St 711 ( 1 ) Design ñ Elements 1. Representativeness 2. Randomization 3. Replication 4. Error Control (blocking) ñ Reducing Unexplained Variation Better Technique, Replication, Blocking, Improving Model (transformation, covariates, etc.) ñ Random versus Haphazard ñ No Universal Agreement (sec. 1.5) %Let seed = 1827655; Options Symbolgen; Data Sample; Input Units @@; X=ranuni(&seed); cards; 1 2 3 4 5 6 7 8 9 10 11 12 ; Proc Sort; By X; Data Next; Set Sample; Trt = 1+(_N_>6); Proc Print noobs; Title "Randomized Using &seed "; run; St 711 ( 2 ) Randomized Using 1827655 Units X Trt 8 4 9 2 5 12 6 7 11 10 1 3 0.03567 0.23122 0.30097 0.49160 0.55945 0.57792 0.59466 0.60070 0.68211 0.69087 0.76555 0.89215 1 1 1 1 1 1 2 2 2 2 2 2 Completely Randomized Design (Ch. 2) ñ Unequal reps - no problem. ñ Assume homogeneous experimental units. Ui =unit i (of n) Tj =Trt j (of t) Y = Ui +Tj n of these, nt possibilities 4 Units (4 obs.) 2 Trts, 8 possibilities St 711 ( 3 ) (."" ) .#" .$" units: (.%" ) . ñ" . ñ" - .ñ ñ treatments ."# . "ñ (.## ) . #ñ (.$# ) . $ñ .%# . %ñ . ñ# .= .ñ ñ . 1ñ - .ñ ñ . 2ñ - .ñ ñ . 3ñ - .ñ ñ . - . 4ñ ññ . ñ2 - .ñ ñ ñ Using () Units 1, 4 got trt 1, others got trt 2 ñ We assume additivity .ij = . + [ . iñ -.]+ [ . ñj -.] (mean + trt effect + unit effect) ñ We would only see 4 numbers Y11 = ."" , Y12 = .41 Y21 = .## , Y22 = .3# ñ In this way of thinking, there is no mention of larger "population" or fancy model - just random assignment of treatments and additivity. St 711 ( 4 ) ñ Allows "randomization test" (Ch. 4) ñ Factorial treatments have similar structure. ñ More like what we're used to ñ Tables of means no interaction 10 18 20 14 22 24 9 17 ?? interaction 1 2 4 2 4 8 8 16 32 ñ Table 1 overall mean 17 column (A) effects -6, 2, 4 (sum to 0) row (B) effects -1, 3, -2 (sum to 0) Data 10, 12 15, 17 13, 11 24, 22 8, 12 15, 19 21, 25 25, 21 17, 21 Means 11 16 23 12 23 23 10 17 19 ñ SSE = 2+2+8+2+2+8+8+8+8 = 48 St 711 ( 5 ) ñ MSE = 48/9 = 5.333 _ ñ SS(trt) = r!(Yijñ Yñññ )2 = i,j 2 2(11-17.111) + â+2(19-17.111)2 = 445.778 = 222 /2+â+382 /2 3082 /18 data a; do a=1 to 3; do b=1 to 3; trt+1; do rep = 1 to 2; input Y @@;output; end; end; end; cards; 10 12 15 17 21 25 13 11 24 22 25 21 8 12 15 19 17 21 ; proc print data=a (obs=9); title "Factorial"; proc means noprint mean sum css; by trt; var Y; output out=out1 mean=mnY css=css sum=sumY ; id A B; proc print noobs; sum mnY css sumY; run; proc glm data=a; class trt; model Y= trt; proc glmmod data=a; class trt; model Y=trt; run; Factorial Obs 1 2 3 4 5 6 7 8 9 a 1 1 1 1 1 1 2 2 2 b 1 1 2 2 3 3 1 1 2 trt 1 1 2 2 3 3 4 4 5 rep 1 2 1 2 1 2 1 2 1 Y 10 12 15 17 21 25 13 11 24 St 711 ( 6 ) trt 1 2 3 4 5 6 7 8 9 a 1 1 1 2 2 2 3 3 3 b 1 2 3 1 2 3 1 2 3 _TYPE_ 0 0 0 0 0 0 0 0 0 _FREQ_ 2 2 2 2 2 2 2 2 2 mnY 11 16 23 12 23 23 10 17 19 === 154 css 2 2 8 2 2 8 8 8 8 === 48 sumY 22 32 46 24 46 46 20 34 38 ==== 308 The GLM Procedure Class Level Information Class trt Levels 9 Values 1 2 3 4 5 6 7 8 9 Number of observations Dependent Variable: Y Source DF Sum of Squares Model Error Corrected Total 8 9 17 445.7777778 48.0000000 493.7777778 Source Model 18 