x + 4
โ
x3 + 4 x 2 + 4 x + 1
x4 โ x 3
+
4 x3 + 0 โ
x 2
4 x3 โ 4 x 2
โ
+
4x2 + 2x
โ
4x2 โ 4 x
+
6x + 4
x โ 1
โ +
0
Hence,
๐ (๐ฅ) = ๐ฅ + 4๐ฅ + 4๐ฅ + 1
Again
๐ (1) = 0 in ๐ .
Hence, 1 is a zero of ๐ (๐ฅ) โ ๐ (๐ฅ).
๐ (๐ฅ) = (๐ฅ โ 1) ๐ (๐ฅ)
Hence,
. . . (2)
To find ๐๐ (๐) :
x โ1
โ
Thus,
๐ (๐ฅ) = ๐ฅ + 4
Again
๐ (1) = 0.
๐ (๐ฅ)
๐ (๐ฅ)
x 3 + 4x2 + 4x +1
x2 + 4
x3 โ x2
+
4x + 1
4x โ 4
โ
+
0
Hence, 1 โ ๐ is a zero of ๐ (๐ฅ) โ ๐ (๐ฅ).
Hence,
Algebra
๐ (๐ฅ) = (๐ฅ โ 1) ๐ (๐ฅ)
. . . (3)
Page No. 97
To find ๐๐ (๐) :
๐ (๐ฅ)
x โ1
x2 + 0x + 4
โ
Thus,
๐ (๐ฅ)
x +1
x2 โ x
+
x+4
x โ1
โ +
0
๐ (๐ฅ) = ๐ฅ + 1
Thus, from (1), (2) and (3), we get
๐(๐ฅ) = (๐ฅ โ 1)(๐ฅ โ 1)(๐ฅ โ 1)(๐ฅ + 1)
= (๐ฅ โ 1) โ (๐ฅ + 1).
Ex 2 : Let ๐(๐ฅ) and ๐(๐ฅ) be in ๐ [๐ฅ] , where
๐(๐ฅ) = 4๐ฅ + 4๐ฅ + 3๐ฅ + 3
and
๐(๐ฅ) = 4๐ฅ + 3.
Show that ๐(๐ฅ) is a factor of ๐(๐ฅ) in ๐ [๐ฅ] (or ๐(๐ฅ) divides ๐(๐ฅ) in ๐ [๐ฅ] ).
Solution :
๐(๐ฅ)
๐(๐ฅ)
๐(๐ฅ)
4 x2 + 3
4 x 3 + 4 x 2 +3 x + 3
x +1
4 x 3 + 0 x 2 +3 x
โ
โ
โ
4x2 + 3
โ
Thus,
4x2 + 3
โ
0
๐(๐ฅ) = ๐(๐ฅ) โ (๐ฅ + 1)
This shows that ๐(๐ฅ) is a factor of ๐(๐ฅ).
Ex 3 : Find all the zeros of the following polynomial ๐(๐ฅ) = ๐ฅ + 2๐ฅ + 3 in ๐ [๐ฅ].
Solution : ๐(1) โ 0. Hence 1 is not a zero of ๐(๐ฅ).
๐(โ1) = 0. Hence โ1 is a zero of ๐(๐ฅ) in ๐ .
i.e.
4 is a zero of ๐(๐ฅ).
โด (๐ฅ โ 4) is a factor of ๐(๐ฅ) in ๐ [๐ฅ].
Algebra
Page No. 98
๐ (๐ฅ)
x +1
x3 + 2 x + 3
โ
x2 + 4x + 3
x3 + 4 x 2
โ
4x2 + 2x
4x2 + 4x
โ
โ
3x + 3
3x + 3
โ โ
0
โด
๐(๐ฅ) = (๐ฅ + 1) โ (๐ฅ + 4๐ฅ + 3).
Let ๐ (๐ฅ) = ๐ฅ + 4๐ฅ + 3.
Again ๐ (โ1) = 0. Hence -1 is a root of ๐ (๐ฅ) and hence ๐(๐ฅ) in ๐ [๐ฅ].
๐ (๐ฅ)
x +1
x2 + 4x + 3
โ
x+3
x2 + x
โ
3x + 3
3x + 3
โ โ
0
Thus, ๐(๐ฅ) = (๐ฅ + 1)(๐ฅ + 1) โ (๐ฅ + 3).
Hence, -1 and -3 are zeros of ๐(๐ฅ) in ๐ .
i.e.
4 and 2 are zeros of ๐(๐ฅ) in ๐ .
[Since additive inverse of 1 in ๐ is 4 and additive inverse of 3 in ๐ is 2 ].
Ex 4 : Show that the polynomial ๐(๐ฅ) = ๐ฅ + 4 can be factorized into linear factors in
๐ [๐ฅ].
Solution : Let ๐(๐ฅ) = ๐ฅ + 4. Then ๐(1) = 0 in ๐ .
Hence, 1 โ ๐ is a zero of ๐(๐ฅ).
Algebra
Page No. 99
x โ1
x4 + 4
โ
x3 + x 2 + x + 1
x4 โ x 3
+
x3 + 0 x2
โ
x3 โ x2
+
x2 + 0x
โ
x2 โ x
+
x +4
x โ1
โ +
0
Thus,
๐(๐ฅ) = (๐ฅ โ 1)(๐ฅ + ๐ฅ + ๐ฅ + 1)
. . . (1)
Let ๐ (๐ฅ) = ๐ฅ + ๐ฅ + ๐ฅ + 1.
Then, ๐ (๐ฅ) โ ๐ [๐ฅ] and ๐ (โ1) = 0 i.e. ๐(4) = 0.
Hence, (๐ฅ โ 4) = (๐ฅ + 1) โ ๐ [๐ฅ] is a factor of ๐ (๐ฅ).
x +1
x 3+x 2 +x +1
โ
x2 +1
x3 + x 2
โ
x +1
x +1
โ โ
0
Thus, ๐(๐ฅ) = (๐ฅ โ 1)(๐ฅ + 1) โ (๐ฅ + 1).
Let ๐ (๐ฅ) = ๐ฅ + 1,
๐ (๐ฅ) โ ๐ [๐ฅ]
and
๐ (2) = 0.
Hence, 2 is a zero of ๐ (๐ฅ).
xโ2
x+2
x 2 +1
โ
x 2 โ 2x
+
2x + 1
2x โ 4
โ +
0
Thus, ๐(๐ฅ) = (๐ฅ โ 1)(๐ฅ + 1)(๐ฅ โ 2)(๐ฅ + 2).
Algebra
Page No. 100
1.6 Irreducible Polynomials in R[x] :
Throughout ๐
denotes an integral domain with unity.
Definition 1.6.1: Let ๐(๐ฅ) โ ๐
[๐ฅ] and deg ๐(๐ฅ) โฅ 1. ๐(๐ฅ) is said to be irreducible
polynomial over ๐
, if it cannot be expressed as a product of two polynomials ๐(๐ฅ) and
โ(๐ฅ) โ ๐
[๐ฅ] such that
0 < deg ๐(๐ฅ) < deg ๐(๐ฅ)
0 < deg โ(๐ฅ) < deg ๐(๐ฅ).
and
1.6.2 Remarks:
(i)
If ๐(๐ฅ) = ๐(๐ฅ) โ โ(๐ฅ) and if ๐(๐ฅ) โ ๐
[๐ฅ] is irreducible, then deg ๐(๐ฅ) = 0 or
deg โ(๐ฅ) = 0.
(ii)
A polynomial of positive degree which is not irreducible is said to be reducible.
(iii) The polynomial (๐ฅ + 1) โ ๐[๐ฅ] is irreducible over ๐ but it is reducible over โ as
(๐ฅ + 1) โ โ[๐ฅ] and (๐ฅ + 1) = (๐ฅ + ๐)(๐ฅ โ ๐).
(iv)
Any polynomial of degree 1 over ๐
is irreducible over ๐
.
(v)
The units in ๐
and ๐
[๐ฅ] are the same.
Theorem 1.6.3 : Every irreducible polynomial in ๐
[๐ฅ] is an irreducible element in ๐
[๐ฅ].
Proof : Let ๐(๐ฅ) โ ๐
[๐ฅ] be an irreducible element in ๐
[๐ฅ].
To prove that ๐(๐ฅ) is an irreducible polynomial in ๐
[๐ฅ].
Let, if possible, ๐(๐ฅ) be reducible over ๐
.
Let
๐(๐ฅ) = ๐(๐ฅ) โ โ(๐ฅ),
where
with
0 < deg ๐(๐ฅ) < deg ๐(๐ฅ)
and
๐(๐ฅ), โ(๐ฅ) โ ๐
[๐ฅ]
0 < deg โ(๐ฅ) < deg ๐(๐ฅ).
As
deg ๐(๐ฅ) > 0 and deg โ(๐ฅ) > 0, ๐(๐ฅ) and โ(๐ฅ) are not constant polynomials
and ๐(๐ฅ), โ(๐ฅ) โ ๐
. Hence they are not units in ๐
.
By lemma, ๐(๐ฅ) and ๐(๐ฅ) are not units in ๐
[๐ฅ]. Hence ๐(๐ฅ) is not an irreducible
element in ๐
[๐ฅ].
Thus, ๐(๐ฅ) is not an irreducible polynomial.
โน
๐(๐ฅ) is not an irreducible element.
This shows that irreducible element in ๐
[๐ฅ] is an irreducible polynomial in ๐
[๐ฅ].
Algebra
Page No. 101
Remark 1.6.4 : Converse of the above theorem need not be true.
i.e.
Irreducible polynomial in ๐
[๐ฅ] need not be an irreducible element in ๐
[๐ฅ].
Consider, the polynomial 3๐ฅ + 3 โ ๐[๐ฅ].
Then 3๐ฅ + 3 is an irreducible polynomial in ๐[๐ฅ].
3๐ฅ + 3 = 3(๐ฅ + 1)
But
= Product of two polynomials in ๐[๐ฅ] which are non units in ๐[๐ฅ].
(Since the units in ๐[๐ฅ] are the units in ๐ which are 1 and -1).
Thus, 3๐ฅ + 3 is expressed as a product of two non zero, non unit polynomials in ๐[๐ฅ].
Hence, 3๐ฅ + 3 is not an irreducible element in ๐[๐ฅ].
Remark 1.6.5 : Primitive polynomial ๐(๐ฅ) โ ๐
[๐ฅ] may be reducible or irreducible over ๐
.
Example : ๐(๐ฅ) = ๐ฅ โ 3๐ฅ + 2 โ ๐[๐ฅ] is a primitive and reducible as
๐ฅ โ 3๐ฅ + 2 = (๐ฅ โ 2)(๐ฅ โ 1) but ๐(๐ฅ) = ๐ฅ โ 2 โ ๐[๐ฅ] is a primitive and
irreducible over ๐.
Theorem 1.6.6 : Let ๐
be UFD and ๐(๐ฅ) โ ๐
[๐ฅ]. ๐(๐ฅ) is an irreducible element in ๐
[๐ฅ] iff
either ๐ is an irreducible element of ๐
or ๐ is an irreducible primitive polynomial in
๐
[๐ฅ].
Proof :
Only if part :
Let ๐(๐ฅ) โ ๐
[๐ฅ] be an irreducible element of ๐
[๐ฅ]. If ๐ โ ๐
, then ๐ will be a constant
polynomial and it will be an irreducible element in ๐
.
Hence, if ๐ โ ๐
, we have to prove that ๐(๐ฅ) is irreducible over ๐
and ๐(๐ฅ) is a primitive
polynomial.
(i)
To prove ๐(๐ฅ) is irreducible over ๐
.
Let ๐(๐ฅ) be reducible over ๐
.
Let ๐(๐ฅ) = ๐(๐ฅ) โ โ(๐ฅ); ๐(๐ฅ), โ(๐ฅ) โ ๐
[๐ฅ].
As ๐(๐ฅ) is an irreducible element in ๐
[๐ฅ] either ๐(๐ฅ) or โ(๐ฅ) must be unit in ๐
[๐ฅ].
As units in ๐
and ๐
[๐ฅ] are the same, either ๐(๐ฅ) or โ(๐ฅ) is a unit in ๐
.
Hence, deg ๐(๐ฅ) = 0 or deg โ(๐ฅ) = 0 (being constant polynomial in ๐
[๐ฅ] ).
But this in turn shows that ๐(๐ฅ) is an irreducible polynomial in ๐
[๐ฅ].
Algebra
Page No. 102
(ii) Let ๐(๐ฅ) = ๐ ๐ (๐ฅ) where ๐ = content of ๐(๐ฅ) and ๐ (๐ฅ) is a primitive polynomial in
๐
[๐ฅ].
As deg ๐(๐ฅ) = deg ๐ (๐ฅ), we get deg ๐ (๐ฅ) โฅ 1 and hence ๐ (๐ฅ) โ ๐
.
Hence, ๐ (๐ฅ) is not a unit in ๐
[๐ฅ] and ๐ is a unit in ๐
.
Hence, ๐(๐ฅ) is a primitive polynomial in ๐
[๐ฅ].
Thus, if a non constant polynomial ๐(๐ฅ) โ ๐
[๐ฅ] is an irreducible element in ๐
[๐ฅ] then it
is an irreducible, primitive polynomial in ๐
[๐ฅ].
If part :
Let ๐(๐ฅ) โ ๐
[๐ฅ].
If ๐(๐ฅ) is an irreducible element in ๐
[๐ฅ] then ๐(๐ฅ) is an irreducible polynomial in ๐
[๐ฅ]
(See theorem 1.6.3).
Let ๐(๐ฅ) โ ๐
[๐ฅ] be primitive irreducible polynomial in ๐
[๐ฅ].
To prove that ๐(๐ฅ) is an irreducible element in ๐
[๐ฅ].
๐(๐ฅ) = ๐(๐ฅ) โ โ(๐ฅ)
Let
for some ๐(๐ฅ), โ(๐ฅ) โ ๐
[๐ฅ].
As ๐(๐ฅ) is an irreducible polynomial,
deg ๐(๐ฅ) = 0
or
deg โ(๐ฅ) = 0
Let deg ๐(๐ฅ) = 0. Then ๐(๐ฅ) is a constant polynomial in ๐
[๐ฅ]. Let ๐(๐ฅ) = ๐ .
Hence, ๐(๐ฅ) โ ๐
.
Now, ๐ (๐) = ๐ (๐โ) = ๐(๐) โ ๐(โ).
๐ is primitive
โน
๐ (๐) = unit in ๐
.
Hence, ๐(๐ฅ) is unit in ๐
[๐ฅ].
Thus ,
๐(๐ฅ) = ๐(๐ฅ) โ โ(๐ฅ)
โน ๐(๐ฅ) is unit in ๐
[๐ฅ].
This in turn shows that ๐(๐ฅ) is an irreducible element in ๐
[๐ฅ].
Theorem 1.6.7 : Let ๐
be UFD. Let ๐(๐ฅ) โ ๐
[๐ฅ] be a primitive polynomial in ๐
[๐ฅ]. ๐(๐ฅ)
can be factored in a unique way as a product of irreducible elements in ๐
[๐ฅ].
Proof : Let ๐น be a field of quotients of ๐
. Then ๐น[๐ฅ] is an Euclidean domain.
Hence, ๐น[๐ฅ] is a PID and therefore ๐น[๐ฅ] is UFD .
(i)
To prove that ๐(๐ฅ) โ ๐
[๐ฅ] can be factored as a product of irreducible elements in ๐
[๐ฅ].
๐(๐ฅ) โ ๐
[๐ฅ] โน ๐(๐ฅ) โ ๐น[๐ฅ].
As ๐น[๐ฅ] is UFD, we can write
Algebra
Page No. 103
๐(๐ฅ) = ๐ (๐ฅ) โ ๐ (๐ฅ) โ โฆ โ ๐ (๐ฅ)
where ๐ (๐ฅ) โ ๐น[๐ฅ] and ๐ (๐ฅ) is an irreducible polynomial in ๐น[๐ฅ]
for each ๐, 1 โค ๐ โค ๐.
๐ (๐ฅ) โ ๐น[๐ฅ]
๐ (๐ฅ) =
โน
๐ [๐ฅ] ,
where ๐ โ ๐
and ๐ (๐ฅ) โ ๐
[๐ฅ].
Further, ๐ (๐ฅ) is an irreducible polynomial in ๐น[๐ฅ] โน ๐ (๐ฅ) is an irreducible element in
๐น[๐ฅ].
โน
๐ (๐ฅ) is an irreducible element in ๐น[๐ฅ] for each ๐, 1 โค ๐ โค ๐.
Now,
๐ (๐ฅ) =
=
๐ [๐ฅ]
[๐ ๐ โ (๐ฅ)]
where ๐ = ๐(๐ ) = constant of ๐ and ๐ โ (๐ฅ) is a primitive polynomial in ๐
[๐ฅ].
๐ (๐ฅ) =
Thus, ๐(๐ฅ)
=
๐ โ (๐ฅ) ,
โฆ
โฆ
โ ๐, 1 โค ๐ โค ๐.
๐ โ (๐ฅ) ๐ โ (๐ฅ) โฆ ๐ โ (๐ฅ)
(๐ ๐ โฆ ๐ ) ๐(๐ฅ) = (๐ ๐ โฆ ๐ ) ๐ โ (๐ฅ) ๐ โ (๐ฅ) โฆ ๐ โ (๐ฅ).
Hence,
As each ๐ (๐ฅ) is an irreducible polynomial in ๐น[๐ฅ], we get ๐ โ (๐ฅ) is also an irreducible
polynomial and hence irreducible element in ๐น[๐ฅ].
Thus, ๐ โ (๐ฅ) is an irreducible element in ๐
[๐ฅ].
Equating the content on both sides, we get, ๐ ๐ โฆ ๐ = (๐ ๐ โฆ ๐ ) ๐ข, where ๐ข is a
unit in ๐
.
Hence,
๐(๐ฅ) = ๐ข [๐ โ (๐ฅ) ๐ โ (๐ฅ) โฆ ๐ โ (๐ฅ)]
= [๐ข ๐ โ (๐ฅ)] ๐ โ (๐ฅ) โฆ ๐ โ (๐ฅ)
= Product of irreducible elements in ๐
[๐ฅ].
This shows that ๐(๐ฅ) โ ๐
[๐ฅ] is factored into a product of irreducible elements in ๐
[๐ฅ].
(ii) Uniqueness :
Let
๐(๐ฅ) = ๐ โ (๐ฅ) ๐ โ (๐ฅ) โฆ ๐ โ (๐ฅ)
and
๐(๐ฅ) = ๐ (๐ฅ) ๐ (๐ฅ) โฆ ๐ (๐ฅ)
be two factorization of ๐(๐ฅ) as a product of irreducible elements in ๐
[๐ฅ].
Algebra
Page No. 104
As ๐
is a UFD, the number ๐ will remain the same as ๐น[๐ฅ] is a UFD, ๐ (๐ฅ) is uniquely
determined upto associates in ๐น[๐ฅ].
Hence,
๐ (๐ฅ) = ๐ข ๐ โ (๐ฅ),
where ๐ข is a unit in ๐น .
Hence,
๐ข =
for some ๐ , ๐ โ ๐
,
,
โ ๐, 1 โค ๐ โค ๐.
Thus,
๐ (๐ฅ) =
Hence,
๐ โ (๐ฅ)
โ ๐, 1 โค ๐ โค ๐.
๐ ๐ (๐ฅ) = ๐ ๐ โ (๐ฅ)
โ ๐, 1 โค ๐ โค ๐.
As ๐ (๐ฅ) and ๐ โ (๐ฅ) are primitive polynomials, equating the contents on both sides we
get ๐ = ๐ฃ ๐ where ๐ฃ is a unit in ๐
.
Hence, ๐ (๐ฅ) is associate of ๐ โ (๐ฅ) in ๐
[๐ฅ].
Thus the uniqueness follows.
Theorem 1.6.8 : ๐
is UFD โน ๐
[๐ฅ] is UFD.
Proof : Let ๐(๐ฅ) โ ๐
[๐ฅ] be a non zero non unit element in ๐
[๐ฅ].
Let ๐(๐ฅ) = ๐ ๐(๐ฅ) where ๐ = content of ๐ and ๐(๐ฅ) is a primitive polynomial in ๐ฅ .
By theorem 1.6.7,
๐(๐ฅ) = ๐ โ (๐ฅ) ๐ โ (๐ฅ) โฆ ๐ โ (๐ฅ)
where ๐ โ (๐ฅ) is an irreducible element in ๐
[๐ฅ] and this representation is unique up to
associates.
Also ๐ โ ๐
and ๐
is UFD imply
(i)
๐ is unit in ๐
(ii)
๐ can be expressed as ๐ = ๐ ๐ โฆ ๐ where ๐ are irreducible elements in ๐
, โ ๐,
or
1โค๐โค๐
Case (i) : ๐ is a unit in ๐
.
Then, ๐(๐ฅ) = ๐ ๐(๐ฅ)
= ๐ [๐ โ (๐ฅ) ๐ โ (๐ฅ) โฆ ๐ โ (๐ฅ)]
= ๐ [๐ โ (๐ฅ)][ ๐ โ (๐ฅ) โฆ ๐ โ (๐ฅ)]
= Finite product of irreducible elements in ๐
[๐ฅ] and the representation is
unique upto associates.
Case (ii) : ๐ is non unit.
Then ๐ = ๐ ๐ โฆ ๐ where each ๐ is an irreducible elements in ๐
.
Algebra
Page No. 105
As ๐ is an irreducible element in ๐
, ๐ is an irreducible element in ๐
[๐ฅ].
Thus, ๐(๐ฅ) = ๐ ๐ โฆ ๐ ๐ โ (๐ฅ) ๐ โ (๐ฅ) โฆ ๐ โ (๐ฅ)
= Finite product of irreducible elements in ๐
[๐ฅ] and the representation is
unique upto associates.
Thus, from case (i) and case (ii), we get ๐
[๐ฅ] is UFD.
1.6.9
Example : ๐[๐ฅ] is UFD as ๐ is UFD. ๐[๐ฅ] is UFD but not PID.
[ If ๐[๐ฅ] is PID then ๐ must be a field which is not so.]
Now onwards ๐น denotes a field.
1.6.10 Remarks :
(i)
Let๐(๐ฅ) โ ๐น[๐ฅ] be irreducible over ๐น . But note that, at the same time it may be
reducible over the field ๐ธ . (๐ธ โ ๐น).
(ii) Any polynomial of degree 1 in ๐น[๐ฅ] is irreducible over ๐น .
Example 1.6.11 : ๐ฅ โ 3 โ ๐[๐ฅ] is irreducible over ๐.
But it is reducible over โ where ๐ = the field of quotients and โ = the field of reals.
For the polynomials of degree 2 or 3 particularly we have
Theorem 1.6.12 : Let ๐น be a field and ๐(๐ฅ) โ ๐น[๐ฅ]. Let deg ๐(๐ฅ) = 2 or 3. Then ๐(๐ฅ) is
reducible over ๐น if and only if ๐(๐ฅ) has a zero in ๐น .
Proof :
Only if part :
Let ๐ be reducible over ๐น .
Then
๐(๐ฅ) = ๐(๐ฅ) โ โ(๐ฅ)
where
๐(๐ฅ), โ(๐ฅ) โ ๐น[๐ฅ] , deg ๐(๐ฅ) < deg ๐(๐ฅ) and deg โ(๐ฅ) < deg ๐(๐ฅ).
๐(๐ฅ) = ๐(๐ฅ) โ โ(๐ฅ)
โน
deg ๐(๐ฅ) = deg ๐(๐ฅ) + deg โ(๐ฅ)
[โต ๐น is an integral domain]
As
deg ๐(๐ฅ) = 2/3, the deg ๐(๐ฅ) = 1 or deg โ(๐ฅ) = 1.
Thus, let us assume that deg ๐(๐ฅ) = 1.
Then, ๐(๐ฅ) = ๐ฅ โ ๐ say, for some ๐ โ ๐น .
Algebra
Page No. 106
But then ๐(๐ฅ) = (๐ฅ โ ๐) โ โ(๐ฅ)
โน
๐(๐) = 0 and hence ๐ โ ๐น will be a zero of
๐(๐ฅ) โ ๐น[๐ฅ].
If part :
Let ๐(๐ฅ) โ ๐น[๐ฅ] has a zero in ๐น say โฒ๐โฒ. Then (๐ฅ โ ๐) is a factor of ๐(๐ฅ).
๐(๐ฅ) = (๐ฅ โ ๐) โ ๐(๐ฅ).
Hence,
Hence, deg ๐ = deg(๐ฅ โ ๐) + deg ๐(๐ฅ)
where
deg ๐(๐ฅ) = 2 < deg ๐(๐ฅ) = 1 + deg ๐(๐ฅ) ,
if deg ๐(๐ฅ) = 3
or
deg ๐(๐ฅ) = 1 < deg ๐(๐ฅ) ,
if deg ๐(๐ฅ) = 2.
Hence, ๐(๐ฅ) โ ๐น[๐ฅ] is a reducible polynomial over the field ๐น .
More generally we get
Theorem 1.6.13: Let ๐(๐ฅ) โ ๐น[๐ฅ] be any polynomial of degree > 1. If ๐ โ ๐น is a zero of
๐(๐ฅ) in ๐น , then ๐(๐ฅ) is reducible over ๐น .
Proof :
(As ๐(๐ฅ) and (๐ฅ โ ๐) are in ๐น[๐ฅ] ) By division algorithm, we get,
๐(๐ฅ) = (๐ฅ โ ๐) โ ๐(๐ฅ) + ๐(๐ฅ)
where ๐(๐ฅ) = 0 or deg ๐(๐ฅ) < deg ๐(๐ฅ).
๐(๐) = 0 + ๐(๐ฅ) โน 0 = ๐(๐).
Thus,
โฆ as ๐ is a zero of ๐(๐ฅ), ๐(๐) = 0.
๐(๐ฅ) = (๐ฅ โ ๐) โ ๐(๐ฅ).
Therefore,
deg ๐(๐ฅ) = deg(๐ฅ โ ๐) + deg ๐(๐ฅ)
Therefore,
deg ๐(๐ฅ) = deg ๐(๐ฅ) โ 1 > 0.
This shows that ๐(๐ฅ) is reducible.
We know that every ideal in ๐น[๐ฅ] is a principle ideal. (Being an Euclidean domain, ๐น[๐ฅ] is
PID.) Using this fact we prove
Theorem 1.6.14: If ๐น is a field, then the ideal โฉ๐(๐ฅ)โช โ {0} of ๐น[๐ฅ] is maximal iff ๐(๐ฅ) is
irreducible over ๐น .
Proof :
Only if part :
Let โฉ๐(๐ฅ)โช โ {0} be a maximal ideal in ๐น[๐ฅ].
To prove that ๐(๐ฅ) is irreducible over ๐น . Let if possible ๐(๐ฅ) be reducible.
Hence, โ ๐(๐ฅ) and โ(๐ฅ) in ๐น[๐ฅ] such that ๐(๐ฅ) = ๐(๐ฅ) โ โ(๐ฅ) where
Algebra
Page No. 107
0 < deg ๐(๐ฅ) < deg ๐(๐ฅ)
0 < deg โ(๐ฅ) < deg ๐(๐ฅ).
and
Now, ๐(๐ฅ) โ โฉ๐(๐ฅ)โช
๐(๐ฅ) โ โ(๐ฅ) โ โฉ๐(๐ฅ)โช.
โน
As โฉ๐(๐ฅ)โช is a maximal ideal in ๐น[๐ฅ], it is a prime ideal in ๐น[๐ฅ]
Hence, either ๐(๐ฅ) โ โฉ๐(๐ฅ)โช or โ(๐ฅ) โ โฉ๐(๐ฅ)โช.
