ﺑﺎﺳﻤﻪ ﺗﻌﺎﻟﻲ ﺳﻴﺴﺘﻢ ﻫﺎﻱ ﭼﻨﺪﺭﺳﺎﻧﻪﺍﻱ )(۴۰-۳۴۲ ﺩﺍﻧﺸﻜﺪﻩ ﻣﻬﻨﺪﺳﻲ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺗﺮﻡ ﺑﻬﺎﺭ ۱۳۸۶ ﺩﻛﺘﺮ ﺣﻤﻴﺪﺭﺿﺎ ﺭﺑﻴﻌﻲ ﺗﻜﻠﻴﻒ ﺷﻤﺎﺭﻩ :۱ﺩﻳﺠﻴﺘﺎﻝ ﻛﺮﺩﻥ ﺻﻮﺕ ﻭ ﺗﺒﺪﻳﻞ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ -١ﻣﻘﺪﻣﻪ ﺩﺭ ﻳﻚ ﻣﻴﻜﺮﻭﻓﻮﻥ ،ﺍﻣﻮﺍﺝ ﻓﺸﺎﺭ ﺻﺪﺍﻱ ﻓﻴﺰﻳﻜﻲ ﺑﻪ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﺍﻟﻜﺘﺮﻳﻜﻲ ﻣﺘﻨﺎﻇﺮ ﺑﺎ ﺧﻮﺩ ،ﺑﻪ ﻭﺳﻴﻠﻪ ﻣﺒﺪﻟﻬﺎﻱ ﺁﻛﻮﺳﺘﻴﻜﻲ ﻧﻈﻴﺮ ﻣﻴﻜﺮﻭﻓﻮﻥ ﻳﺎ Phonograph cartridgeﺗﺒﺪﻳﻞ ﻣﻲ ﺷﻮﻧﺪ .ﺧﺮﻭﺟﻲ ﺍﻟﻜﺘﺮﻳﻜﻲ ﻣﺒﺪﻝ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺁﻧﺎﻟﻮﮒ ﻧﺎﻣﻴﺪﻩ ﻣﻲﺷﻮﺩ ،ﺯﻳﺮﺍ ﺳﻴﮕﻨﺎﻝ ﺍﻟﻜﺘﺮﻳﻜﻲ ﻣﺸﺎﺑﻪ ﺍﻟﮕﻮﻱ ﻓﺸﺎﺭ ﻣﻮﺝ ﺻﻮﺗﻲ ﺍﺳﺖ ﻛﻪ ﺁﻥ ﺭﺍ ﺑﻮﺟﻮﺩ ﺁﻭﺭﺩﻩ ﺍﺳﺖ .ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﺻﻮﺕ ﺑﻪ ﺻﻮﺭﺕ ﺍﻟﮕﻮﻫﺎﻱ ﻣﻮﺝ ﺩﻭﺑﻌﺪﻱ ﻣﻲ ﺑﺎﺷﻨﺪ ﻛﻪ ﻣﺤﻮﺭ yﻧﺸﺎﻥ ﺩﻫﻨﺪﺓ ﺷﺪﺕ ﻳﺎ ﺩﺍﻣﻨﻪ ﻭ ﻣﺤﻮﺭ xﻧﺸﺎﻥ ﺩﻫﻨﺪﺓ ﻣﺴﻴﺮ ﺯﻣﺎﻥ ﻫﺴﺘﻨﺪ ،ﺷﻜﻞ ،١ﺷﻜﻞ ﻣﻮﺝ ﺁﻧﺎﻟﻮﮒ ﺍﺯ ﻳﻚ ﺳﺮﻱ ﻣﻮﺟﻬﺎﻱ ﺻﻮﺕ ﺍﺯ ﻳﻚ chimeﺭﺍ ﻧﺸﺎﻥ ﻣﻲ ﺩﻫﺪ .ﺍﻳﻦ ﺳﺮﻱ ﻣﻮﺟﻬﺎ ﺑﻪ ﻭﺳﻴﻠﻪ ﻣﻴﻜﺮﻭﻓﻮﻥ ﻭ ﺗﻘﻮﻳﺖ ﻛﻨﻨﺪﻩ ﺑﻪ ﻭﻟﺘﺎﮊ ﺁﻧﺎﻟﻮﮒ ﺑﺎ ﺣﺪﺍﻛﺜﺮ ﺩﺍﻣﻨﺔ ± 0.5 ﻭﻟﺖ )ﺩﺍﻣﻨﺔ ﻗﻠﻪ ﺑﻪ ﻗﻠﻪ ﻳﺎ (VPPﺗﺒﺪﻳﻞ ﺷﺪﻩ ﺍﻧﺪ. ﺷﮑﻞ -١ﺷﻜﻞ ﻣﻮﺝ ﻣﻌﻤﻮﻝ ﺻﻮﺕ ﻓﺮﻛﺎﻧﺲ ﻳﻚ ﻣﻮﺝ ﺑﻪ ﻭﺳﻴﻠﻪ ﺯﻣﺎﻥ ﺳﭙﺮﻱ ﺷﺪﻩ ﺑﻴﻦ ﺗﻜﺮﺍﺭﻫﺎ ﺗﻌﻴﻴﻦ ﻣﻲﺷﻮﺩ ﻛﻪ ﻃﻮﻝ ﻣﻮﺝ ﻧﺎﻣﻴﺪﻩ ﻣﻲﺷﻮﺩ .ﺑﻴﺸﺘﺮ ﻣﻮﺟﻬﺎﻱ ﺻﻮﺕ ﺩﻗﻴﻘﺎﹰ ﺗﻜﺮﺍﺭ ﻧﻤﻲ ﺷﻮﻧﺪ ﺍﻣﺎ ﻣﻲ ﺗﻮﺍﻥ ﻳﻚ ﺍﻟﮕﻮﻱ ﻣﺸﺨﺺ ﺩﺭ ﺷﻜﻞ ﻣﻮﺟﻲ ﻛﻪ ﺗﻮﺳﻂ ﺑﻴﺸﺘﺮ ﺳﺎﺯﻫﺎﻱ ﻣﻮﺳﻴﻘﻲ ﺍﻳﺠﺎﺩ ﻣﻲﺷﻮﺩ ،ﻣﺸﺎﻫﺪﻩ ﻛﺮﺩ .ﻃﻮﻝ ﻣﻮﺝ ﻳﻚ ﺻﻮﺕ ﺍﻟﻜﺘﺮﻳﻜﻲ ، λ ،ﺩﺭ ﻣﻘﻴﺎﺱ ﻣﻴﻠﻲ ﺛﺎﻧﻴﻪ ﻳﺎ ﻣﻴﻜﺮﻭﺛﺎﻧﻴﻪ ﺑﻴﺎﻥ ﻣﻲ ﺷﻮﺩ .ﻓﺮﻛﺎﻧﺲ ،F،ﻛﻪ ﺑﺎ ﻭﺍﺣﺪ ﻫﺮﺗﺰ ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ ﻣﻲﺷﻮﺩ 1 )ﺗﻌﺪﺍﺩ ﺩﻭﺭ ﺩﺭ ﻫﺮ ﺛﺎﻧﻴﻪ( ﻣﻌﻜﻮﺱ λﻣﻲ ﺑﺎﺷﺪ ،ﻳﻌﻨﻲ λ ﺻﺪﺍﻱ ﺑﺸﺮ ﻳﺎ ﺻﺪﺍﻫﺎﻱ ﺗﻮﻟﻴﺪ ﺷﺪﻩ ﺑﻪ ﻭﺳﻴﻠﻪ ﺳﺎﺯﻫﺎﻱ ﻣﻮﺳﻴﻘﻲ ﻣﻲﺗﻮﺍﻧﻨﺪ ﺑﻪ ﻳﻚ ﻣﻮﺝ ﭘﺎﻳﻪ ﻭ ﻣﻮﺟﻬﺎﻱ ﻣﺘﻌﺪﺩ ﺍﻟﺤﺎﻗﻲ ﺩﻳﮕﺮ ﺗﻘﺴﻴﻢ ﺷﻮﻧﺪ. = .F ﻣﻮﺟﻬﺎﻱ ﺍﻟﺤﺎﻗﻲ ﻛﻪ ﺑﻪ ﻣﻮﺝ ﭘﺎﻳﻪ ﺍﻋﻤﺎﻝ ﺷﺪﻩ ﺍﻧﺪ overtone ،ﻧﺎﻣﻴﺪﻩ ﻣﻲ ﺷﻮﻧﺪOverton .ﻫﺎ ﻣﻮﺟﻬﺎﻱ ﻓﺮﻛﺎﻧﺲ ﺑﺎﻻﺗﺮﻣﯽ ﺑﺎﺷﻨﺪ ﻭ ﺑﺎ ﻓﺮﻛﺎﻧﺲ ﻫﺎﻳﻲ ﻛﻪ ﺿﺮﺍﻳﺒﻲ ﺍﺯ ﻣﻮﺝ ﭘﺎﻳﻪ ﻣﻲ ﺑﺎﺷﻨﺪ )ﻫﺎﺭﻣﻮﻧﻴﻚ ﻫﺎ( ﺑﻪ ﺻﺪﺍ ،ﻣﺸﺨﺼﺎﺕ ﻳﻚ ﺻﻮﺕ ﺑﺸﺮﻱ ﻳﺎ ﺻﻮﺕ ﺳﺎﺯﻫﺎﻱ ﻣﻮﺳﻴﻘﻲ ﺭﺍ ﻣﻲ ﺑﺨﺸﻨﺪ .ﻫﻨﮕﺎﻣﻲ ﻛﻪ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺻﻮﺕ ﺑﻪ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﺩﻳﺠﻴﺘﺎﻝ ﺗﺒﺪﻳﻞ ﻣﻲﺷﻮﺩ ،ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻣﻮﺭﺩﻧﻴﺎﺯ ﺑﺴﺘﮕﻲ ﺑﻪ ﻓﺮﻛﺎﻧﺴﻬﺎﻱ overtoneﻫﺎﻱ ﻣﻮﺟﻮﺩ ﺩﺭ ﺳﻴﮕﻨﺎﻝ ﺩﺍﺭﺩ. 1 CE 342 – Multimedia HW# 1 H. Rabiee, Spring 2008 ﺩﺭ ﺍﻳﻦ ﺁﺯﻣﺎﻳﺶ ﺷﻤﺎ ﺍﻣﻜﺎﻥ ﺑﺎﺯﻱ ﺑﺎ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺷﺪﻩ ﺩﺭ ﻧﺮﺥ ﻫﺎﻱ ﻣﺘﻔﺎﻭﺕ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺭﺍ ﺩﺍﺭﻳﺪ ،ﻛﻪ ﻛﻴﻔﻴﺖ ﻫﺎﻱ ﻣﺨﺘﻠﻔﻲ ﺍﺯ ﺻﻮﺕ ﺭﺍ ﻋﺮﺿﻪ ﻣﻲ ﻛﻨﻨﺪ. -٢ﺗﺌﻮﺭﻱ -١-٢ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﭘﻴﻮﺳﺘﻪ ﻭ ﺗﺌﻮﺭﻱ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻧﺎﻳﻜﻮﺋﻴﺴﺖ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﺻﻮﺕ ﺍﺯ ﻧﻮﻉ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﭘﻴﻮﺳﺘﻪ )ﺁﻧﺎﻟﻮﮒ( ﻫﺴﺘﻨﺪ ﻛﻪ ﺑﻪ ﺗﺪﺭﻳﺞ ﺑﺎ ﻧﻘﺼﺎﻥ ﻳﺎﻓﺘﻦ ﻣﻨﺒﻊ ﺻﺪﺍ ،ﺍﻓﺖ ﺩﺍﻣﻨﻪ ﭘﻴﺪﺍ ﻣﻲﻛﻨﻨﺪ .