St 711 (66) Latin Squares (Chap. 6) ñ Block on rows, columns. Standard order of treatments A,B,C,.. in first row, column. Each letter once per row, once per column. Ô A B C D ×Ô A B C D ×Ô A B C D ×Ô A B C Ö B A D C ÙÖ B C D A ÙÖ B D A C ÙÖ B A D Ö ÙÖ ÙÖ ÙÖ C D A B C D A B C A D B C D B Õ D C B A ØÕ D A B C ØÕ D C B A ØÕ D C A All others are permutations of these. ñ 4 people (rows), 4 days (columns) 4 drugs (letters) Ô A 57 Ö B 43 Ö Ö C 45 Ö D 43 Õ (188) B 59 D 45 A 62 C 52 (218) drugs: A 240 C 50 A 59 D 58 B 50 (217) D 63 (229) × C 53 (200) Ù Ù B 63 (228) Ù Ù A 62 (207) (241) (864) Ø B 215 C 200 D 209 SS(rows) = SS(people) = (2292 /4) + ... + (2072 )/4 - 8642 /16 = 162.5 etc. D× CÙ Ù A BØ St 711 (67) ** Demo 19 **; Data drug; person+1; do day = 1 to 4; input drug $ Y @; output; end; cards; A 57 B 59 C 50 D 63 (229) columns 188 218 217 241 B 43 D 45 A 59 C 53 (200) drug totals 240 215 200 209 C 45 A 62 D 58 B 63 (228) none of this ( )is read - why? D 43 C 52 B 50 A 62 (207) ; proc print; proc glm; class person drug day; model Y = person day drug; run; Class Level Information Class Levels Values person 4 1 2 3 4 drug 4 A B C D day 4 1 2 3 4 Number of observations 16 The GLM Procedure Dependent Variable: Y Sum of Source DF Squares Model 9 736.5000000 Error 6 69.5000000 Corrected Total 15 806.0000000 Source person day drug Mean Square 81.8333333 11.5833333 DF Type III SS Mean Square (same as Type I) 3 162.5000000 54.1666667 3 353.5000000 117.8333333 3 220.5000000 73.5000000 F Value 7.06 Pr > F 0.0136 F Value Pr > F 4.68 10.17 6.35 0.0517 0.0091 0.0273 St 711 (68) ñ Yij = . + Ri + Cj + 7k(ij) + eij ñ For_ k=1 (k=A) _ 2 (B) _we get _ and Y _ ñ + 71 + _e _ A =. + R _ñ + C YB =. + Rñ + Cñ + 72 + e <= different e's Difference does not involve R or C effects. _ _ E {YA -YB }_= _____ _ Variance {YA -YB } = _____ ñ Balanced: Add 5 to row 1: SS(drug), SS(col) do not change etc. ñ Square 3 balanced for carryover (A follows each other letter once - same for B, etc.) ñ If following A adds 5 to response then difference B mean - C mean contains 5/4 - 5/4 = 0 carryover effect. St 711 (69) ñ Multiple squares (Sec. 6.3) (1) Three four day trials 4 people each Square Person (square) Day (square) Drug Error 2 9 9 3 _ Square*Drug __œ _ Error (2) One four day trial, 12 people Person Day Drug Error 11 3 3 ___(Can split up - G&G table 6.4) (3) Repeat same square (same R, C) s=8 regional offices, 25 workers each 5 pulldown menu systems (trt) St 711 (70) ñ Rows: Monitor types (5) fixed Columns: Room lighting (5) fixed ñ Analysis depends on assumptions Here we assume: Squares random, all else fixed Re-randomize each square ** demo 20 generates some data then GLM, MIXED **; ** MIXED output not shown here **; proc glm; class r s c menu; model Y = S|r S|c menu S*menu; random S S*r S*c s*menu/test; title "Pooling G&G errors"; proc mixed covtest; class r c menu s; model Y = menu r c/ddfm=satterthwaite; random S S*r S*c S*menu; run; Dependent Variable: Y Source Model Error DF 103 96 Reaction Time Sum of Squares Mean Square 34839.43915 338.24698 79.04480 0.82338 F Value 410.80 Pr > F <.0001 St 711 (71) Corrected Total Source s r r*s c s*c menu s*menu Source s r r*s c s*c menu s*menu DF 7 4 28 4 28 4 28 199 34918.48395 Type III SS 743.11035 608.34520 26.97640 1337.17270 31.84090 31361.23220 730.76140 Mean Square 106.15862 152.08630 0.96344 334.29318 1.13717 7840.30805 26.09862 F Value 128.93 184.71 1.17 406.00 1.38 9522.06 31.70 Pr > F <.0001 <.0001 0.2817 <.0001 0.1263 <.0001 <.0001 Type III Expected Mean Square Var(Error) + + Var(Error) + Var(Error) + Var(Error) + Var(Error) + Var(Error) + Var(Error) + 5 5 5 5 5 5 5 5 Var(s*menu) + 5 Var(s*c) Var(r*s)+ 25 Var(s) Var(r*s) + Q(r) Var(r*s) Var(s*c) + Q(c) Var(s*c) Var(s*menu) + Q(menu) Var(s*menu) The GLM Procedure Tests of Hypotheses for Mixed Model Analysis of Variance (partial output) Dependent Variable: Y Source DF r 4 Error: MS(r*s) 28 Source r*s s*c s*menu Error: MS(Error) Reaction Time Type III SS 608.345200 26.976400 DF 28 28 28 96 Type III SS 26.976400 31.840900 730.761400 79.044800 Mean Square 152.086300 0.963443 Mean Square 0.963443 1.137175 26.098621 0.823383 F Value 157.86 F Value 1.17 1.38 31.70 Pr > F <.0001 Pr > F 0.2817 0.1263 <.0001 St 711 (72) Source c Error: MS(s*c) DF Type III SS 4 1337.172700 28 31.840900 Source DF Type III SS menu 4 31361 Error: MS(s*menu)28 730.761400 Mean Square 334.293175 1.137175 F Value 293.97 Pr > F <.0001 Mean Square 7840.308050 26.098621 F Value 300.41 Pr > F <.0001 ñ Example 2: Dairy Cows (Sec. 6.3.1) Columns: Cows (12) Rows: Time (3) Trts: Feed Type (A,B,C) ** Demo23.sas **; Data Lucas; Day+1; Do Square=1 to 4; Do i=1 to 3; drop i; Cow = 3*(Square-1)+i; Input trt $ Y @@; output; end; end; * <-- square 1----> | <-- square 2----> | | <-- square 3----> | <-- square 4 ----> ; cards; C 35.3 A 46.1 B 42.7 A 64.2 C 29.8 B 29.8 A 26.8 C 37.2 B 29.8 C 61.5 A 26.7 B 38.6 A 53.5 B 28.6 C 33.9 B 27.9 A 26.7 C 30.8 C 24.1 B 36.4 A 26.4 B 46.4 C 25.0 A 29.6 B 24.9 C 38.5 A 35.5 C 38.0 B 37.7 A 36.4 B 50.5 A 23.4 C 24.5 A 24.9 B 20.6 C 29.2 ; proc print; proc means noprint; Var Y; class Square Trt Cow Day; output out=out1 mean=mnY sum=sumY; proc print data=out1; St 711 (73) proc glm data=lucas; class day cow square trt; Model Y = square trt Cow(square) Day trt*square Day*square; random Square Cow(Square) Day trt*square Day*square; /* The G&G model pg. 141 assumes squares have some meaning they might be barns. If just 12 cows over 3 days with Latin Square trts. Model Y = trt Cow(square) Day ; */ Title 'G&G Analysis Pg. 141'; ** Need single quotes - why ??? (Macros!) *; run; (partial output) Obs 1 Square . trt Cow . Day . _TYPE_ 0 _FREQ_ 36 mnY 34.4972 sumY 1241.9 5 6 7 8 9 10 11 12 13 14 15 16 . . . . . . . . . . . . 