But then ๐(๐ฅ) = ๐(๐ฅ) โ ๐ (๐ฅ) or โ(๐ฅ) = ๐(๐ฅ) โ ๐ (๐ฅ), for some ๐ (๐ฅ), ๐ (๐ฅ) โ ๐น[๐ฅ].
But then we canโt have deg ๐(๐ฅ) or deg โ(๐ฅ) less than the deg ๐(๐ฅ).
Hence our assumption is wrong i.e. ๐(๐ฅ) is irreducible.
If part :
Let ๐(๐ฅ) be irreducible polynomial in ๐น[๐ฅ].
To prove that โฉ๐(๐ฅ)โช is maximal.
Let ๐ด be an ideal in ๐น[๐ฅ] such that โฉ๐(๐ฅ)โช โ ๐ด โ ๐น[๐ฅ]. As ๐น[๐ฅ] is PID, ๐ด = โฉ๐(๐ฅ)โช for
some ๐(๐ฅ) โ ๐น[๐ฅ].
As ๐(๐ฅ) โ โฉ๐(๐ฅ)โช we get ๐(๐ฅ) โ โฉ๐(๐ฅ)โช.
Hence ๐(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ) ,
for some ๐(๐ฅ) โ ๐น[๐ฅ].
As ๐(๐ฅ) is irreducible, we get
deg ๐(๐ฅ) = 0
Case 1 :
or
deg ๐(๐ฅ) = 0
deg ๐(๐ฅ) = 0
Then, ๐(๐ฅ) is a constant polynomial in ๐น[๐ฅ].
Let
๐(๐ฅ) = ๐
Then,
๐(๐ฅ) = ๐(๐ฅ) โ ๐
[๐
implies
๐(๐ฅ) = ๐
โ ๐(๐ฅ).
exists in ๐น as ๐ is a non zero element in ๐น . ]
Hence,
Case 2 :
for some ๐ โ ๐น
๐(๐ฅ) = ๐
โ ๐(๐ฅ) implies ๐(๐ฅ) โ โฉ๐(๐ฅ)โช and hence ๐ด = โฉ๐(๐ฅ)โช = โฉ๐(๐ฅ)โช.
deg ๐(๐ฅ) = 0
Then, ๐(๐ฅ) is a non zero constant polynomial in ๐น[๐ฅ].
Hence, ๐(๐ฅ) is a non zero element in ๐น and hence ๐(๐ฅ) is a unit in ๐น .
But then โฉ๐(๐ฅ)โช = ๐ด = ๐น[๐ฅ]. This shows that there exists no proper ideal ๐ด in ๐น[๐ฅ] such
that โฉ๐(๐ฅ)โช โ ๐ด โ ๐น[๐ฅ].
Hence, โฉ๐(๐ฅ)โช is a maximal ideal in ๐น[๐ฅ].
Algebra
Page No. 108
1.6.15 Examples :
(i)
๐ฅ โ 3 โ ๐[๐ฅ] is an irreducible polynomial. Hence โฉ๐ฅ โ 3โช in ๐[๐ฅ] is a maximal ideal
in ๐น[๐ฅ] and hence
(ii)
[ ]
[ ]
is a field.
where ๐ผ = โฉ๐ฅ โ 5๐ฅ + 6โช is not a field as ๐ฅ โ 5๐ฅ + 6 = (๐ฅ โ 2)(๐ฅ โ 3) shows
that ๐ฅ โ 5๐ฅ + 6 is a reducible polynomial in ๐[๐ฅ] and hence ๐ผ is not a maximal ideal in
๐[๐ฅ].
If ๐
is an integral domain with unity then every irreducible element in ๐
[๐ฅ] is an
irreducible polynomial in ๐
[๐ฅ] (See Theorem 1.6.3). The converse need not be true. But it is
true if ๐
is a field.
Theorem 1.6.16: Let ๐น be a field. ๐(๐ฅ) โ ๐น[๐ฅ] is an irreducible polynomial in ๐น[๐ฅ] iff ๐(๐ฅ)
is an irreducible element in ๐น[๐ฅ].
Proof :
Only if part :
Let ๐(๐ฅ) โ ๐น[๐ฅ] be irreducible polynomial in ๐น[๐ฅ].
Let ๐(๐ฅ) = ๐(๐ฅ) โ โ(๐ฅ) for ๐(๐ฅ), โ(๐ฅ) โ ๐น[๐ฅ].
๐ being irreducible, either deg ๐(๐ฅ) = 0 or deg โ(๐ฅ) = 0.
Suppose, deg ๐(๐ฅ) = 0. Then ๐(๐ฅ) is a constant polynomial in ๐น[๐ฅ].
Let ๐(๐ฅ) = ๐ (๐ โ ๐
).
Then ๐ โ 0 and ๐ โ ๐น .
Hence, ๐
exists in ๐น . But this shows ๐(๐ฅ) = ๐ is a unit in ๐น[๐ฅ].
Hence, ๐(๐ฅ) is an irreducible element in ๐น[๐ฅ].
If part :
Let ๐(๐ฅ) โ ๐น[๐ฅ] be an irreducible element in ๐น[๐ฅ].
Then every field being an integral domain with unity, the result follows by Theorem
2.6.3 in 5. [ Every irreducible element in ๐
[๐ฅ] is an irreducible polynomial in ๐
[๐ฅ]. ]
Theorem 1.6.17 : Let ๐ท be UFD and let ๐น be a field of quotients of ๐ท. Let ๐(๐ฅ) โ ๐ท[๐ฅ]
where degree of ๐(๐ฅ) > 0. Then
(i) ๐(๐ฅ) is irreducible in ๐ท[๐ฅ]
Algebra
โน
๐(๐ฅ) is irreducible in ๐น[๐ฅ].
Page No. 109
(ii) ๐(๐ฅ) is primitive in ๐ท[๐ฅ] and ๐(๐ฅ) is irreducible in ๐น[๐ฅ] โน ๐(๐ฅ) is irreducible
in ๐ท[๐ฅ].
Proof :
(i)
Degree of ๐(๐ฅ) > 0 โน ๐(๐ฅ) is non constant polynomial in ๐ท[๐ฅ].
Let ๐(๐ฅ) = ๐(๐ฅ) โ โ(๐ฅ), where ๐(๐ฅ) and โ(๐ฅ) are polynomials of lower degree in ๐น[๐ฅ].
As ๐น is a field of quotients of ๐ท, the coefficients in ๐(๐ฅ) and โ(๐ฅ) are of the form
for
some ๐, ๐ โ ๐ท. By clearing the denominators we get
(๐) ๐(๐ฅ) = ๐ (๐ฅ) โ (๐ฅ)
. . . (1)
where ๐ โ ๐ท and ๐ (๐ฅ), โ (๐ฅ) โ ๐ท[๐ฅ] such that
degree of ๐ (๐ฅ) = degree of ๐(๐ฅ)
and
degree of โ (๐ฅ) = degree of โ(๐ฅ).
Now, by theorem 1, ๐(๐ฅ) = (๐) โ ๐(๐ฅ), ๐ (๐ฅ) = (๐ ) โ ๐ (๐ฅ) and โ (๐ฅ) = (๐ ) โ ๐ (๐ฅ)
where ๐, ๐ , ๐ โ ๐ท and ๐(๐ฅ), ๐ (๐ฅ), ๐ (๐ฅ) โ ๐ท[๐ฅ] are primitive polynomials in ๐ท[๐ฅ].
Thus, from (1), we get,
(๐๐) ๐(๐ฅ) = (๐ ๐ ) ๐ (๐ฅ) ๐ (๐ฅ)
. . . (2)
By theorem 1.4.10, the product ๐ (๐ฅ) โ ๐ (๐ฅ) is also a primitive polynomials in ๐ท[๐ฅ].
But then ๐ ๐ = (๐๐) ๐ข for some unit ๐ข in ๐ท.
Hence, from (2), we get,
(๐๐) ๐(๐ฅ) = (๐๐๐ข) ๐ (๐ฅ) ๐ (๐ฅ)
Hence,
(๐) ๐(๐ฅ) = (๐๐ข) ๐ (๐ฅ) ๐ (๐ฅ)
i.e.
๐(๐ฅ) = (๐๐ข) ๐ (๐ฅ) ๐ (๐ฅ)
This shows that ๐(๐ฅ) has a factorization in ๐ท[๐ฅ].
Thus, we have proved that ๐(๐ฅ) has a factorization in ๐น[๐ฅ] โน ๐(๐ฅ) has a
factorization in ๐ท[๐ฅ].
Hence, ๐(๐ฅ) โ ๐ท[๐ฅ] is irreducible in ๐ท[๐ฅ], then it is irreducible in ๐น[๐ฅ].
(ii) Let ๐(๐ฅ) โ ๐ท[๐ฅ]. As ๐ท[๐ฅ] โ ๐น[๐ฅ].
We get, if ๐(๐ฅ) is reducible in ๐ท[๐ฅ] then ๐(๐ฅ) is reducible in ๐น[๐ฅ].
Hence the result.
Corollary 1.6.18 :
Let ๐ท be a UFD and let ๐น be the field of quotients in ๐ท.
Let ๐(๐ฅ) โ ๐ท[๐ฅ] be a non constant polynomial. Then ๐(๐ฅ) factors into the product of
two polynomials of lower degree in ๐น[๐ฅ] if an only if it has a factorization into
Algebra
Page No. 110
polynomials of same degree in ๐ท[๐ฅ].
Proof :
Only if part :
Let ๐(๐ฅ) = ๐(๐ฅ) โ(๐ฅ) be a factorization of ๐(๐ฅ) in ๐น[๐ฅ] where degree of ๐(๐ฅ) = ๐ and
degree of โ(๐ฅ) = ๐ . As in the proof of the theorem 4(1) we can prove
๐(๐ฅ) = (๐) ๐ (๐ฅ) ๐ (๐ฅ)
where
degree of ๐ (๐ฅ) = degree of ๐(๐ฅ) = ๐
and
degree of ๐ (๐ฅ) = degree of โ(๐ฅ) = ๐
and
๐ (๐ฅ), ๐ (๐ฅ) โ ๐ท[๐ฅ].
If part :
Let ๐(๐ฅ) = ๐(๐ฅ) โ(๐ฅ),
where ๐(๐ฅ), โ(๐ฅ) โ ๐ท[๐ฅ].
Then, ๐(๐ฅ), โ(๐ฅ) โ ๐น[๐ฅ] , since ๐ท[๐ฅ] โ ๐น[๐ฅ], and the result follows.
1.7 Factorization in ๐
[๐ฑ] :
Throughout ๐น denotes a field.
Definition 1.7.1 : Let ๐(๐ฅ), ๐(๐ฅ) โ ๐น[๐ฅ]. We say ๐(๐ฅ) divides ๐(๐ฅ) in ๐น[๐ฅ] if there exists
๐(๐ฅ) โ ๐น[๐ฅ] such that ๐(๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ).
Example 1.7.2: Let
๐(๐ฅ) = 4๐ฅ + 4๐ฅ + 3๐ฅ + 3
and
๐(๐ฅ) = 4๐ฅ + 3
๐(๐ฅ), ๐(๐ฅ) โ ๐ [๐ฅ] and ๐(๐ฅ) = ๐(๐ฅ) โ (๐ฅ + 1) in ๐ [๐ฅ].
Hence, ๐(๐ฅ) divides ๐(๐ฅ) in ๐ [๐ฅ].
๐(๐ฅ)
๐(๐ฅ)
๐(๐ฅ)
4 x2 + 0 โ
x + 3
4 x 3 + 4 x 2 +3 x + 3
x +1
โ
4 x 3 + 0 x 2 +3 x
โ
โ
4x2 + 3
โ
4x2 + 3
โ
0
Theorem 1.7.3 : Let ๐(๐ฅ) be an irreducible polynomial in ๐น[๐ฅ]. If ๐(๐ฅ) divides ๐(๐ฅ) โ ๐ (๐ฅ)
for ๐(๐ฅ), ๐ (๐ฅ) โ ๐น[๐ฅ], then either ๐(๐ฅ)/๐(๐ฅ) or ๐(๐ฅ)/๐ (๐ฅ).
Proof :
Algebra
๐(๐ฅ)/๐(๐ฅ) โ ๐ (๐ฅ)
โน
๐(๐ฅ) โ ๐ (๐ฅ) = ๐(๐ฅ) โ ๐(๐ฅ) for some ๐(๐ฅ) โ ๐น[๐ฅ].
Page No. 111
But this implies that ๐(๐ฅ) โ ๐ (๐ฅ) โ โฉ๐(๐ฅ)โช.
๐(๐ฅ) being an irreducible polynomial in ๐น[๐ฅ], โฉ๐(๐ฅ)โช is a maximal ideal in ๐น[๐ฅ].
As ๐น[๐ฅ] is a commutative ring with unity, โฉ๐(๐ฅ)โช is a prime ideal.
Hence, ๐(๐ฅ) โ ๐ (๐ฅ) โ โฉ๐(๐ฅ)โช implies ๐(๐ฅ) โ โฉ๐(๐ฅ)โช or ๐ (๐ฅ) โ โฉ๐(๐ฅ)โช.
Hence, either ๐(๐ฅ) divides ๐(๐ฅ) or ๐(๐ฅ) divides ๐ (๐ฅ) in ๐น[๐ฅ].
Using the mathematical induction we get,
Corollary 1.7.4 : Let ๐(๐ฅ) โ ๐น[๐ฅ] be an irreducible polynomial. If ๐(๐ฅ)/๐ (๐ฅ) โ
๐ (๐ฅ) โฆ ๐ (๐ฅ). for ๐ (๐ฅ) โ ๐น[๐ฅ]. Then ๐(๐ฅ)/๐ (๐ฅ) for at least one ๐ .
Theorem 1.7.5 : Let ๐(๐ฅ) โ ๐น[๐ฅ] be a non constant polynomial. Then ๐(๐ฅ) can be factored
into a product of irreducible polynomials in ๐น[๐ฅ]. The irreducible polynomials will be
unique except for order and for unit factors in ๐น .
Proof : Let ๐(๐ฅ) โ ๐น[๐ฅ] be a non constant polynomial.
Case (I) : ๐(๐ฅ) is irreducible.
Then there is nothing to prove.
Case (II) : ๐(๐ฅ) is not irreducible.
Let
๐(๐ฅ) = ๐(๐ฅ) โ โ(๐ฅ)
where
degree of ๐(๐ฅ) < degree of ๐(๐ฅ)
and
degree of โ(๐ฅ) < degree of ๐(๐ฅ).
If ๐(๐ฅ) and โ(๐ฅ) both are irreducible then we are through.
If ๐(๐ฅ) and โ(๐ฅ) both are not irreducible then at least one of them factors into
polynomials of lower degree. Continuing this process, we get,
๐(๐ฅ) = ๐ (๐ฅ) โ ๐ (๐ฅ) โ โฆ โ ๐ (๐ฅ)
where each ๐ (๐ฅ) is an irreducible polynomial in ๐น[๐ฅ].
This completes the proof of the first part.
Now, let us assume that
๐(๐ฅ) = ๐ (๐ฅ) โ ๐ (๐ฅ) โ โฆ โ ๐ (๐ฅ)
. . . (1)
๐(๐ฅ) = ๐ (๐ฅ) โ ๐ (๐ฅ) โ โฆ โ ๐ (๐ฅ)
. . . (2)
be two factorizations of ๐(๐ฅ) into the irreducible polynomials in ๐น[๐ฅ].
Now,
๐ (๐ฅ)/๐ (๐ฅ) โ ๐ (๐ฅ) โ โฆ โ ๐ (๐ฅ)
Algebra
implies
Page No. 112
๐ (๐ฅ)/๐ (๐ฅ) โ ๐ (๐ฅ) โ โฆ โ ๐ (๐ฅ)
As ๐ (๐ฅ) is an irreducible polynomial in ๐น[๐ฅ], ๐ (๐ฅ)/๐ (๐ฅ), for some ๐.
Take ๐ (๐ฅ) = ๐ (๐ฅ).
Since ๐ (๐ฅ) is irreducible and ๐ (๐ฅ)/๐ (๐ฅ) we get, ๐ (๐ฅ) = ๐ข ๐ (๐ฅ) where ๐ข โ 0.
Hence, ๐ข โ ๐น is a unit in ๐น .
Thus,
๐ (๐ฅ) โ ๐ (๐ฅ) โ โฆ โ ๐ (๐ฅ) = ๐ (๐ฅ) โ ๐ (๐ฅ) โ โฆ โ ๐ (๐ฅ)
will imply
๐ (๐ฅ) โ ๐ (๐ฅ) โ โฆ โ ๐ (๐ฅ) = ๐ข ๐ (๐ฅ) โ ๐ (๐ฅ) โ โฆ โ ๐ (๐ฅ)
Cancelling ๐ (๐ฅ) from both side, we get,
๐ (๐ฅ) โ โฆ โ ๐ (๐ฅ) = ๐ข โ ๐ (๐ฅ) โ โฆ โ ๐ (๐ฅ)
Arguing as above, we get, ๐ (๐ฅ) = ๐ข ๐ (๐ฅ), where ๐ข โ 0 is a unit in ๐น .
Substituting this value in the above expression and cancelling ๐ (๐ฅ) from both sides, we
get,
๐ (๐ฅ) โ โฆ โ ๐ (๐ฅ) = ๐ข โ ๐ข โ ๐ (๐ฅ) โ โฆ โ ๐ (๐ฅ)
Continuing in this way we arrive at
1 = ๐ข โ ๐ข โ โฆโ ๐ข โ ๐
(๐ฅ) โ ๐
(๐ฅ) โ โฆ โ ๐ (๐ฅ).
But this is possible only when ๐ = ๐. Hence,
1 = ๐ข โ ๐ข โ โฆโ ๐ข
This shows that the irreducible factors ๐ (๐ฅ) and ๐ (๐ฅ) are the same except for order
and unit factors.
1.7.6 Examples โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Ex 1 : Let ๐(๐ฅ) = ๐ฅ + 3๐ฅ + 2๐ฅ + 4 โ ๐ [๐ฅ].
๐ฅ=1
โน
๐(1) = 1 + 3 + 2 + 4 = 10 = 0 in ๐ [๐ฅ].
Hence, ๐ฅ = 1 is a root / zero of ๐(๐ฅ).
๐(๐ฅ) = (๐ฅ โ 1) โ ๐(๐ฅ)
Algebra
Page No. 113
๐(๐ฅ)
๐(๐ฅ)
๐(๐ฅ)
x โ1
x 4 + 3 x 3 +2 x + 4
x 3 + 4 x 2 +4 x + 1
โ
x4 โ x 3
+
4 x3 + 2 x
โ
4 x3 โ 4 x2
+
4x2 + 2x
โ
4x2 โ 4x
+
x+4
x โ1
โ +
5 = 0 in Z5 [x]
Thus, ๐ฅ = 1 is a zero of ๐(๐ฅ) and ๐(๐ฅ) = (๐ฅ + 4๐ฅ + 4๐ฅ + 1) (๐ฅ โ 1).
Let
๐(๐ฅ) = (๐ฅ + 4๐ฅ + 4๐ฅ + 1).
Then,
๐(๐ฅ) โ ๐ (๐ฅ)
. . . (1)
and
๐(1) = 10 โก 0(๐๐๐ 5)
โด
(๐ฅ โ 1) is a factor of ๐(๐ฅ).
x โ1
x 3 + 4 x 2 +4 x + 1
โ
x2 + 4
x3 โ x 2
+
0 + 0 + 4x +1
โ
4x โ 4
+
0
This shows that (๐ฅ โ 1) is a factor of ๐ฅ + 4๐ฅ + 4๐ฅ + 1 and hence ๐ฅ โ 1 is also a
factor of ๐(๐ฅ).
Again, ๐ฅ = 1 โน ๐ฅ + 4 = 0 in ๐ .
Hence, (๐ฅ โ 1) is a factor of ๐ฅ + 4.
x โ1
x 2+ 4
โ
x +1
x2 โ x
+
x+4
x โ1
โ +
0
Algebra
Page No. 114
This shows that (๐ฅ โ 1) is a factor of (๐ฅ + 4) and hence (๐ฅ โ 1) is a factor of ๐(๐ฅ).
Thus, we get,
๐(๐ฅ) = ๐ฅ + 3๐ฅ + 2๐ฅ + 4 = (๐ฅ โ 1) โ (๐ฅ + 1) in ๐ [๐ฅ].
This shows that ๐(๐ฅ) is factored as a product of irreducible polynomials in ๐ [๐ฅ].
These irreducible factors in ๐ [๐ฅ] are defined upto units in ๐ [๐ฅ].
e.g.
(๐ฅ โ 1) โ (๐ฅ + 1) = (๐ฅ โ 1) โ (2๐ฅ โ 2)(3๐ฅ + 3)
Ex 2 : Show that the polynomial (๐ฅ + 4) can be factored into linear factors in ๐ [๐ฅ].
Solution : Let ๐(๐ฅ) = ๐ฅ + 4 in ๐ [๐ฅ].
Then ๐(1) = 1 + 4 = 0 in ๐ .
Hence, ๐ฅ โ 1 is a factor of ๐(๐ฅ).
x โ1
x 3 + x 2 + x +1
x 4 + 0 โ
x 3 +0 โ
x 2 +0 โ
x + 4
x 4 โ x3
โ +
x 3+ 0 โ
x 2
โ
x3 โ x2
+
x 2+0โ
x
โ
x2 โ x
+
x+4
x โ1
โ +
0+0
Thus, ๐(๐ฅ) = (๐ฅ โ 1)(๐ฅ + ๐ฅ + ๐ฅ + 1)
. . . (1)
Consider ๐(๐ฅ) = (๐ฅ + ๐ฅ + ๐ฅ + 1) in ๐ [๐ฅ].
Then ๐(โ1) = โ1 + 1 โ 1 + 1 = 0.
Hence, (๐ฅ + 1) is a factor of ๐(๐ฅ) in ๐ [๐ฅ].
x +1
x 3 + x 2 + x +1
โ
x 2 +1
x3 + x2
โ
x +1
x +1
โ โ
0+0
Thus, ๐(๐ฅ) = (๐ฅ + ๐ฅ + ๐ฅ + 1) = (๐ฅ + 1)(๐ฅ + 1)
Algebra
Page No. 115
Hence, from (1), we get,
๐(๐ฅ) = (๐ฅ โ 1)(๐ฅ + 1)(๐ฅ + 1)
Let
. . . (2)
โ(๐ฅ) = (๐ฅ + 1) in ๐ [๐ฅ].
โ(2) = 4 + 1 = 0.
Hence, (๐ฅ โ 2) is a factor of โ(๐ฅ) in ๐ [๐ฅ].
xโ2
x+2
x2+ 1
โ
x2 โ 2x
+
2x + 1
2x โ 4
โ +
0
We know that, โ๐โ the field of rational numbers is the field of quotients of an integral domain
๐.
Hence applying theorem 1.6.6 to ๐ in particular, we get,
Result : Let ๐(๐ฅ) โ ๐[๐ฅ]. If ๐(๐ฅ) is primitive an irreducible over ๐ then ๐(๐ฅ) is irreducible
over ๐.
โข
Eisenstein Criteria for Irreducibility over ๐ธ :
Theorem 1.7.7 : Let ๐ โ ๐ be a prime. Let ๐(๐ฅ) โ ๐[๐ฅ], where
๐(๐ฅ) = ๐ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ , (๐ โ 0)
such that ๐ โข 0 (๐๐๐ ๐) but ๐ โก 0 (๐๐๐ ๐), for ๐ < ๐, with ๐ โข 0 (๐๐๐ ๐ ). Then
๐(๐ฅ) is irreducible over ๐.
[ ๐ is a prime number such that ๐/๐ , ๐/๐ ,โฆ, ๐/๐
and ๐ โค ๐ and ๐ โค ๐ ].
Proof : Assume that ๐(๐ฅ) is reducible in ๐[๐ฅ].
Let
๐(๐ฅ) = ๐(๐ฅ) โ โ(๐ฅ) ,
where ๐(๐ฅ), โ(๐ฅ) are non-constant polynomials in ๐[๐ฅ] with degree < n.
Let
๐(๐ฅ) = ๐ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ , (๐ โ 0)
and
Algebra
โ(๐ฅ) = ๐ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ , (๐ โ 0)
Page No. 116
(i)
๐ โค๐
โน ๐ โค๐ ๐ .
If ๐/๐ and ๐/๐ then ๐ /๐ ๐ .
Hence, either ๐ โค ๐ or ๐ โค ๐ exclusively.
Assume that ๐ โค ๐ but ๐/๐ .
(ii) ๐ โค ๐
โน ๐โค๐ ๐
โน ๐ โค ๐ and ๐ โค ๐ .
(iii) Thus, ๐/๐ and ๐ โค ๐ .
Find the smallest ๐ such that ๐ โค ๐ . Thus ๐ โค ๐ and ๐ โค ๐ โน ๐ โค ๐ ๐ .
But ๐ ๐ + ๐ ๐
+ โฏ + ๐ ๐ is a coefficient of ๐ฅ in ๐(๐ฅ)โ(๐ฅ).
As ๐(๐ฅ) = ๐(๐ฅ) โ โ(๐ฅ), equating the coefficients of ๐ฅ , we get,
๐ =๐ ๐ +๐ ๐
+ โฏ+ ๐ ๐
As ๐ โค ๐ ๐ , we get ๐ โค ๐ .
But then, by data, as ๐/๐ , ๐/๐ ,โฆ, ๐/๐
and ๐ โค ๐ we must have ๐ = ๐.
Hence, consequently we must have ๐ = ๐. This contradicts our assumption that ๐ < ๐.
Hence, ๐(๐ฅ) does not factor into polynomials in ๐[๐ฅ].
By result 1,
๐(๐ฅ) has no factorization as a product of two polynomials, both of lower degree in
๐[๐ฅ].
Hence, ๐(๐ฅ) is irreducible over ๐.
[ Result 1 : Let ๐(๐ฅ) โ ๐[๐ฅ]. ๐(๐ฅ) factors into a product of two polynomials of lower degrees
๐ and ๐ in ๐[๐ฅ] if and only if it has such a factorization with polynomials of same
degrees ๐ and ๐ in ๐(๐ฅ). ]
Remark 1.7.8 :
๐(๐ฅ) = ๐(๐ฅ) โ โ(๐ฅ)
โบ
๐(๐ฅ + 1) = ๐(๐ฅ + 1) โ โ(๐ฅ + 1),
for ๐(๐ฅ), ๐(๐ฅ), โ(๐ฅ) โ ๐[๐ฅ].
Hence, ๐(๐ฅ) is reducible iff ๐(๐ฅ + 1) is reducible and ๐(๐ฅ) is irreducible iff ๐(๐ฅ + 1) is
irreducible.
Note that, we can take any integer in place of 1.
When the constant term in a polynomial ๐(๐ฅ) โ ๐[๐ฅ] is ±1, we cannot apply Eisenstein
criterion to check the irreducibility of ๐(๐ฅ) over ๐. In such cases we find suitable ๐ก โ ๐
such that ๐(๐ฅ + ๐ก) is irreducible over ๐ (if possible).
To illustrate this, consider the following polynomial
๐(๐ฅ) = ๐ฅ + ๐ฅ โ 2๐ฅ โ 1 โ ๐[๐ฅ].
Algebra
Page No. 117
As there exists no prime in ๐ that divides 1, we cannot apply the criterion directly in this
case.