ﺍﺯ ﺳﻮﻱ ﺩﻳﮕﺮ ،ﻛﺎﻣﭙﻴﻮﺗﺮﻫﺎ ،ﺩﺍﺩﻩ ﻫﺎﻱ ﺧﻮﺩ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﺩﻳﺠﻴﺘﺎﻝ ﺫﺧﻴﺮﻩ ﻣﻲ ﻛﻨﻨﺪ :ﻳﻚ ﺭﺷﺘﻪ streamﺍﺯ ﺑﻴﺘﻬﺎﻱ ﺻﻔﺮ ﻭ ﻳﻚ .ﺩﺍﺩﻩ ﻫﺎﻱ ﺩﻳﺠﻴﺘﺎﻝ ﻃﺒﻴﻌﺘﺎﹰ ﮔﺴﺴﺘﻪ ﻫﺴﺘﻨﺪ ﺯﻳﺮﺍ ﻣﻘﺪﺍﺭ ” “0ﻳﺎ ” “1ﺩﺍﺩﺓ ﺩﻳﺠﻴﺘﺎﻝ ﻓﻘﻂ ﺩﺭ ﻳﻚ ﻟﺤﻈﺔ ﻣﺸﺨﺺ ﻣﻌﺘﺒﺮ ﻣﻲ ﺑﺎﺷﺪ .ﺑﻨﺎﺑﺮﺍﻳﻦ ،ﺳﻴﮕﻨﺎﻝ ﺻﻮﺕ ﺁﻧﺎﻟﻮﮒ ﻛﻪ ﭘﻴﻮﺳﺘﻪ ﺍﺳﺖ ﺑﺎﻳﺪ ﺑﻪ ﻓﺮﻡ ﺩﻳﺠﻴﺘﺎﻟﻲ ﻧﺎﭘﻴﻮﺳﺘﻪ ﺗﺒﺪﻳﻞ ﺷﻮﺩ ﺗﺎ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺗﻮﺍﻧﺎﻳﻲ ﺫﺧﻴﺮﻩ ﻳﺎ ﭘﺮﺩﺍﺯﺵ ﺻﻮﺕ ﺭﺍ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ .ﺍﻟﺒﺘﻪ ﺩﺍﺩﺓ ﺩﻳﺠﻴﺘﺎﻝ ﺩﻭﺑﺎﺭﻩ ﺑﺎﻳﺪ ﺑﻪ ﻓﺮﻡ ﺁﻧﺎﻟﻮﮒ ﺗﺒﺪﻳﻞ ﺷﻮﺩ ﺗﺎ ﺍﺯ ﻃﺮﻳﻖ ﻳﻚ ﺳﻴﺴﺘﻢ ﺻﻮﺗﻲ ﻗﺎﺑﻞ ﺷﻨﻴﺪﻥ ﺑﺎﺷﺪ .ﺗﺒﺪﻳﻞ ﺩﻭ ﻃﺮﻓﻪ ﺑﻴﻦ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﺁﻧﺎﻟﻮﮒ ﻭ ﺩﻳﺠﻴﺘﺎﻝ ،ﻋﻤﻠﻴﺎﺕ ﺍﻭﻟﻴﻪ ﺗﻤﺎﻡ ﻛﺎﺭﺗﻬﺎﻱ adapterﻭ ﻛﺎﺭﺗﻬﺎﻱ ﺻﺪﺍ ﻣﻲ ﺑﺎﺷﺪ. -١-١-٢ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺗﻨﺎﻭﺑﻲ ﻭ ﺗﺒﺪﻳﻞ ﺁﻧﺎﻟﻮﮒ ﺑﻪ ﺩﻳﺠﻴﺘﺎﻝ ﺭﻭﺵ ﻣﻌﻤﻮﻝ ﻧﻤﺎﻳﺶ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺯﻣﺎﻥ – ﮔﺴﺴﺘﻪ ﺍﺯ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺯﻣﺎﻥ – ﭘﻴﻮﺳﺘﻪ ،ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻣﺘﻨﺎﻭﺏ )ﭘﺮﻳﻮﺩﻳﻚ( ﺍﺳﺖ ﻛﻪ ﺩﺭ ﺁﻥ ﻳﻚ ﺩﻧﺒﺎﻟﻪ ﺍﺯ ﻧﻤﻮﻧﻪ ﻫﺎﻱ ] x[nﺍﺯ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺯﻣﺎﻥ ﭘﻴﻮﺳﺘﻪ ) xc(tﻣﻄﺎﺑﻖ ﺭﺍﺑﻄﻪ ﺯﻳﺮ ﺑﺪﺳﺖ ﻣﻲ ﺁﻳﺪ. )(١-٢ ﺷﮑﻞ -٢ﻳﻚ ﻣﺒﺪﻝ ﺁﻧﺎﻟﻮﮒ ﺑﻪ ﺩﻳﺠﻴﺘﺎﻝ ) (A/Dﺍﻳﺪﻩ ﺁﻝ 1 ﺩﺭ ﺭﺍﺑﻄﺔ ) T ،(١-٢ﺗﻨﺎﻭﺏ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻭ ﻣﻌﻜﻮﺱ ﺁﻥ، T ﻫﺮﺗﺰ ) (Hzﻧﻤﺎﻳﺶ ﺩﺍﺩﻩ ﻣﻲ ﺷﻮﺩ ،ﻣﯽ ﺑﺎﺷﻨﺪ .ﻣﺎ ﻳﻚ ﺳﻴﺴﺘﻢ ﺭﺍ ﻛﻪ ﺭﺍﺑﻄﺔ ) (١-٢ﺭﺍ ﺑﻪ ﻋﻨﻮﺍﻥ ﻳﻚ ﻣﺒﺪﻝ ﺍﻳﺪﻩ ﺁﻝ ﭘﻴﻮﺳﺘﻪ – ﺑﻪ – ﮔﺴﺴﺘﻪ = ، f sﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺑﺮ ﺣﺴﺐ ﻧﻤﻮﻧﻪ ﺑﺮ ﺛﺎﻧﻴﻪ ﻛﻪ ﻣﻌﻤﻮﻻﹰ ﺑﺮ ﺣﺴﺐ ) (C/Dﻋﻤﻠﻲ ﻣﻲ ﻛﻨﺪ ﺩﺭ ﺷﻜﻞ ٢ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺍﻳﻢ .ﺑﺮﺍﻱ ﺫﺧﻴﺮﺓ ﻣﻘﺎﺩﻳﺮ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺷﺪﻩ ﺗﻮﺳﻂ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺑﺎ ﺩﻗﺖ ﻣﺤﺪﻭﺩ ،ﻣﻘﺎﺩﻳﺮ ﭘﻴﻮﺳﺘﻪ ﺑﺎﻳﺪ ﺑﻪ ﻳﻚ ﺳﺮﻱ ﻣﻘﺎﺩﻳﺮ ﺍﺯ ﭘﻴﺶ ﺗﻌﻴﻴﻦ ﺷﺪﻩ ﻛﻮﺍﻧﺘﻴﺰﻩ ﺷﻮﻧﺪ .ﻋﻤﻠﻴﺎﺕ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻭ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﺩﻗﻴﻘﺎﹰ ﻫﻤﺎﻥ ﻋﻤﻠﻴﺎﺗﻲ ﺍﺳﺖ ﻛﻪ ﺩﺭ ﻣﺒﺪﻝ ﺁﻧﺎﻟﻮﮒ – ﺑﻪ – ﺩﻳﺠﻴﺘﺎﻝ ،ﻳﺎ ﺩﻳﺠﻴﺘﺎﻝ – ﺑﻪ – ﺁﻧﺎﻟﻮﮒ ،ﺑﻪ ﺻﻮﺭﺕ ﺑﺮﻋﻜﺲ ،ﺻﻮﺭﺕ ﻣﻲ ﮔﻴﺮﺩ .