1 2 3 4 5 6 7 8 9 10 11 12 . . . . . . . . . . . . 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 37.9000 37.7333 37.3667 43.3667 31.4000 32.3333 33.8000 32.3333 26.9000 44.2667 24.1000 32.4667 113.7 113.2 112.1 130.1 94.2 97.0 101.4 97.0 80.7 132.8 72.3 97.4 137 138 139 140 1 2 3 4 . . . . . . . . 8 8 8 8 9 9 9 9 37.6667 35.7000 31.0111 33.6111 339.0 321.3 279.1 302.5 SS(cow) = (113.72 +...+97.42 )/3 - 1241.92 /36 = 1181.34 SS(Square) = 3392 /9+...+302.52 /9 - 1241.92 /36= 219.87 SS(Cow(Square)) = 1181.34 - 219.87=961.47 St 711 (74) Similarly, you can reproduce this GLM output: Source Model Error Corrected Total Source Square trt Cow(Square) Day Square*trt Day*Square DF 27 8 35 DF 3 2 8 2 6 6 (Type Sum of Squares 3000.565278 898.904444 3899.469722 Mean Square 111.132047 112.363056 F Value 0.99 Pr > F 0.5490 Type I SS Mean Square F Value Pr > F 219.8719444 6.4072222 961.4711111 372.8622222 969.4638889 470.4888889 III=Type I) 73.2906481 3.2036111 120.1838889 186.4311111 161.5773148 78.4148148 0.65 0.03 1.07 1.66 1.44 0.70 0.6036 0.9720 0.4633 0.2496 0.3090 0.6600 Graeco-Latin Squares Exist for t = prime, not for t=6, general existence unknown. ñ Superimpose 2 orthogonal Latin Squares Latin Greek Ô1 2 3 4× Ô1 2 3 4× Ö3 4 1 2Ù Ö2 1 4 3Ù Ö Ù Ö Ù 4 3 2 1 3 4 1 2 Õ2 1 4 3Ø Õ4 3 2 1Ø orthogonal: each letter pair appears once (1,1)=(A, !), (1,2), (2,1) etc. St 711 (75) ñ Rows: Days Greek: Cars Columns:Drivers Latin: Fuels Y = miles per gallon (mpg) ** Demo24.sas **; ** Graeco-Latin Square **; Data cars; do Day = 1 to 4; Do driver=1 to 4; Input Car Fuel MPG @@; output; end; end; Cards; 1 1 27.5 2 2 26.1 3 3 29.3 4 4 41.8 3 2 30.6 4 1 32.2 1 4 37.4 2 3 37.1 4 3 34.4 3 4 37.5 2 1 33.4 1 2 33.0 2 4 37.8 1 3 31.7 4 2 30.5 3 1 35.9 ; proc glm; class Car Fuel Driver Day; Model MPG = Car Fuel Driver Day; Means Fuel/Tukey lines; run; Dependent Variable: MPG Source DF Model 12 Error 3 Corrected Total 15 Source DF Sum of Squares Mean Square F Value 264.8350 4.2825 269.1175 Type I SS 22.06958 1.42750 Mean Square 15.46 F Value Pr > F 0.0224 Pr > F St 711 (76) Car Fuel driver Day 3 3 3 3 11.00250 159.48250 64.48250 29.86750 (Type III SS 3.66750 53.16083 21.49417 9.95583 2.57 37.24 15.06 6.97 0.2294 0.0071 0.0259 0.0725 same ) Tukey's Studentized Range (HSD) Test for MPG NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ. Alpha Error Degrees of Freedom Error Mean Square Critical Value of Studentized Range Minimum Significant Difference 0.05 3 1.4275 6.82453 4.0769 Means with the same letter are not significantly different. Tukey Grouping Mean N Fuel A 38.6250 4 4 B B B B B 33.1250 4 3 32.2500 4 1 30.0500 4 2 ñ Some squares balanced for carryover ñ Each trt follows each other same # of times St 711 (77) ñ "Complete" Latin squares ñ Row complete - rows have each treatment pair once Î6 Ð 1 Ð Ð 2 Ð Ð 3 Ð 4 Ï5 1 2 3 4 5 6 5 6 1 2 3 4 2 3 4 5 6 1 4 5 6 1 2 3 3 Ñ (6,1) 4Ó (2,6) Ó 5Ó (4,6) Ó 6Ó (1,6) Ó 1 (3,6) 2 Ò (5,6) (6,3) (6,5) (6,2) (6,4) ñ Complete => row and column complete ñ Advantage - balance for carryover Treatment 6 mean: 6 preceded by each other trt once. Compare 5 to 6, carryover from other treatments subtracts out of difference. Youden Squares ñ Really Rectangles St 711 (78) ñ Subset of rows of Latin square such that each trt pair occurs together in exactly k columns. ÔA B C D E F G× B C D E F G A ÕD E F G A B CØ G pairs: GA-col 7, GB-6, GC-7, GD-4, GE-4, GF-6 ÔC ÖE Ö F ÕG D F G A E G A B F A B C G B C D A C D E (each combo apears twice) B× DÙ Ù E FØ ñ These two- top & bottom of Latin square ñ Columns form BIB (Balanced Incomplete Block design) _ _ ñ YA - YB = 7A -7B + (C" +C5 +C7 )/3-(C" +C2 +C6 )/3 + e's St 711 (79) ñ Column effects C fixed -> bias ñ Column effects C random -> variance ñ Can estimate nicely in PROC MIXED. Example: 3 expensive knitting machines, 7 types of fiber that I use in cloth, 7 knitting speeds. Impossible to buy more machines, expensive to set up new (speed, fiber) combinations. Y = fabric strength Goal: Investigate effects of fabric type on Y. * demo25.sas ** ** Youden square ***; Data Youden; do row=1 to 3; do column = 1 to 7; input trt $ Y @@; output; end; end; cards; A 57 B 60 C 39 D 42 E 36 F 27 G 69 B 72 C 39 D 33 E 45 F 45 G 81 A 54 D 21 E 24 F 27 G 63 A 51 B 60 C 27 ; proc glm; class row column trt; model Y = row column trt/solution; means trt; lsmeans trt/e pdiff; label row = "Machine"; label column = "Speed"; label trt = "Fabric"; St 711 (80) ** Now suppose row=day, column = technician (both random) **; proc mixed; class row column trt; model Y = trt/solution; random row column; lsmeans trt/e pdiff; run; The GLM Procedure Dependent Variable: Y Source DF Sum of Squares Model Error Corrected Total 14 6 20 5724.000000 172.285714 