๐(๐ฅ + 1) = (๐ฅ + 1) + (๐ฅ + 1) โ 2(๐ฅ + 1) โ 1
= ๐ฅ + 4๐ฅ + 3๐ฅ โ 1
Again, we cannot apply the criterion in this case.
๐(๐ฅ โ 1) = (๐ฅ โ 1) + (๐ฅ โ 1) โ 2(๐ฅ โ 1) โ 1
= ๐ฅ โ 2๐ฅ โ ๐ฅ + 1
We cannot apply the criterion for ๐(๐ฅ โ 1) also.
๐(๐ฅ + 2) = ๐ฅ + 7๐ฅ + 14๐ฅ + 7
Here, take ๐ = 8. Then ๐/๐ , ๐/๐ , ๐/๐ and ๐ โค ๐ and ๐ โค ๐ .
Hence, by Eisenstein criterion, ๐(๐ฅ + 2) is irreducible over ๐.
Hence, ๐(๐ฅ) is irreducible over ๐.
1.7.9 Example
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Ex 1 : ๐(๐ฅ) = 8๐ฅ โ 6๐ฅ โ 1 is irreducible over ๐.
Solution : Here ๐ = โ1, ๐ = โ6, ๐ = 0, ๐ = 8.
As ๐ = โ1, Eisenstein criterion cannot be applied.
Hence, consider ๐(๐ฅ + 1).
๐(๐ฅ + 1) = 8(๐ฅ + 1) โ 6(๐ฅ + 1) โ 1
= 8[๐ฅ + 3๐ฅ + 3๐ฅ + 1] โ 6๐ฅ โ 6 โ 1
= 8๐ฅ + 24๐ฅ + 24๐ฅ + 8 โ 6๐ฅ โ 6 โ 1
= 8๐ฅ + 24๐ฅ + 18๐ฅ + 1
Again, we cannot apply the criterion for ๐(๐ฅ + 1).
Hence, consider ๐(๐ฅ โ 1).
๐(๐ฅ โ 1) = 8(๐ฅ โ 1) โ 6(๐ฅ โ 1) โ 1
= 8[๐ฅ โ 3๐ฅ + 3๐ฅ โ 1] โ 6๐ฅ + 6 โ 1
= 8๐ฅ โ 24๐ฅ + 24๐ฅ โ 8 โ 6๐ฅ + 6 โ 1
= 8๐ฅ โ 24๐ฅ + 18๐ฅ โ 3
Take ๐ = 3.
Then, by Eisenstein criterion, ๐(๐ฅ โ 1) is irreducible over ๐.
Hence, ๐(๐ฅ) is irreducible over ๐.
Algebra
Page No. 118
Ex 2 : ๐(๐ฅ) = ๐ฅ + ๐ฅ + ๐ฅ + ๐ฅ + 1 โ ๐[๐ฅ] is irreducible over ๐.
Solution : As the constant term in ๐(๐ฅ) is 1 we cannot apply Eisenstein criterion for ๐(๐ฅ).
Consider ๐(๐ฅ + 1).
Then,
๐(๐ฅ + 1) = (๐ฅ + 1) + (๐ฅ + 1) + (๐ฅ + 1) + (๐ฅ + 1) + 1
= (๐ฅ + 4๐ฅ + 6๐ฅ + 4๐ฅ + 1) + (๐ฅ + 3๐ฅ + 3๐ฅ + 1) +
(๐ฅ + 2๐ฅ + 1) + ๐ฅ + 2
= ๐ฅ + 5๐ฅ + 10๐ฅ + 10๐ฅ + 5
For ๐(๐ฅ + 1),
๐ = 5, ๐ = 10, ๐ = 10, ๐ = 5, ๐ = 1.
Take ๐ = 5.
Then, ๐/๐ , ๐/๐ , ๐/๐ , ๐/๐ and ๐ โค ๐ and ๐ โค ๐ .
Hence, by Eisenstein criterion, ๐(๐ฅ + 1) is irreducible over ๐.
Hence, ๐(๐ฅ) is irreducible over ๐.
Ex 3 : Show that the polynomial 2๐ฅ โ 5๐ฅ + 5 is irreducible over ๐.
Solution : Let
๐(๐ฅ) = 2๐ฅ โ 5๐ฅ + 5
= 5 + 0 โ ๐ฅ + 0 โ ๐ฅ + 0 โ ๐ฅ โ 5๐ฅ + 2๐ฅ
Hence,
๐ = 5, ๐ = 0, ๐ = 0, ๐ = 0, ๐ = โ5, ๐ = 2.
Take ๐ = 5, ๐ is prime in ๐.
๐/๐ , ๐/๐ , ๐/๐ , ๐/๐ and ๐ โค ๐ and ๐ โค ๐ .
Hence, by Eisenstein criterion, ๐(๐ฅ) is irreducible over ๐.
Ex 4 : The cyclotomic polynomial
๐ (๐ฅ) =
=๐ฅ
+๐ฅ
+ โฏ+ ๐ฅ + 1
is irreducible over ๐ for any prime ๐.
Solution : Let
๐(๐ฅ) = ๐ (๐ฅ + 1)
=
=
(๐ฅ + 1) โ 1
(๐ฅ + 1) โ 1
๐ฅ + ๐ถ ๐ฅ
=๐ฅ
Algebra
+ ๐ถ ๐ฅ
+ โฏ+ ๐ถ ๐ฅ
๐ฅ
โ1
+ โฏ+ ๐
Page No. 119
Let ๐(๐ฅ) = ๐ + ๐ ๐ฅ + โฏ + ๐
๐ฅ
. Then ๐ = ๐, ๐ = ๐ถ
Then, for prime number ๐, we get ๐/๐ , โฆ , ๐/๐
, ๐ = 1.
and ๐ โค ๐ and ๐ โค ๐ = 1.
Hence, by Eisenstein criterion, ๐(๐ฅ) is irreducible over ๐.
Now, if ๐ (๐ฅ) = โ (๐ฅ)โ (๐ฅ) in ๐[๐ฅ], then ๐ (๐ฅ + 1) = โ (๐ฅ + 1)โ (๐ฅ + 1) would be
a factorization of ๐(๐ฅ) in ๐[๐ฅ] and hence by result 1, we get ๐ (๐ฅ + 1) has factorization
in ๐[๐ฅ] which is not possible by Eisenstein criterion.
Hence, ๐ (๐ฅ) is irreducible over ๐.
Extra :
Applying the theory in particular for ๐[๐ฅ], we get the following result.
Particular case of theorem 1.2.16 (ii) :
Theorem 1.7.10 : Let ๐(๐ฅ) โ ๐[๐ฅ] be primitive. If ๐(๐ฅ) is reducible over ๐, then ๐(๐ฅ) is
reducible over ๐.
Proof : ๐(๐ฅ) is reducible over ๐. Hence ๐(๐ฅ) = ๐(๐ฅ) โ โ(๐ฅ) where ๐(๐ฅ), โ(๐ฅ) โ ๐[๐ฅ] and
๐(๐ฅ), โ(๐ฅ) are non constant. Then ๐(๐ฅ) =
๐ (๐ฅ) โ โ (๐ฅ), where ๐ (๐ฅ) and โ (๐ฅ)
are primitive polynomials in ๐[๐ฅ]. But then
๐[๐(๐ฅ)] = (๐) [๐ (๐ฅ) โ โ (๐ฅ)]
๐(๐ฅ) being primitive in ๐[๐ฅ], ๐ is the g.c.d. of coefficients in ๐ ๐(๐ฅ).
As the product of two primitive polynomials is a primitive polynomial in
๐ [๐ (๐ฅ) โ โ (๐ฅ)]. Hence ๐ and ๐ are unique upto the units.
As the units in ๐ are ±1, we get ๐ = ±๐.
Hence, ๐(๐ฅ) = ±๐ (๐ฅ) โ ๐ (๐ฅ). This shows that ๐(๐ฅ) is reducible in ๐[๐ฅ].
Particular case of theorem 1.4.10:
Theorem 1.7.11 : If ๐(๐ฅ) and ๐(๐ฅ) are primitive polynomials in ๐[๐ฅ] then so is their
product.
Proof : Suppose ๐(๐ฅ) โ ๐(๐ฅ) is not primitive. Let ๐ be a prime integer in ๐ such that ๐
divides all the coefficients of ๐(๐ฅ) โ ๐(๐ฅ).
Let
๐(๐ฅ) = ๐ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ
and
Algebra
๐(๐ฅ) = ๐ + +๐ ๐ฅ + โฏ + ๐ ๐ฅ .
Page No. 120
๐(๐ฅ) is primitive, hence ๐ does not divide all ๐ , ๐ , โฆ , ๐ .
Let ๐ be the first coefficient of ๐ such that ๐ โค ๐ .
Similarly, let ๐ be the first coefficient in ๐(๐ฅ) such that ๐ โค ๐ .
Now, the coefficient of ๐ฅ
[๐ ๐
+๐ ๐
in ๐(๐ฅ) โ ๐(๐ฅ) is
+ โฏ+ ๐
] + ๐ ๐ + [๐
๐
๐
+๐
๐
+ โฏ+ ๐
๐ ]
As
๐/๐ , ๐/๐ , โฆ, ๐/๐
๐/๐ , ๐/๐ , โฆ, ๐/๐
and
,
we get,
๐/[๐ ๐
and
๐/[๐
๐
+๐ ๐
+๐
+ โฏ+ ๐
๐
+ โฏ+ ๐
]
๐
๐ ]
As ๐ โค ๐ and ๐ โค ๐ and ๐ is prime, we get ๐ โค ๐ ๐ .
Hence, ๐ โค coefficient of ๐ฅ
in ๐(๐ฅ) โ ๐(๐ฅ), which is a contradiction.
This in turn shows that ๐(๐ฅ) โ ๐(๐ฅ) is primitive.
Theorem 1.7.12 : If ๐(๐ฅ) โ ๐[๐ฅ] is reducible over ๐ then it is also reducible over ๐.
๐(๐ฅ) โ ๐[๐ฅ] is reducible over ๐.
Proof :
Let ๐(๐ฅ) = (๐) ๐ (๐ฅ). Where ๐ = g.c.d. of the coefficient of ๐(๐ฅ), and ๐ (๐ฅ) is a
primitive polynomial in ๐[๐ฅ].
Then ๐ (๐ฅ) is reducible over ๐ and hence ๐(๐ฅ) is reducible over ๐.
Theorem 1.7.13 : ๐(๐ฅ) โ ๐[๐ฅ]. ๐(๐ฅ) is reducible over ๐ iff ๐(๐ฅ) is reducible over ๐.
Proof : ๐(๐ฅ) is reducible over ๐ implies ๐(๐ฅ) is reducible over ๐ as ๐[๐ฅ] โ ๐[๐ฅ].
Conversely,
If ๐(๐ฅ) is reducible over ๐ then, ๐(๐ฅ) is reducible over ๐.
Theorem 1.7.14 : Let ๐(๐ฅ) = ๐ + ๐ ๐ฅ + โฏ + ๐
๐ฅ
+ ๐ฅ โ ๐[๐ฅ] be a monic
polynomial. If ๐(๐ฅ) has a root ๐ โ ๐, then ๐ โ ๐ and ๐/๐ .
Proof :
๐โ๐ โน ๐=
๐(๐) = 0
Algebra
for some relatively prime elements ๐, ๐ โ ๐.
โน
๐
โน
๐ +๐
=0
๐
+ โฏ+ ๐
๐
๐
๐
+
๐
๐
=0
Page No. 121
we get, โ
๐
+ โฏ+ ๐
๐
๐
๐
=โ
๐
๐
โน
๐ +๐
โน
๐ ๐
+ ๐ ๐๐
+ โฏ+ ๐
๐
=โ
โน
๐ ๐
+ ๐ ๐๐
+ โฏ+ ๐
๐
โ๐
. . . (1)
โ ๐. Hence ๐ = ± 1.
Hence, by (1), we get,
๐ + ๐ ๐ + โฏ+ ๐
๐
Hence, ๐ = โ๐[๐ + ๐ ๐ + โฏ ± ๐
=±๐ .
].
This shows that ๐/๐ .
As
๐=
=
. . . (2)
±
= ±๐
. . . (3)
From (1), (2) and (3), we get ๐/๐ and ๐ โ ๐.
โขโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Algebra
Page No. 122
CHAPTER III : THEORY OF MODULES
Unit 1 : Modules :
1.1 Modules โ Definition and examples.
1.2 Submodules.
1.3 Homomorphism
1.4 Fundamental theorem of homomorphism and its applications.
1.1 MODULES โ Definition and Examples :
Definition 1.1.1 : Let ๐
be a ring and let โฉ๐, +โช be an abelian group. Let (๐, ๐) โถ ๐๐ be a
mapping of ๐
× ๐ into ๐ such that
i) ๐(๐ + ๐ ) = ๐๐ + ๐๐
ii) (๐ + ๐ )๐ = ๐ ๐ + ๐ ๐
iii) (๐ ๐ )๐ = ๐ (๐ ๐)
iv) 1. ๐ = ๐
๐๐ 1 โ ๐
for all ๐, ๐ , ๐ โ ๐ and ๐, ๐ , ๐ โ ๐
. Then M is called a left R-module.
Remarks 1.1.2 :
a) ๐๐ is called is called the scalar multiplication or just multiplication of ๐ by ๐ on the
left.
b) Right R-modules can also be defined similarly.
c) If ๐
is a commutative ring, every left module will be a right module or vice versa.
d) In a commutative ring ๐
we will not distinguish between left and right R-modules and
we and we simply call them R-modules.
e) If ๐
is a field, the R-module is called a vector space.
Examples 1.1.3 :
1. Any ring ๐
can be regarded as a left R-module.
Define the scalar multiplication ๐๐ for ๐, ๐ โ ๐
as usual multiplication in R.
2. Any additive abelian group ๐บ is a left L-module. For an abelian group โฉ๐บ, +โช define
Algebra
Page No. 123
๐ ๐ = ๐ + ๐ + . . . + ๐ (n times) ,
for n > 0
0โ
๐ = 0
and
(โ๐) ๐ = (โ ๐) + (โ ๐) + . . . + (โ ๐) (n times) ,
for n > 0
Then ๐บ is a L-module.
3. Let โฉ๐บ, +โช be an abelian group.
๐
= {๐/๐: ๐บ โถ ๐บ is a group homomorphism. }
โฉ๐
, +,โโช is a ring, where ๐ + ๐ and ๐ o g are defined by
(๐ + ๐) (๐ฅ) = ๐ (๐ฅ) + ๐ (๐ฅ)
and
โ ๐ฅ โ๐บ
(๐ โ ๐) (๐ฅ) = ๐ [๐ (๐ฅ)]
G is a left R-module where the scalar product ๐๐ฅ is defined by
๐๐ฅ = ๐ (๐ฅ)
for ๐ โ ๐
and ๐ฅ โ ๐บ
4. Let ๐
[๐ฅ] denote a polynomial ring over the ring ๐
in an indeterminate ๐ฅ. Then ๐
[๐ฅ] is
a left R-module under the scalar multiplication defined by
๐ โ ๐(๐ฅ) = ๐ (๐ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ )
= (๐๐ ) + (๐๐ )๐ฅ + โฏ + (๐๐ )๐ฅ
for ๐ โ ๐
and ๐(๐ฅ) โ ๐
[๐ฅ]
where ๐(๐ฅ) = ๐ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ
5. Let ๐
be any ring and let ๐ผ be a left ideal in ๐
. Then โฉ๐ผ, +โช is an abelian group and for
any ๐ โ ๐
and ๐ โ ๐ผ, ๐๐ โ ๐ผ and this scalar multiplication (๐, ๐) โถ ๐๐ from ๐
×
๐ผ โถ ๐ผ satisfies all the conditions stated in the definition. Hence I is a left R-module.
Exercise โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
1. Define right R-module M.
2. Give some examples of right R-modules.
3. Find an example of a left R-module which is not a right R-module.
4. Find an example of a right R-module which is not a left R-module.
โขโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Algebra
Page No. 124
Simple Properties :
Here onwards all modules are left modules otherwise stated.
Theorem 1.1.4 : Let ๐ be any R-module. Then
0โ๐ =0
i)
for all ๐ โ ๐
ii) ๐ โ 0 = 0
for all ๐ โ ๐
iii) (โ๐) โ ๐ = (โ๐๐) = ๐ โ (โ๐ )
for all ๐ โ ๐
Proof :
i)
๐ โ ๐ = (๐ + 0) โ ๐
for all ๐ โ ๐
and ๐ โ ๐
Hence, ๐๐ + 0 = ๐๐ + 0 โ ๐
(see definition)
This shows that 0 โ ๐ = 0
for all ๐ โ ๐
ii) ๐ โ ๐ = ๐ โ (๐ + 0)
for all ๐ โ ๐
and ๐ โ ๐
Thus, ๐๐ + 0 = ๐๐ + ๐ โ 0
(see definition)
But then ๐ โ 0 = 0
for all ๐ โ ๐
as M is a group.
iii) 0 = 0 โ ๐ ,
by (i)
= [๐ + (โ๐)] ๐
= ๐๐ + (โ๐)๐
Hence, โ(๐๐) = (โ๐) ๐
. . . (1)
Also,
0=๐โ0,
by (ii)
= ๐(๐ + (โ๐))
= ๐๐ + ๐(โ๐)
Hence,
โ(๐๐) = ๐(โ๐)
. . . (2)
From (1) and (2), we get,
(โ๐) ๐ = โ(๐๐) = ๐(โ๐),
for all ๐ โ ๐
and ๐ โ ๐
Worked Examples โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Example 1.1.5 : Let M be an R-module. Show that the set ๐ฅ โ ๐
/ ๐ฅ๐ = {0} is an ideal of
R, where ๐ฅ๐ = {๐ฅ๐ / ๐ โ ๐}.
Solution : Let ๐ผ = ๐ฅ โ ๐
/ ๐ฅ๐ = {0} .
(i)
By theorem (1), 0 โ ๐ = 0,
imply
0 โ ๐ = {0}
and hence
0โ๐ผ
Algebra
for all ๐ โ ๐.
Page No. 125
๐ผ โ ๐.
Thus,
(ii) Let ๐ฅ, ๐ฆ โ ๐ผ
๐ฅ, ๐ฆ โ ๐ผ
๐ฅ๐ = {0} and ๐ฆ๐ = {0}
โน
Now, for any ๐ โ ๐, we have
(๐ฅ โ ๐ฆ) ๐ = [๐ฅ + (โ๐ฆ)] ๐
= ๐ฅ๐ + (โ๐ฆ) ๐
(by definition)
= ๐ฅ๐ โ ๐ฆ๐
(by theorem 1.1.4 (iii)
=0 โ 0
(โต ๐ฅ, ๐ฆ โ ๐
imply xm = 0 and ym = 0
Thus,
(๐ฅ โ ๐ฆ) ๐ = 0 for all ๐ โ ๐.
Hence,
(๐ฅ โ ๐ฆ) ๐ = {0}.
This shows that ๐ฅ โ ๐ฆ โ ๐ผ, for all ๐ฅ, ๐ฆ โ ๐ผ.
(iii) Let ๐ โ ๐
and ๐ฅ โ ๐ผ.
๐ฅโ๐ผ
โน
๐ฅ๐ = {0}
โน
๐ฅโ๐ =0,
Hence,
for each ๐ โ ๐.
{r x} m = (r) (x m) = r . 0 = 0,
(by theorem 1.1.4)
Hence, for ๐ โ ๐
and ๐ฅ โ ๐ผ, we get ๐๐ฅ โ ๐ผ.
Similarly,
(๐ฅ๐) ๐ = ๐ฅ (๐๐) = 0 ,
as ๐ฅ โ ๐ผ and ๐๐ โ ๐, for any ๐ โ ๐
.
Hence, given ๐ฅ โ ๐ผ and ๐ โ ๐
, ๐๐ฅ โ ๐ผ and ๐ฅ๐ โ ๐ผ.
From (i), (ii) and (iii), we get,
๐ผ is an ideal in ๐
.
Remark : Let ๐ be an R-module.
If the ideal ๐ฅ โ ๐
/ ๐ฅ๐ = {0} is the zero ideal in ๐
.
i.e., if ๐ฅ โ ๐
/ ๐ฅ๐ = {0} = {0} , then M is called a faithful module.
Example 1.1.6 : Let ๐ and ๐ be an R-modules. Define โ + โ in ๐ × ๐ by
(๐ฅ, ๐ฆ) + (๐ง, ๐ก) = (๐ฅ + ๐ง, ๐ฆ + ๐ก)
for (๐ฅ, ๐ฆ), (๐ง, ๐ก) โ ๐ × ๐
and the scalar multiplication โฒ โ โฒ by
๐ โ (๐ฅ, ๐ฆ) = (๐ โ ๐ฅ, ๐ โ ๐ฆ)
for all ๐ โ ๐
, (๐ฅ, ๐ฆ) โ ๐
× ๐
Then, it can easily verified that ๐ × ๐ is an R-module.
Algebra
Page No. 126
Remarks 1.1.7 :
(1) The R-module ๐ × ๐ is called the direct product (external) of R-modules ๐ and ๐.
(2) On the same line we can define the direct product (external) of any finite number of Rmodules.
Example 1.1.8 : Let ๐
be a ring. Define
๐
= {(๐ฅ , ๐ฅ , โฆ , ๐ฅ ) / ๐ฅ โ ๐
} for ๐ โ ๐.
Then show that ๐
is a R-module.
Solution : We know that every ring ๐
is an R-module. Hence every ring ๐
is an R-module.
Hence, ๐
= ๐
× ๐
× โฆ × ๐
is an R-module (being the direct product of n R-modules)
by Example 1.1.6.
[Here in ๐
, for ๐ฅ, ๐ฆ โ ๐
and where,
๐ฅ = (๐ฅ , ๐ฅ , โฆ , ๐ฅ ),
and
๐ฆ = (๐ฆ , ๐ฆ , โฆ , ๐ฆ ),
๐ฅ โ๐
๐ฆ โ๐
we have,
๐ฅ + ๐ฆ = (๐ฅ + ๐ฆ , ๐ฅ + ๐ฆ โฆ , ๐ฅ + ๐ฆ )
and
๐ โ ๐ฅ = ๐ฅ = (๐๐ฅ , ๐๐ฅ , โฆ , ๐๐ฅ )]
Exercise โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
1. Let ๐
be a field. Let ๐ = {๐ ๐ โถ ๐
โถ ๐
be a ring homomorphism} show that ๐ is a
vector space over ๐
.
2. Let ๐ be a left R-module. Define (๐ , ๐) โถ ๐๐ for each ๐ โ ๐ and ๐ โ ๐
as a mapping
from ๐ × ๐
to ๐. Show that ๐ is a right module.
2.
Let ๐ be an R-module. For ๐ฅ โ ๐, show that {๐ โ ๐
/ ๐๐ฅ = 0} is a left ideal in ๐
.
โขโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
1.2 SUBMODULES :
Definition 1.2.1: Let ๐ be an R-module. A non empty subset ๐ of an R-module ๐ is called
R-submodule (or submodule) of ๐ if
(i)
๐โ๐ โ๐,
for all ๐, ๐ โ ๐
(ii)
๐โ๐ โ๐,
for all ๐ โ ๐
, ๐ โ ๐
Algebra
Page No. 127
Remark 1.2.2 :
(i)
Not every subset of an R-module ๐ is a submodule of ๐.
(ii) If ๐ is a R-submodule of an R-module ๐ then โฉ๐, +โช is a (normal) subgroup of โฉ๐, +โช
which is closed under scalar multiplication.
(iii) If ๐ is a R-submodule of an R-module of ๐, then ๐ itself is a R-module.
(iv) {0} and ๐ are trivial submodule of an R-module ๐.
Examples 1.2.3 :
1.
Let ๐
be a ring. Then we know that the ring ๐
is an R-module. Any left ideal ๐ผ of ๐
is a
R-submodule.
2.
Let ๐ be any R-module. Let ๐ฅ , ๐ฅ , โฆ , ๐ฅ โ ๐ (๐ is finite). Then the set
๐=
n
โ
๐ ๐ฅ / ๐ โ๐
i=1
is a submodule of ๐.
Solution : Let ๐, ๐ โ ๐ โน ๐ =
n
โ
๐ ๐ฅ and ๐ =
i=1
n
โ
๐โฒ ๐ฅ
i=1
where ๐ , ๐โฒ โ ๐
.
(i)
๐โ๐ =
n
โ
๐ ๐ฅ โ
i=1
Hence,
n
โ
๐โฒ ๐ฅ
i=1
๐โ๐ =
n
โ
(๐ โ ๐ ) ๐ฅ
i=1
as
๐ โ๐ โ๐
,
for each i, we get
๐โ๐ โ๐
(ii) ๐ โ ๐ = ๐ โ
n
โ
๐ ๐ฅ
i=1
Hence, ๐ โ ๐ =
n
โ
(๐ โ ๐ ) ๐ฅ
i=1
as
๐, ๐ โ ๐
,
for each i, we get
๐โ๐ โ๐
Thus, for any ๐, ๐ โ ๐ and ๐ โ ๐
, we have,
๐โ๐ โ๐
and
๐ โ ๐ โ ๐.
Hence, N is a submodule of R-module M.
Algebra
Page No. 128
Remarks 1.2.4 :
(i)
As a special case for example 2 we get for any R-module M, the set
๐
๐ฅ = {๐๐ฅ / ๐ โ ๐
}
is a R-module of M, for any ๐ฅ โ ๐
.
(ii) If 1 โ ๐
, then the submodule Rx will contains the element x as ๐ฅ = 1 โ ๐ฅ.
Example 1.2.5 : Let ๐ be an R-module and ๐ฅ โ ๐.
Define
๐ = {๐๐ฅ + ๐๐ฅ / ๐ โ ๐
๐๐๐ ๐ โ ๐}.
Then, ๐ is a R-submodule of ๐ containing ๐ฅ.
Solution : Obviously, โฉ๐, +โช is a (abelian) subgroup of โฉ๐, +โช.
Hence, only to check that ๐(๐๐ฅ + ๐๐ฅ) โ ๐ for any ๐ โ ๐
and (๐๐ฅ + ๐๐ฅ) โ ๐.
Case I : ๐ > 0
๐ (๐๐ฅ + ๐๐ฅ) = ๐ [ ๐๐ฅ + (๐ฅ + ๐ฅ + โฏ + ๐ฅ ๐ ๐ก๐๐๐๐ )]
= ๐(๐๐ฅ) + (๐๐ฅ + ๐๐ฅ + โฏ + ๐๐ฅ ๐ ๐ก๐๐๐๐ )] ... by the definition of module
= (๐๐)๐ฅ + (๐ + ๐ + โฏ + ๐ ๐ ๐ก๐๐๐๐ )๐ฅ ]
... by the definition of module
= [๐๐ + (๐ + ๐ + โฏ + ๐ ๐ ๐ก๐๐๐๐ )] ๐ฅ
... by the definition of module
โฆโฆ. where ๐ข = [๐๐ + (๐ + ๐ + โฏ + ๐ ๐ ๐ก๐๐๐๐ )]
=๐ขโ๐ฅ
As ๐ข โ ๐
, we get ๐ (๐๐ฅ + ๐๐ฅ) โ ๐.
Case II : ๐ < 0.