Mean Square 55.7222222 5.3333333 F Value Pr > F 10.45 0.0010 St 711 ( 7 ) The GLMMOD Procedure Design Points Observation Number Y 1 10 2 12 3 15 4 17 5 21 6 25 7 13 8 11 9 24 10 22 11 25 12 21 13 8 14 12 15 15 16 19 17 17 18 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Column Number 3 4 5 6 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 Linear Model Yijk = .ij + %ijk = . +7ij + %ijk = . +!i +"j + (!" )ij + %ijk 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 St 711 ( 8 ) Linear Models (Ch. 3) yij = . + 7i + eij Y= X " +% Î Ð Ð Ð Ð Ð Ð Ð Ð % Ñ Î" Ð " ' Ó Ó Ð Ð " 5 Ó Ó Ð " Ó =Ð " Ó Ð $ Ó Ð " Ó Ð ) " Ï "# Ò Ï " " " ! ! ! ! ! ! ! " " " ! ! !Ñ Î e11 Ñ Ð e12 Ó !Ó Ó Î . Ñ ÐÐ e21 Ó Ó !Ó Ó Ð 71 Ó Ð Ó !Ó +Ð e22 Ó Ð Ó 72 Ó Ð Ó !Ó e Ð Ó 23 Ï 73 Ò Ð Ó Ó " e31 Ï e32 Ò "Ò ^ = (Y X" s )w (Y X" s ) minimized whenever s = Xw Y Xw X " SSE(" ) Î7 Ð 2 Ð 3 Ï2 2 2 ! ! 3 ! 3 ! 2Ñ . Î Ñ Î yñ ñ Ñ Î 39 Ñ !Ó Ð 71 Ó Ð y1 ñ Ó Ð "! Ó =Ð =Ð Ð Ó Ó Ó Ó y2 ñ 72 9 ! Ï Ò Ï y Ò Ï #! Ò 3ñ 2 Ò 73 ( ñ with no bar is total) St 711 ( 9 ) "Least squares" must reproduce means. We need _ _ _ ^ +7^ 1 = y = 5 , . ^ +7^ 2 = y = 3 , . ^ +7^ 3 = y = 10 . 1ñ 2ñ 3ñ Table 1: many solutions !! ^ . 7^ 1 7^ 2 7^ 3 0 10 6 2 -10 5 -5 -1 3 15 3 -7 -3 1 13 10 0 4 8 20 ^ +7^ 2 =__ . 7^ 1 + 7^ 2 =__ ^ =__ . 7^ 2 =__ 7^ 1 7^ 2 =__ ñ Estimable Functions: Same regardless of solution. ñ Obviously they are all possibilities for c1 (.+71 )+c2 (.+72 )+c3 (.+73 ) (c1 +c2 +c3 ). + c1 71 +c2 72 +c3 73 L1 . + L2 71 +L3 72 +(L1 L2 L3 )73 St 711 ( 10 ) DATA EXAMPLE; INPUT TRT Y @@; CARDS; 1 4 1 6 2 5 2 1 2 3 3 8 3 12 PROC GLM; CLASS TRT; MODEL Y=TRT/E; ESTIMATE "ATTEMPT 1" TRT 1 0 0; ESTIMATE "ATTEMPT 2" INTERCEPT 1 TRT 1 0 0; RUN; The GLM Procedure General Form of Estimable Functions Effect Coefficients Intercept L1 TRT TRT TRT 1 2 3 L2 L3 L1-L2-L3 Dependent Variable: Y Source DF Model 2 Error 4 Corr.Tot. 6 Parameter ATTEMPT 2 Sum of Squares 59.71428571 18.00000000 77.71428571 Estimate 5.00000000 Mean Square 29.85714286 4.50000000 Standard Error 1.50000000 F Value 6.63 t Value 3.33 Pr > F 0.0536 Pr > |t| 0.0290 St 711 ( 11 ) (FROM THE LOG WINDOW) 32 33 ESTIMATE "ATTEMPT 1" TRT 1 0 0; ESTIMATE "ATTEMPT 2" INTERCEPT 1 TRT 1 0 0; NOTE: ATTEMPT 1 is not estimable. ñ attempt to estimate 71 fails, .+ 71 OK ñ idea trivial here, can get complicated! ñ Restricted models Assumptions on parameters Same for estimates (C) Cell means Assumes .=0 (and renames 7i as .i ) row 1 of Table 1 Î Ð Ð Ð Ð Ð Ð Ð Ð % Ñ Î" Ð " ' Ó Ó Ð Ð ! 5 Ó Ó Ð " Ó =Ð ! Ó Ð $ Ó Ð ! Ó Ð ) ! Ï "# Ò Ï ! ! ! " " " ! ! !Ñ Î e11 Ñ Ð e12 Ó !Ó Ó Ð Ó Ð Ó !Ó . + 7 e 1 21 Î Ñ Ð Ó Ó !Ó .+72 +Ð e22 Ó Ó Ï .+73 Ò ÐÐ e23 Ó !Ó Ó Ó Ð Ó " e31 Ï e32 Ò "Ò s = Xw Y Xw X " St 711 ( 12 ) Î2 ! Ï! ! 3 ! ! ÑÎ .+71 Ñ Î y1 ñ Ñ Î "! Ñ ! .+72 = y2 ñ = 9 2 ÒÏ .+73 Ò Ï y3 ñ Ò Ï #! Ò with . assumed 0, 2 ^ Î 71 Ñ Î 7^ 2 = ! Ï 7^ Ò Ï ! 3 ! Ñ Î "! Ñ Î 5 Ñ ! 9 = 3 2 Ò Ï #! Ò Ï 1! Ò -1 ! 3 ! (E) Effects coding Î Ð Ð Ð Ð Ð Ð Ð Ð % Ñ Î" Ð " ' Ó Ó Ð Ð 1 5 Ó Ó Ð " Ó =Ð 1 Ó Ð $ Ó Ð 1 Ó Ð ) 1 Ï "# Ò Ï 1 1 1 0 0 0 -1 -1 _ [7 ñ =(71 72 73 )/3] !Ñ Î e11 Ñ Ð e12 Ó !Ó _ Ó Ð Ó Ð 1Ó + . 