5896.285714 Source row column trt Source row column trt DF 2 6 6 DF 2 6 6 Mean Square F Value Pr > F 408.857143 28.714286 14.24 0.0018 Type I SS 666.000000 1036.285714 4021.714286 Mean Square 333.000000 172.714286 670.285714 Type III SS 666.000000 199.714286 4021.714286 Mean Square 333.000000 33.285714 670.285714 Level of trt A B C D E F G N 3 3 3 3 3 3 3 F Value 11.60 6.01 23.34 F Value 11.60 1.16 23.34 Pr > F 0.0087 0.0231 0.0007 Pr > F 0.0087 0.4311 0.0007 The GLM Procedure --------------Y-------------Mean Std Dev 54.0000000 3.0000000 64.0000000 6.9282032 35.0000000 6.9282032 32.0000000 10.5356538 35.0000000 10.5356538 33.0000000 10.3923048 71.0000000 9.1651514 St 711 (81) The GLM Procedure Least Squares Means Coefficients for trt Least Square Means Effect Intercept row row row column column column column column column column trt trt trt trt trt trt trt trt Level A 1 0.33333333 0.33333333 0.33333333 0.14285714 0.14285714 0.14285714 0.14285714 0.14285714 0.14285714 0.14285714 1 0 0 0 0 0 0 1 2 3 1 2 3 4 5 6 7 A B C D E F G trt A B C D E F G B 1 0.33333333 0.33333333 0.33333333 0.14285714 0.14285714 0.14285714 0.14285714 0.14285714 0.14285714 0.14285714 0 1 0 0 0 0 0 1 0.33333333 0.33333333 0.33333333 0.14285714 0.14285714 0.14285714 0.14285714 0.14285714 0.14285714 0.14285714 0 0 1 0 0 0 0 Y LSMEAN LSMEAN Number 54.0000000 65.5714286 38.1428571 30.4285714 33.4285714 31.7142857 70.7142857 1 2 3 4 5 6 7 St 711 (82) Least Squares Means for effect trt Pr > |t| for H0: LSMean(i)=LSMean(j) Dependent Variable: Y i/j 1 2 3 4 5 6 7 1 0.0584 0.0187 0.0032 0.0060 0.0041 0.0151 2 3 4 5 6 7 0.0584 0.0187 0.0015 0.0032 0.0004 0.1710 0.0060 0.0006 0.3787 0.5675 0.0041 0.0005 0.2427 0.8042 0.7415 0.0151 0.3399 0.0006 0.0002 0.0003 0.0002 0.0015 0.0004 0.0006 0.0005 0.3399 0.1710 0.3787 0.2427 0.0006 0.5675 0.8042 0.0002 0.7415 0.0003 0.0002 NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used. -------------------------------------------------------------The Mixed Procedure Covariance Parameter Estimates Cov Parm row column Residual Estimate 43.4694 1.9592 28.7143 Solution for Fixed Effects Effect trt Estimate Standard Error Intercept trt trt trt trt trt trt trt 70.9608 -16.9608 -6.7449 -35.5291 -39.1766 -36.1766 -38.1373 0 4.9662 4.4603 4.4603 4.4603 4.4603 4.4603 4.4603 . A B C D E F G DF t Value Pr > |t| 2 6 6 6 6 6 6 . 14.29 -3.80 -1.51 -7.97 -8.78 -8.11 -8.55 . 0.0049 0.0089 0.1812 0.0002 0.0001 0.0002 0.0001 . St 711 (83) Type 3 Tests of Fixed Effects Effect trt Num DF 6 Den DF 6 F Value 27.34 Pr > F 0.0004 Least Squares Means Effect trt trt trt trt trt trt trt trt A B C D E F G Estimate Standard Error DF t Value Pr > |t| 54.0000 64.2158 35.4316 31.7842 34.7842 32.8234 70.9608 4.9662 4.9662 4.9662 4.9662 4.9662 4.9662 4.9662 6 6 6 6 6 6 6 10.87 12.93 7.13 6.40 7.00 6.61 14.29 <.0001 <.0001 0.0004 0.0007 0.0004 0.0006 <.0001 ñ BIB 7 technicians, 3 fabrics each. No particular order within technician (rows have no meaning) ñ G&G give other variations on Latin Square, e.g. 6x6 square with 3 trts, each twice per row, twice per column St 711 (84) Chapter 9 Repeated Treatments (brief) ñ Yij =.+1i +uj +7d(i,j) +#d(i-1,j) +eij mean+period+unit+trt+carryover d( ) treatment index. ñ Balanced (always) Each unit in each period ñ Strongly balanced (sometimes) Each trt follows each trt (including itself) equally often. ñ Construction (t even) Write 0,1,...,t-1 such that successive differences (mod t) are 1,2,...,t-1 in some order. Ex: t=6 0 1 5 2 4 3 \/ \/ \/ \/ \/ 1 4 3 2 5 <-- (2+6)-5=3 This is column 1. Add 1 (mod t) repeatedly to generate other columns (row=time period) St 711 (85) 0 (1) 5 2 4 3 1 2 0 (3) 5 4 2 3 1 4 (0) 5 3 4 (2) 5 1 0 (4) 5 3 0 2 1 5 0 4 1 3 2 ñ Repeat last row to strongly balance. ñ Carbureator icing study G&G page 185 Trts: 4 de-icing additives Carryover: throttle plate may have residue of previous de-icer. *** Demo26.sas ***; Data one; Carb + 1 ; Do period = 1 to 4; *Use 5 to strongly balance; input De_icer $ Y @; Lagtrt=lag(De_Icer); if period=1 then Lagtrt=" "; XCA=(Lagtrt="A")-(Lagtrt="D"); XCB=(Lagtrt="B")-(Lagtrt="D"); XCC=(Lagtrt="C")-(Lagtrt="D"); output; end; cards; A 88 B 76 C 88 D 92 D 96 B 78 D 94 A 90 C 90 C 90 C 87.5 A 95.5 D 95.5 B 87.5 B 75.5 D 90.5 C 78.5 B 82.5 A 94.5 A 98.5 St 711 (86) proc print; proc glm; class period Carb De_icer; model Y = Period Carb XCA--XCC De_icer; Contrast "Carryover" XCA 1, XCB 1, XCC 1; LSMEANS De_icer/e stderr Pdiff; run; Source DF Type III SS Mean Square F Value Pr > F 3 3 1 1 1 3 72.0000000 101.3090909 2.1333333 26.1333333 2.1333333 275.8545455 24.0000000 33.7696970 2.1333333 26.1333333 2.1333333 91.9515152 3.33 4.69 0.30 3.63 0.30 12.77 0.1746 0.1183 0.6241 0.1529 0.6241 0.0325 F Value 1.96 Pr > F 0.2968 period Carb XCA XCB XCC De_icer Contrast DF Carryover 3 Contrast SS 42.40000000 Mean Square 14.13333333 Coefficients for De_icer Least Square Means Effect Intercept period period period period Carb Carb Carb Carb XCA XCB XCC De_icer De_icer De_icer De_icer 1 2 3 4 1 2 3 4 A B C D A 1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0 1 0 0 0 De_icer B 1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0 0 1 0 0 Level C 1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0 0 0 1 0 D 