ﺑﻴﺸﺘﺮ ﻛﺎﺭﺗﻬﺎﻱ ﺻﺪﺍ ﻗﺎﺑﻠﻴﺖ ﺫﺧﻴﺮﻩ ﺻﺪﺍ ﺭﺍ ﻫﻢ ﺑﻪ ﺻﻮﺭﺕ ٨ﺑﻴﺘﻲ ﻭ ﻫﻢ ١٦ﺑﻴﺘﻲ ،ﺑﺮﺍﻱ ﻛﻴﻔﻴﺖ ﻫﺎﻱ ﺑﺎﻻﺗﺮ ﺻﻮﺗﻲ ﺩﺍﺭﻧﺪ. -٢-١-٢ﺗﺌﻮﺭﻱ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻧﺎﻳﻜﻮﺋﻴﺴﺖ ﺗﺌﻮﺭﻱ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺑﻪ ﻣﺎ ﻣﻲ ﮔﻮﻳﺪ ﻛﻪ ﭼﻪ ﺍﻧﺪﺍﺯﻩ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻣﺎ ﻣﻲ ﺗﻮﺍﻧﺪ ﺳﺮﻳﻊ ﺑﺎﺷﺪ ﺗﺎ ﻧﻤﺎﻳﺶ ﺑﻬﺘﺮﻱ ﺍﺯ ﺳﻴﮕﻨﺎﻝ ﺍﻭﻟﻴﻪ ﺩﺍﺷﺘﻪ ﺑﺎﺷﻴﻢ . ﻣﻲ ﺩﺍﻧﻴﻢ ﻛﻪ ﺍﮔﺮ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺗﻐﻴﻴﺮﺍﺕ ﺧﻴﻠﻲ ﺳﺮﻳﻊ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ ،ﻣﺎ ﻫﻢ ﺑﺎﻳﺪ ﺩﺭ ﻓﺎﺻﻠﻪ ﻫﺎﻱ ﻧﺰﺩﻳﻜﺘﺮﻱ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻛﻨﻴﻢ ﺗﺎ ﻫﻴﭻ ﺗﻐﻴﻴﺮ ﻣﻴﺎﻧﻲ ﺭﺍ ﺍﺯ ﺩﺳﺖ ﻧﺪﻫﻴﻢ .ﻳﻚ ﻣﺜﺎﻝ ﺧﻮﺏ ،ﻧﻤﺎﻳﺶ ﺳﻬﺎﻡ ﺑﻮﺭﺱ ﺑﺮ ﺣﺴﺐ ﻧﻤﺎﻳﺶ ﻭﺿﻊ ﻫﻮﺍ ﺍﺳﺖ .ﺍﺯ ﺁﻧﺠﺎ ﻛﻪ ﺗﻐﻴﻴﺮﺍﺕ ﺑﻮﺭﺱ ﺑﺴﻴﺎﺭ 2 CE 342 – Multimedia HW# 1 H. Rabiee, Spring 2008 ﺳﺮﻳﻊ ﺍﺳﺖ ،ﺑﻪ ﻃﻮﺭ ﻣﻌﻤﻮﻝ ﺑﺎﻳﺪ ﻫﺮﭼﻨﺪ ﺩﻗﻴﻘﻪ ﻳﻜﺒﺎﺭ ﺍﻋﻼﻡ ﺷﻮﺩ ،ﺍﺯ ﻃﺮﻑ ﺩﻳﮕﺮ ،ﺩﺭﺑﺎﺭﺓ ﻭﺿﻊ ﻫﻮﺍ ،ﻧﻤﺎﻳﺶ ﺍﻳﻦ ﺗﻐﻴﻴﺮﺍﺕ ﺩﺭ ﻫﺮ ﺳﺎﻋﺖ ﻛﺎﻓﻲ ﺧﻮﺍﻫﺪ ﺑﻮﺩ. ﺣﺎﻻ ،ﻧﮕﺎﻫﻲ ﺑﻪ ﺗﺌﻮﺭﻱ ﺗﻨﺎﻭﺏ Tﻣﻲ ﺍﻧﺪﺍﺯﻳﻢ ﻛﻪ ﭼﻪ ﺍﻧﺪﺍﺯﻩ ﺩﻗﻴﻖ ﺑﺎﻳﺪ ﺁﻥ ﺭﺍ ﺗﻌﻴﻴﻦ ﻛﺮﺩ. ﺗﺌﻮﺭﻱ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻧﺎﻳﻜﻮﺋﻴﺴﺖ :ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ ﻛﻪ ) xc(tﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺑﺎ ﭘﻬﻨﺎﻱ ﺑﺎﻧﺪ ﻣﺤﺪﻭﺩ ﻭ ) X c ( jΩﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ﺁﻥ ﺍﺳﺖ ﻛﻪ ﺷﺮﻁ ﺯﻳﺮ ﺭﺍ ﺑﺮﺁﻭﺭﺩﻩ ﻣﻲ ﻛﻨﺪ. )(٢-٢ ﭘﺲ ) xc(tﻣﻨﺤﺼﺮﺍﹰ ﺗﻮﺳﻂ ﻧﻤﻮﻧﻪ ﻫﺎﻱ ) n = 0,±1,±2,..., x[n] = xc (nTﺑﻴﺎﻥ ﻣﻲ ﺷﻮﺩ ﺑﻪ ﺷﺮﻃﻲ ﻛﻪ ﺗﻨﺎﻭﺏ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺁﻥ ﻳﺎ ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ Ω sﺷﺮﻁ ﺯﻳﺮ ﺭﺍ ﺑﺮﺁﻭﺭﺩﻩ ﻛﻨﺪ. )(٣-٢ ﻧﺘﻴﺠﻪ ﻓﻮﻕ ﺍﺑﺘﺪﺍ ﺗﻮﺳﻂ ﻧﺎﻳﻜﻮﺋﻴﺴﺖ ﺑﺪﺳﺖ ﺁﻣﺪ ﻛﻪ ﺑﻪ ﻧﺎﻡ ﺗﺌﻮﺭﻱ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻧﺎﻳﻜﻮﺋﻴﺴﺖ ﻣﺸﻬﻮﺭ ﺷﺪ .ﻓﺮﻛﺎﻧﺲ 2Ω Nﻛﻪ ﺑﺎﻳﺪ ﺍﺯ ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻛﻮﭼﻜﺘﺮ ﺑﺎﺷﺪ ،ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻧﺎﻳﻜﻮﺋﻴﺴﺖ ﻧﺎﻣﻴﺪﻩ ﻣﻲﺷﻮﺩ .ﺑﺮﺍﻱ ﺍﺛﺒﺎﺕ ﺗﺌﻮﺭﻱ ﻓﻮﻕ X(ejw) ،ﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ﺯﻣﺎﻥ – ﮔﺴﺴﺘﻪ ﺩﻧﺒﺎﻟﺔ ] x[nﺭﺍ ﺑﺮ ﺣﺴﺐ ) ، X c ( jΩﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ﭘﻴﻮﺳﺘﻪ ) ،xc(tﺑﺪﺳﺖ ﻣﻲ ﺁﻭﺭﻳﻢ. ﺑﻪ ﻫﻤﻴﻦ ﻣﻨﻈﻮﺭ ﺳﻴﮕﻨﺎﻝ ﻗﻄﺎﺭ ﺿﺮﺑﻪ ﺯﻳﺮ ﺭﺍ ﺩﺭ ﻧﻈﺮ ﻣﻲ ﮔﻴﺮﻳﻢ. )(٤-٢ ﻣﻲ ﺗﻮﺍﻥ ﻧﺸﺎﻥ ﺩﺍﺩ ﻛﻪ ﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ) xs(tﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻣﻲ ﺑﺎﺷﺪ: )(٥-٢ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺗﻌﺮﻳﻒ )(٦-٢ )(٧-٢ ﻣﺸﺎﻫﺪﻩ ﻣﻲ ﺷﻮﺩ )(٨-٢ ﺍﺯ ﺭﻭﺍﺑﻂ ) (٥-٢ﻭ ) (٨-٢ﻧﺘﻴﺠﻪ ﻣﻲ ﮔﻴﺮﻳﻢ ﻛﻪ )(٩-٢ 3 CE 342 – Multimedia HW# 1 H. Rabiee, Spring 2008 ﺍﺯ ﺭﺍﺑﻄﻪ ) (٩-٢ﻣﺸﺎﻫﻪ ﻣﻲ ﺷﻮﺩ ﻛﻪ ) X(ejwﻣﺠﻤﻮﻉ ﺗﺮﻣﻬﺎﻱ ﻣﻘﻴﺎﺱ ﺑﻨﺪﻱ ﺷﺪﻩ ﻭ ﺷﻴﻔﺖ ﻳﺎﻓﺘﺔ ) X c ( jΩﻣﻲ ﺑﺎﺷﺪ .