๐ (๐๐ฅ + ๐๐ฅ) = ๐ [ ๐๐ฅ + ((โ๐ฅ) + (โ๐ฅ) + โฏ + (โ๐ฅ) ๐ ๐ก๐๐๐๐ )]
= ๐(๐๐ฅ) + ๐ (โ๐ฅ) + ๐ (โ๐ฅ) + โฏ + ๐ (โ๐ฅ) ๐ ๐ก๐๐๐๐ )
= (๐๐)๐ฅ + (โ๐) ๐ฅ + (โ๐) ๐ฅ + โฏ + (โ๐) ๐ฅ ๐ ๐ก๐๐๐๐ )๐ฅ ]
... by the property of the module Theorem 1.1.4
= [(๐๐) + (โ๐) + (โ๐) + โฏ + (โ๐)] ๐ฅ... by the definition of module
=๐กโ๐ฅ
โฆโฆ. where ๐ก = ๐๐ + [(โ๐) + (โ๐) + โฏ + (โ๐) (๐ ๐ก๐๐๐๐ )]
As ๐ก โ ๐
we get ๐ (๐๐ฅ + ๐๐ฅ) โ ๐ when n < 0.
Case III : ๐ = 0
๐ (๐๐ฅ + ๐๐ฅ) = ๐ [ ๐๐ฅ + 0 โ ๐ฅ]
= ๐ [ ๐๐ฅ + 0]
โฆ since n = 0
โฆ since 0 โ ๐ฅ = 0
= ๐ (๐๐ฅ) + ๐ โ 0
= (๐๐)๐ฅ + 0 โ ๐ฅ โ ๐
โฆ as ๐๐ โ ๐
and 0 โ ๐
= (๐๐)๐ฅ + 0
Algebra
Page No. 129
Thus, from all the cases we get ๐ (๐๐ฅ + ๐๐ฅ) โ ๐.
Hence, ๐ is a R-submodule of the module ๐.
Now selecting ๐ = 0 and ๐ = 1 (1 โ ๐) we get
0โ๐ฅ+1โ๐ฅ =๐ฅ โ๐
Thus, the R-submodule ๐ contains the element ๐ฅ.
Remarks 1.2.6:
(1) If ๐ is a submodule of ๐ containing ๐ฅ, then ๐ โ ๐พ. For any ๐ โ ๐
, ๐๐ฅ โ ๐พ and for any
๐ โ ๐,
๐๐ฅ = ๐ฅ + ๐ฅ + โฏ + ๐ฅ (๐ ๐ก๐๐๐๐ ) โ ๐พ,
K being a submodule of ๐.
But then (๐๐ฅ + ๐๐ฅ) โ ๐พ for any ๐ โ ๐
and ๐ โ ๐.
Hence, ๐ โ ๐พ.
Thus, ๐ is the smallest submodule of ๐ containing ๐ฅ. Generally we denote ๐ by โฉ๐ฅโช.
(2) If 1 โ ๐
, then for ๐ โ ๐
and ๐ โ ๐
๐๐ฅ + ๐๐ฅ = { ๐ + [1 + โฆ + 1(๐ ๐ก๐๐๐๐ ) ] } ๐ฅ
= ๐ก๐ฅ
where ๐ก = ๐ + (1 + โฆ + 1) ๐ times
as ๐ก โ ๐
we get ๐๐ฅ + ๐๐ฅ โ ๐
๐ฅ
Hence, ๐ โ ๐
๐ฅ. But ๐ฅ โ ๐ implies ๐
๐ฅ โ ๐.
Thus, ๐ = ๐
๐ฅ = โฉ๐ฅโช;
if 1 โ ๐
.
Example 1.2.7 : Let M be an R-module. Define
๐
๐ =
n
โ
๐ ๐ / ๐ โ ๐
, ๐ โ ๐ ๐๐๐ ๐ ๐๐ ๐๐๐๐๐ก๐
i=1
Then RM is a submodule of M.
Solution : Let ๐, ๐ โ ๐
๐ and ๐ โ ๐
.
Then,
๐=
n
โ
๐ ๐,
๐ โ ๐
, ๐ โ ๐ and n is finite.
๐ ๐ก,
๐ โ ๐
, ๐ก โ ๐ and k is finite.
i=1
and
๐=
k
โ
i=1
Algebra
Page No. 130
(i)
๐โ๐ =
n
โ
๐ ๐ โ
i=1
k
โ
๐ ๐ก
i=1
= ๐ ๐ + ๐ ๐ + โฏ + ๐ ๐ + (โ๐ ) ๐ก + (โ๐ ) ๐ก + โฏ + (โ๐ ) ๐ก
โ ๐
๐
as ๐ โ ๐
, (โ๐ ) โ ๐
and the sum contains at most ๐ + ๐ elements.
n
โ
(ii) ๐ โ ๐ = ๐
๐ ๐
i=1
=
n
โ
๐ (๐ ๐ )
i=1
=
n
โ
(๐๐)๐
i=1
as ๐ ๐ โ ๐
(for each i) we get ๐ โ ๐ โ ๐
๐.
Thus, from (i) and (ii), we get, RM is a R-submodule of M.
Theorem 1.2.8 : Let M be an R-module. For any two submodules ๐ and
๐ of M,
๐ + ๐ is a submodule of M, containing ๐ and ๐ both.
Proof :
๐ + ๐ = {๐ + ๐ / ๐ โ ๐ , ๐ โ ๐ }.
Obviously, if ๐, ๐ โ ๐ + ๐
then ๐ โ ๐ โ ๐ + ๐ . (as โฉ๐ , +โช and โฉ๐ , +โช are
subgroups of an abelian group โฉ๐, +โช).
Hence, โฉ๐ + ๐ , +โช is a normal subgroup of โฉ๐, +โช.
Let
๐ โ ๐
and ๐ฅ โ ๐ + ๐ .
๐ฅ โ๐ +๐
โน
๐ฅ =๐ +๐
๐๐ฅ = ๐ (๐ + ๐ ) = ๐ ๐ + ๐๐
for ๐ โ ๐ , ๐ โ ๐
(Since ๐ , ๐ โ ๐ and M is a R-module)
Now, as ๐ is a R-submodule, ๐ ๐ โ ๐ .
Similarly,
๐ is a R-submodule will imply that ๐ ๐ โ ๐ .
Therefore, ๐๐ + ๐๐ โ ๐ + ๐ .
Thus,
๐๐ฅ = ๐ ๐ + ๐๐ โ ๐ + ๐ ,
for any ๐ โ ๐
and ๐ฅ โ ๐ + ๐ .
This shows that ๐ + ๐ is a submodule of an R-module M. ๐ โ ๐ can be written as
๐ = ๐ + 0, 0 โ ๐ .
Hence, ๐ โ ๐ + ๐ .
Algebra
Page No. 131
Similarly, ๐ โ ๐ + ๐ .
More generally, we get,
If {๐ }, 1 โค ๐ โค ๐ is the family of submodules of a module M. Then
k
โ Ni = {๐ฅ
+ ๐ฅ + โฏ + ๐ฅ /๐ฅ โ ๐ , 1 โค ๐ โค ๐}
i=1
is the smallest submodule of m containing each ๐ , (1 โค ๐ โค ๐)
Let ๐ = {๐ฅ + ๐ฅ + โฏ + ๐ฅ /๐ฅ โ ๐ , 1 โค ๐ โค ๐}. Then ๐ โ ๐ as ๐ โ ๐ โ ๐.
Proof :
(I) (i) If ๐ฅ + ๐ฅ + โฏ + ๐ฅ and ๐ฆ + ๐ฆ + โฏ + ๐ฆ are elements of S, then
(๐ฅ + ๐ฅ + โฏ + ๐ฅ ) โ (๐ฆ + ๐ฆ + โฏ + ๐ฆ )
= (๐ฅ โ ๐ฆ ) + (๐ฅ โ ๐ฆ ) + โฏ + (๐ฅ โ ๐ฆ )
as (๐ฅ โ ๐ฆ ) โ ๐ for each ๐, 1 โค ๐ โค ๐
โ ๐
(ii)
Further if ๐ โ ๐
and ๐ฅ + ๐ฅ + โฏ + ๐ฅ โ ๐ then
๐ โ (๐ฅ + ๐ฅ + โฏ + ๐ฅ ) = ๐ โ ๐ฅ + ๐ โ ๐ฅ + โฏ + ๐ โ ๐ฅ
โ๐,
as ๐ โ ๐ฅ โ ๐ for each ๐, 1 โค ๐ โค ๐
Thus, from (i) and (ii), S is a submodule of M.
(II) Let ๐ฅ โ ๐ then ๐ฅ = 0 + 0 + โฏ + 0 + ๐ฅ + 0 + โฏ + 0
โ๐
place
Hence, ๐ฅ โ ๐. This shows that ๐ โ ๐.
Thus, we get, ๐ โ ๐
Hence,
k
โ Ni
โ ๐, 1 โค ๐ โค ๐.
โ ๐, S being a submodule of M.
i=1
(III) Let T is any other submodules o M containing each ๐ , 1 โค ๐ โค ๐. Then obviously
๐ โ ๐.
From (I), (II) and (III) we get, S is the smallest submodule of M containing each ๐ ,
1 โค ๐ โค ๐.
Hence,
๐=
k
โ Ni .
i=1
Theorem 8.2.9 :
Let M be an R-module. If ๐ and ๐ are R-submodules of M, then
๐ โฉ ๐ is a submodule of M.
Proof : As 0 โ ๐ โฉ ๐ , we get ๐ โฉ ๐ โ ๐.
Algebra
Page No. 132
Let ๐ฅ, ๐ฆ โ ๐ โฉ ๐ then ๐ฅ, ๐ฆ โ ๐ and ๐ is a submodule of M will give ๐ฅ โ ๐ฆ โ ๐ .
Similarly,
๐ฅ, ๐ฆ โ ๐ and ๐ is a submodule of M will give ๐ฅ โ ๐ฆ โ ๐ .
Thus, ๐ฅ, ๐ฆ โ ๐ โฉ ๐ โน ๐ฅ โ ๐ฆ โ ๐ โฉ ๐
Again, for any ๐ โ ๐
and any ๐ฅ โ ๐ โฉ ๐ , we get,
๐๐ฅ โ ๐ and ๐๐ฅ โ ๐ , as ๐ and ๐ are submodules of M.
But then ๐๐ฅ โ ๐ โฉ ๐ .
Thus,
๐ฅโ๐ฆ โ๐ โฉ๐ ,
for all ๐ฅ, ๐ฆ โ ๐ โฉ ๐
and
๐๐ฅ โ ๐ โฉ ๐ ,
for all ๐ฅ โ ๐ โฉ ๐ , ๐ โ ๐
Hence, ๐ โฉ ๐ is a R-submodules of M.
Remark 1.2.10 : More generally, any arbitrary intersection of R-submodules of a given Rmodule M is a R-submodules of M.
i.e.
if {๐ / ๐ผ โ ฮ} is a family of R-submodules of a given R-submodule M, then
๐
is a R โ submodule of M.
โฮ
Theorem 1.2.11 : ๐ด, ๐ต, ๐ถ are R-submodules of an R-submodule ๐ such that ๐ด โ ๐ต. Then
๐ด + (๐ต โฉ ๐ถ) = ๐ต โฉ (๐ด + ๐ถ)
Proof :
As ๐ด โ ๐ต and ๐ด โ ๐ด + ๐ถ, we get,
๐ด โ ๐ต โฉ (๐ด + ๐ถ)
. . . (1)
Again, ๐ต โฉ ๐ถ โ ๐ต and ๐ต โฉ ๐ถ โ ๐ถ and ๐ถ โ ๐ด + ๐ถ will imply
๐ต โฉ ๐ถ โ ๐ต โฉ (๐ด + ๐ถ)
. . . (2)
From (1) and (2), we get,
๐ด + (๐ต โฉ ๐ถ) โ ๐ต โฉ (๐ด + ๐ถ)
. . . (I)
(Since ๐ด and ๐ต โฉ ๐ถ are normal subgroups of โฉ๐, +โช )
Now, let ๐ฅ โ ๐ต โฉ (๐ด + ๐ถ) then ๐ฅ โ ๐ต and ๐ฅ โ ๐ด + ๐ถ.
Hence,
๐ฅ = ๐ + ๐,
for some ๐ โ ๐ด and ๐ โ ๐ถ
๐ โ ๐ด and
๐ดโ ๐ต
โน
๐โ๐ต
๐ฅ โ ๐ต and
๐โ ๐ต
โน
๐ฅ โ ๐ โ ๐ต (Since B is submodule)
Thus, c = x โ a will imply ๐ โ ๐ต. But then x = a + c will imply ๐ฅ โ ๐ด + (๐ต โฉ ๐ถ).
As ๐ โ ๐ด and ๐ โ ๐ต โฉ ๐ถ.
Algebra
Page No. 133
This shows that
๐ต โฉ (๐ด + ๐ถ) โ ๐ด + (๐ต โฉ ๐ถ)
. . . (II)
From (I) and (II), we get
๐ด + (๐ต โฉ ๐ถ) = ๐ต โฉ (๐ด + ๐ถ)
Worked Examples 1.2.12 โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Example 1 : Show by an example that union of any two submodules of an R-module need
not be a submodule.
Solution : Consider Z as Z-module and let
๐ =< 2 > = {0, ±2, ±4, โฆ }
๐ =< 3 > = {0, ±3, ±6, โฆ }
Then ๐ and ๐ are submodules of the Z-module Z but ๐ โ๐ is not a Z-module.
Example 2 : Show that union of any chain of submodules of a given R-module M is a Rsubmodule of M.
Solution : Let ๐ โ ๐ โ โฏ be any chain of submodules of a given R-module M. to prove
that
U
๐ is a submodule of M.
i=1
(i) Obviously,
U
๐ โ ๐.
i=1
(ii)
Let ๐, ๐ โ
U
๐ . Then ๐ โ ๐ and ๐ โ ๐ for some i and j.
i=1
If ๐ โค ๐ then ๐ โ ๐ and hence ๐, ๐ โ ๐ is a submodule of M, ๐ โ ๐ โ ๐ and
hence
๐ โ๐ โU ๐ .
i=1
(iii)
Let ๐ โ ๐
and ๐ โ
U
๐ implies ๐ โ ๐ for some i.
i=1
As ๐ is a submodule of M, ๐๐ โ ๐ and hence ๐๐ โ
U
๐.
i=1
From (i), (ii) and (iii) we get
U
๐ is a submodule of M.
i=1
Example 3 : Give examples of three R-submodules A, B, C such that
Algebra
Page No. 134
๐ด โฉ (๐ต + ๐ถ) โ (๐ด โฉ ๐ต) + (๐ด โฉ ๐ถ)
Solution : Consider the module โ( ) over โ. [โ( ) is a vector space over the field โ ].
Let ๐ต = {(๐ฅ, 0)/ ๐ฅ โ โ}, ๐ถ = {(0, ๐ฆ)/ ๐ฆ โ โ} and
๐ด = {(๐ง, ๐ง) / ๐ง โ โ}
Clearly, A, B, C are submodules of the R-module โ( ) .
Then,
๐ต + ๐ถ = โ(
)
and
๐ด โฉ (๐ต + ๐ถ) = ๐ด โฉ โ(
Now,
๐ด โฉ B = (0, 0)
)
=๐ด
and
. . . (I)
๐ด โฉ ๐ถ = (0, 0)
Hence,
(๐ด โฉ ๐ต) + (๐ด โฉ ๐ถ) = {(0, 0)}
. . . (II)
Hence, from (I) and (II), we get,
๐ด โฉ (๐ต + ๐ถ) โ (๐ด โฉ ๐ต) + (๐ด โฉ ๐ถ)
Definition 1.2.13 : Simple Module :
A R-module M is called simple if its only submodules are {0} and M.
Theorem 1.2.14 : Let R be a ring with unity. Let ๐ โ {0}, be am R-module. Then M is
simple iff M = Rx for any ๐ฅ โ 0 in M.
Proof : Only if part :
Let M be a simple R-module. Let ๐ฅ โ 0. Then ๐
๐ฅ = {๐๐ฅ / ๐ โ ๐
} is a submodule of M
containing x. (See remark (1) of example 2).
As ๐
๐ฅ โ {0} and as M is a simple module, Rx = M. Thus M = Rx for any ๐ฅ โ 0 in M.
If part :
Let M = Rx for each ๐ฅ โ 0 in M.
To prove that M is a simple module.
Let N be a nonzero submodule of M. Select any ๐ฅ โ 0 in N.
Then by assumption, M = Rx. As ๐ฅ โ ๐ we get ๐
๐ฅ โ ๐
i.e.
๐ โ ๐ and hence N = M.
This shows that M is a simple module.
We know that intersection of any number of submodules of a given R-module ๐ is a
submodule of ๐. as any non-empty subset ๐ of an R-module ๐ need not be a R-module, we
introduce the concept of submodule generated by ๐.
Algebra
Page No. 135
Let ๐ be any nonempty subset of an R-module ๐. The submodule
Definition 1.2.15 :
generated by ๐ in ๐ is the smallest submodule of ๐ containing ๐.
This is denoted by โฉ๐โช.
Thus,
โฉ๐โช = โ{๐ / ๐ is a submodule containing S}
If ๐ = {๐ฅ , ๐ฅ , โฆ , ๐ฅ } is a finite set, then โฉ๐โช is also written as โฉ๐ฅ , ๐ฅ , โฆ , ๐ฅ โช.
An R-module ๐ is called finitely generated if ๐ = โฉ๐ฅ , ๐ฅ , โฆ , ๐ฅ โช for
Definition 1.2.16 :
each ๐ฅ โ ๐, 1 โค ๐ โค ๐.
The elements ๐ฅ , ๐ฅ , โฆ , ๐ฅ are said to generate ๐.
An R-module ๐ is called a cyclic module if ๐ = โฉ๐ฅโช, for some ๐ฅ โ ๐.
Definition 1.2.17 :
Theorem 1.2.18 : Let ๐ be an R-module. Let ๐ = โฉ๐ฅ , ๐ฅ , โฆ , ๐ฅ โช. Then
๐ = {๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ / ๐ โ ๐
, 1 โค ๐ โค ๐}
In this case we write ๐ =
n
โ Rxi .
i=1
Proof : Let ๐ = {๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ / ๐ โ ๐
, 1 โค ๐ โค ๐} then S is a submodule of M.
1โ๐
โน
1 โ ๐ฅ โ ๐
๐ฅ
Again ๐
๐ฅ โ ๐
Hence
๐ฅ โ๐
for each ๐, 1 โค ๐ โค ๐.
for each ๐, 1 โค ๐ โค ๐.
for each ๐, 1 โค ๐ โค ๐.
If ๐ is any other submodule containing {๐ฅ , ๐ฅ , โฆ , ๐ฅ } then by the definition of
submodule it follows that
๐ ๐ฅ + ๐ ๐ฅ + โฏ + ๐ ๐ฅ โ ๐ for ๐ โ ๐
This will imply ๐ โ ๐.
Thus, we have proved that S is the submodule of M containing {๐ฅ , ๐ฅ , โฆ , ๐ฅ }.
Hence, โฉ๐ฅ , ๐ฅ , โฆ , ๐ฅ โช = ๐.
Hence, by data ๐ = ๐.
Remark 1.2.19 : The set of generators of a module need not be unique.
Let ๐ = {๐(๐ฅ) โ ๐น[๐ฅ] / degree of ๐(๐ฅ) โค ๐}. Then M is a vector space over the field.
Then both {1, ๐ฅ, ๐ฅ , โฆ , ๐ฅ } and {1, 1 + ๐ฅ, ๐ฅ , โฆ , ๐ฅ } will generate M.
Algebra
Page No. 136
Definition 1.2.20 : Quotient Modules :
Let ๐ be an R-module and N be a submodule of ๐. Then โฉ๐, +โช is a normal subgroup of
โฉ๐, +โช and hence consider
= the set of cosets [right / left] of N in M
= {๐ + ๐ / ๐ โ ๐}
Define addition and the Scalar multiplication on
by
(i) (๐ + ๐) + (๐ + ๐) = (๐ + ๐ ) + ๐
(ii) ๐ โ (๐ + ๐) = ๐ โ ๐ + ๐
for ๐ , ๐ , ๐ โ ๐ and ๐ โ ๐
.
๐
๐
Then it can be easily verified that โฉ , +, โโช is a R-module. This R-module is called the
quotient module of ๐ by the submodule ๐.
Definition 1.2.21 : Submodule Generated by A :
Let ๐ be an R-module and let ๐ด โ ๐. The smallest submodule of ๐ containing the set ๐ด
is called the submodule generated by ๐ด and is denoted by โฉ๐ดโช. Thus,
โฉ๐ดโช = โ {๐ / ๐ is a submodule of M such that ๐ด โ ๐}
. . . (1)
As ๐ is a submodule of ๐ containing ๐ด the family of sets representing R.H.S. of (1) is
non empty.
1.3 Homomorphism :
Definition 1.3.1 : Let ๐ and ๐ be R-modules. A mapping ๐: ๐ โถ ๐ is called Rhomorphism or a module homorphism if it satisfy the following conditions.
(i)
๐(๐ฅ + ๐ฆ) = ๐(๐ฅ) + ๐(๐ฆ)
(ii) ๐(๐๐ฅ) = ๐ โ ๐(๐ฅ)
for all ๐ฅ, ๐ฆ โ ๐ and ๐ โ ๐
.
Remarks 1.3.2:
(i)
If ๐: ๐ โถ ๐ is a module homorphism, then f(0) = 0, ๐(โ๐ฅ) = โ ๐(๐ฅ) and hence
๐(๐ฅ โ ๐ฆ) = ๐(๐ฅ) โ ๐(๐ฆ) ,
for ๐ฅ, ๐ฆ โ ๐.
(ii)
The collection of all R-homorphisms ๐: ๐ โถ ๐ is denoted by Hom (M, N).
(iii)
A R-homorphism ๐: ๐ โถ ๐ is called an endomorphism on ๐ and the set of
Algebra
Page No. 137
endomorphism on ๐ is denoted by ๐๐๐ (๐, ๐).
Examples 1.3.3 :
Ex 1. Let ๐ and ๐ be R-modules and define ๐: ๐ โถ ๐ by f(m) = 0 for each ๐ โ ๐. Then f
is an R-homomorphism and is called a zero homorphism.
Ex 2. Let ๐ be an R-module. Define ๐ โถ ๐ โถ ๐ by i(m) = m for each ๐ โ ๐. Then the
identity map is an R-endomorphism.
Ex 3. Let ๐
be a commutative ring and let ๐ be an R-module. Fix up any ๐ โ ๐
. Define the
map ๐ โถ ๐ โถ ๐ by
๐(๐) = ๐ โ ๐,
for each ๐ โ ๐
Then f is an endomorphism.
Solution : Let ๐ , ๐ โ ๐.
Then ๐(๐ + ๐ ) = ๐ โ (๐ + ๐ )
= ๐๐ + ๐๐
Thus, ๐(๐ + ๐ ) = ๐(๐ ) + ๐(๐ )
Again for ๐ โ ๐ and ๐ โ ๐
we get,
๐(๐ ๐ ) = ๐ โ (๐ ๐ )
= (๐ โ ๐ ) ๐
= (๐ โ ๐) ๐
... Since R is commutative.
= ๐ โ (๐ ๐ )
= ๐ โ ๐(๐ )
Thus, ๐(๐ + ๐ ) = ๐(๐ ) + ๐(๐ )
๐(๐ ๐ ) = ๐ โ ๐(๐ )
and
... for all ๐ , ๐ โ ๐, ๐ โ ๐
Hence, f is an R-endomorphism.
Ex 4. Let R be a ring. Consider the module ๐
(
1.1.4 problem 4). Define ๐ โถ ๐
(
)
)
over R and the ring R as an R-module. (See
โถ ๐
by
๐(๐ฅ , ๐ฅ , โฆ , ๐ฅ ) = ๐ฅ
for a fixed ๐, 1 โค ๐ โค ๐
Then f is a R-homomorphism.
Solution :
Let (๐ฅ , ๐ฅ , โฆ , ๐ฅ ) โ ๐
(
)
and (๐ฆ , ๐ฆ , โฆ , ๐ฆ ) โ ๐
( ) .
Then
๐ [(๐ฅ , ๐ฅ , โฆ , ๐ฅ ) + (๐ฆ , ๐ฆ , โฆ , ๐ฆ )] = ๐ [(๐ฅ + ๐ฆ , ๐ฅ + ๐ฆ , โฆ , ๐ฅ + ๐ฆ )]
=๐ฅ +๐ฆ
Algebra
Page No. 138
= ๐ (๐ฅ , ๐ฅ , โฆ , ๐ฅ ) + ๐(๐ฆ , ๐ฆ , โฆ , ๐ฆ )
Further for any ๐ โ ๐
and (๐ฅ , ๐ฅ , โฆ , ๐ฅ ) โ ๐
(
)
we get
๐ [๐ โ (๐ฅ , ๐ฅ , โฆ , ๐ฅ )] = ๐(๐๐ฅ , ๐๐ฅ , โฆ , ๐๐ฅ )
=๐โ๐ฅ
= ๐ โ ๐(๐ฅ)
Thus,
๐ [(๐ฅ , ๐ฅ , โฆ , ๐ฅ ) + (๐ฆ , ๐ฆ , โฆ , ๐ฆ )] = ๐ (๐ฅ , ๐ฅ , โฆ , ๐ฅ ) + ๐(๐ฆ , ๐ฆ , โฆ , ๐ฆ )
๐ [๐ โ (๐ฅ , ๐ฅ , โฆ , ๐ฅ )] = ๐ โ ๐(๐ฅ , ๐ฅ , โฆ , ๐ฅ )
and
... for all (๐ฅ , ๐ฅ , โฆ , ๐ฅ ), (๐ฆ , ๐ฆ , โฆ , ๐ฆ ) โ ๐
( ) , ๐ โ ๐
Hence, f is a R-homomorphism.
Ex 5. Let M be R-module and N be R-submodule of M. Define ๐: ๐ โถ
by
๐(๐) = ๐ + ๐
Then f is an epimorphism.
Solution : For ๐ , ๐ โ ๐ we get
๐(๐ + ๐ ) = (๐ + ๐ ) + ๐
= (๐ + ๐) + (๐ + ๐)
= ๐(๐ ) + ๐(๐ )
... by definition of f
... by definition of + in
... by definition of f
Further, for any ๐ โ ๐
and ๐ โ ๐ we get
๐(๐๐) = ๐๐ + ๐
... by definition of f
= ๐ (๐ + ๐)
... by definition of โ in
= ๐ ๐(๐)
... by definition of f
Thus,
๐(๐ + ๐ ) = ๐(๐ ) + ๐(๐ )
and
๐(๐๐) = ๐ ๐(๐)
... for all ๐ , ๐ , ๐ โ ๐, ๐ โ ๐
Hence, ๐ is a R-homomorphism.
Clearly, ๐ is onto as for ๐ + ๐ โ
, we get ๐ โ ๐ and ๐(๐) = ๐ + ๐.
Thus, f is an epimorphism.
Remark :
(i) This epimorphism ๐: ๐ โถ
Algebra
defined by ๐(๐) = ๐ + ๐ is called a natural or
Page No. 139
canonical homomorphism.
(ii)
of M by the submodule N is always a homomorphic
Any quotient module
image of M under the canonical mapping.
Theorem 1.3.4 : Let M be an R-module and let N be R-submodule of M. The submodules
of the quotient module
are of the form , where U is a submodule of M containing
N.
Let ๐: ๐ โถ
Proof :
be the canonical mapping. We know that f is an onto
homomorphism (1.2, example 5). Hence
Let T be an R-submodule of
= ๐(๐) = {๐(๐)/ ๐ โ ๐}.
. Define
๐ = {๐ฅ โ ๐ / ๐(๐ฅ) โ ๐}
Claim 1 : U is a R-submodule of M.