1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0 0 0 0 1 St 711 (87) De_icer A B C D Y LSMEAN Standard Error Pr > |t| LSMEAN Number 91.8000000 81.7000000 86.2000000 92.3000000 1.3910428 1.3910428 1.3910428 1.3910428 <.0001 <.0001 <.0001 <.0001 1 2 3 4 (note: The online demo 26 also shows a way to check to see if any arbitrary function is estimable and if so, it gives the estimate and its standard error. It uses this to check the LSMEANS here). Chapter 7 Split and Strip Plots ñ See also St 512 notes ñ Split plot (Y= vibration in gears) 8 Motors (whole plot units) 2 designs, 4 each (whole plot trts) i=1,2 k=1,...,4 3 Axles/motor (split plot units) 3 diameters (split plot trts) j=1,2,3 ñ Split split plot Add 6 runs/axle (one each at 6 speeds) St 711 (88) ñ Without treatments, "nested design" 8 "identical" motors 3 " axles per motor (24 axles) 6 runs per axle at same speed ñ Goal: reduce vibration Y Yijk = . + Mi +A(M)ij + eijk 2 5M 5A2 52 motor axle run ** Demo 27.sas Nested design ***; Data Motor Spltplt; input motor @; motor_design =1+(motor>4); do axle = 1 to 3; avvib=0; do run = 1 to 6; input vib @; avvib=avvib+vib; output motor; end; avvib= avvib/6; output spltplt; end; cards; 1 47.0 50.8 47.7 47.3 49.2 51.3 41.4 44.8 42.8 47.0 44.7 42.2 42.0 44.9 42.6 2 47.2 47.7 49.4 48.1 45.3 49.4 54.9 50.9 53.5 39.4 40.9 42.6 42.6 42.4 40.2 3 58.2 60.5 58.8 60.0 56.7 61.6 46.6 51.1 45.8 61.3 58.0 59.0 60.5 59.5 56.9 4 50.7 47.7 53.6 50.8 51.5 51.5 49.3 47.3 46.0 40.3 43.0 44.1 41.4 39.6 39.3 5 52.4 55.0 54.6 57.9 56.5 55.8 40.7 42.6 41.0 38.3 35.1 38.0 38.4 37.9 39.0 6 43.7 43.5 39.1 37.1 41.8 40.9 40.0 38.0 38.7 39.4 37.6 37.7 35.1 35.3 32.5 7 58.3 55.4 55.3 52.0 57.5 51.5 47.6 51.3 51.4 43.6 47.8 40.9 52.8 48.9 52.2 47.5 49.3 48.4 44.5 48.9 48.6 40.4 43.3 43.5 37.0 38.7 37.7 51.3 48.3 47.6 St 711 (89) 8 43.0 43.3 42.0 49.6 44.4 45.6 36.8 38.4 38.7 34.8 41.0 39.6 41.4 40.7 39.5 41.7 39.1 40.0 47.1 42.9 44.4 41.8 43.7 45.4 ; proc glm data=motor; class motor axle; model vib= motor axle(motor); random motor axle(motor); Title "Nested"; The GLM Procedure Dependent Variable: vib Source DF Model 23 Error 120 Corrected Total 143 Sum of Squares 6163.576667 458.843333 6622.420000 Mean Square F Value 267.981594 70.08 3.823694 Pr > F <.0001 Source DF Type III SS Mean Square F Value Pr > F motor axle(motor) 7 16 3400.385556 2763.191111 485.769365 172.699444 127.04 45.17 <.0001 <.0001 Source motor axle(motor) Type III Expected Mean Square Var(Error) + 6 Var(axle(motor)) + 18 Var(motor) Var(Error) + 6 Var(axle(motor)) ñ Computing variance component estimates: _ _ _ Y iñ + e_iññ _ _ iññ = . + M _ i +A(M) Yñññ = . + Mñ +A(M)ññ + e ñññ St 711 (90) _ _ E{18D8i=1 (Yiññ Yñññ )2 /7}= 2 18[ E{D8i=1 (M -M ) }_ + i ñ _ 2 E{D8i=1 (A(M) A(M) ) }+ iñ ññ _ _ E{D8i=1 (e iññ -e ñññ )2 } ] / 7 = 2 18[ 5M + 5A2 /3+5 2 /18] = 2 185M + 65A2 +5 2 ñ SS for nested effects:_ _ SS(motors)= 18D8i=1 (Yiññ_ Yñññ_ )2 = 3400 3 SS(axles) = 6D8i=1 Dj=1 (Yijñ Yñññ )2 =6163 SS(axles(motors)) = difference = 2763. ñ Variance Component Estimates: "method of moments" (1) Write down mean squares, expected mean squares motor axle(mtr) error 485.8 172.7 3.82 Var(Error) + 6 Var(axle(mtr)) + 18 Var(mtr) Var(Error) + 6 Var(axle(mtr)) Var(error) St 711 (91) (2) Find values of variance components so that sample moments = theoretical moments s2 =3.82 5 s2A =[MS(A(M))-MSE]/6= 5 [172.7-3.82]/6 = 28.14 5 s 2M = [485.8 - 172.7] /18=17.4 proc mixed data=motor; class motor axle; model vib = ; random motor axle(motor); The Mixed Procedure (partial output) Class Level Information Class motor axle Levels 8 3 Values 1 2 3 4 5 6 7 8 1 2 3 Covariance Parameter Estimates Cov Parm motor axle(motor) Residual Estimate 17.3928 28.1460 3.8237 ñ Work on axles to reduce vibration. St 711 (92) ñ Split plot - like nested but with treatments applied G&G pg. 173 rice paddies 4 farms (blocks) 2 paddies/farm: whole plot units (C=CO2 =whole plot trt) 3 samples/paddy: split plot units (N=3 Nitrogen levels=split plot trt) Yijk =.+Bi +Cj +%(1)ij +Nk +(CN)jk +%(2)ijk Bi µ N(0,5B2 ) %(1)ij µ N(0,512 ) %(2)ijk µ N(0,522 ) i=1,2,...,r (=4 reps) j=1,2,...,t (=2 CO2 's) k=1,2,...,s (=3 levels of N) _ Y _ñjñ =.+Bñ +Cj +%(1)ñj +Nñ +(CN)jñ +%(2)ñjñ _Yñññ = _ .+Bñ +Cñ +%(1)ññ +Nñ +(CN)ññ +%(2)ñññ Yñjñ -Yñññ = Cj -Cñ +(CN)jñ -(CN)ññ + [ %(1)ñj -%(1)ññ ]+[%(2)ñjñ - %(2)ñññ ] St 711 (93) = (under summing to 0 of fixed effects) Cj + [ %(1)ñj -%(1)ññ ]+[%(2)ñjñ - %(2)ñññ ] _ MS(CO2 )= _ rs[D2j=1 (Yñjñ -Yñññ )2 ]/(t-1) E{MS(CO2 ) = rs[ D2j=1 C2j /(t-1) + 512 /r + 522 /rs] (why?) = rsD2j=1 C2j /(t-1) + s512 + 522 E{MS(CO2 ) = Q(C) + s512 + 522 SAS (no assumptions) writes Q(C,NC) + 522 + s512 ANOVA Source r Blocks df r-1 EMS 522 +s512 +š Q(blocks) ts5 2 BLOCK t C t-1 Error 1 (r-1)(t-1) s N s-1 CN (t-1)(s-1) Error 2 522 + s512 +Q(C) 522 + s512 522 + Q(N) 522 + Q(CN) 522 (F) (R) St 711 (94) if no blocks: Error 1 (r-1)(t) 522 + s512 ********** Demo 28.sas ************; data GG_pg213; array Y(6); title "G&G % Fertile Spikelets"; input block Y1-Y6; drop y1-y6 i; do N=1 to 3; i=N; Pct = Y(i); CO2="C"; output; i=N+3; Pct = Y(i); CO2="T"; output; end; cards; 1 95.8 95.2 92.0 97.1 96.2 93.6 2 95.0 93.3 92.0 95.7 94.9 92.6 3 95.5 95.4 92.5 96.3 96.5 89.1 4 95.1 92.9 87.7 96.0 96.3 89.7 ; proc glm; class block CO2 N; model Pct = block CO2 block*CO2 N CO2*N; contrast "WP wrong denominator" CO2 -1 1; contrast "WP - right!" CO2 -1 1 /E=CO2*block; contrast "N1 vs N2" N -1 1 0; contrast "N1 vs N2 in high CO2 -(1)" N 1 -1 0 CO2*N 0 0 0 1 -1 0; contrast "N1 vs N2 in high CO2 -(2)" N 1 -1 0 CO2*N 0 1 0 -1 0 0 ; ** Key is CLASS statement!! **; LSMEANS CO2/pdiff; ** option E=block*CO2 will fix this; random block block*CO2/test; ** must appear after CONTRASTs to produce EMS; run; St 711 (95) Dependent Variable: Pct Source DF Sum of Squares Model Error Corrected Total 11 12 23 126.8616667 19.4716667 146.3333333 Mean Square F Value Pr > F 11.5328788 1.6226389 7.11 0.0010 Source DF (Type I = ) Type III SS Mean Square block CO2 block*CO2 N CO2*N 3 1 3 2 2 12.7333333 5.6066667 5.3200000 100.7158333 2.4858333 4.2444444 5.6066667 1.7733333 50.3579167 1.2429167 Contrast DF WP wrong denominator 1 Contrast SS 5.60666667 Mean Square 5.60666667 Contrast DF Contrast SS WP - right! 1 5.60666667 N1 vs N2 1 2.10250000 N1 vs N2 in high CO2 -(1) 1 0.18000000 CO2 C T Source block CO2 block*CO2 N CO2*N Pct LSMEAN 93.5333333 94.5000000 F Value 2.62 3.46 1.09 31.03 0.77 Pr > F 0.0992 0.0877 0.3896 <.0001 0.4863 F Value 3.46 Pr > F 0.0877 Mean Square F Value Pr > F 5.60666667 3.16 0.1734 2.10250000 1.30 0.2772 0.18000000 0.11 0.7448 H0:LSMean1= LSMean2 Pr > |t| 0.0877 Type III Expected Mean Square Var(Error) + 3 Var(block*CO2) + 6 Var(block) Var(Error) + 3 Var(block*CO2) + Q(CO2,CO2*N) Var(Error) + 3 Var(block*CO2) Var(Error) + Q(N,CO2*N) Var(Error) + Q(CO2*N) Source DF Type III SS Mean Square F Value Pr > F block 3 12.733333 4.244444 2.39 0.2461 * CO2 1 5.606667 5.606667 3.16 0.1734 Error: MS(block*CO2) 3 5.320000 1.773333 * This test assumes one or more other fixed effects are zero. St 711 (96) (more tests follow) Contrast WP wrong denominator WP - right! N1 vs N2 N1 vs N2 in high CO2 -(1) Contrast Expected Mean Square Var(Error) + 3 Var(block*CO2) + Q(CO2,CO2*N) Var(Error) + 3 Var(block*CO2) + Q(CO2,CO2*N) Var(Error) + Q(N,CO2*N) Var(Error) + Q(N,CO2*N) proc mixed; class block CO2 N; model Pct = CO2 N CO2*N; random block block*CO2; contrast "WP" CO2 -1 1; contrast "N1 vs N2" N -1 1 0; contrast "N1 vs N2 in high CO2 -(1)" N 1 -1 0 CO2*N 0 0 0 1 -1 0; contrast "N1 vs N2 in high CO2 -(2)" N 1 -1 0 CO2*N 0 1 0 -1 0 0 ; LSMEANS CO2/pdiff; ** Key is CLASS statement!! **; run; Covariance Parameter Estimates Cov Parm Estimate block 0.4119 block*CO2 0.05023 Residual 1.6226 Fit Statistics -2 Res Log Likelihood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better) 71.3 77.3 79.0 75.4 Type 3 Tests of Fixed Effects Effect CO2 N CO2*N Num DF 1 2 2 Den DF 3 12 12 F Value 3.16 31.03 0.77 Pr > F 0.1734 <.0001 0.4863 St 711 (97) Contrasts Num DF Label WP N1 vs N2 N1 vs N2 in high CO2 -(1) N1 vs N2 in high CO2 -(2) 1 1 1 . Den DF F Value Pr > F 3 12 12 . 3.16 1.30 0.11 . 0.1734 0.2772 0.7448 . Least Squares Means Effect CO2 CO2 CO2 C T Estimate 93.5333 94.5000 Standard Error 0.5007 0.5007 DF 3 3 t Value 186.79 188.72 Pr > |t| <.0001 <.0001 Differences of Least Squares Means Effect CO2 CO2 C _CO2 T Estimate -0.9667 Standard Error 0.5437 DF 3 t Value -1.78 Pr > |t| 0.1734 ñ Repeated measures Whole plots =subjects Whole plot trts = Drugs (for example) Split plot trt=time problem: Observations in time may be autocorrelated ** Demo29.sas Repeated Measures ***; data univariate; input patient drug $ @; do visit=1 to 10; input Y @; output; end; cards; St 711 (98) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 A A A A A A A A A A A A A A A A A A B B B B B B B B B B B B B B B B B B 16.3 14.9 15.1 17.1 7.9 6.9 11.7 18.7 19.1 21.8 15.1 23.6 17.2 7.6 15.6 22.3 21.9 12.7 14.1 8.3 6.2 6.0 10.1 17.1 10.2 11.8 13.7 11.8 13.2 17.7 17.6 9.5 14.7 14.8 9.5 12.7 14.4 14.1 16.4 16.2 7.4 6.0 11.9 18.9 19.3 21.4 16.1 24.2 17.2 7.8 15.5 22.6 20.6 11.7 14.6 8.4 6.2 4.2 9.9 18.5 9.3 12.6 15.4 11.7 11.2 18.0 18.4 8.9 14.2 14.3 9.8 13.1 14.9 11.3 13.4 16.7 6.6 5.0 11.4 17.8 20.0 20.0 16.4 24.0 18.5 7.3 15.5 22.4 20.4 11.7 12.2 8.2 6.8 5.8 8.3 18.2 9.1 10.8 15.9 10.0 13.8 19.2 17.0 9.2 14.9 14.6 11.1 12.0 16.1 11.2 14.7 17.3 7.4 4.1 13.4 16.8 21.1 16.7 13.8 25.1 19.7 8.0 15.5 22.9 20.8 11.9 13.6 7.7 7.1 5.1 9.6 17.2 9.2 9.7 15.1 10.5 12.1 20.0 18.5 10.1 15.2 13.8 11.6 12.3 16.0 10.5 14.7 18.9 8.7 4.4 13.2 16.5 21.4 17.2 12.9 22.7 20.8 6.4 14.7 21.4 21.1 12.4 14.8 7.0 6.4 6.1 10.3 16.7 9.7 10.9 14.4 12.3 12.9 19.9 20.6 9.7 12.1 13.0 12.1 11.0 15.3 8.9 13.6 17.6 8.1 3.8 12.6 18.9 21.1 17.7 13.3 22.7 20.5 8.7 12.3 22.6 21.0 13.3 13.5 7.1 5.4 6.6 9.5 17.1 11.1 12.0 14.3 12.9 12.1 19.6 21.3 12.1 15.6 13.5 11.9 12.9 16.4 9.2 12.7 17.8 9.2 5.4 12.0 17.5 21.7 18.8 11.8 23.2 22.7 11.2 12.3 21.8 19.2 14.4 12.5 5.2 5.3 7.5 10.3 15.7 11.4 12.2 13.8 12.9 12.7 18.5 22.8 11.9 14.6 13.7 11.1 13.2 16.0 8.8 13.8 17.9 7.9 5.7 11.8 17.8 22.6 19.9 12.0 22.8 21.8 10.2 13.3 21.6 19.2 14.0 13.5 4.2 3.6 7.8 9.7 17.3 9.5 12.9 12.1 12.9 10.8 19.4 21.9 11.6 13.7 15.3 12.4 13.3 18.7 10.0 15.2 17.2 5.4 5.9 12.3 18.4 20.0 18.5 11.0 22.0 21.0 9.8 13.4 21.7 19.7 15.3 11.9 4.1 3.0 8.3 10.7 16.5 8.2 12.5 12.8 11.3 13.2 19.1 22.5 10.6 12.0 15.8 11.8 14.3 ; proc transpose data = univariate out=multi prefix=visit; var Y; by patient drug; proc