7 e Î _ñ Ñ Ð 21 Ó Ó Ó 1Ó 71 -7_ñ +Ð e22 Ó Ó Ï 72 -7 Ò ÐÐ e23 Ó 1Ó Ó Ó ñ Ð Ó -" e31 Ï e32 Ò -" Ò last rows: _ _ _ _ .+7 ñ -(71 -7 ñ )-(72 -7 ñ ) =.-71 -72 +37 ñ = ____ St 711 ( 13 ) Assuming !7i =0 ( 7 ñ =0) row 3 of Table 1 3 _ i=1 s = Xw Y Xw X " Î7 ! Ï1 ! 4 2 1 ÑÎ . Ñ Î yñ ñ Ñ Î 39 Ñ 2 71 = y1 ñ -y3 ñ = 10-20 5 ÒÏ 72 Ò Ï y2 ñ -y3 ñ Ò Ï 9-#! Ò 7 ^ Î.Ñ Î 7^ 1 = ! Ï 7^ Ò Ï 1 2 ! 4 2 1 Ñ Î 39 Ñ Î 6 Ñ 2 -10 = -1 5 Ò Ï -11 Ò Ï -3 Ò -1 7^ 3 =0 7^ 2 7^ 1 = 4 ñ Advantage: This is the way most researchers interpret results in more complicated models. (R) Reference Cell Coding (SAS) St 711 ( 14 ) Î Ð Ð Ð Ð Ð Ð Ð Ð % Ñ Î" Ð " ' Ó Ó Ð Ð 1 5 Ó Ó Ð " Ó =Ð 1 Ó Ð $ Ó Ð 1 Ó Ð ) 1 Ï "# Ò Ï 1 Î7 2 Ï3 !Ñ Î e11 Ñ Ð e12 Ó !Ó Ó Ð Ó "Ó Î .+73 Ñ ÐÐ e21 Ó Ó Ó "Ó 71 -73 +Ð e22 Ó Ó Ï 72 -73 Ò ÐÐ e23 Ó "Ó Ó Ó Ð Ó 0 e31 Ï e32 Ò 0Ò " " 0 0 0 ! ! 2 2 0 s = Xw Y Xw X " 3 ÑÎ .+73 Ñ Î yñ ñ Ñ Î 39 Ñ 0 71 -73 = y1 ñ = 10 3 ÒÏ 72 -73 Ò Ï y2 ñ Ò Ï 9 Ò assuming 73 =0 7 ^ Î.Ñ Î 7^ 1 = 2 Ï 7^ Ò Ï 3 2 2 2 0 3 Ñ Î 39 Ñ Î 10 Ñ 0 10 = -5 3 Ò Ï 9 Ò Ï -7 Ò -1 ñ Advantage: Computational speed (diagnose singularities left to right in X) ñ SAS automates St 711 ( 15 ) SAS makes no assumptions but uses restriction associated with reference cell to get a solution if requested: PROC IML; RESET SPACES=5 FW=3; X= {1 1 0 0, 1 1 0 0, 1 0 1 0, 1 0 1 0, 1 0 1 0, 1 0 0 1, 1 0 0 1}; Y = {4 6 5 1 3 8 12}`; XC = X[ ,2:4]; XR = X[ ,1:3]; XE= X[ ,1]||( X[ ,2:3] - X[ ,4]*{1 1} ); ** || CONCATENATE HORIZONTALLY [ ] PICK OUT ROWS OR COLUMNS ; PRINT X XC XR XE Y; BE = INV(XE`*XE)*XE`*Y; BC = INV(XC`*XC)*XC`*Y; BR=INV(XR`*XR)*XR`*Y; PRINT BE BC BR; QUIT; X 1 1 1 1 1 1 1 XC 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 XR 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 XE 1 1 0 0 0 0 0 0 0 1 1 1 0 0 BE BC BR 6 -1 -3 5 3 10 10 -5 -7 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 -1 -1 1 -1 -1 Y 4 6 5 1 3 8 12 St 711 ( 16 ) ñ SAS allows you to specify contrasts checks estimability ñ SAS actually uses "generalized inverse" Î7 Ð 2 Ð 3 Ï2 2 2 ! ! 3 ! 3 ! 2Ñ . Î Ñ Î yñ ñ Ñ Î 39 Ñ !Ó Ð 71 Ó Ð y Ó Ð "! Ó =Ð 1 ñ Ó =Ð Ð Ó Ó Ó y2 ñ 72 9 ! Ï Ò Ï y Ò Ï #! Ò 3ñ 2 Ò 73 7 . Î Î Ñ Ð 2 Ð 71 Ó =Ð Ð Ó 72 3 Ï 73 Ò Ï 2 Î 0.5 Ð -0.5 Ð Ï 0 -0.5 2 2 ! ! -0.5 1 0.5 -0.5 0.5_ 0.833 ! ! 3 ! 3 ! 2 Ñ 39 Î Ñ !Ó Ð "! Ó = Ð Ó Ó 9 ! Ï Ò 2 Ò #! 0 Ñ 39 Î Ñ Î 10 Ñ !Ó Ð "! Ó Ð -5 Ó =Ð Ð Ó Ó Ó 9 -7 ! Ï #! Ò Ï ! Ò Ò 0 ñ SAS tells you this is just one possibility. St 711 ( 17 ) DATA EXAMPLE; INPUT TRT Y @@; CARDS; 1 4 1 6 2 5 2 1 2 3 3 8 3 12 PROC GLM; CLASS TRT; MODEL Y=TRT/SOLUTION; RUN; Dependent Variable: Y Source Model Error Corrected Total Parameter Intercept TRT 1 TRT 2 TRT 3 DF 2 4 6 The GLM Procedure Sum of Squares 59.71428571 18.00000000 77.71428571 Estimate 10.00000000 -5.00000000 -7.00000000 0.00000000 B B B B Mean Square 29.85714286 4.50000000 Standard Error t Value Pr > |t| 1.50000000 2.12132034 1.93649167 . 6.67 -2.36 -3.61 . 0.0026 0.0779 0.0225 . NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable. Random Variables and Expectations: ñ Discrete (#tosses until heads) Y 1 2 3 4 ... P(Y) "# ( "# )2 ( "# )3 ( "# )4 ... E{Y} = mean = weighted average = 1( "# )+2 ( "# )2 +3( "# )3 + ... = 2 St 711 ( 18 ) S=1( "# )+2 ( "# )2 +3( "# )3 + ... ( "# )S = 1( "# )2 +2 ( "# )3 + ... (1- "# )S = 1( "# ) 1( "# )2 +" ( "# )3 + ...