(i)
๐ โ ๐ as ๐ โ ๐.
(ii) Let ๐ฅ, ๐ฆ โ ๐. Then ๐(๐ฅ), ๐(๐ฆ) โ ๐.
As T is a submodule of , ๐(๐ฅ) โ ๐(๐ฆ) โ ๐.
f being a homomorphism,
๐(๐ฅ) โ ๐(๐ฆ) โ ๐
โน
๐(๐ฅ โ ๐ฆ) โ ๐
By the definition of U, we get ๐ฅ โ ๐ฆ โ ๐.
(iii) Let ๐ โ ๐
and ๐ฅ โ ๐. Then ๐(๐ฅ) โ ๐.
f being an homomorphism,
๐(๐๐ฅ) = ๐ ๐(๐ฅ)
As ๐(๐ฅ) โ ๐ and ๐ โ ๐
๐ โ ๐(๐ฅ) โ ๐,
i.e.
T being a submodule of
.
๐(๐๐ฅ) โ ๐.
This gives ๐๐ฅ โ ๐ .
Form (i), (ii) and (iii) it follows that U is a R-submodule of M.
Claim 2 : ๐ โ ๐.
Let ๐ โ ๐. Then ๐(๐) = ๐ + ๐ = ๐ โ ๐. (Since N is the identity element of
Algebra
and T
Page No. 140
is a submodule of
).
But then, by the definition of U, ๐ โ ๐ and hence ๐ โ ๐.
Claim 3 : T = f (U)
Let
๐ฅ + ๐ โ ๐.
As
๐ฅ โ ๐ and ๐(๐ฅ) = ๐ฅ + ๐ โ ๐, we get ๐ฅ โ ๐.
But this shows ๐(๐ฅ) โ ๐(๐).
Thus,
๐ฅ+๐ โ๐
Hence
๐ โ ๐(๐).
As
๐(๐) โ ๐,
โน
๐(๐ฅ) โ ๐
โน
๐(๐ฅ) โ ๐(๐).
By the definition of U, we get T = f (U).
From claims 1, 2 and 3, for any submodule T of the quotient module M, there exists a
submodule U of the module M, containing N and with f (U) = T.
But ๐ being a canonical mapping, f (U) = U + N.
๐ = ๐ (๐) โน ๐ = ๐ + ๐.
Hence,
Thus, any submodule T of
is of the form , where U is a submodule of M containing
N.
This completes the proof.
Definition 1.3.5 : Let ๐ and ๐ be R-modules. Let ๐: ๐ โถ ๐ be a R-homomorphism.
The set
ker ๐ = {๐ โ ๐ / ๐(๐) = 0}
is called the kernel of the homomorphism f and the set
im ๐ = {๐(๐) โ ๐ / ๐ โ ๐}
is called the image of f.
Theorem 1.3.6 : For any module homomorphism ๐: ๐ โถ ๐, ๐๐๐๐ is a submodule of the
module M and im f is a submodule of the module N.
Proof :
(I)
To prove that ๐๐๐๐ is a submodule of the module M.
(i)
๐๐๐๐ โ ๐ as ๐(0) = 0 implies 0 โ ๐๐๐๐.
(ii)
Let ๐ , ๐ โ ๐๐๐๐. Then ๐(๐ ) = 0, ๐(๐ ) = 0.
Algebra
Page No. 141
๐(๐ โ ๐ ) = ๐(๐ + (โ๐ ))
= ๐(๐ ) + ๐(โ๐ )
... โต f is a homomorphism
= ๐(๐ ) โ ๐(๐ )
... ๐(โ๐ฅ) = โ๐(๐ฅ) for all ๐ฅ โ ๐
=0โ0
... โต ๐ , ๐ โ ๐๐๐๐
=0
But ๐(๐ โ ๐ ) = 0 implies ๐ โ ๐ โ ๐๐๐๐.
Thus, ๐ โ ๐ โ ๐๐๐๐, for ๐ , ๐ โ ๐๐๐๐.
(iii) Let ๐ โ ๐๐๐๐ and ๐ โ ๐
.
Then,
๐(๐ ๐) = ๐ โ ๐(๐)
... โต f is a homomorphism
=๐โ0
... โต ๐ โ ๐๐๐๐
=0
... See 1.1.3 theorem 1
Thus, ๐(๐ ๐) = 0 implies ๐๐ โ ๐๐๐๐.
Thus, ๐๐ โ ๐๐๐๐, for ๐ โ ๐
and ๐ โ ๐.
From (i), (ii) and (iii), we get ๐๐๐๐ is a R-submodule of M.
(II) To prove that imf is a submodule of N.
(i) ๐๐๐ โ ๐
as ๐ โ ๐.
(ii) Let ๐(๐ , ), ๐(๐ ) โ ๐๐ ๐.
๐(๐ ) โ ๐๐ ๐
โน
๐ โ ๐.
๐(๐ ) โ ๐๐ ๐
โน
๐ โ ๐.
As M is a module, ๐ โ ๐ โ ๐. But then ๐(๐ โ ๐ ) โ ๐๐๐.
๐ being an homomorphism,
๐(๐ โ ๐ ) = ๐(๐ ) โ ๐(๐ )
Thus, ๐(๐ , ), ๐(๐ ) โ ๐๐ ๐ will imply ๐(๐ ) โ ๐(๐ ) โ ๐๐ ๐
(iii) Let ๐(๐) โ ๐๐ ๐ and ๐ โ ๐
. But then ๐๐ โ ๐ as ๐ โ ๐, ๐ โ ๐
and M is an Rmodule.
Hence, ๐(๐๐) โ ๐๐ ๐.
As f is a homomorphism,
๐(๐๐) = ๐ ๐(๐).
Thus, given ๐(๐) โ ๐๐ ๐ and ๐ โ ๐
we get
๐ ๐(๐) โ ๐๐ ๐.
From (i), (ii) and (iii), we get, ๐๐ ๐ is a R-submodule of N.
Algebra
Page No. 142
Theorem 1.3.7 : Let ๐ and ๐ be R-modules and let ๐: ๐ โถ ๐ be R-homomorphism. Then
๐ is one-one iff ๐๐๐๐ = {0}.
Proof : Only if part :
Let f be one-one.
To prove that ker ๐ = {0}. Let ๐ฅ โ ker ๐. Then
๐ฅ โ ker ๐
โน
๐(๐ฅ) = 0
โน
๐(๐ฅ) = ๐(0)
โน ๐ฅ=0
... as ๐ is one-one.
Thus, ker ๐ = {0}.
If part :
Let ๐: ๐ โถ ๐ be R-homomorphism such that ker ๐ = {0}.
To prove that f is one-one.
Let ๐(๐ฅ) = ๐(๐ฆ) for some ๐ฅ, ๐ฆ โ ๐.
๐(๐ฅ) = ๐(๐ฆ)
โน ๐(๐ฅ) โ ๐(๐ฆ) = 0
โน
๐(๐ฅ โ ๐ฆ) = 0
โน
๐ฅ โ ๐ฆ โ ๐๐๐ ๐
โน
๐ฅ โ ๐ฆ โ {0}
โน
๐ฅโ๐ฆ =0
โน
๐ฅ=๐ฆ
Thus, ๐(๐ฅ) = ๐(๐ฆ) โน
๐ฅ=๐ฆ
Hence, f is one-one.
Definition 1.3.8 : Let ๐ โถ ๐ โถ ๐ be a module homomorphism. If ๐ is both one-one and
onto we say ๐ is an R-isomorphism or module isomorphism.
Remark 1.3.9 :
(i)
If ๐ โถ ๐ โถ ๐ is an module isomorphism then ๐
โถ ๐ โถ ๐ is also a module
isomorphism.
(ii) Any two R-modules M and N are said to be isomorphic if there exists an module
isomorphism ๐: ๐ โถ ๐. In this case we write ๐ โ
๐.
(iii) The relation โ
(being isomorphic) defined on the set of all R-modules is an
equivalence relation.
Algebra
Page No. 143
Theorem 1.3.10 : Let ๐ be a simple R-module. Any non zero homomorphism defined on ๐
is an isomorphism.
Proof :Let ๐: ๐ โถ ๐ be R-homomorphism where ๐ is a simple R-module.
To prove that ๐ is an isomorphism.
(I)
We know that ๐๐๐ ๐ is a sub module of ๐.
๐ being simple, ๐๐๐ ๐ = {0} or ๐๐๐ ๐ = ๐.
As f is a non zero homomorphism, ๐๐๐๐ โ ๐.
Therefore, ๐๐๐ ๐ = {0}.
But then ๐ is one-one.
(see Theorem 2).
(II) By Theorem 1, ๐๐ ๐ is a submodule of M.
๐ being simple, ๐๐ ๐ = {0} or ๐๐ ๐ = ๐.
As f is a non zero homomorphism, ๐๐ ๐ โ {0}.
Therefore, ๐๐ ๐ = ๐.
But then in this case ๐ is onto.
From (I) and (II), we get the non zero homomorphism is both one-one and onto.
Hence, ๐ is an isomorphism.
โข
Shurโs Lemma :
Theorem 1.3.11 : Let ๐ be a simple R-module. Then
๐ป๐๐ (๐, ๐) = {๐: ๐ โถ ๐ / ๐ is a R โ homomorphism}
is a division ring.
Proof :
(I) To prove ๐ป๐๐ (๐, ๐) is a ring under โ + โ and โ โ โ defined by
(๐ + ๐)(๐ฅ) = ๐(๐ฅ) + ๐(๐ฅ) ,
โ ๐ฅโ๐
(๐ โ ๐)(๐ฅ) = ๐ [๐(๐ฅ)] ,
and
โ ๐ฅโ๐
for all ๐, ๐ โ ๐ป๐๐ (๐, ๐).
(i)
๐ + ๐ โ ๐ป๐๐ (๐, ๐),
for ๐, ๐ โ ๐ป๐๐ (๐, ๐)
๐: ๐ โถ ๐ and ๐: ๐ โถ ๐. Hence, ๐ + ๐ โถ ๐ โถ ๐ and is well defined map.
Let ๐ฅ, ๐ฆ โ ๐. Then, we have
(๐ + ๐)(๐ฅ + ๐ฆ) = ๐(๐ฅ + ๐ฆ) + ๐(๐ฅ + ๐ฆ)
.... By definition of ๐ + ๐.
= [๐(๐ฅ) + ๐(๐ฆ)] + [๐(๐ฅ) + ๐(๐ฆ)]
.... Since ๐ and ๐ are R-homomorphism.
= [๐(๐ฅ) + ๐(๐ฅ)] + [๐(๐ฆ) + ๐(๐ฆ)]
Algebra
Page No. 144
.... Since < ๐, +> is an abelian group.
= (๐ + ๐)(๐ฅ) + (๐ + ๐)(๐ฆ)
.... By definition of ๐ + ๐.
Again, let ๐ โ ๐
and ๐ฅ โ ๐.
(๐ + ๐)(๐๐ฅ) = ๐ (๐๐ฅ) + ๐ (๐๐ฅ)
.... By definition of ๐ + ๐.
= ๐ [๐(๐ฅ)] + ๐ [๐(๐ฅ)] .... Since ๐ and ๐ are R-homomorphism.
= ๐ [๐(๐ฅ) + ๐(๐ฅ)]
= ๐ (๐ + ๐) (๐ฅ)
Thus, we get,
(๐ + ๐)(๐ฅ + ๐ฆ) = (๐ + ๐)(๐ฅ) + (๐ + ๐)(๐ฆ)
and
(๐ + ๐)(๐๐ฅ) = ๐ (๐ + ๐) (๐ฅ)
for all ๐ฅ, ๐ฆ โ ๐ and ๐ โ ๐
.
This shows that (๐ + ๐) is a R- homomorphism and hence (๐ + ๐) โ ๐ป๐๐ (๐, ๐), for
๐, ๐ โ ๐ป๐๐ (๐, ๐).
(ii) To prove ๐ โ ๐ โ ๐ป๐๐ (๐, ๐) for ๐, ๐ โ ๐ป๐๐ (๐, ๐)
๐ โ ๐ is well defined map. ๐ + ๐ โถ ๐ โถ ๐.
Let ๐ฅ, ๐ฆ โ ๐. Then we have
(๐ โ ๐)(๐ฅ + ๐ฆ) = ๐[๐(๐ฅ + ๐ฆ)]
.... By definition of ๐ โ ๐.
= ๐ [๐(๐ฅ) + ๐(๐ฆ)]
.... Since ๐ is a homomorphism.
= ๐ [๐(๐ฅ)] + ๐ [๐(๐ฆ)]
.... Since ๐ is a homomorphism.
= (๐ โ ๐)(๐ฅ) + (๐ โ ๐)(๐ฆ)
.... By definition of ๐ + ๐.
Again for any ๐ โ ๐
and ๐ โ ๐ป๐๐ (๐, ๐), we get
(๐ โ ๐)(๐๐ฅ) = ๐ [๐ (๐๐ฅ)]
.... By definition of ๐ + ๐.
= ๐ [๐ โ ๐(๐ฅ)]
.... Since ๐ is a R-homomorphism.
= ๐ โ [๐(๐(๐ฅ))]
.... Since ๐ is a R-homomorphism.
= ๐ (๐ โ ๐) (๐ฅ)
Thus, we get
(๐ โ ๐)(๐ฅ + ๐ฆ) = (๐ โ ๐)(๐ฅ) + (๐ โ ๐)(๐ฆ)
and
(๐ โ ๐)(๐๐ฅ) = ๐[ (๐ โ ๐) (๐ฅ)]
for all ๐ฅ, ๐ฆ โ ๐ and ๐ โ ๐
.
Hence, (๐ โ ๐) โ ๐ป๐๐ (๐, ๐).
(iii) < ๐ป๐๐ (๐, ๐), +> is an abelian group where the zero mapping 0: ๐ โถ ๐ defined by
0(๐ฅ) = 0 will be the ideal element w. r. t. โ+โ in ๐ป๐๐ (๐, ๐).
Let ๐ โ ๐ป๐๐ (๐, ๐).
Algebra
Page No. 145
Define (โ ๐) โถ ๐ โถ ๐ by
(โ๐)(๐ฅ) = โ[๐(๐ฅ],
โ ๐ฅโ๐
Then, it can be easily verified that โ ๐ is a R-homomorphism defined on M and (โ๐)
will be additive inverse of f in ๐ป๐๐ (๐, ๐).
(iv) (๐ โ ๐) โ โ = ๐ โ (๐ โ โ) ,
โ ๐, ๐, โ โ ๐ป๐๐ (๐, ๐)
(v) Let ๐, ๐, โ โ ๐ป๐๐ (๐, ๐) let ๐ฅ โ ๐, then
๐ โ [๐ + โ] (๐ฅ) = ๐ [(๐ + โ) (๐ฅ)]
= ๐ [๐(๐ฅ) + โ(๐ฅ)]
= ๐ [๐(๐ฅ)] + ๐ [โ(๐ฅ)]
= (๐ โ ๐)(๐ฅ) + (๐ โ โ)(๐ฅ)]
= [(๐ โ ๐) + (๐ โ โ)](๐ฅ),
โ ๐ฅ โ๐
Hence ,
๐ โ [๐ + โ] = (๐ โ ๐) + (๐ โ โ)
Similarly,
(๐ + โ) โ ๐ = (๐ โ ๐) + (โ โ ๐)
โ ๐, ๐, โ โ ๐ป๐๐ (๐, ๐)
From (i), (ii), (iii) and (iv), we get, โฉ๐ป๐๐ (๐, ๐), +,โโช is a ring.
(II) The identity mapping ๐: ๐ โถ ๐ defined by
๐(๐ฅ) = ๐ฅ,
for all ๐ฅ โ ๐
will be the unity element in ๐ป๐๐ (๐, ๐).
(III) Let ๐ be any non-zero element in ๐ป๐๐ (๐, ๐).
i.e. ๐ is a non-zero R-homomorphism from ๐ into ๐, where ๐ is a simple module.
Hence, ๐ must be a bijective and hence ๐ is an isomorphism.
But this will show that ๐
โ ๐ป๐๐ (๐, ๐).
Thus, we have proved that, any non-zero R-homomorphism defined on M will have a
multiplicative inverse in ๐ป๐๐ (๐, ๐).
From (I), (II) and (III), we get, ๐ป๐๐ (๐, ๐) is a division ring.
Theorem 1.3.12 : Let M be a R-module and ๐ฅ โ ๐ such that ๐๐ฅ = 0, ๐ โ ๐
implies ๐ = 0.
Then ๐
๐ฅ โ
๐
as R-module.
Proof :
We know that Rx is a R-submodule and hence Rx is a R-module (See 2.2 example
2). Further R is also an R-module (See 1.2 example 1).
Define ๐: ๐
โถ ๐
๐ฅ by ๐(๐) = ๐ โ ๐ฅ.
Algebra
Page No. 146
(I)
Then,
๐(๐ + ๐ ) = (๐ + ๐ ) (๐ฅ)
(i)
= ๐ (๐ฅ) + ๐ (๐ฅ)
= ๐(๐ ) + ๐(๐ )
(ii)
๐(๐ โ ๐ ) = (๐ ๐ ) (๐ฅ)
= ๐ (๐ ๐ฅ)
= ๐ โ ๐(๐ )
For all ๐, ๐ , ๐ โ ๐
.
Hence, ๐ is a R-homomorphism.
(II) f is onto obviously.
(III) Let ๐ โ ๐๐๐ ๐. Then ๐(๐) = 0. i.e. ๐ โ ๐ฅ = 0. But by data ๐ โ ๐ฅ = 0
โ ๐ = 0.
Hence, ๐๐๐ ๐ = {0}. But this will imply ๐ is one-one (See Theorem 2).
Form (I), (II) and (III), f is an isomorphism.
Hence, ๐
โ
๐
๐ฅ as R-module.
1.4 Fundamental Theorem for R-homomorphism and It's Application :
1.4.1 Fundamental Theorem for R-homomorphism :
Any homomorphic image of an R-module M is isomorphic with its suitable quotient
module.
Proof :
Let M and N be R-module and let N be a homomorphic image of M. Hence there
exists an onto homomorphism ๐ โถ ๐ โถ ๐. As f is onto ๐ = ๐(๐). Let ๐พ = ๐๐๐ ๐.
Then K is a submodule of M. (See Theorem 1.3.4) and hence the quotient R-module
is defined.
Define a ๐ โถ
โถ ๐ = ๐(๐) by
๐(๐ + ๐) = ๐(๐),
(I)
for each ๐ + ๐ โ
๐ is well defined.
Let ๐ + ๐ = ๐ + ๐ in
.
Then ๐ , ๐ โ ๐ will imply ๐ โ ๐ โ ๐.
As ๐ + ๐ = ๐ + ๐ we get ๐ โ ๐ โ ๐. i.e.
Hence
๐(๐ โ ๐ ) = 0
โน
๐(๐ ) โ ๐(๐ ) = 0 ,
Algebra
๐ โ ๐ โ ๐๐๐ ๐.
.... Since f is homomorphism.
Page No. 147
๐(๐ ) = ๐(๐ )
โน
Thus, we get,
๐ + ๐พ = ๐ + ๐พ in
implies ๐(๐ + ๐พ) = ๐(๐ + ๐พ)
This shows that ๐ is well defined.
(II) ๐ is a R-homomorphism.
(i)
Let ๐ + ๐ โ
๐
and ๐ + ๐ โ
๐พ
.
Then,
๐ [(๐ + ๐พ) + (๐ + ๐พ)] = ๐ [(๐ + ๐ ) ๐พ] .... by the definition of โ+โ in
= ๐ (๐ + ๐ )
.... by the definition of ๐.
= ๐ (๐ ) + ๐(๐ )
.... ๐ is homomorphism.
= ๐(๐ + ๐พ) + ๐(๐ + ๐พ)
.... by the definition of ๐.
(ii) Let ๐ โ ๐
and ๐ + ๐พ โ
.
. Then,
๐ [๐ (๐ + ๐พ)] = ๐ [๐๐ + ๐พ]
.... by the definition of โโโ in
= ๐ (๐๐)
.... by the definition of ๐.
= ๐ โ ๐ (๐)
.... ๐ is homomorphism.
= ๐ โ ๐ (๐ + ๐พ)
.... by the definition of ๐.
.
From (i) and (ii), we get, ๐ is a R-homomorphism.
(III) ๐ is one-one.
Let
๐ (๐ + ๐พ) = ๐(๐ + ๐พ) for some ๐ + ๐, ๐ + ๐ โ
.
๐ (๐ + ๐พ) = ๐(๐ + ๐พ)
Then
๐ (๐ ) = ๐(๐ )
โน
.... by the definition of ๐.
โน ๐ (๐ ) โ ๐(๐ ) = 0
โน
๐ (๐ โ ๐ ) = 0
.... ๐ is homomorphism.
โน
๐ โ ๐ โ ๐๐๐ ๐ = ๐พ
.... ๐ is homomorphism.
โน
๐ +๐พ =๐ +๐พ
Thus, ๐ (๐ + ๐พ) = ๐(๐ + ๐พ)
โน
๐ + ๐พ = ๐ + ๐พ and hence ๐ is one-one.
(IV) ๐ is onto.
Let ๐ โ ๐. As ๐ = ๐(๐), there exists some ๐ โ ๐ such that ๐(๐) = ๐. But for this
๐ โ ๐, ๐ + ๐พ โ
Algebra
and we get ๐(๐ + ๐พ) = ๐(๐) = ๐.
Page No. 148
This shows that ๐ is onto.
From (I), (II), (III) and (IV), we get, ๐ is an isomorphism. Hence
โ
๐.
This completes the proof.
โ
Theorem 1.4.2: Let A and B be R-submodules of an R-module M. Then
โ
.
๐ด + ๐ต = {๐ + ๐ / ๐ โ ๐ด, ๐ โ ๐ต} is a R-module of M and ๐ต โ ๐ด + ๐ต. Hence B is
Proof :
a submodule of A + B. (See Theorem 1.2.8).
Hence
is defined.
๐ด โฉ ๐ต is a R-module of M (See 2.3 theorem 2) and ๐ด โฉ ๐ต โ ๐ต. Hence
Define ๐: ๐ด + ๐ต โถ
is defined.
by
โฉ
๐(๐ + ๐) = ๐ + (๐ด โฉ ๐ต),
(I)
โฉ
for ๐ + ๐ โ ๐ด + ๐ต.
๐ is well defined map.
Let
๐ +๐ =๐ +๐
for ๐ , ๐ โ ๐ด and ๐ , ๐ โ ๐ต.
Then, ๐ โ ๐ = ๐ โ ๐ โ ๐ด โฉ ๐ต.
As ๐ โ ๐ โ ๐ด โฉ ๐ต we have ๐ + (๐ด โฉ ๐ต) = ๐ + (๐ด โฉ ๐ต)
Thus, ๐ + ๐ = ๐ + ๐ will imply ๐ + (๐ด โฉ ๐ต) = ๐ + (๐ด โฉ ๐ต) and hence
๐(๐ + ๐ ) = ๐(๐ + ๐ ).
This shows that ๐ is well defined map.
(II) To prove that ๐ is R-homomorphism.
(i) Let ๐ + ๐ and ๐ + ๐ be any element of ๐ด + ๐ต.
๐[(๐ + ๐ ) + (๐ + ๐ )] = ๐[(๐ + ๐ ) + (๐ + ๐ )]
... โฉ๐, +โช is an abelian group.
= (๐ + ๐ ) + (๐ด โฉ ๐ต)
... by the definition of ๐.
= [๐ + (๐ด โฉ ๐ต)] + [๐ + (๐ด โฉ ๐ต)]
= ๐(๐ + ๐ ) + ๐(๐ + ๐ )
(ii) Let ๐ โ ๐
and ๐ + ๐ โ ๐ด + ๐ต. Then
๐[๐ (๐ + ๐ )] = ๐[๐๐ + ๐๐ ]
= ๐๐ + (๐ด โฉ ๐ต)
... ๐ , ๐ โ ๐ and ๐ โ ๐
.
... ๐๐ โ ๐ด and ๐๐ โ ๐ต.
= ๐[๐ + (๐ด โฉ ๐ต)]
= ๐ ๐(๐ + ๐ )
Algebra
Page No. 149
From (i) and (ii), it follows that ๐ is a R-homomorphism.
(III) ๐ is an onto mapping.
Let ๐ + (๐ด โฉ ๐ต) โ
โฉ
. Then ๐ โ ๐ต.
Consider 0 + ๐.
Then, as 0 โ ๐ด we get 0 + ๐ โ ๐ด + ๐ต and ๐(0 + ๐) = ๐ + (๐ด โฉ ๐ต)
But this shows that ๐ is onto.
From (I), (II) and (III), ๐ is onto homomorphism.
Hence, the R-module
โฉ
is a homomorphic image of the R-module ๐ด + ๐ต under the
homomorphism ๐.
Hence, by fundamental theorem of homomorphism (See 1.4 theorem 5)
โ
. . . (1)
โฉ
Now
๐๐๐๐ = {๐ฅ โ ๐ด + ๐ต / ๐(๐ฅ) = 0}
= {๐ + ๐ โ ๐ด + ๐ต / ๐(๐ + ๐) = 0}
= {๐ + ๐ โ ๐ด + ๐ต / ๐ + (๐ด โฉ ๐ต) = ๐ด โฉ ๐ต}
= {๐ + ๐ โ ๐ด + ๐ต / ๐ โ (๐ด โฉ ๐ต)}
= {๐ + ๐/๐ โ ๐ด and ๐ โ ๐ต} = ๐ด
๐๐๐๐ = ๐ด
Thus,
. . . (2)
From (1) and (2), we get,
โ
โฉ
This completes the proof of the theorem.
Theorem 1.4.3: Let A and B be submodule of R-module M and N respectively. Then
×
×
Proof :
×
๐ × ๐ is an R-module (See 1.4, problem 2). A is a submodule of an R-module M
and hence the quotient R-module
defined. Hence
×
is defined. Similarly the quotient R-module
is
is an R-module.
Define the map ๐ โถ ๐ × ๐ โถ
Algebra
โ
×
by
Page No. 150
๐(๐, ๐) = (๐ + ๐ด, ๐ + ๐ต),
(I)
for all (๐, ๐) โ ๐ × ๐
๐ is well defined.
Let (๐ , ๐ ) = (๐ , ๐ ) in ๐ × ๐.
Then, ๐ = ๐ and ๐ = ๐ .
Therefore,
๐ โ ๐ = 0 โ ๐ด and ๐ โ ๐ = 0 โ ๐ต
But then
๐ +๐ด=๐ +๐ด
and
๐ +๐ต =๐ +๐ต
This shows that (๐ + ๐ด, ๐ + ๐ต) = (๐ + ๐ด, ๐ + ๐ต)
i.e.
๐(๐ , ๐ ) = ๐(๐ , ๐ )
Hence, ๐ is a well defined map.
(II) ๐ is a homomorphism.