print data=univariate (obs=3); run; proc print noobs data=multi(obs=3); run; 16.3 10.1 15.7 18.5 8.0 6.4 12.9 17.7 17.9 19.8 10.7 22.1 20.7 9.6 14.3 21.8 19.8 14.1 12.4 5.1 2.5 9.9 11.1 16.2 8.8 13.4 13.2 9.9 14.2 17.6 21.5 11.8 12.8 16.6 11.7 14.2 St 711 (99) proc glm data=multi; title "GLM - Repeated statement"; class patient drug; model visit1-visit10 = drug/nouni; repeated time polynomial / summary printe; run; proc glm data=univariate; title "GLM - Compound Symmetry"; class patient drug visit; model Y = drug patient(drug) visit drug*visit; test h=drug e=patient(drug); run; proc mixed data=univariate; title "Mixed"; class drug patient visit; model Y=drug|visit; ** Pick one of these: **; ** first two same **; * random patient(drug); ** split plot **; * repeated/ subject=patient type=cs; ** compound symmetry**; * repeated/ subject=patient type=un; ** unstructured**; * repeated/ subject=patient type=Toeplitz; random patient(drug); repeated / subject=patient type=AR(1); ** split plot with AR(1) errors **; run; St 711 (100) Obs patient 1 2 3 p a t i e n t d r u g _ N A M E _ 1 2 3 A A A Y Y Y v i s i t 1 16.3 14.9 15.1 drug 1 1 1 v i s i t 2 14.4 14.1 16.4 v i s i t 3 A A A v i s i t 4 14.9 11.3 13.4 visit 16.1 11.2 14.7 Y 1 2 3 v i s i t 5 16.0 10.5 14.7 v i s i t 6 15.3 8.9 13.6 16.3 14.4 14.9 v i s i t 7 16.4 9.2 12.7 v i s i t 8 16.0 8.8 13.8 GLM - Repeated statement Sphericity Tests Variables DF Transformed Variates 44 Orthogonal Components 44 v i s i t 1 0 v i s i t 9 18.7 10.0 15.2 16.3 10.1 15.7 (1) Mauchly's Criterion Chi-Square Pr > ChiSq 0.0015538 0.0015538 199.16041 199.16041 <.0001 <.0001 St 711 (101) Manova Test Criteria and Exact F Statistics for the Hypothesis of no time Effect H = Type III SSCP Matrix for time E = Error SSCP Matrix S=1 M=3.5 N=12 Statistic Value Wilks' Lambda Pillai's Trace Hotelling-Lawley Trace Roy's Greatest Root F Value NumDF DenDF Pr>F 0.83661364 0.16338636 0.19529487 0.19529487 0.56 0.56 0.56 0.56 9 9 9 9 26 26 26 26 0.8135 0.8135 0.8135 0.8135 Manova Test Criteria and Exact F Statistics for the Hypothesis of no time*drug Effect H = Type III SSCP Matrix for time*drug E = Error SSCP Matrix S=1 M=3.5 N=12 Statistic Wilks' Lambda Pillai's Trace Hotelling-Lawley Trace Roy's Greatest Root Value F Value NumDF 0.73281701 1.05 9 0.26718299 1.05 9 0.36459714 1.05 9 0.36459714 1.05 9 DenDF Pr>F 26 0.4273 26 0.4273 26 0.4273 26 0.4273 The GLM Procedure Repeated Measures Analysis of Variance Tests of Hypotheses for Between Subjects Effects Source drug Error DF 1 34 Type III SS 867.692250 7229.275389 Mean Square F Value Pr > F 867.692250 4.08 0.0513 212.625747 (2) St 711 (102) The GLM Procedure Repeated Measures Analysis of Variance Univariate Tests of Hypotheses for Within Subject Effects Source DF Type III SS Mean Square time 9 4.9529167 0.5503241 time*drug 9 9.6535833 1.0726204 Error(time) 306 522.9285000 1.7089167 Source time time*drug Error(time) Pr > F 0.9675 0.7733 F Value 0.32 0.63 Adj Pr > F G - G H - F 0.8065 0.8314 0.5965 0.6165 Greenhouse-Geisser Epsilon Huynh-Feldt Epsilon (4) 0.3285 0.3738 The above results treat each patient's vector of responses as a random vector. The eigenvalue based tests are covered in a multivariate course. Power for within subject effects (time, time*drug) is low because no structure is imposed. If "compound symmetry" can be assumed, you can treat this as a split plot. The "test for sphericity" test H0:split plot analysis is OK. The test should be done on orthogonal components (orthogonal polynomials work St 711 (103) so Mauchley's criterion test is same in both lines above) One more GLM part that is interesting is this: Strip out the linear part (linear visit effect) from each patient. Analyze these 36 numbers. Strip out the quadratic part. Analyze these 36 numbers etc. (orthogonal polynomials) Here are the results: time_N represents the nth degree polynomial contrast for time Contrast Variable: time_1 Source Mean drug Error DF 1 1 34 Type III SS 0.0275766 3.1517045 256.6953552 Mean Square 0.0275766 3.1517045 7.5498634 F Value 0.00 0.42 Pr > F 0.9522 0.5225 Contrast Variable: time_2 Source DF Type III SS Mean Square F Value Pr > F Mean drug Error 1 1 34 0.58444655 0.58444655 3.45320076 3.45320076 97.06667088 2.85490208 (more polynomials) 0.20 1.21 0.6538 0.2791 St 711 (104) Contrast Variable: time_9 Source DF Type III SS Mean drug Error 1 1 34 0.17820870 0.36995640 16.14159446 Mean Square F Value Pr > F 0.17820870 0.36995640 0.47475278 0.38 0.78 0.5442 0.3836 Our PROC GLM on the univariate dataset is not justified (we definitely do NOT have compound symmetry CS) but here's the test we would use if CS were obtained. The initial ANOVA F test with the wrong denominator is way off, showing p<.0001. As you can see, this test is exactly the same as that from the multivariate data set (unstructured covariance matrix). Thus concern about the covariance structure has (little or) no effect on the between subject tests. Tests of Hypotheses Using the Type III MS for patient(drug) as an Error Term Source drug DF 1 Type III SS 867.6922500 Mean Square F Value Pr > F 867.6922500 4.08 0.0513 (2) St 711 (105) We can run several MIXED models with various within subject covariance structures, using SBC or AIC to