=1 S=2 ñ Continuous Pr{A<Y<B} = area Plot of fy*Y. Legend: A = 1 obs, B = 2 obs, etc. fy ‚ 1.0 ˆ AAA ‚ A A ‚ ‚ A A ‚ ‚ A A ‚ | ‚ A | A ‚ | 0.5 ˆ A | A ‚ | ‚ A | A ‚ | ‚ A | A ‚ A | A ‚ | | ‚ AA | |AA ‚ AA | | AA 0.0 ˆ AAAAAAA | | AAAAAAA Šƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒ -4 -2 A 0 B 2 4 Y _ ' ñ E{Y} = mean =.= _ y f(y) dy ñ Variance: E{(Y-.)2 } = 5Y2 St 711 ( 19 ) ñ Covariance between Y1 and Y2 512 = E{(Y1 -.1 )(Y2 -.2 )} "uncorrelated": 512 =0 ñ Var(Y1 „ Y2 )= 512 +522 „ 2512 ñ Rule 1: If uncorrelated, Var(Y1 „ Y2 )= 512 +522 (variance of sum or difference is sum of variances) ñ Rule 2: C constant, then Var(CY) = C2 5Y2 ñ Rule 3: For Y~_ (., 5Y2 ) and uncorrelated, Var(Y)=5Y2 /n _ [ Y= 1n DYi , Var( DYi ) = n5Y2 (rule 1), Var( 1n DYi ) = ( 1n )2 n5Y2 (rule 2) = 5Y2 /n] ñ Nicer with matrices! (appendix 3A in G&G) Y µ N(., V) St 711 ( 20 ) 2 5 . Y 1 1 1 Î Ñ ÎÎ Ñ Î .2 ß 512 Y2 ~ Ï Y3 Ò ÏÏ .3 Ò Ï 5 13 w 512 522 523 513 Ñ 523 532 Ò Ñ Ò Then LY µ N(L., LVL ) ñ Example: Î Y1 Ñ ÎÎ 12 Ñ Î 6 Y2 ~ 16 ß 2 Ï Y3 Ò ÏÏ 6 Ò Ï -1 2 4 1 -1 Ñ 1 8Ò Find distribution of Y1 +Y2 -3Y3 proc iml; reset fw=4 spaces=5; V= {6 2 -1, 2 4 1, -1 1 8}; L = {1 1 -3}; MuY = {12, 16, 6}; LVLP = L*V*L`; MuLY = L*MuY; print MuY V MuLY LVLP; MUY 12 16 6 V 6 2 -1 2 4 1 -1 1 8 MULY 10 ñ Regression uses these ideas. LVLP 86 Ñ Ò St 711 ( 21 ) Y=X" +% so Y µ N(X" , I5 2 ) ^ =(Xw X)-1 Xw Y, form is LY " E{LY} = LX" =(Xw X)-1 Xw X" =" Var{LY}=LILw 5 2 = (Xw X)-1 5 2 ñ Regression, p parameters in " ^ s )w (Y X" s )= (Y X" w w w w s w s s s= Y Y Y X" " X Y+" Xw X" w w w w s w s s Y Y Y X" " X Y+" Xw Y = _2 _2 w s Xw Y nY )+0= (Yw Y nY ) (" SS(total) SS(regression) SSE(" ) = ñ ANOVA Source df Regn. p-1 Error n-p Total n-1 SSq Mn Sq F EMS SS(reg.) SS/df SS(err.) " =MSE SS(tot.) ñ Example: 3 uncorrelated means St 711 ( 22 ) _ no drug: Y _ 1ñ µ N(10, 9/4), half dose: Y _2ñ µ N(16, 9/16), full dose: Y3ñ µ N(18, 9/5) C1 = full versus none _ _ _ 1Y1ñ + 0Y2ñ + 1Y3ñ " C2 = half dose vs. _ _ # (full + _ low) 1Y1ñ + 2Y2ñ 1Y3ñ "contrasts" (coefficients sum to 0) expected value: 1(.+71 )+0(.+72 )+1(. 73 )=73 71 "orthogonal" (cross products sum to 0) (-1)(-1)+(2)(0)+(-1)(1) = 0 ñ Find joint distribution of these contrasts -1 LVLw =Œ -1 4.05 Œ 0.45 0 2 0.45 6.30 9/4 0 1 Î 0 9/16 -1 Ï 0 0 0 ÑÎ -1 -1 Ñ 0 0 2 = 9/5 ÒÏ 1 -1 Ò orthogonal -> uncorrelated if equal reps (not here) St 711 ( 23 ) 4.05 C" 8 µ N , ŒC Œ Œ 4 Œ 0.45 2 0.45 6.30 Two-way designs Row Column: Yijk =. + 3i + #j + (3# )ij +%ijk i=1,...,R j=1,...,C k=1,...,n ex.: R=3, C=n=2 ñ SAS assumes no restrictions! ñ program shows what is being estimated in general: *** Demo 8 2-way model ***; data a; do rho=1 to 3; do gamma=1 to 2; do rep=1 to 2; Y=round(5*normal(1827655)+ 8*gamma + 12*rho); output; end; end; end; data names; input beta $ @@; cards; Mu r1 r2 r3 g1 g2 rg11 rg12 rg21 rg22 rg31 rg32 ; proc glmmod data=a outdesign=Xout; class rho gamma; model Y=rho|gamma; data Pg37; merge Xout names; proc print noobs; title "G & G pg. 37"; St 711 ( 24 ) Y X 16 