(i) Let (๐ , ๐ ), (๐ , ๐ ) โ ๐ × ๐
๐[(๐ , ๐ ) + (๐ , ๐ )]
= ๐[(๐ + ๐ , ๐ + ๐ )]
โฆ by the definition of + in ๐ × ๐
= [(๐ + ๐ ) + ๐ด, (๐ + ๐ ) + ๐ต]
... by the definition of ๐
= [(๐ + ๐ด) + (๐ + ๐ด), (๐ + ๐ต) + (๐ + ๐ต)]
โฆ by the definition of + in
and
= (๐ + ๐ด, ๐ + ๐ต) + (๐ + ๐ด, ๐ + ๐ต)
โฆ by the definition of + in
×
= ๐(๐ , ๐ ) + ๐(๐ , ๐ )
โฆ by the definition of ๐
(ii) Let ๐ โ ๐
and (๐, ๐) โ ๐ × ๐. Then
๐[๐ (๐, ๐)] = ๐[(๐๐, ๐๐)]
โฆ by the definition of โ in ๐ × ๐
= (๐๐ + ๐ด, ๐๐ + ๐ต)
โฆ by the definition of ๐
= (๐(๐ + ๐ด), ๐(๐ + ๐ต))
โฆ by the definition of โ in
= ๐ (๐ + ๐ด, ๐ + ๐ต)
โฆ by the definition of โ in ๐ × ๐
= ๐ ๐ (๐, ๐)
โฆ by the definition of ๐
and
From (i) and (ii), we get ๐ is homomorphism.
(III) ๐ is onto.
Let (๐ + ๐ด, ๐ + ๐ต) โ
×
.
Then obviously, (๐, ๐) โ ๐ × ๐ and ๐(๐, ๐) = (๐ + ๐ด, ๐ + ๐ต).
Algebra
Page No. 151
But this shows that ๐ is onto.
From (I), (II) and (III), it follows that
×
is a homomorphic image of ๐ × ๐.
Hence, by the fundamental theorem of homomorphism,
×
โ
×
. . . (1)
Now,
๐๐๐๐ = {(๐, ๐) โ ๐ × ๐ / ๐(๐, ๐) = 0}
= {(๐, ๐) โ ๐ × ๐ / (๐ + ๐ด, ๐ + ๐ต) = (๐ด, ๐ต)}
= {(๐, ๐) โ ๐ × ๐ / ๐ + ๐ด = ๐ด and ๐ + ๐ต = ๐ต}
= {(๐, ๐) โ ๐ × ๐ / ๐ โ ๐ด and ๐ โ ๐ต}
Thus,
๐๐๐๐ = ๐ด × ๐ต
. . . (2)
From (1) and (2), we have,
×
×
โ
×
This completes the proof.
Let M be an R-module. We know that, if there exists ๐ฅ โ ๐ such that ๐ = ๐
๐ฅ then M is
called cyclic module generated by x. Here ๐
๐ฅ = {๐๐ฅ / ๐ โ ๐
}.
e.g. The ring R is a R-module. As ๐
= ๐
โ 1, we get R is a cyclic module.
Theorem 1.4.4 : Let an R-module M be a cyclic module Rx. Then ๐ โ
Proof :
.
๐ = ๐
๐ฅ = {๐๐ฅ / ๐ โ ๐
}.
Define ๐: ๐
โถ ๐
๐ฅ by
๐(๐) = ๐ โ ๐ฅ,
for each ๐ โ ๐
[Here the ring R is considered as an R-module]. Then f is an epimorphism (See 1.3,
theorem 5). Hence by the fundamental theorem of homomorphism,
โ
๐
๐ฅ
. . . (1)
Now,
๐๐๐๐ = {๐ โ ๐
/ ๐(๐) = 0}
= {๐ โ ๐
/ ๐๐ฅ = 0}
๐๐๐ ๐ is a submodule of an R-module ๐
and hence it is a left ideal of ๐
. This ideal is
called the annihilator ideal of ๐ฅ in ๐
and it is denoted by ๐๐๐ ๐ฅ.
Algebra
Page No. 152
Hence, for a cyclic module ๐ = ๐
๐ฅ, we get,
๐
๐ฅ = ๐ โ
.
Theorem 1.4.5 : Let ๐
be a ring such that 1 โ ๐
. An R-module ๐ is cyclic iff ๐ โ
for
some left ideal ๐ผ of ๐
.
Proof : Only if part :
Let ๐ be cyclic.
Hence, ๐ = ๐
๐ฅ for some ๐ฅ โ ๐. By Theorem 1.4.4, ๐ โ
ideal in ๐
and thus we get ๐ โ
where ๐๐๐ ๐ฅ is a left
for left ideal ๐ผ = ๐๐๐ ๐ฅ in ๐
.
If part :
Let ๐ โ
, where I is left ideal of R.
1โ๐
โน
1+๐ผ โ
Further,
๐
(1 + ๐ผ) = {๐(1 + ๐ผ) / ๐ โ ๐
}
.
= {๐ + ๐ผ / ๐ โ ๐
}
=
This shows that,
is a cyclic module generated by (1 + ๐ผ). As ๐ โ
and
is cyclic,
we get, ๐ is a cyclic module (Since isomorphic image of a cyclic module is a cyclic
module).
Theorem 1.4.6 : Let ๐
be a ring with unity 1. Let ๐ โ (0) be an R-module. Then ๐ is
simple iff ๐ โ
where ๐ผ is a maximal left ideal of ๐
.
Proof : Only if part :
Let ๐ be a simple R-module.
As ๐ โ (0) and M is we get ๐ = ๐
๐ฅ for any ๐ฅ โ 0 in M.
As ๐ = ๐
๐ฅ, a cyclic module then ๐ โ
where I is a left ideal of R. by theorem 1.4.4.
As isomorphic image of a simple module is a simple module, we get
Algebra
is a simple
Page No. 153
module. Now the submodules of
are of the form
where U is a submodule of the
module ๐
containing ๐ผ. But the submodules of an R-module ๐
are the left ideals in ๐
.
being simple there do not exists any left ideal in ๐
containing I. But this shows
Hence
that ๐ผ is a maximal left ideal in ๐
. Hence ๐ is a simple module and ๐ โ {0} will imply
๐โ
,
where ๐ผ is a maximal left ideal in ๐
.
If part :
Let ๐ โ
,
where ๐ผ is a maximal left ideal in ๐
. But this in turn will imply that there
does not exists any proper ideal in
. Hence
must be a simple R-module.
As ๐ โ
, we get ๐ is a simple r-module (since isomorphic image of a simple module
is a simple module).
Algebra
Page No. 154
Unit 2 : SUM AND DIRECT SUM OF SUBMODULES :
2.1
Sum of modules
2.2
Direct sum of modules
2.3
Free modules
2.4
Completely reducible modules
2.1 Sum of submodules :
Definition 2.1.1: Let ๐ be an R-module. Let ๐ , ๐ , โฆ , ๐ (k finite) be R-submodules of ๐.
k
The submodule generated by U M is called the sum of submodules ๐ , 1 โค ๐ โค ๐
i
i =1
and is denoted by ๐ + โฏ + ๐ or simply
k
โM i .
i =1
k
Note that the submodule generated by U M is the smallest R-submodule of ๐,
i
i =1
containing each ๐ , 1 โค ๐ โค ๐.
Theorem 2.1.2 : For the submodules ๐ , ๐ , โฆ , ๐ of an R-module M
k
โ M = {x + x + ... + x / x โ M }
i
1 2
k i
i
i =1
Let ๐ = {๐ฅ + ๐ฅ +. . . +๐ฅ /๐ฅ โ ๐ }.
Proof :
(I)
๐ โ ๐ as ๐ โ ๐ for each i.
(II) Let ๐ฅ, ๐ฆ โ ๐. Then
๐ฅ = ๐ฅ + ๐ฅ +. . . +๐ฅ
and
๐ฆ = ๐ฆ + ๐ฆ +. . . +๐ฆ ,
where ๐ฅ , ๐ฆ โ ๐ for each i.
Now,
๐ฅ โ ๐ฆ = (๐ฅ + ๐ฅ +. . . +๐ฅ ) โ (๐ฆ + ๐ฆ +. . . +๐ฆ )
= (๐ฅ โ ๐ฆ ) + (๐ฅ โ ๐ฆ ) + โฏ + (๐ฅ โ ๐ฆ )
... Since ๐ฅ , ๐ฆ โ ๐ for all i and <M, +> is an abelian group.
But as ๐ is a submodule of M, ๐ฅ โ ๐ฆ โ ๐ for each i.
Hence, ๐ฅ โ ๐ฆ โ ๐.
This shows that ๐ฅ, ๐ฆ โ ๐
โน
๐ฅ โ ๐ฆ โ ๐.
(III) Let ๐ฅ โ ๐ and ๐ โ ๐
. Then ๐ฅ = ๐ฅ + ๐ฅ + โฏ + ๐ฅ ,
Now
Algebra
๐ฅ โ๐, โ ๐
๐๐ฅ = ๐(๐ฅ + ๐ฅ + โฏ + ๐ฅ )
Page No. 155
= ๐๐ฅ + ๐๐ฅ + โฏ + ๐๐ฅ
โฆ By the definition of module
As ๐ is a R-submodule of M, ๐ โ ๐
and ๐ฅ โ ๐ will imply ๐ โ ๐ฅ โ ๐ for each i.
Hence, ๐๐ฅ โ ๐.
Thus, for any ๐ โ ๐
and ๐ฅ โ ๐ we get ๐๐ฅ โ ๐.
From (I), (II) and (III), we get, T is a R-submodule of ๐.
(IV) Let ๐ฅ โ ๐ . Then 0 โ ๐ for each i will imply,
๐ฅ = 0 + 0 + โฏ+ ๐ฅ + 0 + โฏ+ 0 โ ๐
โ๐
place
Hence, ๐ โ ๐, for each i, 1 โค ๐ โค ๐.
k
Therefore, U M โ ๐.
i
i =1
k
(V) Let ๐ฝ be any other submodule of ๐ containing U M . Then each ๐ โ ๐ฝ.
i
i =1
Let ๐ฅ โ ๐. Then ๐ฅ = ๐ฅ + ๐ฅ + โฏ + ๐ฅ where ๐ฅ โ ๐ for each i, 1 โค ๐ โค ๐. As ๐ โ ๐ฝ
we get, ๐ฅ โ ๐ฝ for each i, 1 โค ๐ โค ๐.
Hence, ๐ฝ being a submodule of a module ๐,
๐ฅ + ๐ฅ + โฏ+ ๐ฅ โ ๐ฝ ,
i.e. ๐ฅ โ ๐ฝ
This shows that ๐ โ ๐ฝ.
k
Thus, we have proved that T is a submodule of an R-module M containing U M and
i
i =1
k
is the smallest submodule of M containing U M .
i
i =1
k
Hence, by the definition, T = โ M i .
i =1
Therefore,
k
โ M = {x + x + ... + x / x โ M }
i
1 2
k i
i
i =1
Definition 2.1.3: Let {๐ / ๐ผ โ โ} be any family of submodules of an R-module M. The
submodule generated by
Algebra
U M
ฮฑ โฮ
ฮฑ
is called the sum of submodules ๐ and is denoted
Page No. 156
by
โ Mฮฑ .
ฮฑ โฮ
โ Mฮฑ
Remark 2.1.4:
is the smallest submodule of an R-module M containing each
ฮฑ โฮ
submodule ๐ .
Theorem 2.1.5 : Let {๐ / ๐ผ โ โ} be a family of R-submodules of an R-module M. Then
โงโช
โซโช
โ M = โจ โ x / x โM โฌ
ฮฑ
i i
i
โชโฉ finite
ฮฑ โฮ
โญโช
Where
Proof :
โ x denotes any finite sum of elements of ๐ ,
i
finite
๐โโ.
Define
โงโช
โซโช
T = โจ โ x / x โM โฌ
i i
i
โชโฉ finite
โชโญ
As in theorem 1, we can prove that T is a submodule of M containing each ๐ , (๐ผ โ โ)
and is the smallest submodule of an R-module M containing each ๐ , (๐ผ โ โ).
Hence, T = โ M .
ฮฑ
ฮฑ โฮ
2.1.6 Worked Examples โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Example 1 : Let ๐ = โ be a vector space over the field โ. Let ๐ฅ = (1, 0, 0), ๐ฅ = (1, 1, 0),
๐ฅ = (1, 1, 1). Show that ๐ = โ๐ฅ + โ๐ฅ + โ๐ฅ .
Solution : We know that โ๐ฅ , โ๐ฅ and โ๐ฅ are submodules of an R-module โ . (Note that
every vector space is a module). Hence โ๐ฅ + โ๐ฅ + โ๐ฅ is a submodule of โ = ๐.
Hence, โ๐ฅ + โ๐ฅ + โ๐ฅ โ ๐. Let ๐ฅ โ ๐ then (๐, ๐, ๐) โ ๐ = โ .
Further,
(๐, ๐, ๐) = (๐ โ ๐) ๐ฅ + (๐ โ ๐) ๐ฅ + ๐ ๐ฅ
will imply
๐ฅ = (๐, ๐, ๐) โ โ๐ฅ + โ๐ฅ + โ๐ฅ .
By theorem 1.3.4, (as ๐, ๐, ๐ โ ๐
we get ๐ โ ๐, ๐ โ ๐ โ ๐
.
Hence, (๐ โ ๐) ๐ฅ โ โ๐ฅ ,
(๐ โ ๐) ๐ฅ โ โ๐ฅ and ๐ฅ โ โ๐ฅ ).
But this shows that ๐ โ โ๐ฅ + โ๐ฅ + โ๐ฅ .
Algebra
Page No. 157
Combining both the inclusions, we get,
๐ = โ = โ๐ฅ + โ๐ฅ + โ๐ฅ
โขโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
2.2 Direct Sum of Submodules :
Definition 2.2.1: Let ๐ be an R-module. Let ๐ , ๐ , โฆ , ๐ be submodules of the module
๐. The sum
k
k
i =1
i =1
โ M i is a direct sum if each element x โ โ M i can be uniquely expressed
as ๐ฅ = ๐ฅ + ๐ฅ + โฏ + ๐ฅ , where ๐ฅ โ ๐ for each i, 1 โค ๐ โค ๐.
k
In this case we write โ โ M i or ๐ โจ ๐ โจ โฆ โจ ๐ .
i =1
Each ๐ is called the direct summand of the direct sum ๐ โจ ๐ โจ โฆ โจ ๐ .
Theorem 2.2.2 : Let M be an R-module and let ๐ = ๐ โจ ๐ .
Then ๐ โ
and ๐ โ
.
Proof : Let ๐ = ๐ โจ ๐ . Hence, any ๐ฅ โ ๐ has a unique representation as ๐ฅ = ๐ฅ + ๐ฅ ,
where ๐ฅ โ ๐ and ๐ฅ โ ๐ .
Define
๐ โถ ๐ โถ ๐ by
๐(๐ฅ) = ๐ฅ
i.e.
๐(๐ฅ + ๐ฅ ) = ๐ฅ ,
for each ๐ฅ โ ๐.
By the uniqueness of the expression, ๐ is a well defined map.
(i) Let ๐ฅ, ๐ฆ โ ๐. Let ๐ฅ = ๐ฅ + ๐ฅ and ๐ฆ = ๐ฆ + ๐ฆ where ๐ฅ , ๐ฆ โ ๐ and ๐ฅ , ๐ฆ โ ๐ be
unique expressions of x and y.
๐(๐ฅ + ๐ฆ) = ๐(๐ฅ + ๐ฆ + ๐ฅ + ๐ฆ )
= ๐(๐ฅ + ๐ฅ + ๐ฆ + ๐ฆ )
=๐ฅ +๐ฆ
โฆ Since <M, +> is an abelian group
โฆ ๐ฅ , ๐ฆ โ๐
โน ๐ฅ +๐ฆ โ๐ ,
๐ being a submodule.
= ๐(๐ฅ) + ๐(๐ฆ)
Thus, ๐(๐ฅ + ๐ฆ) = ๐(๐ฅ) + ๐(๐ฆ)
โฆ By definition of ๐.
โฆ for all ๐ฅ, ๐ฆ โ ๐.
(ii) Now, let ๐ฅ โ ๐ and ๐ โ ๐
. Assume that ๐ฅ = ๐ฅ + ๐ฅ where ๐ฅ โ ๐ and ๐ฅ โ ๐ .
Then,
๐๐ฅ = ๐(๐ฅ + ๐ฅ ) = ๐๐ฅ + ๐๐ฅ
Algebra
Page No. 158
As ๐ and ๐ are submodules of M, we get ๐๐ฅ โ ๐ and ๐๐ฅ โ ๐ .
Hence, by the definition of ๐,
๐(๐๐ฅ) = ๐๐ฅ = ๐ ๐(๐ฅ)
Thus, ๐(๐๐ฅ) = ๐ ๐(๐ฅ) for each ๐ โ ๐
and ๐ฅ โ ๐.
From (i) and (ii), we get, ๐ is a R-homomorphism.
Hence, by the fundamental theorem of homomorphism,
โ
๐
. . . (I)
Now,
๐๐๐๐ = {๐ฅ โ ๐ / ๐(๐ฅ) = 0}
= {๐ฅ + ๐ฅ โ ๐ / ๐(๐ฅ + ๐ฅ ) = 0, ๐ฅ โ ๐ , ๐ฅ โ ๐ }
= {๐ฅ + ๐ฅ โ ๐ / ๐ฅ = 0, ๐ฅ โ ๐ , ๐ฅ โ ๐ }
= {0 + ๐ฅ โ ๐ / ๐ฅ โ ๐ }
=๐
Thus,
๐๐๐๐ = ๐
. . . (II)
From (I) and (II), we get,
โ
๐
Similarly, we can prove that
โ
๐ .
This completes the proof of the theorem.
Theorem 2.2.3 : Let ๐ be an R-module. Let ๐ contains submodules ๐ , ๐ , โฆ , ๐ having
the property,
For each i, 1 โค ๐ โค ๐,
๐ โฉ [๐ + ๐ + โฏ + ๐
+๐
+ โฏ + ๐ ] = {0}
. . . (A)
k
Then, the sum
โM i
is a direct sum.
i =1
k
Proof :
Let x โ โ M i , have two expressions say
i =1
๐ฅ = ๐ฅ + ๐ฅ + โฏ+ ๐ฅ
and
๐ฅ = ๐ฆ + ๐ฆ + โฏ+ ๐ฆ
where ๐ฅ , ๐ฆ โ ๐ for each i, 1 โค ๐ โค ๐.
Algebra
Page No. 159
Then, 0 = (๐ฅ โ ๐ฆ ) + (๐ฅ โ ๐ฆ ) + โฏ + (๐ฅ โ ๐ฆ ).
But this shows that
โ ( xi โ y i ) =
k
โ ( xjโ y j )
. . . (1)
j=1
j โ 1
As ๐ is a submodule of M,
โ(๐ฅ , โ ๐ฆ ) โ ๐
Now,
k
โ ( xjโ y j )
j=1
. . . (2)
โ M 1 + M 2 + ... + M i โ1 + M i +1 + ... + M k
j โ 1
From (1), we get,
โ(๐ฅ , โ ๐ฆ ) โ ๐ + ๐ + โฏ + ๐
+๐
+ โฏ + ๐ . . . (3)
From (2) and (3), we have,
โก
โค
โข k
โฅ
โ( xi โ yi ) โM i I โข โ M j โฅ ={0}
โขj = 1 โฅ
โข
โฅ
โฃโข j โ 1 โฆโฅ
Hence,
โฆ by (A)
๐ฅ =๐ฆ.
As this is true for each i, 1 โค ๐ โค ๐ , we get the expression for x is unique.
k
Hence, the sum
โM i
is a direct sum.
i =1
Theorem 2.2.4 : Let ๐ be an R-module and let ๐ , โฆ , ๐ be submodules of an R-module
๐. The following statements are equivalent.
k
(i)
The sum
โM i
is a direct sum.
i =1
(ii)
For any i, 1 โค ๐ โค ๐ ,
๐ โฉ [๐ + ๐ + โฏ + ๐
+๐
+ โฏ + ๐ ] = {0}
Proof :
(i) โน (ii) :
Let ๐ฅ โ ๐ โฉ [๐ + ๐ + โฏ + ๐
๐ฅ = ๐ฆ + ๐ฆ + โฏ+ ๐ฆ
Algebra
+๐ฆ
+๐
+ โฏ + ๐ ]. Then ๐ฅ โ ๐ and
+ โฏ + ๐ฆ where ๐ฆ โ ๐ , 1 โค ๐ โค ๐.
Page No. 160
Thus, we have
๐ฆ + ๐ฆ + โฏ+ ๐ฆ
k
As 0 โ โ M i and
i =1
+ (โ๐ฅ) + ๐ฆ
+ โฏ+ ๐ฆ = 0
k
โM i
is a direct sum, the expression 0 = 0 + 0 + โฆ + 0 of
i =1
k
0 โ โ M i must be unique.
i =1
Hence, โ ๐ฅ = 0 ,
i.e. ๐ฅ = 0. This shows that
๐ โฉ [๐ + ๐ + โฏ + ๐
+๐
+ โฏ + ๐ ] = {0}
(ii) โน (i) :
Proof of this implication follows from theorem 1.3.10.
Hence, (i) โบ (ii).
Theorem 2.2.5 : Let ๐ be an R-module. Let ๐ , ๐ , โฆ , ๐ be submodules of an R-module
๐. The following statements are equivalent.
k
(i)
โM i
is a direct sum.
i =1
(ii)
k
0 = โ xi ,
๐ฅ โ ๐ โ ๐, 1 โค ๐ โค ๐
โน ๐ฅ =0
for each i, 1 โค ๐ โค ๐
i =1
(iii)
โก
โค
โข k
โฅ
โข
M i I โ M j โฅ ={0}
โขj = 1 โฅ
โข
โฅ
โฃโข j โ 1 โฆโฅ
Proof :
(i) โน (ii) :
The implication (i) โน (ii) follows directly by the definition of the direct sum.
(ii) โน (iii) :
โก
โค
โข k
โฅ
โข
Let ๐ฅ โ M i I โ M j โฅ
โขj = 1 โฅ
โข
โฅ
โฃโข j โ 1 โฆโฅ
Algebra
Page No. 161
Then, ๐ฅ โ ๐ and โ
k
โMj
.
j=1
j โ 1
Hence, ๐ฅ = ๐ฆ + ๐ฆ + โฏ + ๐ฆ
+๐ฆ
+ โฏ+ ๐ฆ
where ๐ฆ โ ๐ for 1 โค ๐ โค ๐ and
๐ โ ๐.
Therefore,
๐ฆ + ๐ฆ + โฏ+ ๐ฆ
by (ii), we get,
โ๐ฅ = 0.
+ (โ๐ฅ) + ๐ฆ
+ โฏ+ ๐ฆ = 0
i.e. ๐ฅ = 0.
But this shows that
k
M I โ M = {0}
i
i
i =1
(iii) โน (i) :
The implication (iii) โน (i) follows by the theorem 1.3.10.
Thus, (i) โน (ii) โน (iii) โน (i) and this completes the proof.
2.2.6 Worked Examples โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Example 1 : Let ๐ be an R-module and let ๐ , ๐ , โฆ , ๐ be submodules of ๐ such that
k
M = โ M and the triangular set of conditions
i
i =1
๐ โฉ ๐ = {0},
(๐ + ๐ ) โฉ ๐ = {0},
โฆโฆโฆโฆโฆโฆโฆโฆ..โฆโฆโฆโฆ
(๐ + โฏ + ๐
hold. Show that M = โ
) โฉ ๐ = {0}
k
โ Mi .
i =1
Solution : By corollary 6, it is enough to prove that if ๐ฅ โ ๐ for each ๐, 1 โค ๐ โค ๐ and if
๐ฅ + ๐ฅ + โฏ + ๐ฅ = 0 then ๐ฅ = 0 for each ๐, 1 โค ๐ โค ๐.
๐ฅ + ๐ฅ + โฏ+ ๐ฅ = 0
โฆ (1)
Hence, โ๐ฅ = ๐ฅ + ๐ฅ + โฏ + ๐ฅ
As โ๐ฅ โ ๐ and ๐ฅ + ๐ฅ + โฏ + ๐ฅ
โ
k โ1
โ
i =1
Algebra
M
i
Page No. 162
We get, โ๐ฅ โ ๐ โฉ [๐ + ๐ + โฏ + ๐
Hence,
โ๐ฅ โ {0} โฆ by data
Thus,
๐ฅ =0
]
โฆ (2)
Substituting ๐ฅ = 0 in (1), we get,
๐ฅ + ๐ฅ + โฏ+ ๐ฅ
Therefore,
โ (๐ฅ
Hence,
๐ฅ
=0
) โ [๐ + ๐ + โฏ + ๐
]โฉ๐
=0
= {0}
โฆ (3)
Continuing in this way, we get,
๐ฅ =๐ฅ =โฏ=๐ฅ =0
k
Hence, the sum
โ Mi
is a direct sum.
i =1
M =โ
i.e.
k
โ Mi
i =1
Example 2 : Let ๐ = โ be a vector space over the field โ. Let ๐ฅ = (1, 0, 0), ๐ฅ =
(1, 1, 0),
๐ฅ = (1, 1, 1). Show that V = โ
3
โ
โ๐ฅ .
i =1
3
Solution : We have proved that V =
โ
โ๐ฅ .
i =1
3
Hence, only to prove that V = โ
โ
โ๐ฅ .
i =1
Let 0 = ๐ ๐ฅ + ๐ ๐ฅ + ๐ ๐ฅ ,
for some ๐ , ๐ , ๐ โ โ.
Then,
(0, 0, 0) = ๐ (1, 0, 0) + ๐ (1, 1, 0) + ๐ (1, 1, 1)
Hence,
(0, 0, 0) = (๐ + ๐ + ๐ , ๐ + ๐ , ๐ ).
This shows,
๐ = 0,
๐ + ๐ = 0,
๐ +๐ +๐ =0
Solving the three equations, we get,
๐ = 0, ๐ = 0, ๐ = 0.
Algebra
Page No. 163
Thus,
0=๐ ๐ฅ +๐ ๐ฅ +๐ ๐ฅ
โน
๐ = ๐ = ๐ = 0.
Hence, by corollary 6, we get
๐ = โ๐ฅ + โ๐ฅ + โ๐ฅ
Example 3 : Let M be an R-module. Let ๐พ โ ๐ โ ๐ be submodules of M. Show that if N
is a direct summand of M, then
is a direct summand of
.
Solution : Let ๐ = ๐ โ ๐ . ๐พ โ ๐.
๐ ๐
๐ ๐ + ๐
=
= +
๐พ
๐พ ๐พ
๐พ
{0}
๐ ๐
๐โฉ๐
โฉ
=
=
= {๐พ}
๐พ
๐พ
๐พ
๐พ
as ๐ โฉ ๐ = {0}. Hence,
๐ ๐ ๐
= โ
๐พ ๐พ
๐พ
Example 4 : Let M be an R-module. Let ๐พ โ ๐ โ ๐. If K is a direct summand of N and N
is a direct summand of M then K is a direct summand of M.
Solution : Let ๐ = ๐พ โ ๐พ , and ๐ = ๐ โ ๐ .
Hence, ๐ = ๐พ โ ๐พโฒ โ ๐โฒ.
Hence, K is a direct summand of M.
Example 5 : ๐ is a R-module. ๐พ โ ๐ โ ๐ are submodules of ๐. If ๐พ is a direct summand
of ๐, then ๐พ is direct summand of ๐.
Solution : Let ๐ = ๐พ โ ๐พโฒ. ๐ = ๐ โฉ ๐ = (๐พ โ ๐พโฒ) โฉ ๐.
Claim : ๐ = ๐พ โ (๐พ โฉ ๐)
(i) ๐ = ๐พ + (๐พ โฉ ๐)
Let ๐ฅ โ ๐ โน ๐ฅ = ๐พ + ๐พโฒ,
where ๐ โ ๐พ and ๐โฒ โ ๐พ.
Then, ๐ โ ๐พ = ๐พ โฉ ๐
๐ = ๐พโฒ
๐ฅโ๐ =๐
โน ๐โฒ โ ๐
Hence, ๐โฒ โ ๐พโฒ โฉ ๐.