ﻣﻘﻴﺎﺱ ﻓﺮﻛﺎﻧﺲ 2π w = Ωﺗﻌﻴﻴﻦ ﻣﻲ ﺷﻮﺩ ،ﺩﺭ ﺣﺎﻟﻲ ﻛﻪ ﺷﻴﻔﺖ ﻫﺎ ﺑﺮﺍﺑﺮ ﺑﺎ ﺿﺮﺍﻳﺐ ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺗﻮﺳﻂ T T = Ωsﻣﻲ ﺑﺎﺷﻨﺪ. -٣-١-٢ﺑﺎﺯﺳﺎﺯﻱ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺑﺎﻧﺪ ﻣﺤﺪﻭﺩ ﺍﺯ ﻧﻤﻮﻧﻪ ﻫﺎﻳﺶ )ﺗﺒﺪﻳﻞ ﺩﻳﺠﻴﺘﺎﻝ ﺑﻪ ﺁﻧﺎﻟﻮﮒ( Ωs ﺍﺯ ﺷﮑﻞ ،٥ﺍﮔﺮ ﺳﻴﮕﻨﺎﻝ ﺍﻭﻟﻴﻪ ﺑﺎﻧﺪ ﻣﺤﺪﻭﺩ ﺑﺎﺷﺪ ،ﻳﻌﻨﻲ Ω > Ω Nﺑﺮﺍﻱ ، xc ( jΩ) = 0ﻛﻪ 2 ﺩﻭﺑﺎﺭﻩ ﺍﺯ ) X(jwﺑﺪﺳﺖ ﺁﻭﺭﺩ .ﺑﻪ ﻃﻮﺭ ﺩﻗﻴﻘﺘﺮ ﺍﺑﺘﺪﺍ ﻣﻲ ﺗﻮﺍﻧﻴﻢ ﺳﻴﮕﻨﺎﻝ ﻗﻄﺎﺭ ﺿﺮﺑﻪ ) xs(tﺭﺍ ﺑﻮﺟﻮﺩ ﺁﻭﺭﻳﻢ. ≤ ، Ω Nﻣﻲ ﺗﻮﺍﻥ ) X c ( jΩﺭﺍ )(١٠-۲ Ωs π ﺳﭙﺲ ﻣﻲ ﺗﻮﺍﻧﻴﻢ ﻳﻚ ﻓﻴﻠﺘﺮ ﺍﻳﺪﻩ ﺁﻝ ﭘﺎﻳﻴﻦ ﮔﺬﺭ ﺭﺍ ﺑﺎ ﻓﺮﻛﺎﻧﺲ ﻗﻄﻊ = 2 T = Ω cﺑﻪ ) xs(tﺍﻋﻤﺎﻝ ﻛﻨﻴﻢ. )(١١-٢ ﺍﮔﺮ ) X c ( jΩﭘﻬﻨﺎﻱ ﺑﺎﻧﺪ ﻣﺤﺪﻭﺩ ﺑﺎﺷﺪ ﺁﻧﮕﺎﻩ ﺳﻴﮕﻨﺎﻝ ﻓﻴﻠﺘﺮ ﺷﺪﺓ ﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ﺁﻥ ﺩﻗﻴﻘﺎﹰ ﺑﺮﺍﺑﺮ ) X c ( jΩﺍﺳﺖ .ﻳﻌﻨﻲ: ﺩﺭ ﺣﻮﺯﻩ ﺯﻣﺎﻥ ،ﻓﻴﻠﺘﺮ ﺑﺎﺯﺳﺎﺯﻱ ﺍﻳﺪﻩ ﺁﻝ ) hr (tﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻣﻲ ﺑﺎﺷﺪ. )(۱۲-٢ ﺳﻴﮕﻨﺎﻝ ﺑﺎﺯﺳﺎﺯﻱ ﺷﺪﻩ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺍﺳﺖ )(١٣-٢ ﺷﮑﻞ ،٣ﻧﻤﻮﺩﺍﺭ ﺑﻠﻮﻛﻲ ﺍﻳﻦ ﻓﺮﺁﻳﻨﺪ ﺑﺎﺯﺳﺎﺯﻱ ﺭﺍ ﻧﺸﺎﻥ ﻣﻲ ﺩﻫﺪ. ﺍﺯ ﻧﺘﻴﺠﻪ ﻓﻮﻕ ،ﻧﻤﻮﻧﻪ ﻫﺎﻱ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺑﺎﻧﺪ ﻣﺤﺪﻭﺩ ﺯﻣﺎﻥ ﭘﻴﻮﺳﺘﻪ ﻛﻪ ﺑﺎ ﻓﺮﻛﺎﻧﺲ ﻛﺎﻓﻲ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺷﺪﻩ ﺍﻧﺪ )ﻳﻌﻨﻲ ،( Ω s > 2Ω Nﺑﺮﺍﻱ ﻧﻤﺎﻳﺶ ﺳﻴﮕﻨﺎﻝ ﺍﺻﻠﻲ ﻛﺎﻓﻲ ﻫﺴﺘﻨﺪ ﭘﺲ ﺳﻴﮕﻨﺎﻝ ﺍﺻﻠﻲ ﺍﺯ ﺭﻭﻱ ﻧﻤﻮﻧﻪ ﻫﺎ ﻭ ﺩﺍﻧﺴﺘﻦ ﭘﺮﻳﻮﺩ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻗﺎﺑﻞ ﺑﺎﺯﺳﺎﺯﻱ ﺍﺳﺖ. ﺩﺭ ﻋﻤﻞ ،ﻓﻴﻠﺘﺮ ﺍﻳﺪﻩ ﺁﻝ ﭘﺎﻳﻴﻦ ﮔﺬﺭ ﻗﺎﺑﻞ ﭘﻴﺎﺩﻩ ﺳﺎﺯﻱ ﻧﻴﺴﺖ ﻭ ﻣﺎ ﺑﺎﻳﺪ ﺗﻘﺮﻳﺐ ﺑﺰﻧﻴﻢ .ﻋﻼﻭﻩ ﺑﺮ ﺍﻳﻦ ،ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﻭﺍﻗﻌﻲ ﻣﻤﻜﻦ ﺍﺳﺖ ﭘﻬﻨﺎﻱ ﺑﺎﻧﺪ ﺯﻳﺎﺩﻱ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ ﻛﻪ ﺗﻮﺳﻂ ﺳﻴﺴﺘﻢ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻗﺎﺑﻞ ﺍﺟﺮﺍ ﻧﺒﺎﺷﺪ .ﺑﻨﺎﺑﺮﺍﻳﻦ ﺩﺭ ﻋﻤﻞ ﺑﺎﻳﺪ ﺍﺑﺘﺪﺍ ﻳﻚ ﭘﻴﺶ ﻓﻴﻠﺘﺮ ﭘﺎﻳﻴﻦ ﮔﺬﺭ ﻭ ﺑﺎ Ωs Ω ﻓﺮﻛﺎﻧﺲ ﻗﻄﻊ Ω c ≤ sﺭﺍ ﺍﻋﻤﺎﻝ ﻛﺮﺩ ) 2 2 4 ≤ .( Ω N CE 342 – Multimedia HW# 1 H. Rabiee, Spring 2008 ﺷﮑﻞ) -٣ﺍﻟﻒ( ﻳﻚ ﺳﻴﺴﺘﻢ ﺑﺎﺯﺳﺎﺯﻱ ﺳﻴﮕﻨﺎﻝ ﺑﺎﻧﺪ ﻣﺤﺪﻭﺩ ﺍﻳﺪﻩ ﺁﻝ )ﺏ( ﭘﺎﺳﺦ ﻓﺮﻛﺎﻧﺴﻲ ﻳﻚ ﻓﻴﻠﺘﺮ ﺑﺎﺯﺳﺎﺯﻱ ﺍﻳﺪﻩ ﺁﻝ )ﺝ( ﭘﺎﺳﺦ ﺿﺮﺑﻪ ﺑﻪ ﻳﻚ ﻓﻴﻠﺘﺮ ﺑﺎﺯﺳﺎﺯﻱ ﺍﻳﺪﻩ ﺁﻝ -٢-٢ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﮐﺎﻫﺸﯽ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻳﻚ ﺩﻧﺒﺎﻟﻪ ﻣﻲ ﺗﻮﺍﻧﺪ ﺑﺎ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺍﺯ ﺁﻥ ﻛﺎﻫﺶ ﻳﺎﺑﺪ. )(١٤-٢ )xd[n] = x[nM] = xc(nMT ﺩﺭ ﺭﺍﺑﻄﺔ ) (١٤-٢ﻣﺸﺎﻫﺪﻩ ﻣﻲ ﺷﻮﺩ ﻛﻪ ] xd[nﺭﺍ ﻣﻲ ﺗﻮﺍﻥ ﺑﻪ ﺻﻮﺭﺕ ﻣﺴﺘﻘﻴﻢ ﺑﺎ ﺗﻨﺎﻭﺏ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻳﻚ T′ = MTﺍﺯ ﺳﻮﻱ )xc(t ﺑﺪﺳﺖ ﺁﻭﺭﺩ .ﺑﻪ ﻋﻼﻭﻩ ،ﺍﮔﺮ 5 X c ( jΩ) = 0ﺑﺮﺍﻱ | Ω |> ΩNﺁﻧﮕﺎﻩ xd[n] ،ﻳﻚ ﻧﻤﺎﻳﺶ ﺩﻗﻴﻖ ﺍﺯ ) xc(tﺍﮔﺮ CE 342 – Multimedia HW# 1 H. Rabiee, Spring 2008 2π 1 = Ω s > 2Ω N T M ﺣﺪﺍﻗﻞ Mﺑﺮﺍﺑﺮ ﻧﺮﺥ ﻧﺎﻳﻜﻮﺋﻴﺴﺖ ﺑﺎﺷﺪ .ﺑﻪ ﻃﻮﺭ ﻛﻠﻲ ،ﺑﺮﺍﻱ ﺟﻠﻮﮔﻴﺮﻱ ﺍﺯ ﺗﺪﺍﺧﻞ ،ﭘﻬﻨﺎﻱ ﺑﺎﻧﺪ ﺩﻧﺒﺎﻟﻪ ﺍﺑﺘﺪﺍ ﺑﺎﻳﺪ ﺑﻪ ﻭﺳﻴﻠﻪ ﻓﻴﻠﺘﺮ ﺯﻣﺎﻥ – = Ω sﺑﺎﺷﺪ .