20 24 33 29 28 41 46 40 37 53 48 1 1 1 1 1 1 1 1 1 1 1 1 G & G pg. 37 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 BETA 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 Mu r1 r2 r3 g1 g2 rg11 rg12 rg21 rg22 rg31 rg32 %macro genname; %do i=1 %to 12; col&i %end; %mend genname; proc iml; reset fw=2 spaces=5; use Pg37; read all var{%genname} into X; read all var{beta} into beta; read all var{Y} into Y; print Y X beta; XM = X[ ,7:12]; * cell means ; extractR ={1 2 3 5 7 9}; XR=X[ ,extractR]; * reference cell; XE = {1 1 0 1 1 0, 1 1 0 1 1 0, 1 1 0 -1 -1 0, 1 1 0 -1 -1 0, 1 0 1 1 0 1, 1 0 1 1 0 1, 1 0 1 -1 0 -1, 1 0 1 -1 0 -1, 1 -1 -1 1 -1 -1, 1 -1 -1 1 -1 -1, 1 -1 -1 -1 1 1, 1 -1 -1 -1 1 1}; betaM ={"mu11","mu12","mu21","mu22","mu31","mu32"}; betaR = beta[extractR,1]; betaE=betaR; print "G & G parameters (includes assumptions)"; St 711 ( 25 ) print XM betaM XR betaR; print XE betaE; realM = inv(XM`*XM)*XM`*X; print realM beta; realR = inv(XR`*XR)*XR`*X; realE6 = 6*inv(XE`*XE)*XE`*X; print realR beta; print realE6 beta; part of output: REALR BETA 1 -0 -0 1 -0 1 -0 0 -0 0 0 1 0 1 0 -1 0 0 0 1 0 0 0 -1 0 -0 1 -1 0 0 0 -0 0 1 -0 -1 0 0 0 0 1 -1 0 -0 0 -0 1 -1 0 0 0 0 0 -0 1 -1 0 0 -1 1 0 0 0 0 0 -0 -0 0 1 -1 -1 1 REALE6 6 2 2 2 0 4 -2 -2 0 -2 4 -2 0 0 0 0 0 0 0 0 0 0 0 0 Mu r1 r2 r3 g1 g2 rg11 rg12 rg21 rg22 rg31 rg32 BETA 3 3 1 1 1 1 0 0 2 2 -1 -1 0 0 -1 -1 2 2 3 -3 1 -1 1 -1 0 0 2 -2 -1 1 0 0 -1 1 2 -2 1 1 -1 -1 -1 -1 1 -1 -1 1 -1 1 Mu r1 r2 r3 g1 g2 rg11 rg12 rg21 rg22 rg31 rg32 St 711 ( 26 ) proc glm data=a; class rho gamma; model Y=rho|gamma/solution; Parameter Estimate Intercept rho 1 rho 2 rho 3 gamma 1 gamma 2 rho*gamma rho*gamma rho*gamma rho*gamma rho*gamma rho*gamma 50.50000 -22.00000 -7.00000 0.00000 -12.00000 0.00000 1 1.50000 2 0.00000 1 -3.00000 2 0.00000 1 0.00000 2 0.00000 1 1 2 2 3 3 Standard Error t Value B B B B B B B B B B B B 2.55766821 3.61708907 3.61708907 . 3.61708907 . 5.11533642 . 5.11533642 . . . 19.74 -6.08 -1.94 . -3.32 . 0.29 . -0.59 . . . Pr > |t| <.0001 0.0009 0.1011 . 0.0161 . 0.7792 . 0.5789 . . . NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable. Coefficients for "31 " in effects coding: (3# )11 (3# )12 31 2/6 2/6 [4/6] -1/6 -1/6 [-2/6] (3# )21 (3# )22 32 -1/6 -1/6 [-2/6] (3# )31 (3# )32 33 [0] [0] [0] #1 #2 . estimable if entries sum to [ ] Model parameters St 711 ( 27 ) ñ 31 in G&G effects coding really means (6/6) 31 -(2/6)D3i + (3/6)D(3# )1j (1/6)D(3# )ij i j ij which is 31 only if all D are 0 (coding assumption) 0 0 0 [0] 1 0 -1 [0] [1] [0] [-1] [0] <-- Reference cell coding ñ 31 in G&G reference cell coding really means 31 -33 + (3# )1# (3# )$# which is 31 only if last levels all are 0 (reference cell coding assumption) ñ Estimate of 31 in G&G can be different depending on coding. Is 31 estimable (without arbitrary assumptions)?? reset fw=5;b_hat_E = inv(XE`*XE)*XE`*Y; b_hat_R=inv(XR`*XR)*XR`*Y; print b_hat_E b_hat_R betaR ; St 711 ( 28 ) B_HAT_E B_HAT_R 34.58 -11.3 1.417 -6.25 1 -1.25 50.5 -22 -7 -12 1.5 -3 BETAR Mu r1 r2 g1 rg11 rg21 -11.3 ??