select between them. AR(1) works well here (we have a "random subject" piece that usually would be specified in such an experiment). Any covariance matrix, like compound symmetry, that retains the same form when a constant is added to all entries will not require this random statement. Adding a constant to all terms in a geometric sequence, like that used in AR(1) does NOT produce another geometric sequence so we need the random statement too. (Note the large patient variance component estimate). With the refined covariance structure we have evidence of a drug effect (p-values are almost the same and this difference is likely due just to the different estimation schemes-OLS vs REML, hence the phrase "little or no effect" above). There seems to be no change over St 711 (106) time, either on average (visit) or differing from drug to drug (visit*time). For more information on the GLM approach and multivariate tests, see any mutivariate text under multivariate multiple regression. For repeated measures (epsilon adjustments, sphericity etc.), the book Analysis of Messy Data (Milliken & Johnson) is a good resource. The Mixed Procedure Convergence criteria met. Covariance Parameter Estimates Cov Parm patient(drug) AR(1) Residual Subject patient Estimate 18.3299 0.8159 3.4224 Fit Statistics -2 Res Log Likelihood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better) 1188.0 1194.0 1194.1 1198.8 St 711 (107) Type 3 Tests of Fixed Effects Effect drug visit drug*visit Num DF Den DF F Value Pr > F 1 9 9 34 306 306 4.28 0.58 0.70 0.0462 0.8117 0.7062 Note 1: We see the patient variance component is 18.33 and the within patient variance (visit-to-visit) is 3.422. These within patient visti-to-visit errors eij (t) are not independent. Their correlation is estimated to be .8159d where d is time difference between visits. For patient j on drug i, visit time t we have Yij (t) = . + Drugi + Patientij + Time(t) + DTit + eij (t) Patientij ~ N(0,18.33), eij (t) ~ N(0,3.42) and corr(eij (t), eij (s))= .8159|t-s| . Here ~ means, St 711 (108) of course, a distribution with the variance estimated, not known. Note 2: The unstructured matrix in MIXED gives the same F test for DRUG as GLM multivariate and GLM using compound symmetry (split plot) namely F= 4.08. Here is the code and partial output: proc mixed data=univariate; title "Mixed"; class drug patient visit; model Y=drug|visit; repeated/ subject=patient type=un; run; Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value drug 1 34 4.08 visit 9 34 0.74 drug*visit 9 34 1.38 Pr > F 0.0513 0.6719 0.2367 (2) Notice that the within subject tests do not match those of PROC GLM. An area of continuing research is the study of what kinds of finite sample degree of freedom calculations give the best performance (the REML theory is based on asymptotic, i.e. St 711 (109) large sample, considerations). Until recently, a method that tries to emulate Satterthwaite's approach has seemed to me to be a good choice. Using DDFM (denominator degree of freedom method) = SATTERTHWAITE on the MODEL statement invokes this. Some recent research by Kenward and Roger takes a slightly different approach. Some preliminary studies seem to indicate that it is the best approach. Here is the Kenward Roger adjustment and note that it reproduces the Wilk Lambda (an exact F test that is well known and widely used) from PROC GLM. More information is available in the online doc for SAS (click from our home page) proc mixed data=univariate; title "Mixed"; class drug patient visit; model Y=drug|visit / ddfm=KenwardRoger; repeated/ subject=patient type=un; St 711 (110) Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value drug 1 34 4.08 visit 9 26 0.56 drug*visit 9 26 1.05 Pr > F 0.0513 0.8135 0.4273 One down side is that Kenward Roger is slow. It took 14.38 CPU seconds on a Pentium windows XP machine for this rather small example. Fine print: (1) Test H0:split plot approach is OK - reject! (2) MS(drug)/MS(patient(drug)) is OK multivar. or split plot (3) Split plot tests - would be OK if split plot OK (4) Adjustment's based on Box's epsilon correction Note: GLM also gives mulitvariate tests assuming general unstructured variance matrix within patient. Always justified, often not very powerful. ñ Some covariance structures: Unstructured Îa Ð b Ð c Ïd b e f g c f h i Toeplitz dÑ Îa g ÓÐ b ÓÐ i c j Ò Ïd b c a b b a c b AR(1) d Ñ Î 1 3 32 33 Ñ c ÓÐ 3 1 3 32 Ó 52 ÓÐ 2 Ó b 3 3 1 3 a Ò Ï 33 32 3 1 Ò St 711 (111) Compound Symmetry (Spherical) implies usual split plot analysis is OK: 2 2 2 a=5whole +5split b=5whole Îa Ð b Ð b Ïb b a b b b b a b bÑ bÓ Ó b aÒ proc mixed data=univariate; class drug patient visit; model Y=drug|visit; ** Pick one of these: **; ** first two same **; * random patient(drug); ** split plot **; * repeated/ subject=patient type=cs; ** compound symmetry**; * repeated/ subject=patient type=un; ** unstructured**; * repeated/ subject=patient type=Toeplitz; random patient(drug); repeated / subject=patient type=AR(1); ** split plot with AR(1) errors **; run; Title "PROC MIXED";run; The Mixed Procedure Convergence criteria met. Covariance Parameter Estimates Cov Parm patient(drug) AR(1) Residual Subject patient Estimate 18.3299 0.8159 3.4224 St 711 (112) Fit