ﺑﻨﺎﺑﺮﺍﻳﻦ ،ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺭﺍ ﻣﻲ ﺗﻮﺍﻥ ﺑﺎ ﺿﺮﻳﺐ Mﻛﺎﻫﺶ ﺩﺍﺩ ﺍﮔﺮ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺍﻭﻟﻴﻪ ﮔﺴﺴﺘﻪ ﺗﺎ Mﺑﺮﺍﺑﺮ ﻛﺎﻫﺶ ﻳﺎﺑﺪ .ﻧﻤﻮﺩﺍﺭ ﺑﻠﻮﻛﻲ ﻳﻚ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ – ﻛﺎﻫﺸﻲ ﺩﺭ ﺷﮑﻞ ٤ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ. ﺷﮑﻞ -٤ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﮐﺎﻫﺸﯽ ﺑﺎ ﺿﺮﻳﺐ ،Mﻛﻪ ﺩﺭ ﺁﻥ ) H(ejwﻳﻚ ﭘﻴﺶ ﻓﻴﻠﺘﺮ ﺍﺳﺖ .ﺩﺭ ﺣﺎﻟﺖ ﺍﻳﺪﻩ ﺁﻝ ) H(ejwﺑﺎﻳﺪ ﻳﻚ ﻓﻴﻠﺘﺮ π ﺑﺎ ﻓﺮﻛﺎﻧﺲ ﻗﻄﻊ M ﺑﺮﺍﻱ ﺗﻌﻴﻴﻦ ﺭﺍﺑﻄﻪ ﺑﻴﻦ ﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ] x[nﻭ ] ،xd[nﺍﺑﺘﺪﺍ ﺑﺎﻳﺪ ﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ﺯﻣﺎﻥ ﮔﺴﺴﺘﻪ ) x[n]=xc(nTﺭﺍ ﺑﻪ ﻳﺎﺩ ﺁﻭﺭﻳﻢ. = Ω cﺑﺎﺷﺪ. )(١٥-٢ ﻣﺸﺎﺑﻪ ﺭﺍﺑﻄﻪ ﺑﺎﻻ ،ﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ﺯﻣﺎﻥ – ﮔﺴﺴﺘﻪ ) xd[n]=x[nw]=xc(nTﻳﺎ T′ = MTﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻣﻲ ﺑﺎﺷﺪ. )(١٦-٢ ﺍﻧﺪﻳﺲ ﺟﻤﻊ rﺩﺭ ﺭﺍﺑﻄﺔ ) (١٦-٢ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺑﻴﺎﻥ ﻣﻲ ﺷﻮﺩ. )(١٧-٢ r = i + BM ﻛﻪ Bﻭ iﺍﻋﺪﺍﺩ ﺻﺤﻴﺢ ﻣﻲ ﺑﺎﺷﻨﺪ − ∞ < B < −∞ ،ﻭ 0<i<M-1ﺍﺳﺖ. ﻭﺍﺿﺢ ﺍﺳﺖ ﻛﻪ rﻫﻨﻮﺯ ﻳﻚ ﻋﺪﺩ ﺻﺤﻴﺢ ﺩﺭ ﺩﺍﻣﻨﺔ ∞ −ﺗﺎ ∞ +ﺍﺳﺖ ،ﺣﺎﻻ ﻣﻌﺎﺩﻟﻪ ) (۱۷-٢ﺭﺍ ﻣﻲ ﺗﻮﺍﻥ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺑﻴﺎﻥ ﻛﺮﺩ. )(١٨-٢ ﻋﺒﺎﺭﺕ ﺩﺭﻭﻥ ﻛﺮﻭﺷﻪ ﺩﺭ ﺭﺍﺑﻄﺔ ) (١٨-٢ﺍﺯ ﺭﺍﺑﻄﺔ ) (١٥-٢ﻗﺎﺑﻞ ﺟﺎﻳﮕﺰﻳﻨﻲ ﺍﺳﺖ. )(١٩-٢ ﺑﻨﺎﺑﺮﺍﻳﻦ ﻣﺎ ﻣﻲ ﺗﻮﺍﻧﻴﻢ ﺭﺍﺑﻄﺔ ) (١٨-٢ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺑﺎﺯﻧﻮﻳﺴﻲ ﻛﻨﻴﻢ. )(٢٠-٢ 6 CE 342 – Multimedia HW# 1 H. Rabiee, Spring 2008 ﻛﻪ ﺩﺭ ﺷﻜﻞ ) (٥ﺑﺮﺍﻱ M=2ﻭ ﺩﺭ ﺷﻜﻞ ) (٦ﺑﺮﺍﻱ M=3ﻧﻤﺎﻳﺶ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ .ﻣﻲ ﺗﻮﺍﻥ ﻣﺸﺎﻫﺪﻩ ﻛﺮﺩ ﺯﻣﺎﻧﻲ ﻛﻪ ،M=2ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﮐﺎﻫﺸﯽ ﺑﺎﻋﺚ ﻫﻤﭙﻮﺷﺎﻧﻲ ﻃﻴﻒ ﺳﻴﮕﻨﺎﻝ ﺍﻭﻟﻴﻪ ﻧﻤﻲﺷﻮﺩ .ﺍﺯ ﻃﺮﻑ ﺩﻳﮕﺮ ،ﻭﻗﺘﻲ ،M=3ﻫﻤﭙﻮﺷﺎﻧﻲ ﺑﻴﻦ ﻃﻴﻔﻬﺎﻱ ﺗﻜﺮﺍﺭ ﺷﺪ )ﻫﻤﺎﻥ ﺗﺪﺍﺧﻞ( ﺭﺥ ﻣﻲﺩﻫﺪ .ﺑﺮﺍﻱ ﺟﻠﻮﮔﻴﺮﻱ ﺍﺯ ﺗﺪﺍﺧﻞ ﭘﻴﺶ ﻓﻴﻠﺘﺮ ﻛﺮﺩﻥ ﻗﺒﻞ ﺍﺯ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﮐﺎﻫﺸﯽ ﺍﻟﺰﺍﻣﻲ ﺍﺳﺖ. ﺷﮑﻞ -٥ﻧﻤﺎﻳﺶ ﺣﻮﺯﻩ ﻓﺮﻛﺎﻧﺲ ﺩﺭ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻛﺎﻫﺸﻲ )(M=2 7 CE 342 – Multimedia HW# 1 H. Rabiee, Spring 2008 ﺷﮑﻞ -٦ﻧﻤﺎﻳﺶ ﺣﻮﺯﻩ ﻓﺮﻛﺎﻧﺲ ﺩﺭ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻛﺎﻫﺸﻲ )(M=2 ) (a)-(cﺑﺪﻭﻥ ﭘﻴﺶ ﻓﻴﻠﺘﺮ ﻛﺮﺩﻥ ،ﺑﻨﺎﺑﺮﺍﻳﻦ ﺳﻴﮕﻨﺎﻝ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺷﺪﻩ ﻛﺎﻫﺸﻲ ﺗﺪﺍﺧﻞ ﺩﺍﺭﺩ. ) (d)-(fﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻛﺎﻫﺸﻲ ﺑﺎ ﭘﻴﺶ ﻓﻴﻠﺘﺮ ﻛﺮﺩﻥ ﺑﺮﺍﻱ ﺟﻠﻮﮔﻴﺮﻱ ﺍﺯ ﺗﺪﺍﺧﻞ. -٣-٢ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺍﻓﺰﺍﻳﺸﻲ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﺩﻳﺠﻴﺘﺎﻟﻲ ﻛﺎﻫﺶ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﮔﺴﺴﺘﻪ – ﺯﻣﺎﻥ ﺑﺎ ﺿﺮﻳﺐ ﺻﺤﻴﺢ ﺷﺎﻣﻞ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻳﻚ ﺩﻧﺒﺎﻟﻪ ،ﻣﺸﺎﺑﻪ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺳﻴﮕﻨﺎﻝ ﭘﻴﻮﺳﺘﻪ ﻣﻲ ﺑﺎﺷﺪ .