(yes under effects coding) 3^ 1 = -22 ?? (yes under ref. cell coding) Note:31 -(2/6)D3i + (3/6)D(3# )1j -(1/6)D(3# )ij i j ij estimable! Estimate is -11.3 for effect coding. For reference cell coding: -22 -(-22-7+0)/3 + (1.5+0)/2 -(1.5-3+4(0))/6 = -22 +29/3+.75+1.5/6 = -11.3333 Why same? Estimable function!! ñ SAS: no arbitrary assumptions, you must fully specify contrasts. proc glm data=a; class rho gamma; model Y=rho gamma rho*gamma; estimate "like effects" rho 4 -2 -2 gamma 0 0 rho*gamma 2 2 -1 -1 -1 -1/divisor=6; estimate "like ref cell" rho 1 0 -1 gamma 0 0 rho*gamma 0 1 0 0 0 -1; run; St 711 ( 29 ) Parameter like effects like ref cell Estimate Standard Error t Value -11.3333333 -22.0000000 1.47667043 3.61708907 -7.67 -6.08 Chapter 4 ñ Full versus reduced model F test Yi ="0 +"1 X1i +â+"k Xki +% i % i µ N(0,5 2 ) H0 : "k-m+1 =â="k =0 SS(H0 :)=R("k-m+1 ,â,"k |"0 ,"1 ,â,"k-m ) =SSE(model without Xk-m+1 ,â,Xk ) SSE(full model) <= has m d.f. Fm n-k-1 = MS(H0 :)/MSE(full) * Example (demo 9); data a; input X1 X2 37 5 7 25.0 30 15 35 59 16.1 11 5 53 87 10.4 5 8 58 88 14.1 11 24 50 65 31.1 30 ; X3 14 41 55 57 46 Y @@; cards; 25 25.9 24 71 13.4 8 91 7.2 5 87 26.2 15 57 28.2 37 proc reg; model Y=X1 X2 X3/ss1; omit2: test X2=0, X3=0; proc reg; model Y=X1; run; 22 46 57 55 41 37 77 91 79 43 18.4 16.8 15.8 10.7 25.0 19 6 6 19 45 29 50 58 53 35 51 85 93 75 31 25.7 21.3 11.3 16.6 28.3 St 711 ( 30 ) The REG Procedure Model: MODEL1 Dependent Variable: Y Analysis of Variance Source Model Error Corrected Total Variable DF Intercept X1 X2 X3 Sum of Squares 520.08339 442.63411 962.71750 DF 3 16 19 Parameter Estimate 1 -23.96963 1 1.29727 1 -0.85018 1 0.87069 Mean Square F Value 173.36113 6.27 27.66463 Standard Error t Value 44.04222 1.09895 1.11119 1.10098 Pr > F 0.0051 Pr > |t| Type I SS 0.5938 0.2551 0.4553 0.4406 7507.81250 501.21490 1.56642 17.30208 -0.54 1.18 -0.77 0.79 Test omit2 Results for Dependent Variable Y Source Numerator Denominator DF 2 16 Mean Square 9.43425 27.66463 F Value 0.34 Pr > F 0.7161 Dependent Variable: Y Analysis of Variance Source DF Model 1 Error 18 Corrected Total 19 Variable DF Intercept 1 X1 1 Sum of Squares 501.21490 461.50260 962.71750 Parameter Estimate 11.92261 0.41402 Mean Square 501.21490 25.63903 Standard Error 2.03050 0.09364 t Value 5.87 4.42 F Value 19.55 Pr > F 0.0003 Pr > |t| <.0001 0.0003 St 711 ( 31 ) ñ Another way: H0 :L" =m0 (often 0) In example ! L=Œ ! ! ! 1 ! ! 1 w ^ ^ -m ) SS(H0 )= (L" -m0 ) (L(Xw X)-1 Lw Ñ-1 (L" ! F=MS(H0 )/MSE as before. E{MSE} = 5 2 always E{MS(H0 )} = 5 2 if H0 true, >5 2 if not. Big F ratio implies H0 unlikely. ñ Under H0 , F has central F distribution. ñ Under H1 , F has noncentral F distribution. (graph G&G Fig. 4.1) St 711 ( 32 ) C is F with 5 and 20 df N is Noncentral F (noncentrality 5) F ‚ ‚ 0.04 ˆ ‚ ‚ c ‚ ‚ cccc ‚ ‚ c c ‚ ‚ c c ‚ ‚ cc ‚ ‚ c c ‚ 0.02 ˆ c nnncnn ‚ ‚ nn cnnn ‚ ‚ c n cc nn ‚ ‚ nn cc nnn‚ ‚ cnn cc nnnn ‚ n ccc ‚ nnnnnn ‚ n cccccc nnnnnnnnnn 0.00 ˆ c ‚ cccccccccccccccccccc Šƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒ 0 2 4 6 x ñ Example 1-way ANOVA, t trts., ri reps E{MS(trt)} = -= t _ D ri (7i -7 )2 i=1 52 t _2 D r ( 7 7 2 i=1 i i ) 5 + t-1 _ is "noncentrality": 7 = t D ri 7i i=1 t D