Thus, ๐ฅ = ๐ + ๐ , ๐ โ ๐พ and ๐ โ ๐พ โฉ ๐
โน
Algebra
๐ฅ โ ๐พ + (๐พโฒ โฉ ๐).
Page No. 164
Thus, ๐ โ ๐พ + (๐พโฒ โฉ ๐).
Obviously, ๐พ + (๐พโฒ โฉ ๐) โ ๐.
Hence, ๐ = ๐พ + (๐พโฒ โฉ ๐)
(ii) ๐พ โฉ (๐พ โฉ ๐) = ๐
๐พ โฉ (๐พ โฉ ๐) = (๐พ โฉ ๐พ ) โฉ ๐ = ๐ โฉ ๐พ โฉ ๐ = ๐.
Since (๐พ โฉ ๐พ ) = ๐ as ๐ = ๐พ โ ๐พโฒ.
From (i) and (ii), we get,
๐ = ๐พ โ (๐พ โฉ ๐)
This shows that ๐พ is a direct summand of ๐.
Example 6 : Let ๐ be a R-module. Let ๐พ โ ๐ โ ๐. If ๐พ is a direct summand of ๐ and if
is a direct summand of
then ๐ is direct summand of ๐.
Solution : As K is a direct summand of M, we have
๐ =๐พโ๐พ .
โน
โ
๐พ
. . . (1)
By example (5), ๐ = ๐พ โ (๐พ โฉ ๐)
โน
โ
๐พ โฉ๐
From (1) and (2), we get, if
. . . (2)
is a direct summand of
, then ๐พ โฉ ๐ must be the direct
summand of ๐พโฒ. Hence let us assume that
๐พ = (๐พ โฉ ๐) โ ๐ฟ
. . . (3)
Again ๐ = ๐พ โ ๐พโฒ will imply
๐ = ๐พ โ (๐พ โฉ ๐) โ ๐ฟ
Hence,
๐ = ๐โ๐ฟ ,
(Since ๐ = ๐พ โ (๐พ โฉ ๐))
This shows that ๐ is a direct summand of ๐.
Example 7 : Let ๐ = ๐พ โ ๐พ = ๐ = ๐ฟ โ ๐ฟโฒ . If K = L, then show that ๐พโฒ โ
๐ฟโฒ.
Solution : Let ๐ โ ๐. Then m can be uniquely expressed by ๐ = ๐ + ๐ where ๐ โ ๐พ and
๐ โ๐
Then,
๐ = ๐ โ ๐ โ ๐พโฒ.
Algebra
Page No. 165
As ๐พ = ๐ฟ we get ๐ โ ๐ โ ๐ฟโฒ.
Define
๐ โถ ๐พ โถ ๐ฟ by
๐(๐ ) = ๐ โ ๐
(i)
๐ is well defined.
๐ =๐
Then,
Let
๐ =๐ +๐ .
๐(๐ ) = ๐ โ ๐
and
๐(๐ ) = ๐ โ ๐ .
Then, ๐ = ๐ + ๐ is the unique representation of ๐ .
Hence, ๐ = (๐ โ ๐ ) = ๐ = ๐ โ ๐ will imply ๐(๐ ) = ๐(๐ ).
โขโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Definition 2.2.7 : The sum
โ M ฮฑ of the family {๐ / ๐ผ โ โ} of submodules of an R-
ฮฑ โฮ
module M is a direct sum if each x โ โ M ฮฑ can be uniquely expressed as ๐ฅ = โ ๐ฅ
ฮฑ โฮ
where ๐ฅ โ ๐ and ๐ฅ = 0 for almost all ๐ .
Generalizing the result of Theorem 2.2.5, we get the following theorem.
Theorem 2.2.8 : Let {๐ / ๐ผ โ โ} be a family of submodules of an R-module ๐. The
following statements are equivalent.
(i)
โ M ฮฑ is a direct sum.
ฮฑ โฮ
(ii)
0 = โ xi โ
i
(iii)
โข
โ Mฮฑ
, โน ๐ฅ =0 ,
for all ๐
ฮฑ โฮ
โก
โค
โข k
โฅ
โข
M i I โ M j โฅ ={0}
โข iโ j
โฅ
โข
โฅ
โขโฃi, jโฮ โฅโฆ
Fundamental Structure Theorem for Finitely generated Modules over P. I. D. :
Result 2.2.9 : Let ๐ท be P.I.D. Any submodule ๐พ of the free module ๐ท (
)
is free with base of
๐ โค ๐ elements.
Algebra
Page No. 166
Result 2.2.10 : If ๐ด is any ๐ × ๐ matrix with entries in p.i.d. ๐ท, then there exits an invertible
matrix ๐ of order ๐ × ๐ with entries in ๐ท and an invertible matrix ๐ with entries in ๐ท
such that ๐๐ด๐ = ๐๐๐๐ {๐ , ๐ , โฆ , ๐ , 0,0, โฆ ,0} where ๐ โ 0 and ๐ /๐ if ๐ โค ๐.
โข
Fundamental Structure Theorem :
Theorem 2.2.11 : Let ๐ โ 0 be a finitely generated module over a p.i.d. ๐ท. ๐ is a direct sum
of cyclic modules.
๐ = ๐ท๐ โ ๐ท๐ โ โฆ โ ๐ท๐
such that the order ideals ๐๐๐ ๐ satisfy
๐๐๐ ๐ โ ๐๐๐ ๐ โ โฏ โ ๐๐๐ ๐ ,
where ๐๐๐ ๐ โ ๐ท .
Proof : ๐ โ (0) is a finitely generated D-module. Let {๐ฅ , ๐ฅ , โฆ , ๐ฅ } be the set of generators
of ๐.
Then,
๐ = ๐ท๐ฅ + ๐ท๐ฅ + โฏ + ๐ท๐ฅ .
i. e.
๐=
๐ท๐ฅ
We know that, ๐ท(
)
= {(๐ , ๐ , โฆ , ๐ ) / ๐ โ ๐ท} is a free D-module with base
(๐ , ๐ , โฆ , ๐ ), where ๐ = (0, 0, โฆ , 0, 1, 0, โฆ , 0).
โ ๐
Define ๐ โถ ๐ท(
)
place
โถ ๐ by
๐(๐ฅ) = ๐
=
๐ ๐
๐ ๐ฅ,
๐ โ ๐ท,
for each ๐, 1 โค ๐ โค ๐
Claim 1 : ๐ is an epimorphism.
(i)
๐ is obviously well defined as (๐ , ๐ , โฆ , ๐ ) is a base for ๐ท(
uniquely expressed as
n
โ ri ei where ๐
)
any ๐ฅ โ ๐ท(
)
can be
โ ๐ท for each ๐, 1 โค ๐ โค ๐.
i=1
(ii) ๐ is a homomorphism.
Let ๐ฅ, ๐ฆ โ ๐ท ( ) . Then,
x=
n
โ ri ei
i=1
Algebra
and
y=
n
โ r'i ei
i=1
Page No. 167
where ๐ , ๐ โ ๐ท for each ๐ .
๐(๐ฅ + ๐ฆ) = ๐
๐ ๐ +
๐ ๐
(๐ + ๐ ) ๐
=๐
=
(๐ + ๐ ) ๐ฅ ,
=
๐ ๐ฅ +
(by the definition of ๐)
๐ ๐ฅ
= ๐(๐ฅ) + ๐(๐ฆ)
Now, let ๐ โ ๐ท and x =
n
โ ri ei โ ๐ท( ) with ๐ โ ๐ท.
i=1
๐(๐ โ ๐ฅ) = ๐ ๐ โ
(๐ โ ๐ ) ๐
=๐
=
๐ ๐
(๐ โ ๐ ) ๐ฅ ,
=๐ โ
(by the definition of ๐)
๐ ๐ฅ
= ๐ โ ๐(๐ฅ)
Thus, for any ๐ฅ, ๐ฆ โ ๐ท(
)
and ๐ โ ๐ท, we get
๐(๐ฅ + ๐ฆ) = ๐(๐ฅ) + ๐(๐ฆ)
and
๐(๐ โ ๐ฅ) = ๐ โ ๐(๐ฅ)
Hence, ๐ is a homomorphism.
As ๐ is obviously onto, we get ๐ is an epimorphism.
Thus, the D-module ๐ is a homomorphic image of the D-module ๐ท( ) .
Hence, by fundamental theorem of homomorphism,
๐ท( )
๐โ
๐๐๐๐
Let ๐พ = ๐๐๐๐. Then ๐พ is a submodule of the free module ๐ท ( ) .
Algebra
Page No. 168
Hence, by Result 2.2.9, ๐พ is a free module with base containing ๐ elements, where
๐ โค ๐.
Let {๐ , ๐ , โฆ , ๐ } be the set of generators in term of the base {๐ , ๐ , โฆ , ๐ } (as ๐ โ ๐ท(
)
for each ๐, 1 โค ๐ โค ๐).
๐ =๐ ๐
+ ๐ ๐ + โฏ+ ๐ ๐
๐ = ๐ ๐ + ๐ ๐ + โฏ+ ๐ ๐
โฆโฆโฆ
๐ =๐
Define
๐ +๐
๐ + โฏ+ ๐
๐
๐ด = (๐ ).
Then, ๐ด is a matrix of order ๐ × ๐ with entries in ๐ท.
Hence, there exists an invertible matrix ๐ = (๐ ) of order ๐ × ๐ and an invertible
matrix ๐ = (๐ ) of order ๐ × ๐ such that ๐๐ด๐
is a diagonal matrix given by,
๐๐๐๐ {๐ , ๐ , โฆ , ๐ , 0,0, โฆ ,0}
โฆโฆ By result 2.2.10
n
Define
e'i = โ pij e j . Then {๐โฒ , ๐โฒ , โฆ , ๐โฒ } will form an another base for ๐ท ( ) .
j=1
Define
'
f =
k
m
โ
โq
i=1 kl
q* f ' =
kl k
โ
f . If Q โ1= โ q* โ , then
m
โ kl โ
l
โ q*
q
f
k=1 rk kl l
= f
r
But this shows that {๐ , ๐ , โฆ , ๐ } is contained in the submodule generated by
{๐โฒ , ๐โฒ , โฆ , ๐โฒ }. Hence {๐โฒ , ๐โฒ , โฆ , ๐โฒ } generates K.
Now,
f' =
k
where
m
โ qkl fl
k=1
=
โ qkl alj e j = โ qkl alj
l,j
l,j,i
p* e'
jl i
( )
P โ1= p*ij .
Hence, the new relation matrix is ๐ด = ๐๐ด๐ .
But by the choice of P and Q,
๐๐ด๐
= ๐๐๐๐ {๐ , ๐ , โฆ , ๐ , 0,0, โฆ ,0}
Hence ,
๐ =๐ ๐ ,
Algebra
๐ = ๐ ๐ , โฆ.,
๐ =๐ ๐
Page No. 169
๐
= 0,
= 0, โฆ.,
๐ =0
โ pij x j .
i
j=1
n
โ p*rk y k = โ p*rk pki xi = xi ; where
Then
โฆ (1)
n
y =
Define
๐
j=1
( )
P โ1= p*ij ; shows that the submodule
generated by {๐ฆ , ๐ฆ , โฆ , ๐ฆ } contains {๐ฅ , ๐ฅ , โฆ , ๐ฅ }.
Hence, {๐ฆ , ๐ฆ , โฆ , ๐ฆ } generates M.
Thus, ๐ = ๐ท๐ฆ + ๐ท๐ฆ + โฏ + ๐ท๐ฆ
i.e.
M=
n
โ Dy k
โฆ (2)
k=1
Let
n
โ bi yi = 0 for ๐
โ ๐ท,
for each ๐, 1 โค ๐ โค ๐.
i=1
Consider ๐(๐ ).
๐(๐ ) = ๐
n
โ pij e j
j=1
=
n
โ pij x j
,
by the definition of ๐.
๐(๐ ) = ๐ฆ ,
for each ๐, 1 โค ๐ โค ๐.
j=1
=๐ฆ.
Thus,
Hence,
n
โ bi yi = 0
โน
โฆ (3)
n
โ bi g ( e'i ) = 0
i=1
i=1
โกn
โค
โน g โข โ bi e'i โฅ = 0
โขโฃ i=1
โฅโฆ
โน
โฆ ๐ is a homomorphism
n
โ bi e'i โ k
i=1
As ๐ = (๐ , ๐ , โฆ , ๐ ) we get
n
โ bi e'i
i=1
Algebra
=
m
โ ci fi'
,
for ๐ โ ๐ท, โ ๐, 1 โค ๐ โค ๐.
i=1
Page No. 170
=
m
โ ci ( di e'i )
i=1
n
โ
Thus,
i=1
b e'
i i
=
(โต
๐ = ๐ ๐โฒ )
,
m
โ ( ci di ) e'i
i=1
n
โ ( bi โ ci di ) e'i = 0
โด
i=1
As {๐โฒ , ๐โฒ , โฆ , ๐โฒ } forms a base for ๐ท (
๐ โ ๐ ๐ = 0.
But
)
we must have
i.e. ๐ = ๐ ๐ ,
for ๐, 1 โค ๐ โค ๐.
๐ = ๐ ๐ for each ๐ will imply
๐ ๐ฆ = (๐ ๐ ) ๐ฆ
= ๐ (๐ ๐ฆ )
= ๐ ๐ ๐(๐โฒ )
โฆ by 2,
๐(๐โฒ ) = ๐ฆ
= ๐ [๐(๐ ๐โฒ )]
โฆ Since ๐ is a homomorphism.
= ๐ [๐(๐โฒ )]
โฆ by 1.
=๐ โ0
โฆ Since ๐โฒ โ ๐๐๐๐
=0
Hence, ๐ ๐ฆ = 0 for each ๐ .
Thus, we have proved that
n
โ bi yi = 0 then ๐
๐ฆ = 0, for each ๐, 1 โค ๐ โค ๐.
i=1
But this in turn shows that the sum M =
n
โ Dyi
is a direct sum.
i=1
i.e.
n
M = โ โ Dy
i=1
i
Thus,
๐ = ๐ท๐ฆ โ ๐ท๐ฆ โ โฆ โ ๐ท๐ฆ .
Now,
๐ =๐ ๐
Again ๐ ๐ฆ = 0
Hence,
โน
๐ โ (๐ ).
โน
(๐ ๐ ) ๐ โ (๐ )
โน
๐ (๐ ๐ฆ ) = 0
โน
๐ ๐ฆ =0
๐๐๐ ๐ฆ = (๐ ).
As ๐ /๐ , ๐ /๐ , โฆ we get,
(๐ ) โ (๐ ) โ โฏ โ (๐ )
Algebra
Page No. 171
If ๐ is a unit element in ๐ท, then ๐ ๐ฆ = 0
โน
๐ฆ = 0. ( โต ๐ท is a domain)
Hence, drop those elements ๐ฆ from the set {๐ฆ , ๐ฆ , โฆ , ๐ฆ } for which ๐ฆ = 0.
Assume without loss of generality, ๐ , ๐ , โฆ , ๐ are units and ๐
in ๐ท. Put ๐ = ๐ฆ
,โฆ.,๐
,๐
, โฆ are not units
= ๐ฆ . We get,
๐ = ๐ท๐ โ ๐ท๐ โ โฆ โ ๐ท๐
where ๐ท๐ = (0) and
๐๐๐ ๐ โ ๐๐๐ ๐ โ โฏ โ ๐๐๐ ๐
where ๐ = ๐ โ ๐ก and ๐๐๐ ๐ โ ๐ท .
2.3 Free Module :
Throughout this section ๐
denotes a ring with unity 1.
Definition 2.3.1 : Let ๐ be an R-module. A finite sequence ๐ฅ , ๐ฅ , โฆ , ๐ฅ
of distinct
elements of ๐ is said to be linearly independent if for any ๐ , ๐ , โฆ , ๐
n
โ ai xi = 0 implies ๐
in ๐
,
=๐ =โฏ=๐ =0.
i=1
A finite sequence ๐ฅ , ๐ฅ , โฆ , ๐ฅ of distinct elements in M is said to be linearly
dependent if it is not linearly independent.
A subset S of an R-module is called linearly independent if for every finite
sequence of distinct elements of S is linearly independent. Otherwise S is called linearly
dependent.
Definition 2.3.2 : Let ๐ be an R-module. ๐ด subset ๐ต of ๐ is called a basis if
(i)
๐ is generated by ๐ต.
(ii)
๐ต is linearly independent set.
Example 2.3.3 : Let ๐
be a ring with unity 1. Define ๐
(
Then ๐
(
)
)
= {(๐ฅ , ๐ฅ , โฆ , ๐ฅ ) / ๐ฅ โ ๐
}.
is an R-module with {๐ , ๐ , โฆ , ๐ } as a base, where
๐ = (0, 0, โฆ , 1, 0, โฆ , 0)
โ๐
Solution : ๐
(
)
place.
= {(๐ฅ , ๐ฅ , โฆ , ๐ฅ ) / ๐ฅ โ ๐
}. Define addition, 0-element and scalar
multiplication in ๐
(
)
as
(๐ฅ , ๐ฅ , โฆ , ๐ฅ ) + (๐ฆ , ๐ฆ , โฆ , ๐ฆ ) = (๐ฅ + ๐ฆ , ๐ฅ + ๐ฆ , โฆ , ๐ฅ + ๐ฆ )
Algebra
Page No. 172
0 = (0, 0, โฆ , 0)
๐ โ (๐ฅ , ๐ฅ , โฆ , ๐ฅ ) = (๐ โ ๐ฅ , ๐ โ ๐ฅ , โฆ , ๐ โ ๐ฅ )
for ๐ โ ๐
and (๐ฅ , ๐ฅ , โฆ , ๐ฅ ), (๐ฆ , ๐ฆ , โฆ , ๐ฆ ) โ ๐
( ) .
Then, it can be easily verified that โฉ๐
( ) , +, โโช is a module over ๐
.
๐ = (0, 0, โฆ , 1, 0, โฆ , 0),
Put
โ๐
for each ๐, 1 โค ๐ โค ๐.
place.
(i) Let ๐ โ ๐
, for each ๐, 1 โค ๐ โค ๐ and
n
โ ai ei = 0 .
i=1
But
n
โ ai ei = ( a1 , a2 ,..., an )
i=1
Hence,
n
โ ai ei = 0
โ ( a1 , a2 ,..., an ) = ( 0 , 0 ,..., 0 ) .
i=1
โน
๐ = 0, ๐ = 0, โฆ , ๐ = 0
(ii) Again any ๐ฅ โ ๐
(
)
can be written as ๐ฅ = (๐ฅ , ๐ฅ , โฆ , ๐ฅ ) where ๐ฅ โ ๐
, โ ๐, 1 โค ๐ โค
๐. In this case,
๐ฅ = ๐ฅ ๐ + ๐ฅ ๐ + โฏ+ ๐ฅ ๐
as ๐ฅ ๐ = (0, 0, โฆ , ๐ฅ , 0, โฆ , 0)
โ๐
place.
But this in turn shows that, the set ๐ต = {๐ , ๐ , โฆ , ๐ } generates ๐
( ) .
From (i) and (ii), we get, B is a base for an R-module ๐
( ) .
Theorem 2.3.4 : Let ๐ be an R-module (1 โ ๐
). Let {๐ข , ๐ข , โฆ , ๐ข } be a base for ๐. Then
๐ โ
๐
( ) .
Proof : We know that, ๐
(
)
is an R-module with base {๐ , ๐ , โฆ , ๐ }, where
๐ = (0, 0, โฆ , 1, 0, โฆ , 0)
โ๐
place.
for each ๐, 1 โค ๐ โค ๐.
Hence, any ๐ฅ โ ๐
(
)
can be expressed as x =
n
โ ri ei where ๐
โ ๐
,
โ ๐, 1 โค ๐ โค ๐.
i=1
As {๐ข , ๐ข , โฆ , ๐ข } is a base for M,
n
โ ri ui where ๐
โ ๐
is an element of M.
i=1
Define ๐: ๐
(
Algebra
)
โถ ๐ by
Page No. 173
โ n
โ n
f ( x ) = f โ โ ri ei โ = โ ri ui
โ
โ
โ i=1
โ i=1
(I) ๐ is well defined map.
Let ๐ฅ = ๐ฆ in ๐
( ) .
Then, let x =
n
โ ri ei and y =
i=1
n
โ r'i ei
i=1
n
โ ri ei =
๐ฅ=๐ฆ โน
n
โ r'i ei
i=1
i=1
n
n
โ ri ei โ
โน
where ๐ , ๐โฒ โ ๐
, โ ๐ .
i=1
โ r'i ei = 0
i=1
n
โ ( ri โ r'i ) ei = 0
โน
i=1
โน
๐ โ ๐โฒ = 0
โ ๐, 1 โค ๐ โค ๐.
As {๐ , ๐ , โฆ , ๐ } is a base for ๐
( ) .
As ๐ = ๐โฒ for each ๐, 1 โค ๐ โค ๐ we get
n
โ ri ui =
i=1
n
โ r'i ui
i=1
Thus ,
๐ฅ=๐ฆ
n
โน
โ ri ei =
i=1
n
โ r'i ei
i=1
โน
n
โ ri ui =
i=1
n
โ r'i ui
โน ๐(๐ฅ) = ๐(๐ฆ)
i=1
This shows that ๐ is well defined.
(II) ๐ is a R-homomorphism.
(i) Let ๐ฅ, ๐ฆ โ ๐
( )
n
n
i=1
i=1
. Let x = โ ri ei and y = โ ri,ei
n
โ n
โ
f(x+y) = f โ โ ri ei + โ ri, ei โ
โ
โ
i=1
โ i=1
โ
โ n
โ
= f โ โ ri + ri, ei โ
โ
โ
โ i=1
โ
(
=
)
n
โ ( ri + ri, ) ui
i=1
Algebra
Page No. 174
=
n
n
i=1
i=1
โ ri ui + โ ri, ui
= f(x) + f(y)
Thus, ๐(๐ฅ + ๐ฆ) = ๐(๐ฅ) + ๐(๐ฆ) for all ๐ฅ, ๐ฆ โ ๐
( ) .
n
(ii) Let ๐ โ ๐
and ๐ฅ โ ๐
( ) . Let x = โ ri ei , ri โ R
i=1
โ n
โ
f(rx) = f โ r โ ri ei โ
โ
โ
โ i=1
โ
โ n
โ
= f โ โ ( r ri ) ei โ
โ
โ
โ i=1
โ
=
n
โ ( r ri ) ui
i=1
= r
n
โ ri ui
i=1
= r f(x)
Thus, ๐(๐๐ฅ) = ๐ ๐(๐ฅ) for all ๐ โ ๐
and ๐ฅ โ ๐
( ) .
From (i) and (ii), we get, ๐ is a R- homomorphism.
(III) ๐ is an onto mapping.
As ๐(๐ ) = ๐ข for each ๐, 1 โค ๐ โค ๐, we get ๐๐ ๐ = {๐(๐ฅ)/ ๐ฅ โ ๐
( ) } contains ๐ข for
each ๐, 1 โค ๐ โค ๐.
Thus, ๐๐ ๐ is a submodule of M containing ๐ข , ๐ข , โฆ , ๐ข .
By data {๐ข , ๐ข , โฆ , ๐ข } is a base for ๐ and hence it generates ๐.
Thus, ๐๐ ๐ = ๐. But this shows that ๐ is onto.
(IV) ๐ is one-one.
Let ๐ฅ โ ๐๐๐๐ then ๐(๐ฅ) = 0.
Let x =
n
โ ri ei
. Then
i=1
โ n
โ
f(x) = f โ โ ri ei โ
โ
โ
โ i=1
โ
Algebra
Page No. 175
=
n
โ ri ui
i=1
=0
As {๐ข , ๐ข , โฆ , ๐ข } is a base for M,
n
โ ri ui = 0
โ ri =0
i=1
But this in turn shows that x =
for each ๐, 1 โค ๐ โค ๐.
n
โ ri ei = 0 . Thus ๐๐๐๐ = {0}.
i=1
This shows that ๐ is one-one. (See 1.3, theorem 3).
From (I), (II), (III) and (IV) we get,
๐: ๐
(
)
โถ ๐ is an isomorphism and hence ๐
(
Remark 2.3.5 :
)
โ
๐.
Thus existence of a base of n-elements for an R-module implies that
๐ โ
๐
( ) . In this case we shall say that M is a free R-module of rank n.
Theorem 2.3.6 : If ๐ is a module over commutative ring ๐
with unity 1 and if ๐ has bases
of ๐ and ๐ elements, then ๐ = ๐.
Proof : Assume that ๐ < ๐.
Let {๐ , ๐ , โฆ , ๐ } and {๐ , ๐ , โฆ , ๐ } be basis for M. As ๐ โ ๐ and {๐ / 1 โค ๐ โค ๐}
is a base for M, we get
fj =
n
โ a ji ei
where ๐ โ ๐
.
โฆ (1)
i=1
Similarly, as ๐ โ ๐ and {๐ , ๐ , โฆ , ๐ } is a base for M, we get
ei =
m
โ bij f j
where ๐ โ ๐
.
โฆ (2)
j=1
From (1) and (2) ,we get,
fj =
and
n
m
โ โ a ji bij' f j'
. . . (3)
i=1 j'=1
ei =
m
n
โ โ bij a ji' ei'
. . . (4)
j=1 i'=1
But {๐ / 1 โค ๐ โค ๐} and {๐ / 1 โค ๐ โค ๐} are bases for M and hence
Algebra
Page No. 176
n
โง1
if j = j'
,
if j โ j'
for 1 โค ๐, ๐โฒ โค ๐.
. . . (5)
if i = i'
,
if i โ i'
for 1 โค ๐, ๐โฒ โค ๐.
. . . (6)
โ a ji bij' ei'= โจ0
i=1
โฉ
and
m
โง1
bij a ji' = โจ
โฉ0
j=1
โ
From (1) and (2), we obtain the two ๐ × ๐ matrices A and B defined as follows.
๐
๐
โฏ ๐
โก๐
๐
โฏ ๐ โค
โข โฏ
โฏ โฏ โฏ โฅ
โข
โฅ
๐
โฏ ๐ โฅ
๐ด = โข๐
0
โฏ
0 โฅ
โข 0
โข โฎ
โฏ โฏ
โฎ โฅ
โฃ 0
0
โฏ
0 โฆ ×
and
๐
๐
๐ต=
โฏ
๐
๐
๐
โฏ
๐
โฏ ๐
โฏ ๐
โฏ โฏ
โฏ ๐
0
0
0
0
โฏ
โฏ
โฏ
โฏ
0
0
0
0
×
But form (6), we get, ๐ต๐ด = 1.
Since R is commutative, ๐ต๐ด = 1 โน ๐ด๐ต = 1.
But ๐ด๐ต = 1 is impossible as the matrix ๐ด๐ต contains last ๐ โ ๐ rows zero.
Hence our assumption ๐ < ๐ is wrong. Therefore ๐ โฅ ๐.
Similarly, we can prove that ๐ โค ๐.
Hence ๐ = ๐.
Corollary 2.3.7 : If ๐
is commutative, ๐
(
)
โ
๐
(
)
implies ๐ = ๐.
Proof : We know that any free module ๐ with a base containing m elements is isomorphic
with ๐
(
)
(See theorem 3.3.4). Thus, if ๐
(
)
โ
๐
(
)
then we have a free module ๐
which has bases of ๐ and ๐ elements. By theorem 3.3.6 it follows that, ๐ = ๐ and we
are through.