ﺟﺎﻱ ﺗﻌﺠﺐ ﻧﻴﺴﺖ ﻛﻪ ﺍﻓﺰﺍﻳﺶ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻧﻴﺰ ﺑﺎ ﻋﻤﻠﻴﺎﺕ ﻣﺸﺎﺑﻪ ﺗﺒﺪﻳﻞ D/Cﺳﺮ ﻭ ﻛﺎﺭ ﺩﺍﺭﺩ .ﺑﺮﺍﻱ ﻣﺸﺎﻫﺪﻩ ﺍﻳﻦ 8 CE 342 – Multimedia HW# 1 H. Rabiee, Spring 2008 ﻣﻄﻠﺐ ،ﺳﻴﮕﻨﺎﻝ ] x[nﺭﺍ ﻛﻪ ﻣﻲ ﺧﻮﺍﻫﻴﻢ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺁﻥ ﺭﺍ ﺑﺎ ﺿﺮﻳﺐ Lﺍﻓﺰﺍﻳﺶ ﺩﻫﻴﻢ ،ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ .ﺍﮔﺮ ﻣﺎ ﺳﻴﮕﻨﺎﻝ ﭘﻴﻮﺳﺘﻪ ) xc(tﺭﺍ ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﻢ ﻫﺪﻑ ﺑﺪﺳﺖ ﺁﻭﺭﺩﻥ ﻧﻤﻮﻧﻪ ﻫﺎﻱ )(٢١-٢ )(٢٢-٢ ﺍﺯ ﻧﻤﻮﻧﻪ ﻫﺎﻱ ﺩﻧﺒﺎﻟﺔ ﻣﺎ ﻋﻤﻠﻴﺎﺕ ﺍﻓﺰﺍﻳﺶ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺭﺍ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺍﻓﺰﺍﻳﺸﻲ ﻣﻲ ﻧﺎﻣﻴﻢ. n nT )xi[n] = x = x c , n = 0,± L,±2 L,... (۲۳ -٢ L L ﺷﮑﻞ -۷:ﭘﺮﻭﺳﺔ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺍﻓﺰﺍﻳﺸﻲ )ﺩﺭﻭﻥ ﻳﺎﺑﻲ( ﺷﮑﻞ -٧ﻳﻚ ﺳﻴﺴﺘﻢ ﺭﺍ ﺑﺮﺍﻱ ﺑﺪﺳﺖ ﺁﻭﺭﺩﻥ ] xi[nﺍﺯ ] x[nﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﭘﺮﺩﺍﺯﺵ ﺯﻣﺎﻥ – ﮔﺴﺴﺘﻪ ﻧﺸﺎﻥ ﻣﻲ ﺩﻫﺪ .ﺳﻴﺴﺘﻢ ﺳﻤﺖ ﭼﭗ ﻳﻚ ﺍﻓﺰﺍﻳﻨﺪﺓ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻳﺎ ﺑﻪ ﻃﻮﺭ ﺳﺎﺩﻩ ﻳﻚ ﺍﻓﺰﺍﻳﻨﺪﻩ ﻧﺎﻣﻴﺪﻩ ﻣﻲ ﺷﻮﺩ. ﺧﺮﻭﺟﻲ ﺁﻥ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻣﻲ ﺑﺎﺷﺪ. )(٢٤-٢ ﻳﺎ ﺑﻪ ﺑﻴﺎﻥ ﺩﻳﮕﺮ )(٢٥-٢ ﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ] xe[nﻣﻲ ﺗﻮﺍﻧﺪ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺑﻴﺎﻥ ﺷﻮﺩ. )(٢٦-٢ ﺭﺍﺑﻄﻪ ﺑﺎﻻ ﺩﺭ ﺷﮑﻞ (b)-٨ﻭ (c )-٨ﻧﻤﺎﻳﺶ ﺩﺍﻩ ﺷﺪﻩ ﺍﺳﺖ .ﺑﺮﺍﻱ ﺑﺪﺳﺖ ﺁﻭﺭﺩﻥ ] xi[nﺍﺯ ] ،xe[nﺍﺣﺘﻴﺎﺝ ﺑﻪ ﺍﻋﻤﺎﻝ ﻳﻚ ﻓﻴﻠﺘﺮ ﺍﻳﺪﻩ ﺍﻝ π ﭘﺎﺋﻴﻦ ﮔﺬﺭ ﺑﺎ ﻓﺮﻛﺎﻧﺲ ﻗﻄﻊ L 9 = Ω cﻭ ﺑﺎ ﺑﻬﺮﺓ Lﺩﺍﺭﻳﻢ )ﻛﻪ ﺩﺭ ﺷﻜﻞ (e),(d)-٨ﻣﺸﺎﻫﺪﻩ ﻣﻲ ﺷﻮﺩ( CE 342 – Multimedia HW# 1 H. Rabiee, Spring 2008 ﺷﮑﻞ -٨ﻧﻤﺎﻳﺶ ﺩﺍﻣﻨﻪ ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺍﻓﺰﺍﻳﺸﻲ 10 CE 342 – Multimedia HW# 1 H. Rabiee, Spring 2008 -٣ﺁﺯﻣﺎﻳﺶ ﻫﺎ -١-٣ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺻﻮﺕ ﺩﺭ ﻓﺮﻛﺎﻧﺴﻬﺎﻱ ﻣﺘﻔﺎﻭﺕ ﺩﺭ ﺍﻳﻦ ﺗﺠﺮﺑﻪ ،ﺷﻤﺎ ﺻﺪﺍﻱ ﺧﻮﺩ ﺭﺍ ﺿﺒﻂ ﺧﻮﺍﻫﻴﺪ ﻛﺮﺩ، (١ﺻﺪﺍﻱ ﺧﻮﺩ ﺭﺍ ﺿﺒﻂ ﻛﻨﻴﺪ. ﺍﻟﻒ( ﻣﻄﻤﺌﻦ ﺷﻮﻳﺪ ﻛﻪ ﺍﺭﺗﺒﺎﻁ ﻣﻴﻜﺮﻭﻓﻮﻥ ﺩﺭﺳﺖ ﺍﺳﺖ ﻳﻌﻨﻲ ﻣﻴﻜﺮﻭﻓﻮﻥ ﺑﻪ ” “MIC-inﺩﺭ ﻛﺎﺭﺕ ﺻﺪﺍ ﻣﺘﺼﻞ ﺷﺪﻩ ﺍﺳﺖ ،ﺩﺭ ﺳﻤﺖ ﭘﺸﺖ ﻛﺎﻣﭙﻴﻮﺗﺮ. ﺏ( ﺳﻪ ﭘﻨﺠﺮﻩ ” “sound recorderﺭﺍ ﺑﺎﺯ ﻛﻨﻴﺪ .ﺍﺑﺘﺪﺍ ﺭﻭﻱ file-properties-convertﻛﻠﻴﻚ ﻛﻨﻴﺪ. ﺳﭙﺲ 8000Hz,8bit, Mono 8kB/sﺭﺍ ﺍﻧﺘﺨﺎﺏ ﻛﻨﻴﺪ ٥ .