Statistics -2 Res Log Likelihood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better) 1188.0 1194.0 1194.1 1198.8 Type 3 Tests of Fixed Effects Effect drug visit drug*visit Num DF 1 9 9 Den DF 34 306 306 F Value 4.28 0.58 0.70 Pr > F 0.0462 0.8117 0.7062 ñ "Visit" tests for time effects. ñ AR(1) with random patient effects is restricted Toeplitz. Toeplitz: -2 ln(L) =1181.2 (10 parms) AR(1): -2 ln(L) = 1188.0 ( 3 (5 2 ,3,5P2 ) ) H0 : AR(1) is OK H1 : Need more general Toeplitz Test: ;27 (=10-3) = 6.8 not significant ñ Many more structures (including spatial) St 711 (113) ñ Note (stat majors especially): research on these models is ongoing. A particularly interesting result (Self and Liang, 1987, JASA) concerns testing a parameter on the boundary using this "likelihood ratio test". The upshot is that if you are testing that a single variance component is 0 (on the "boundary") then you have a 50% chance of hitting the boundary and getting a 0, and a 50% chance of getting ;21 random variable in large samples. Thus if you get a calculated ;21 value C and if the "p-value" from a ;21 is Pr{;21 >C} = .0780 then the "p-value" of your test would be 0.0390. For AR(1), 3=0 is not on the boundary. Our example above is unaffected. St 711 (114) Strip plot Fields with 4x5 grid of plots Split plot: randomly assign 4 fertilizers (1,2,3,4) to rows, 5 varieties randomized within rows Concern: fertility gradient (down) one block: 1A 1C 1D 4C 4D 4A 3E 3A 3D 2E 2C 2D 1B 4E 3B 2A 1E 4B 3C 2B <--- row = whole plot Strip plot: randomly assign 4 fertilizers to rows, 5 varieties to column Concern: gradients down and across St 711 (115) one block 1A 1C 1D 4A 4C 4D 3A 3C 3D 2A 2C 2D 1B 4B 3B 2B 1E 4E 3E 2E ñ Analysis (5 blocks) Block 4 F 3 Error A 12 < SAS: block*fert Variety 4 Error B 16 < block*var F*V 12 Error C 48 ñ Split-split plot Batches of cotton - 3 from each of 5 suppliers SS(supplier)= 755 4 df SS(batch) = 1400 14 df SS(error A) = 645 10 df --------------------------- St 711 (116) 4 spinning tensions, 1/4 batch done on each. Each batch -> 4 bobbins of fiber. SS(bobbins) 2494 59 df SS(tension) 737 3 df SS(sup*ten) 114 12 df SS(Error B) = 2494-1400-851 30 df --------------------------From each bobbin, fibers woven together to form threads. Thread of 2, 3, and 4 ply fibers from each bobbin. Y = breaking strength of thread. SS(threads) 2707 179 df this is SS(total) SS(ply) 169 2 df SS(ply*sup) 2 8 df SS(ply*ten) 0.5 6 df SS(P*S*T) 8.5 24 df SS(Error C) = 2707-2494-180=33 80 df St 711 (117) *** Demo31.sas Split Split Plot*****; data spin; do supp = 1 to 5; do batch = 1 to 3; b=10*normal(1827655); do tension = 1 to 4; t = 5*normal(1827655); do ply = 2 to 4; s = 2*normal(1827655); input Y; output; end; end; end; end; cards; 6.9 (more data) 16.2 18 ; proc glm; class supp tension ply batch; model Y = supp batch(supp) tension supp*tension batch*supp*tension ply supp*ply tension*ply supp*tension*ply; random batch(supp) batch*supp*tension/test; contrast "linear tension" tension -3 -1 1 3/ e=batch*supp*tension; Dependent Variable: Y Source Model Error Corrected Total DF 99 80 179 Sum of Squares 2674.482000 32.380000 2706.862000 Mean Square 27.014970 0.404750 F Value 66.74 Corrected Total Source supp batch(supp) tension supp*tension supp*tension*batch DF 4 10 3 12 30 Type I SS 755.7370000 644.6100000 736.6740000 114.2710000 242.5700000 Mean Square 188.9342500 64.4610000 245.5580000 9.5225833 8.0856667 F Value 466.79 159.26 606.69 23.53 19.98 St 711 (118) ply supp*ply tension*ply supp*tension*ply 2 8 6 24 169.3480000 2.0420000 0.6000000 8.6300000 84.6740000 0.2552500 0.1000000 0.3595833 209.20 0.63 0.25 0.89 (most of these tests are wrong!) (there follow "fixed up" tests, e.g.:) Source DF Type III SS Mean Square F Value batch(supp) 10 644.610000 64.461000 7.97 tension 3 736.674000 245.558000 30.37 supp*tension 12 114.271000 9.522583 1.18 Error 30 242.570000 8.085667 Error: MS(supp*tension*batch) * This test assumes one or more other fixed effects are zero. * * (and finally the requested contrast) Dependent Variable: Y Tests of Hypotheses Using the Type III MS for supp*tension*batch as an Error Term Contrast linear tension DF 1 Contrast SS 731.1616000 Mean Square 731.1616000 F Value 90.43 H0 : No linear effect of tension Assume: equal spacing Contrast coefficients for linear -3 -1 1 3 Q=[-3(tension 1 total) -1( ) +1( )+3( )] Suppose Q=811.2. denominator = (9+1+1+9)(45) = 900 SS(Tension linear)=Q2 /denom = 731.16 St 711 (119) F130 = (731/1)/(242/30) = 90.43 proc mixed; class supp tension ply batch; model Y = supp|tension|ply; random batch(supp) batch*tension batch*ply; The Mixed Procedure Covariance Parameter Estimates Cov Parm batch(supp) supp*tension*batch Residual Estimate 4.6979 2.5603 0.4047 Fit Statistics -2 Res Log Likelihood AIC (smaller is better) BIC (smaller is better) 438.5 444.5 446.6 Type 3 Tests of Fixed Effects Num Effect DF supp 4 tension 3 supp*tension 12 ply 2 supp*ply 8 tension*ply 6 supp*tension*ply 24 Den DF 10 30 30 80 80 80 80 F Value 2.93 30.37 1.18 209.20 0.63 0.25 0.89 Pr > F 0.0764 <.0001 0.3418 <.0001 0.7497 0.9591 0.6158 F Value 90.43 Pr > F <.0001 Contrasts Num Label DF linear tension 1 Den DF 30 ñ All tests correct automatically
© Copyright 2025 Paperzz