ri i=1 ñ Notes: Z21 +Z22 +â+Zk2 µ ;2k (central) [Z iid N(0,1)] (Z1 +È-)2 +Z22 +â+Z2k µ ;2k (-="noncentrality") St 711 ( 33 ) E{SS(trt)/5 2 } µ ;2k (central) if all 7 's are 0 2 E{SS(trt)/5 } µ ;2k ( t _ D ri (7i -7 )2 i=1 52 ) ñ Example: t=3 treatments, 10 reps. Test H0 : no trt effect. guess: 5 2 about 30 want to reject if 71 =6, 72 =-3, 73 =-3 - = 540/30=18 data prej; do lamb=0 to 20; crit = finv(0.95,2,27); Power = 1- probf(crit,2,27,lamb); output; end; proc plot; plot power*lamb/vpos=12 hpos=50 href=18; run; Plot of Power*lamb. Legend: A = 1 obs, B = 2 obs, etc. Power ‚ ‚ 1.0 ˆ A A A ‚ A A A A A ‚ ‚ A A A ‚ ‚ A A ‚ ‚ A ‚ 0.5 ˆ A A ‚ ‚ A ‚ ‚ A ‚ ‚ A ‚ ‚ A A ‚ 0.0 ˆ Šƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒ 0 5 10 15 20 lamb St 711 ( 34 ) ñ General case (regression) H0 :L" =m0 w -= (mA -m0 ) (L(Xw X)-1 Lw 5 2 Ñ-1 (mA -m0 ) where mA is the alternative (true) L" that you want to detect. ñ Example: Fertilizer at levels 10, 12, 14, 16, 18 Linear regression, Yield on fertilizer. H0 : No fertilizer effect (slope=0) How many reps per level to get power up to 0.80 when slope is really 0.5? Past studies show cv about 10%, average yield about 250. (5 /.)=.10 implies 5 = 25, 5 2 = 625 St 711 ( 35 ) %let V=625; options symbolgen; proc iml; X = {1 10, 1 12, 1 14, 1 16, 1 18}; V=inv(X`*X); L={0 1}; Lbeta={.5}; lambda = Lbeta`*inv(L*inv(X`*X)*L`*&V)*Lbeta; results = {0 0}; do r=100 to 1000 by 100; noncent=r*lambda; ndf = 1; ddf=r*5-2; crit = Finv(0.95,ndf,ddf); power = 1-ProbF(crit,ndf,ddf,noncent); results = results//(r||power); end; clab = {"r" "Power"}; print results [colname=clab]; RESULTS r Power 100 0.2433831 200 0.4314816 (more lines) 700 0.9170895 800 0.9470485 1000 0.9792883 (i.e. impossible to achieve with reasonable r) ñ Example: Computer Mouse Study G&G St 711 ( 36 ) ñ Example: Computer Mouse Study G&G yijk =time difference in milliseconds (drag&drop vs. pt.&click) yijk =.+Si +Aj +(AS)ij +%ijk % µ N(0,45000) i=1,2 sex assume: Aj age 9,10,11,12,13 linear decrease in difference, no interaction (same slope) H0 : difference 0ms at age 11 HA : difference 50 at age 11 Want power 80% to detect alternative. Linear decrease Ä mean of all ages = mean at 11 Use two-sided t. For t, noncentrality is ( n kids, 2 sexes, 5 ages so 10n total) A -m0 9= ÈmVar( = 50/È45000/(10n) =0.75Èn ^ .) (^--- defines noncentrality for t) St 711 ( 37 ) data a; do n=2 to 20; dfe=10*(n-1); phi=50/sqrt(45000/(10*n)); critR = tinv(0.975,dfe); critL=-1*critR; power = probt(critL,dfe,phi)+1-probt(critR,dfe,phi); output; end; proc print noobs; var n dfe phi power; where .7<power<1; run; n dfe phi 12 13 14 15 16 17 18 19 20 2.58199 2.68742 2.78887 2.88675 2.98142 3.07318 3.16228 3.24893 3.33333 110 120 130 140 150 160 170 180 190 power 0.72556 0.75987 0.79053 0.81778 0.84191 0.86318 0.88187 0.89824 0.91253 ñ Last example: data a; put _all_; n = 12; do truediff = -20 to 80 by 5; dfe=10*(n-1); phi=truediff/sqrt(45000/(10*n)); critR = tinv(0.975,dfe); critL=-1*critR; power = probt(critL,dfe,phi)+1-probt(critR,dfe,phi); put "PDV at end " _all_ //; output; end; proc plot; plot power*truediff/vref=0.05 hpos=60 