ﺛﺎﻧﻴﻪ ﺍﺯ ﺻﺪﺍﻱ ﺧﻮﺩ ﺭﺍ ﺿﺒﻂ ﻛﻨﻴﺪ ﻭ ﺗﺤﺖ ﻋﻨﻮﺍﻥ ﻓﺎﻳﻞ rec8.wavﺩﺭ ﺁﺩﺭﺱ ﺧﻮﺩ ﺫﺧﻴﺮﻩ ﻛﻨﻴﺪ. ﺙ( ﺑﺮﺍﻱ ﺩﻭﻣﻴﻦ ﻭ ﺳﻮﻣﻴﻦ ﺿﺒﻂ ﺻﺪﺍ ﺍﺯ ﻓﻮﺭﻣﺖ Mono 11 kB/sﻭ 11025Hz,8Bitﺭﺍ ﺍﺯ 22,050Hz,8bit, Mono 22 kB/sﺍﺳﺘﻔﺎﺩﻩ ﻛﻨﻴﺪ :ﻓﺎﻳﻠﻬﺎ ﺭﺍ ﺗﺤﺖ ﻋﻨﻮﺍﻥ recll.wavﻭ rec22.wavﺫﺧﻴﺮﻩ ﻛﻨﻴﺪ. ﺕ( ﺻﺪﺍﻫﺎ ﺭﺍ ﻳﻜﻲ ﭘﺲ ﺍﺯ ﺩﻳﮕﺮﻱ ﮔﻮﺵ ﺩﺍﺩﻩ ﻭ ﻛﻴﻔﻴﺖ ﺁﻧﻬﺎ ﺭﺍ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ: (٢ﺻﺪﺍ ﺭﺍ ﺍﺯ CD-Romﺿﺒﻂ ﻛﻨﻴﺪ. ﻳﻚ CDﺻﻮﺗﻲ ﺭﺍ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ CD playerﭘﺨﺶ ﻛﻨﻴﺪ .ﭘﻨﺞ ﺛﺎﻧﻴﻪ ﺍﺯ ﺻﺪﺍﻱ CDﺭﺍ ﺩﺭ ﻓﺮﻛﺎﻧﺴﻬﺎﻱ 8kﻭ 22kﻭ 44kﺩﺭ 8bits/sampleﺿﺒﻂ ﻛﻨﻴﺪ .ﻓﺎﻳﻠﻬﺎ ﺭﺍ ﺑﻪ ﻓﺮﻣﺖ cd22.wav cd11.wavﻭ cd44.wavﺩﺭ ﺁﺩﺭﺱ ﺧﻮﺩ ﺫﺧﻴﺮﻩ ﻛﻨﻴﺪ. (٣ﺻﺪﺍﻱ MIDIﺭﺍ ﺑﺮﺍﻱ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺧﻮﺩ ﺿﺒﻂ ﻛﻨﻴﺪ. ﻓﺎﻳﻞ MIDIﺭﺍ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ media playerﭘﺨﺶ ﻛﻨﻴﺪ ٥ .ﺛﺎﻧﻴﻪ ﺍﺯ ﻣﻮﺳﻴﻘﻲ MIDIﺭﺍ ﺩﺭ ﻓﺮﻛﺎﻧﺴﻬﺎﻱ 11kﻭ 22kﻭ 44kﺿﺒﻂ ﻛﻨﻴﺪ .ﺳﭙﺲ ﻓﺎﻳﻠﻬﺎ ﺭﺍ ﺗﺤﺖ ﻋﻨﻮﺍﻥ .midi11.wav Midi22.wavﻭ midi44.wavﺩﺭ ﺁﺩﺭﺱ ﺧﻮﺩ ﺫﺧﻴﺮﻩ ﻛﻨﻴﺪ. -٤ﺣﺎﻻ ﺩﺭﺑﺎﺭﺓ ﻛﻴﻔﻴﺖ ﺻﺪﺍ ﺍﺯ ﻣﻨﺎﺑﻊ ﻭ ﻓﺮﻛﺎﻧﺴﻬﺎﻱ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻣﺨﺘﻠﻒ ﻧﻈﺮ ﺩﻫﻴﺪ. -٥ﻣﺮﺍﺣﻞ ١ﺗﺎ ٤ﺭﺍ ﺑﺎ ﺗﻐﻴﻴﺮ 16bit/sampleﺑﻪ 8bit/sampleﺗﻜﺮﺍﺭ ﻛﻨﻴﺪ. -٢-٣ﭘﺮﺩﺍﺯﺵ ﺻﻮﺕ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ MATLAB ﺩﺭ ﺍﻳﻦ ﺁﺯﻣﺎﻳﺶ ،ﺷﻤﺎ ﺍﺣﺘﻴﺎﺝ ﺑﻪ ﻧﻮﺷﺘﻦ ﺑﺮﻧﺎﻣﻪ MATLABﺑﺮﺍﻱ ﺣﻞ ﻣﺴﺄﻟﻪ ﺩﺍﺭﻳﺪ. -١ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺷﺪﻩ ﺩﺭ 22KHzﻭ ٨ﺑﻴﺘﻲ ﺭﺍ ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ .ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺁﻥ ﺭﺍ ﺑﻪ ﻧﺼﻒ ﺑﺮﺳﺎﻧﻴﺪ) ﺑﺪﻭﻥ ﭘﻴﺶ ﻓﻴﻠﺘﺮ ﻛﺮﺩﻥ( ﻭ ﺳﭙﺲ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻳﻚ ﻓﻴﻠﺘﺮ ﺩﺭﻭﻥ ﻳﺎﺑﻲ ﺧﻄﻲ ﺁﻥ ﺭﺍ ﺩﻭﺑﺎﺭﻩ ﺑﻪ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺳﻴﮕﻨﺎﻝ ﺍﻭﻟﻴﻪ ﺑﺮﺳﺎﻧﻴﺪ. -٢ﻃﻴﻒ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺷﺪﻩ ﺍﻓﺰﺍﻳﺸﻲ ﻭ ﻛﺎﻫﺸﻲ ﺭﺍ ﻧﻤﺎﻳﺶ ﺩﻫﻴﺪ ﻭ ﺳﭙﺲ ﺁﻧﻬﺎ ﺭﺍ ﺑﺎ ﺳﻴﮕﻨﺎﻝ ﺍﻭﻟﻴﻪ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ .ﺧﻄﺎﻱ ﻣﺮﺑﻊ ﻣﻴﺎﻧﮕﻴﻦ ) (MSEﺑﻴﻦ ﺳﻴﮕﻨﺎﻝ ﺍﻭﻟﻴﻪ ﺩﺭ ﻓﺮﻛﺎﻧﺲ ٢٢KHzﻭ ﺳﻴﮕﻨﺎﻝ ﺑﺎﺯﺳﺎﺯﻱ ﺷﺪﻩ ﺭﺍ ﻣﺤﺎﺳﺒﻪ ﻛﻨﻴﺪ MSE .ﺑﻴﻦ ﺩﻭ ﺳﻴﮕﻨﺎﻝ ) x(nﻭ ) y(nﺑﺎ ﻃﻮﻝ Nﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻣﺤﺎﺳﺒﻪ ﻣﻲ ﺷﻮﺩ. N MSE = ∑ [x (n ) − y(n )]2 / N n =1 -٣ﻣﺮﺍﺣﻞ ١ﻭ ٢ﺭﺍ ﺑﺮﺍﻱ ﻣﻮﺍﺭﺩ ﺯﻳﺮ ﺗﻜﺮﺍﺭ ﻛﻨﻴﺪ. ﺍﻟﻒ( ﻳﻚ ﻓﻴﻠﺘﺮ ﻣﻴﺎﻧﮕﻴﻦ )ﺷﻤﺎ ﻣﻲ ﺗﻮﺍﻧﻴﺪ ﻃﻮﻝ ﻓﻴﻠﺘﺮ ﻣﻴﺎﻧﮕﻴﻦ ﺭﺍ ﺍﻧﺘﺨﺎﺏ ﻛﻨﻴﺪ( ﺑﺮﺍﻱ ﭘﻴﺶ ﻓﻴﻠﺘﺮ ﻛﺮﺩﻥ. 11 CE 342 – Multimedia HW# 1 H. Rabiee, Spring 2008 ﺏ( ﺍﺯ ﺗﺎﺑﻊ ” “FIR1ﺩﺭ MATLABﺍﺳﺘﻔﺎﺩﻩ ﻛﻨﻴﺪ ﺗﺎ ﻓﻴﻠﺘﺮ ﺑﻬﺘﺮﻱ ﻃﺮﺍﺣﻲ ﻛﻨﻴﺪ .ﺍﺯ ﺗﺎﺑﻊ ”)( “interpﺑﺮﺍﻱ ﺩﺭﻭﻥ ﻳﺎﺑﻲ ﺍﺳﺘﻔﺎﺩﻩ ﻛﻨﻴﺪ. ﻃﻮﻟﻬﺎﻱ ﻣﺘﻔﺎﻭﺕ ﺑﺮﺍﻱ ﻓﻴﻠﺘﺮﺩﺭﻭﻥ ﻳﺎﺑﻲ ﺍﺳﺘﻔﺎﺩﻩ ﻛﻨﻴﺪ .ﻃﻴﻒ ﻓﻴﻠﺘﺮﻫﺎﻱ ﭘﻴﺶ ﻭ ﭘﺲ ﭘﺮﺩﺍﺯﺵ ﺭﺍ ﻋﻼﻭﻩ ﺑﺮ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺷﺪﻩ ﻛﺎﻫﺸﻲ ﻳﺎ ﺍﻓﺰﺍﻳﺸﻲ ﻧﻤﺎﻳﺶ ﺩﻫﻴﺪ. -٤ﻣﺮﺍﺣﻞ ۱ﺗﺎ ٣ﺭﺍ ﺑﺮﺍﻱ ﺳﻴﮕﻨﺎﻝ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺷﺪﻩ ﺩﺭ 11KHzﺗﻜﺮﺍﺭ ﻛﻨﻴﺪ )ﺍﺧﺘﻴﺎﺭﻱ( -٥ﺗﻤﺎﻡ ﻧﺘﺎﻳﺞ ﺭﺍ ﭼﺎﭖ ﻛﻨﻴﺪ. ﺑﺮﺍﻱ ﻣﻮﺍﺭﺩ ١ﻭ ،٢ﺳﻪ ﻧﻤﻮﻧﻪ ﻣﺘﻦ MATLABﺩﺭ Appendix Aﺁﻭﺭﺩﻩ ﺷﺪﻩ ﺍﺳﺖ .