Theorem 2.3.8 : Given one ordered base ๐ , ๐ , โฆ , ๐
for a free module
over a
commutative ring R, we obtain another ordered base {๐ , ๐ , โฆ , ๐ } by applying the
Algebra
Page No. 177
n
matrices ๐ด = ๐ฟ (๐
) to (๐ , ๐ , โฆ , ๐ ) in the sence that f j = โ aij ei , ๐ด = (๐ ) and
i=1
conversely. Here ๐ฟ (๐
) denotes the group of ๐ × ๐ invertible matrices with entries in
R.
Let (๐ , ๐ , โฆ , ๐ ) and (๐ , ๐ , โฆ , ๐ ) be a bases for a free module M. As ๐ โ ๐
Proof :
and (๐ , ๐ , โฆ , ๐ ) is a base for M, we get
n
f j = โ a ji ei
โ ๐, 1 โค ๐ โค ๐, ๐ โ ๐
โ ๐, ๐ .
i=1
Similarly, ๐ โ ๐ and (๐ , ๐ , โฆ , ๐ ) is a base for M, will give
n
โ bij e j ,
ei =
โ ๐, 1 โค ๐ โค ๐, ๐ โ ๐
โ ๐, ๐.
j=1
Define ๐ด = (๐ ) and ๐ต = (๐ ).
Then, ๐ด, ๐ต โ ๐ฟ (๐
), as AB = 1 and BA = 1 imply A and B are invertible.
Conversely, suppose that (๐ , ๐ , โฆ , ๐ ) be a base for a free module M and
๐ด = (๐ ) โ ๐ฟ (๐
).
fj =
Define
n
โ a ji ei
โ ๐, 1 โค ๐ โค ๐.
,
i=1
Claim : (๐ , ๐ , โฆ , ๐ ) is a base for M.
(i)
Now ๐ด โ ๐ฟ (๐
). Hence ๐ด
(๐ )
×
Consider
exists. Let ๐ด
= ๐ต. Then AB = 1 = BA and let ๐ต =
.
n
โ bkj f j
. Then ,
j=1
n
n
โ bkj f j = โ
j=1
n
โ bkj a ji ei = ek
as BA = 1.
i=1 j=1
As {๐ , ๐ , โฆ , ๐ } generate M we get {๐ , ๐ , โฆ , ๐ } generate M.
(ii) Let
n
โ rj f j = 0 for some ๐
โ ๐
, 1 โค ๐ โค ๐. Then
i=1
n
n
โ โ rj โกโฃ a ji ei โคโฆ = 0
j=1 i=1
Algebra
Page No. 178
n
n
โ โ โกโฃrj a ji โคโฆ ei = 0
i.e.
i=1 j=1
As {๐ , ๐ , โฆ , ๐ } is a base for M, we get
n
โ rj a ji = 0
โ ๐, 1 โค ๐ โค ๐.
,
j=1
Hence
n
n
โ โ rj a ji bih = 0
โ โ, 1 โค โ โค ๐.
,
i=1 j=1
But AB = 1 and hence ๐ = 0 for all ๐, 1 โค ๐ โค ๐.
Thus,
n
โ rj f j = 0
j=1
โ rj = 0 for each ๐, 1 โค ๐ โค ๐.
From (1) and (2), we get {๐ , ๐ , โฆ , ๐ } is a base for M.
Theorem 2.3.9 : Let D be a p. i. d. and let ๐ท(
every submodule K of ๐ท(
)
)
be the free module of rank n over D. Then
is free with base of ๐ โค ๐ elements.
Proof :
Case I : n = 0.
If K = (0), then K is a free module with rank 0 (with empty base). Hence the result is
trivially true for n = 0.
Case II : n = 1.
๐ท(
)
= ๐ท . Hence any submodule of D is an ideal in D, which is a principal ideal. Hence
๐พ = (๐) for some ๐ โ ๐ท. Obviously {๐} generates K.
If f = 0, then K = (0) and the result follows as rank of K = 0.
Let ๐ โ 0. Then ๐๐ = 0 for some ๐ โ ๐ท will imply ๐ = 0 as D is an integral domain.
Thus, {๐} will form a base for ๐พ = (๐).
Hence, K is a free module with rank โค 1.
Case III : n > 1.
Let K be any submodule of ๐ท( ) .
We prove the result my induction on n. Let {๐ , ๐ , โฆ , ๐ } be a base for ๐ท( ) . Let ๐ท(
denote a submodule of ๐ท (
Algebra
)
generated by {๐ , ๐ , โฆ , ๐
, ๐ }. Then ๐ท(
)
)
is a free
Page No. 179
( )
module of rank n โ 1. Hence
{๐ฬ
} where ๐ฬ
= ๐ + ๐ท(
)
(
) is a free module of rank 1. The base for is
( )
(
)
is
.
(
As K is a submodule of ๐ท ( ) ,
(
)
)
is a submodule of
( )
(
)
.
Let
๐พ=
(
(
)
๐ท=
and
)
(I) If ๐พ = (0), then ๐ + ๐ท(
)
( )
(
โ ๐ท(
)
)
and hence ๐พ โ ๐ท (
)
.
By induction, K will be a free module with base containing ๐ โค ๐ โ 1 elements
and hence the result is true in this case.
(II) If ๐พ = {0}, then as in case (I), ๐พ will contain a base consisting of one element say
๐ ฬ
where ๐ ฬ
= ๐ + ๐ท(
Subcase I : ๐พ โฉ ๐ท(
Then ๐พ โฉ ๐ท(
๐พ โฉ ๐ท(
)
)
)
)
. As ๐พ =
(
(
)
)
we select ๐ โ ๐พ .
โ (0).
โ (0) is a submodule of ๐ท (
)
. Hence by induction hypothesis,
has a base say {๐ , ๐ , โฆ , ๐ } with 0 < ๐ โ 1 < ๐ โ 1.
Claim : {๐ , ๐ , โฆ , ๐ } will form a base for K.
Let ๐ฆ โ ๐พ . Then ๐ฆ = ๐ฆ + ๐ท(
)
โ ๐พ . Hence ๐ฆ = ๐ ๐ ฬ
for some ๐ โ ๐ท.
But this means that
๐ฆ โ ๐ ๐ = ๐ ๐ + ๐ ๐ + โฏ+ ๐ ๐
๐ฆ = ๐ ๐ + ๐ ๐ + ๐ ๐ + โฏ+ ๐ ๐
Now, let us assume that
. . . (1)
m
โ di f i = 0 for ๐ โ ๐ท. Hence d1 f1 = โ
i=1
m
โ dj f j .
j=2
This implies
d1 f 1 = โ
m
โ dj f j .
j=2
But {๐ , ๐ , โฆ , ๐ } is a base for ๐พ โฉ ๐ท(
)
. Hence
n
โ dj f j = 0
and therefore
j=2
d1 f 1 = 0 . But {๐ ฬ
} is a base for ๐พ will imply ๐ = 0.
Thus,
Algebra
Page No. 180
m
โ dj f j = 0
(Since d1 f 1 = โ
j=2
As {๐ , ๐ , โฆ , ๐ } is a base for ๐พ โฉ ๐ท (
m
โ dk f k = 0
โ
)
โ dj f j
j=2
we get ๐ = ๐ = โฏ = ๐ = 0. Thus
dk = 0
k=1
m
โ ๐, 1 โค ๐ โค ๐
Hence, {๐ , ๐ , โฆ , ๐ } will form a base K.
Subcase II : ๐พ โฉ ๐ท(
If ๐พ โฉ ๐ท(
๐ โ๐พ
)
)
= {0}.
= {0}, then {๐ } will form a base for K.
โน
(๐ ) โ ๐พ , where (๐ ) = ๐ท๐ .
Let ๐ฆ โ ๐พ . Then ๐ฆ = ๐ฆ + ๐ท(
Hence, ๐ฆ = ๐ ๐ ฬ
โน
)
โ ๐พ.
for some ๐ โ ๐ท.
๐ฆ โ ๐ ๐ โ ๐ท(
)
.
As ๐ โ ๐พ and ๐ฆ โ ๐พ , we get ๐ฆ โ ๐ ๐ โ ๐พ .
Thus, ๐ฆ โ ๐ ๐ โ ๐พ โฉ ๐ท(
)
= {0}.
Hence, ๐ฆ = ๐ ๐ . This shows that ๐พ โ (๐ ).
Hence, ๐พ = (๐ ) = ๐ท๐ .
Further, ๐ ๐ = 0 and ๐ โ 0
โน ๐ = 0.
Hence, {๐ } will form a base for K.
Thus in either cases, K is a free module with base consisting of m elements, where
๐ โค ๐.
2.4 Completely Reducible Modules :
Definition 2.4.1 : An R-module M is called completely reducible if ๐ = โ ๐ where ๐ are
simple R-modules.
Theorem 2.4.2 : Let M be a completely reducible R-module. Let M =
โ M ฮฑ where ๐
ฮฑ โฮ
is a simple R-modules of M. For any submodule K of M, โ a subset โโฒ and โ such that
โ M ฮฑ is a direct sum and
ฮฑ โฮ'
๐=๐พโ
โ Mฮฑ .
ฮฑ โฮ'
Algebra
Page No. 181
Proof :
โ Mฮฑ is a direct sum and ๐พ โฉ โ Mฮฑ
๐ฆ= ๐ดโโ /
ฮฑ โA
= {0} .
ฮฑ โฮ
Then ๐ฆ is a non empty set as ๐ โ ๐ฆ .
As,
๐ = {0}
โ
โฉ๐ฆ, โโช is partially ordered set.
Let ๐ be a chain in ๐ฆ . Then
๐โ๐ฆ
โ๐
Hence, by Zornโs lemma, ๐ฆ contains a maximum element say ๐ต.
Thus,
โ Mฮฑ is a direct sum and ๐พ โฉ โ Mฮฑ
ฮฑ โB
= {0}
ฮฑ โฮ
Let ๐ = ๐พ โ
โ Mฮฑ .
ฮฑ โB
Claim that M = N. i.e. to prove that โ
โ Mฮฑ = K โ โ Mฮฑ .
ฮฑ โฮ
ฮฑ โB
Let ๐ฝ โ โ. Then ๐ is a direct sum and of M and ๐ is simple. Hence ๐ โฉ ๐ is a
submodule of ๐ will imply ๐ โฉ ๐ = ๐ or ๐ โฉ ๐ = {0}.
Let ๐ โฉ ๐ = {0} then M ฮฒ I
This implies that M ฮฒ I
But then
โ
ฮฑ โB U{ฮฒ }
โ Mฮฑ โ M ฮฒ I N = {0} .
ฮฑ โB
โ M ฮฑ = {0} .
ฮฑ โB
M ฮฑ is a direct sum and
๐พโฉ
๐
โ โช{ }
= ๐พโฉ
๐
โช ๐พโฉ๐
โ
= {0} โช {0} = {0}
(as ๐ โฉ ๐ = {0} โน ๐ โฉ ๐พ = {0}
Thus, ๐ต โช {๐ฝ} โ ๐ฆ .
B being a maximal element of ๐ฆ we get a contradiction.
Hence,
๐ โฉ๐ =๐
i.e. ๐ โ ๐
โ ๐ฝ โ โ.
But this will imply
Algebra
Page No. 182
โ Mฮฒ
โ ๐.
i.e. ๐ โ ๐.
ฮฒ โฮ
Hence, M = N.
Thus, M = K โ
โ Mฮฑ
where ๐ต โ โ such that
ฮฑ โB
Corollary 2.4.3 : Let M =
โ Mฮฑ
is a direct sum.
ฮฑ โB
โ Mฮฑ
where ๐ is a simple R-submodule of M. Then โ a
ฮฑ โฮ
subfamily โโฒ of โ such that M = โ
โ Mฮฑ
.
ฮฑ โฮ '
Proof :
We know that for any submodule K of M, โ โโฒ โ โ such that M = K โ
โ Mฮฑ
ฮฑ โฮ '
and
โ
ฮฑ โฮ '
M ฮฑ is a direct sum.
Now, take ๐พ = {0}. Then M = โ
โ Mฮฑ
.
ฮฑ โฮ '
2.4.4 Worked Examples โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Example 1 : Let ๐ be a completely reducible module and let ๐พ be a nonzero submodule of
๐. Show that ๐พ is completely reducible. Also show that ๐พ is completely reducible.
Also show that ๐พ is a direct summand of ๐.
Solution : Let M =
โ Mฮฑ
where each ๐ is a simple submodule.
ฮฑ โฮ
By theorem 2, M = K โ
โ Mฮฑ
, โ โ โ shows that K is a direct summand of M.
ฮฑ โฮ '
Again,
and
M
โ
โ Mฮฑ
K ฮฑ โฮ'
M
โ
K
โ Mฮฑ
ฮฑ โฮ'
Thus ,
M
K โ
โ Mฮฑ
ฮฑ โฮ '
Algebra
โ
โ
ฮฑ โฮ '
Mฮฑ โ
โ
ฮฑ โฮ '
โ
ฮฑ โฮ"
Mฮฑ
Mฮฑ
โ
โ
ฮฑ โฮ "
Mฮฑ
Page No. 183
M
โ
โ M ฮฑ is a submodule of M. Hence again applying theorem 1, we get,
K ฮฑ โฮ'
โก
K = โข
โค
โก
โค
โ โข โ Mฮฑ โฅ ,
โฅโฆ
โฃโข ฮฑ โฮ"
โฆโฅ
โ Mฮฑ โฅ
โฃโขฮฑ โฮ '
M
โ Mฮฑ
โ
=
ฮฑ โฮ '
ฮฑ โฮ
Mฮฑ +
โ
ฮฑ โฮ '
โ
ฮฑ โฮ"
for some โ" โ โ.
Mฮฑ
โ
Mฮฑ
โ
ฮฑ โฮ "
Mฮฑ
Thus ,
K โ
โ
ฮฑ โฮ"
Mฮฑ
(โ" โ โ.
As each ๐ , ๐ผ โ โ" is simple we get
โ
ฮฑ โฮ"
M ฮฑ is completely reducible module. Hence
K is completely reducible being an isomorphic image of a completely reducible module.
Example 2 : Let M be a completely reducible module and let K be a submodule of M. If
๐พ โ ๐ then show that
is completely reducible.
Solution : M be completely reducible. Hence M =
โ M ฮฑ where each ๐
is simple. K is a
ฮฑ โฮ
submodule of M. Therefore by theorem 1, M = K โ
โ Mฮฑ
for some โโฒ โ โ.
ฮฑ โฮ'
But then
As
โ
ฮฑ โฮ '
M
โ
โ Mฮฑ .
K ฮฑ โฮ'
M ฮฑ is completely reducible, we get
is completely reducible.
โขโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Algebra
Page No. 184
Unit 3: NOETHERIAN AND ARTINIAN MODULES :
3.1 Noetherian and Artinian module
3.2
Artinian module
3.1 Noetherian Modules :
Definition 3.1.1 : Let ๐ be an R-module. If for every ascending sequence of R-submodules
of ๐, ๐ โ ๐ โ โฏ โ โฏ there exists a positive integer ๐ such that ๐ = ๐
= โฏ,
then ๐ is called Noetherian module.
Remark 3.1.2 : If ๐ is a Noetherian module, we say that ascending chain condition (acc) for
submodules hold in ๐ or ๐ has acc.
3.1.3 Examples โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Example 1 : Let ๐ denote a Z-module and ๐ โ ๐. we know that (n) is a submodule of ๐.
Consider the ascending chain of submodules i๐ ๐ given below.
(๐) โ (๐ ) โ (๐ ) โ โฏ
(๐) โ (๐ )
Then,
(๐ ) โ (๐ )
โน ๐ |๐
โน ๐ |๐
Hence, the ascending chain of submodules in Z, starting with (n) will have atmost ๐
distinct elements.
This shows that Z as a Z-module is a Noetherian module.
Example 2 : Let ๐ be an n-dimensional vector space over a field ๐น . Then any ascending
chain of subspaces of ๐ cannot have more than ๐ + 1 elements. Hence ๐ must be
Noetherian.
Theorem 3.1.4 : Let ๐ an R-module. The following statements are equivalent.
(i)
๐ is Noetherian.
(ii)
Every submodule of ๐ is finitely generated.
(iii) Any non-empty family of submodules of ๐ has a maximal element.
Algebra
Page No. 185
Proof :
(i) โน (ii) :
Let ๐ be a submodule of a Noetherian module ๐.
Assume that N is not finitely generated.
Select ๐ โ ๐. Then ๐ โ (๐ ), by assumption.
Hence, select ๐ โ ๐ such that ๐ โ (๐ ) . (This is possible as (๐ ) โ ๐ ).
Then, by assumption,
๐ โ (๐ , ๐ )
and
(๐ ) โ (๐ , ๐ ) โ ๐.
Hence, select ๐ โ ๐ such that ๐ โ (๐ , ๐ ) .
Then ๐ โ (๐ , ๐ , ๐ ), by assumption and
(๐ ) โ (๐ , ๐ ) โ (๐ , ๐ , ๐ ) โ ๐.
Continuing in this way, we get an infinite ascending chain of submodules of ๐ and
hence of ๐.
But this contradicts the fact that ๐ is Noetherian module.
Hence, ๐ must be finitely generated.
(ii) โน (iii) :
Let ๐ฆ denote the non empty family of submodules of the module ๐.
Let ๐ โ ๐ฆ .
If ๐ is a maximal ideal of ๐ฆ , then we are through.
If ๐ is not a maximal element of ๐ฆ , then there exist ๐ โ ๐ฆ such that ๐ โ ๐ .
If ๐ is a maximal element of ๐ฆ , then we are through.
If ๐ is not a maximal element of ๐ฆ , then there exist ๐ โ ๐ฆ such that ๐ โ ๐ โ ๐ .
Thus, if ๐ฆ does not contain a maximal element, we get an infinite chain of submodules
of ๐ as below
๐ โ๐ โ๐ โโฏ
โฆ (I)
Define N = U Ni .
i=1
Then, ๐ is a submodule of ๐. By assumption ๐ must be finitely generated.
Let (๐ฅ , ๐ฅ , . . . , ๐ฅ ),
where ๐ฅ โ ๐, โ ๐ โค ๐ โค ๐พ .
The finite number of elements ๐ฅ , ๐ฅ , . . . , ๐ฅ
must belong to the finite number of
submodules. ๐ (this number โค ๐ ), by the definition of ๐.
Hence, select a positive integer ๐ such that ๐ฅ , ๐ฅ , . . . , ๐ฅ โ ๐ and ๐ is the smallest
positive integer satisfying this property. Thus,
Algebra
Page No. 186
๐ฅ , ๐ฅ , . . . , ๐ฅ โ ๐ implies (๐ฅ , ๐ฅ , . . . , ๐ฅ ) โ ๐
and hence ๐ โ ๐ โ ๐.
This shows that ๐ = ๐ .
For the infinite chain in ๐ผ we have ๐ > 0 such that
๐ =๐
=๐
= ...= ๐
This in turn shows that ๐ will be the maximal element in ๐ฆ and the implication follows.
(iii) โน (i) :
Let ๐ โ ๐ โ . .. be any ascending sequence of submodules of an R-module ๐.
Consider the family ๐ฆ = {๐ , ๐ , . . . }.
Then, ๐ฆ is the family of submodules of ๐ and hence by assumption, ๐ฆ contains a
maximal element say ๐ . But then ๐ = ๐
= . ...
This in turn shows that ๐ is Noetherian.
Thus, we have proved 1 โน 2 โน 3 โน 1.
Hence, all the statements are equivalent.
Theorem 3.1.5 : Every submodule of a Noetherian module is a Noetherian module.
Proof :Let ๐ be Noetherian module. Let ๐ be submodule of ๐.
To prove ๐ is Noetherian.
Let ๐ฆ be any non empty family of submodules of ๐.
Then obviously, ๐ฆ is a any non empty family of submodules of ๐.
๐ being Noetherian, ๐ฆ contains a maximal element (See theorem 3.1.4).
But this in turn will imply ๐ is Noetherian.
Theorem 3.1.6 : Every quotient module of a Noetherian module is Noetherian.
Proof :
Let M be a Noetherian module. Let N be any submodule of M.
To prove that
is Noetherian.
Let ๐ฆ denote a non-empty family of submodules of a module
Let ๐ฆ =
๐1 ๐2 ๐3
, ๐, ๐,
๐
โฆ . As
is a submodule of
.
, by theorem 1 in 1.3, we get
๐ is a submodule of M containing N.
Algebra
Page No. 187
Consider the family โฑ = {๐, ๐ , ๐ , โฆ }. Then โฑ is a nonempty family of submodule
on M (since ๐ โ โฑ ). As M is Noetherian, the family โฑ contains a maximal element say
๐ .
will be the maximal element of the family ๐ฆ .
Then
Hence,
is Noetherian module, by theorem 3.1.4.
Theorem 3.1.7 : Every homomorphic image of a Noetherian module is Noetherian.
Proof :
Let ๐ โถ ๐ โถ ๐ be R-homomorphism of an R-module ๐ onto the R-module
๐.
Claim 1 : If ๐ is a submodule of ๐ then ๐(๐) is a submodule of ๐ .
(i)
๐(๐) โ ๐ as ๐ โ ๐
(ii)
๐ฅ, ๐ฆ โ ๐(๐). Hence โ ๐, ๐ โ ๐ such that ๐ฅ = ๐(๐) and ๐ฆ = ๐(๐).
Then ๐ฅ โ ๐ฆ = ๐(๐) โ ๐(๐)
= ๐(๐ โ ๐) ,
โฆ Since ๐ is homomorphism.
This shows that ๐ฅ โ ๐ฆ โ ๐(๐) as ๐ โ ๐ โ ๐, N being a module in ๐ .
(iii) Let ๐ โ ๐
and ๐ฅ โ ๐(๐). Then ๐ฅ = ๐(๐) for some ๐ โ ๐.
As N is a submodule of ๐ ,
๐ โ ๐ โ ๐ โน ๐(๐ โ ๐) โ ๐(๐).
But as f is an R- homomorphism, ๐(๐ โ ๐) = ๐ โ ๐(๐) = ๐ โ ๐ฅ โ ๐(๐).
From (i), (ii) and (iii), we get, ๐(๐) is a submodule of ๐ .
Claim 2 : If ๐ is a submodule of ๐ , then ๐
(i)
๐
(ii)
๐, ๐ โ ๐
(๐) is a submodule of ๐ .
(๐) โ ๐ as ๐ โ ๐
(๐). Then ๐(๐) โ ๐, ๐(๐) โ ๐.
As X is a submodule, ๐(๐) โ ๐(๐) โ ๐
๐ being homomorphism, ๐(๐) โ ๐(๐) = ๐(๐ โ ๐).
Thus, ๐(๐ โ ๐) โ ๐ and hence ๐ โ ๐ โ ๐
(iii) Let ๐ โ ๐
and ๐ โ ๐
(๐).
(๐).
Then ๐(๐) โ ๐, ๐ being a submodule of M, ๐ โ ๐(๐) โ ๐.
As ๐ is a homomorphism ๐(๐ โ ๐) = ๐ โ ๐(๐).
Thus, ๐ โ ๐ โ ๐
(๐).
From (i), (ii) and (iii), we get, ๐
Algebra
(๐) is a submodule of ๐ .
Page No. 188
Claim 3 : ๐ is a Noetherian module.
Let ๐ฆ = {๐ , ๐ , โฆ } be any nonempty family of submodules of the module ๐ .
Then the family, ๐ฆ = {๐
(๐ ), ๐
(๐ ), โฆ } is a non empty family of submodules of
the module ๐ (by claim 2).
As ๐ is Noetherian, ๐ฆ contains a maximal element (by theorem 3.1.4).
Let it be ๐
(๐ ).
Then, ๐ will be maximal element in ๐ฆ (by claim 1). This in turn shows that ๐ is
Noetherian (See theorem 3.1.4).
Thus, homomorphic image of a Noetherian module is Noetherian.
Theorem 3.1.8 : Let M be an R-module and let N be a submodule of M. M is Noetherian iff
both ๐ and
are Noetherian.
Proof : Only if part :
Let ๐ be Noetherian. Then both ๐ and
are Noetherian (See theorem 3.1.5 and
theorem 3.1.6).
If part :
Let ๐ and
both be Noetherian.
To prove that ๐ is Noetherian.
๐ is Noetherian implies ๐ is finitely generated (See theorem 3.1.4).
Let ๐ = (๐ฅ , ๐ฅ , โฆ , ๐ฅ ).
is Noetherian implies
Let
is finitely generated (See theorem 3.1.4).
= (๐ฆ + ๐, ๐ฆ + ๐, โฆ , ๐ฆ + ๐)
Then ๐ = (๐ฅ , ๐ฅ , โฆ , ๐ฅ , ๐ฆ , ๐ฆ , โฆ , ๐ฆ )
As M is a finitely generated module, M is Noetherian (See theorem 3.1.4).
Theorem 3.1.9 : Let ๐ be an R-module. Let ๐ and ๐ be submodules of ๐ such that
๐ = ๐ โจ ๐ . If ๐ and ๐ are Noetherian, then ๐ is Noetherian.
Proof : We know that ๐ = ๐ โจ ๐ will imply ๐ โ
Algebra
and ๐ โ
(See theorem 3.1.6).
Page No. 189
Now, ๐ is Noetherian and ๐ โ
Hence, by theorem 3.1.7,
As ๐ and
.
is Noetherian.
both are Noetherian we get ๐ is Noetherian (by theorem 3.1.8).
Corollary 3.1.10 : Let ๐ be an R-module and let ๐ , ๐ , โฆ , ๐ be Noetherian submodules
of ๐ such that
๐ = ๐ โ ๐ โ โฆโ ๐
Then, ๐ is Noetherian.
Proof : The result is true for ๐ = 2 by theorem 3.1.9.
[Hence by induction on ๐, we get, if ๐ = ๐ โ ๐ โ โฆ โ ๐ then ๐ is Noetherian
when each ๐ is a Noetherian module].
Let the result be true for all ๐ โค ๐.
Then [๐ โ ๐ โ โฆ โ ๐
] = ๐ is Noetherian module.
But in this case ๐ = ๐ โ ๐ .
As ๐ and ๐ both are noertherian, we get ๐ is Noetherian.
3.2 Artinian Module :
Definition 3.2.1 : An R-module ๐ is called Artinian if for every decreasing sequence of
R-submodules of ๐
๐ โ๐ โโฏโโฏ
there exists a positive integer ๐ such that ๐ = ๐
Remark 3.2.2 :
= โฏ.
If ๐ is Artinian module, we say that descending chain condition (dcc) for
submodules hold in ๐ or M has dcc.
Example 3.2.3 : Any finite dimensional vector space over the field ๐น is an Artinian module.
Remark 3.2.4 :
Any finite dimensional vector space over the filed ๐น is both Noetherian
and Artinian module. But ๐ as Z-module is a Noetherian module which is not Artinian
as the decreasing sequence
Algebra
Page No. 190
(๐) โ (๐ ) โ โฏ
is an infinite properly decreasing sequence in ๐.
Now we only mention the characterizing properties of Artinian modules, the proof being
similar to the proof of theorem 3.1.4.
Theorem 3.2.5 : Let ๐ be an R-module. Following statements are equivalent.
(i)
๐ is Artinian.
(ii)
Every submodules of ๐ is finitely generated.
(iii) Every non-empty set ๐ฆ of submodules of ๐ has a minimal element.
Exercise : Show that every submodule and every homomorphic image of an Artinian module
is Artinian.
[Hint : See 3.1, theorem 3.1.5 and theorem 3.1.7].
โขโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโข
Algebra
Page No. 191
© Copyright 2026 Paperzz