vpos=25; run; St 711 ( 38 ) Plot of power*truediff. Legend: A = 1 obs, B = 2 obs, etc. 1.00 ˆ A ‚ A A ‚ A ‚ A ‚ ‚ A 0.75 ˆ ‚ A ‚ power‚ A ‚ ‚ A 0.50 ˆ ‚ ‚ A ‚ ‚ A ‚ 0.25 ˆ A ‚ ‚ A A ‚ A A ‚ A A ‚ƒƒƒƒƒƒƒƒƒAƒAƒAƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 0.00 ˆ Šƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒ -25 0 25 50 75 100 truediff (from log window) n=. truediff=. dfe=. phi=. critR=. critL=. power=. _ERROR_=0 _N_=1 PDV at end n=12 truediff=-20 dfe=110 phi=-1.032795559 critR=1.9817652821 critL=-1.981765282 power=0.1760169031 _ERROR_=0 _N_=1 ñ G&G also show binomial sample size computations. Main idea is that if p is sample binomial proportion from bin(r,p0 ) St 711 ( 39 ) then arcsin(Èp) is approximately normal with mean arcsin(Èp0 ) and variance 1/(4r). ñ Nonparametric tests: (1) Kruskal - Wallis Variety A 10 29 30 80 100 Variety B 2 3 12 32 35 Variety C 568 13 24 ranks (sij ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 t (!sij ) A: 56 12 ! j=1 H = n(n+1) - 3(n+1), !sij = B: 35 ri i=1 j=1 C: 29 2 2 2 12 H = 15x16 [ 565 + 355 + 295 ] - 48 = 4.02 ri ri (G&G show adjustment for ties) Compare to ;2t-1 =;22 ( ;22 (0.05)= 5.99 ) In SAS: PROC NPAR1WAY Data A; input Variety $ @; do rep = 1 to 5; input Y @; output; end; cards; A 10 29 30 B 2 3 12 32 35 C 5 6 8 13 24 80 100 St 711 ( 40 ) ; proc npar1way; class variety; var Y; run; The NPAR1WAY Procedure Analysis of Variance for Variable Y Classified by Variable Variety Variety N Mean ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ A 5 49.80 B 5 16.80 C 5 11.20 Source DF Sum of Squares Mean Square F Value Pr > F ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Among 2 4350.533333 2175.266667 3.6877 0.0564 Within 12 7078.400000 589.866667 Wilcoxon Scores (Rank Sums) for Variable Y Classified by Variable Variety Sum of Expected Std Dev Mean Variety N Scores Under H0 Under H0 Score ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ A 5 56.0 40.0 8.164966 11.20 B 5 35.0 40.0 8.164966 7.00 C 5 29.0 40.0 8.164966 5.80 Kruskal-Wallis Test Chi-Square 4.0200 DF 2 Pr > Chi-Square 0.1340 St 711 ( 41 ) (2) Randomization Test ñ Assumes a proper randomization ñ Idea: Take all possible divisions of the data into t groups of r (t trts, r reps) and compute F for each. Under H0 :no trt effect, the F test for the split actually used is just a random selection from this list and the number of Fs at or exceding this serves as a P-value. ñ Example: t=2 varieties, r=4 replicates Difference of means instead of F. *See Demo 15 - creates dataset next with all possible permutations of -1 -1 -1 -1 1 1 1 1 then ....; Data rantest; set next; diffmean = (1*X1+4*X2+3*X3+10*X4+5*X5+15*X6+18*X7+30*X8)/4; * variety A: 1 4 3 10, variety B: B 5 15 18 30; St 711 ( 42 ) proc rank data=rantest out=out1; ranks rank; var diffmean; proc print data=out1(obs=5); run; Obs X1 X2 X3 1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X4 1 -1 -1 -1 -1 X5 X6 X7 X8 diffmean rank -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -12.5 -15.0 -10.0 -8.5 -2.5 2.0 1.0 6.0 9.0 27.5 (observed is obs. #1 so rank=2, P-value is 2/70 = 0.029)
© Copyright 2025 Paperzz