(sp.m,sp1.m, spfilter.m) .ﺷﻤﺎ ﺑﺎﻳﺪ ﻗﺎﺩﺭ ﺑﺎﺷﻴﺪ ﺗﺎ ﺑﻘﻴﻪ ﻣﻮﺍﺭﺩ ﺭﺍ ﺑﺎ ﺑﻬﺒﻮﺩ ﺍﻳﻦ ﻣﺘﻨﻬﺎ ﺍﻧﺠﺎﻡ ﺩﻫﻴﺪ .ﺭﺍﻫﻨﻤﺎﻳﻲ :ﻓﻴﻠﺘﺮ ﻛﺮﺩﻥ ﻳﻚ ﺩﻧﺒﺎﻟﺔ ) ( xﺑﻪ ﻭﺳﻴﻠﻪ ﻳﻚ ﻓﻴﻠﺘﺮﻱ ﺗﻮﺳﻂ ﺗﺎﺑﻊ ) (conv ﺍﻧﺠﺎﻡ ﻣﻲ ﺷﻮﺩ .ﺷﻤﺎ ﻣﻲ ﺗﻮﺍﻧﻴﺪ ﺍﺯ ﺩﺳﺘﻮﺭ ﺯﻳﺮ ﺑﺮﺍﻱ ﺷﻨﺎﺧﺖ ﻳﻚ ﺗﺎﺑﻊ ﺍﺳﺘﻔﺎﺩﻩ ﻛﻨﻴﺪ .ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ help conv.ﺑﻪ ﻃﻮﺭ ﺧﻼﺻﻪ ،ﺷﻤﺎ ﺑﺎﻳﺪ ﺑﺮﻧﺎﻣﻪ ﻫﺎﻱ Appendix Aﺭﺍ ﺑﻬﺒﻮﺩ ﺩﻫﻴﺪ ﺗﺎ ﻣﻮﺍﺭﺩ ﺯﻳﺮ ﺭﺍ ﻋﻤﻠﻲ ﺳﺎﺯﻧﺪ. ﺍﻟﻒ( ﺑﺪﻭﻥ ﭘﻴﺶ ﻓﻴﻠﺘﺮ ﻛﺮﺩﻥ ،ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻛﺎﻫﺸﻲ ﺑﺎ ﻧﺮﺥ ،٢ﺩﺭﻭﻥ ﻳﺎﺑﻲ ﺩﻭﺑﺎﺭﻩ ﻭ ﺑﺮﮔﺸﺖ ﺑﻪ ﺍﻧﺪﺍﺯﻩ ﺍﻭﻟﻴﻪ ﺏ( ﻓﻴﻠﺘﺮ ﻣﻴﺎﻧﮕﻴﻦ ،ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻛﺎﻫﺸﻲ ﺑﺎ ﻧﺮﺥ ،٢ﻭ ﺑﺮﮔﺸﺖ ﺑﻪ ﺍﻧﺪﺍﺯﺓ ﺍﻭﻟﻴﻪ ﺝ( ) ( ،fir1ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻛﺎﻫﺸﻲ ﺑﺎ ﻧﺮﺥ ،٢ﻭ ﺑﺮﮔﺸﺖ ﺑﻪ ﺍﻧﺪﺍﺯﺓ ﺍﻭﻟﻴﻪ -٤ﮔﺰﺍﺭﺵ ﮔﺰﺍﺭﺵ ﺷﻤﺎ ﺑﺎﻳﺪ ﺷﺎﻣﻞ mﻓﺎﻳﻠﻬﺎ ﻭ ﻓﻴﻠﺘﺮﻫﺎ ﻭ ﺷﻜﻠﻬﺎﻱ ﺧﺮﻭﺟﻲ ﺑﺎﺷﺪ .ﭘﺮﺳﺸﻬﺎﻱ ﺯﻳﺮ ﺭﺍ ﺩﺭ ﮔﺰﺍﺭﺵ ﺧﻮﺩ ﭘﺎﺳﺦ ﺩﻫﻴﺪ .ﺗﻤﺎﻣﻲ ﻓﺎﻳﻞ ﻫﺎﻱ ﮔﺰﺍﺭﺵ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﻳﻚ ﻓﺎﻳﻞ ﻓﺸﺮﺩﻩ ﺑﻪ ﺁﺩﺭﺱ TA e-mailﺑﻔﺮﺳﺘﻴﺪ([email protected]) . (١ﺍﮔﺮ ﺳﻴﮕﻨﺎﻝ ﻭﺭﻭﺩﻱ ) sin( 2πftﺍﺳﺖ ﺯﻣﺎﻧﻲ ﻛﻪ f=6KHzﻭ ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ 8KHzﺍﺳﺖ ،ﺳﻴﮕﻨﺎﻝ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺷﺪﻩ ﭼﻪ ﺧﻮﺍﻫﺪ ﺑﻮﺩ؟ ﺳﻴﮕﻨﺎﻝ ﺑﺎﺯﺳﺎﺯﻱ ﺷﺪﻩ ﻛﻪ ﺍﺯ ﻓﻴﻠﺘﺮ ﭘﺎﻳﻴﻦ ﮔﺬﺭ ﺑﺎ ﻓﺮﻛﺎﻧﺲ ﻗﻄﻊ 4KHzﺍﺳﺘﻔﺎﺩﻩ ﻣﻲ ﻛﻨﺪ ﭼﻪ ﺧﻮﺍﻫﺪ ﺑﻮﺩ؟ )ﻣﺴﺌﻠﻪ ﺭﺍ ﺑﺮﺭﺳﻲ ﻛﺮﺩﻩ ﻭ ﺗﻤﺎﻡ ﻣﺮﺍﺣﻞ ﺁﻥ ﺭﺍ ﺩﺭ ﮔﺰﺍﺭﺵ ﺧﻮﺩ ﺑﻨﻮﻳﺴﻴﺪ( (٢ﺩﺭﺑﺎﺭﻩ ﻛﻴﻔﻴﺖ ﻓﺎﻳﻠﻬﺎﻱ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺷﺪﻩ ﺩﺭ ﻧﺮﺧﻬﺎﻱ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻭ bits/sampleﻣﺘﻔﺎﻭﺕ ﻧﻈﺮ ﺩﻫﻴﺪ .ﺩﺭﺑﺎﺭﺓ ﺗﻔﺎﻭﺕ ﺻﻮﺕ ﻭ ﮔﻔﺘﺎﺭ ﺩﺭ ﻧﺮﺧﻬﺎﻱ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻣﺨﺘﻠﻒ ﺑﺤﺚ ﻛﻨﻴﺪ. (٣ﺻﺪﺍﻱ ﺩﺭﻭﻥ ﻳﺎﺑﻲ ﺷﺪﻩ ﺑﻌﺪ ﺍﺯ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻛﺎﻫﺸﻲ ﺑﺎ ﻧﺮﺥ ٢ﺭﺍ ﺑﺎ ﺳﻴﮕﻨﺎﻝ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺷﺪﻩ ﻛﺎﻫﺸﻲ ﻭ ﺳﻴﮕﻨﺎﻝ ﺍﺻﻠﻲ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. ﺗﻮﺿﻴﺢ ﺩﻫﻴﺪ ﻛﻪ ﭼﺮﺍ ﺳﻴﮕﻨﺎﻟﻬﺎﯼ ﺑﺎﺯﺳﺎﺯﻱ ﺷﺪﻩ ﺩﺭ ﺑﻌﻀﻲ ﻣﻮﺍﺭﺩ ﺑﻬﺘﺮ ﻫﺴﺘﻨﺪ. -٥ﻣﺮﺍﺟﻊ [1]. The Math Works Inc., Matlab User’s Guide, 1993, MATLAB USERS’S GUIDE, 1993. [2]. The Math Works Inc., MATLAB REFRENCE GUIDE, 1992. [3]. Wilsky and Openheim, Signals & Systems, Chapter 8. 12 CE 342 – Multimedia HW# 1 H. Rabiee, Spring 2008 CE 342 – Multimedia HW# 1 H. Rabiee, Spring 2008 13 CE 342 – Multimedia HW# 1 H. Rabiee, Spring 2008 14 CE 342 – Multimedia HW# 1 H. Rabiee, Spring 2008 15 CE 342 – Multimedia HW# 1 H. Rabiee, Spring 2008 16 CE 342 – Multimedia HW# 1 H. Rabiee, Spring 2008 17
© Copyright 2025 Paperzz