Nano Res. Electronic Supplementary Material Epitaxial growth of hyperbranched Cu/Cu2O/CuO core– shell nanowire heterostructures for lithium-ion batteries Yuxin Zhao1,2,§, Ying Zhang1,§, Hu Zhao3, Xuejin Li1, Yanpeng Li1, Ling Wen1, Zifeng Yan1 (), and Ziyang Huo4 () 1 State Key Laboratory for Heavy Oil Processing, PetroChina Key Laboratory of Catalysis, China University of Petroleum, Qingdao 266580, China 2 SINOPEC Safety Engineering Institute, No 218, Yan’an 3 Road, Shinan District, Qingdao 266071, China 3 China Petroleum Pipeline Bureau, 87 Guangyang Road, Langfang 065000, China 4 Queensland Micro- and Nanotechnology Centre Nathan Campus, Griffith University, 170 Kessels Road, NATHAN QLD 4111, Australia § These authors contributed equally to this work. Supporting information to DOI 10.1007/s12274-015-0783-1 Figure S1 (a) HRTEM of interface in Cu@Cu2O core-shell NW. (b) Enlarged view taken from framed area as induced by white box. (c) Constructed inverse FFT images along the (110) plane direction for the panel (b). The pink areas show the typical lattice fringe distortion at the Cu-Cu2O interface. Address correspondence to Zifeng Yan, [email protected]; Ziyang Huo, [email protected] Nano Res. Figure S2 (a) TEM images of Cu@Cu2O@CuO core−shell NW grown from the Cu NWs only exposed to arid air (60 ºC) at various reaction stages by setting the reaction time. (b) Dark-filed TEM image of Cu@Cu2O@CuO NW. Inset red gird shows the O/Cu atomic ratio extracted from TEM along the diameter of the NW (indicated by the bright green arrows in the TEM image). Figure S3 TEM images of NS-NWs hollow tube resulted by over oxidation. Figure S4 (a) HRTEM image of the junction area between branch and backbone. (b) Corresponding inverse FFT images along the epitaxial growth direction for the area squared in panel (a). | www.editorialmanager.com/nare/default.asp Nano Res. Figure S5 Columbic efficiency of Cu/Cu2O/CuO NS-NW and Cu/Cu2O/CuO NW cells during charge/discharge cycling test at a current density of 100 mA·g–1. Table S1 Comparison of various CuO based nanostructures electrochemical performances as anode for Li-ion battery Type of CuO based nanostructures Reversible capacities for first (mAh·g–1) Capacity fading after cyclic test (mAh·g–1 per cycle) Number of cycles C-rate/current density Ref. 720 0.7 100 0.05 mA·cm–2 (0.05 C) [S1] 657 10.85 20 134 mA·g–1 (0.2 C) [S2] 750 <3 50 0.2 C [S3] CuO polycrystalline NWsa CuO nanodisc/MWCNT b CuO hollow microspheres [S4] CuO/C hollow spheres 560 2.4 50 CuO hierarchical hollow micro/nanostructures ~560 13 20 0.1 C [S5] Pillow shaped CuO ~370 1 50 67 mA·g–1 (0.1 C) [S6] Ultrafine CuO NWs 680 CuO nanoribbons 7 495 CuO/graphene –0.41 561 c CuO NFs 275 2.76 453 d 30 50 0.26 100 100 mA·g –1 –1 67 mA·g (0.1 C) 100 mA·g 67 mA·g [S7] –1 [S8] –1 100 mA·g [S9] –1 –1 [S10] Cu/Cu2O/CuO NS-NWs 589 <1 50 100 mA·g This study Cu/Cu2O/CuO NWs 480 <1 50 100 mA·g–1 This study a NWs: nanowires; bMWCNT: multi walled carbon nanotube; cNFs: nanofibers; dNS: nanosheet. Table S2 Comparison of various CuxO based nanostructures rate capacity performances as anode for Li-ion battery Type of CuxO based nanostructures Minimum current Capacities at minimum Maximum current Capacities at maximum density (mA·g–1) current density (mAh·g–1) density (mA·g–1) current density (mAh·g–1) Ref. Porous CuO NRsa 300 654 3,600 410 [S11] CuO/Cu2O hollow polyhedrons 100 480 1,600 130 [S12] CuO NFsb 11 453 222 167 [S10] 74.4 514 18,600 220 [S13] 50 600 2,000 210 [S14] 100 560 1,000 165 [S4] 67 760 1,072 420 [S7] NT/CuxOy/Cu composites MOF derived CuO nanostructures CuO/C hollow spheres c Ultrafine CuO NWs www.theNanoResearch.com∣www.Springer.com/journal/12274 | Nano Research Nano Res. (Continued) Type of CuxO based nanostructures Minimum current Capacities at minimum Maximum current Capacities at maximum density (mA·g–1) current density (mAh·g–1) density (mA·g–1) current density (mAh·g–1) Ref. CuO nanoribbons 100 594 800 332 [S8] Cu2O-graphene 100 404 1,000 ~100 [S15] Mesoporous CuO particles/CNTd 120 590 18,000 120 [S16] Cu@Cu2O@CuO NS-NWse 100 589 10,000 65.3 This study 10,000 6.9 This study Cu@Cu2O@CuO NWs a b 100 c 480 d e NRs: nanorods; NFs: nanofibers; NWs: nanowires; CNT: carbon nanotube; NS: nanosheet. References [S1] Chen, L. B.; Lu, N.; Xu, C. M.; Yu, H. C.; Wang, T. H. Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries. Electrochim. Acta 2009, 54, 4198–4201. [S2] Seo, S. D.; Jin, Y. H.; Lee, S. H.; Shim, H. W.; Kim, D. W. Low-temperature synthesis of CuO-interlaced nanodiscs for lithium ion battery electrodes. Nanoscale Res. Lett. 2011, 6, 397. [S3] Wang, S. Q.; Zhang, J. Y.; Chen, C. H. Dandelion-like hollow microspheres of CuO as anode material for lithium-ion batteries. Scr. Mater. 2007, 57, 337–340. [S4] Huang, X. H.; Wang, C. B.; Zhang, S. Y.; Zhou, F. CuO/C microspheres as anode materials for lithium ion batteries. Electrochim. Acta 2011, 56, 6752–6756. [S5] Gao, S. Y.; Yang, S. X.; Shu, J.; Zhang, S. X.; Li, Z. D.; Jiang, K. Green fabrication of hierarchical cuo hollow micro/nanostructures and enhanced performance as electrode materials for lithium-ion batteries. J. Phys. Chem. C 2008, 112, 19324–19328. [S6] Wan, M.; Jin, D. L.; Feng, R.; Si, L. M.; Gao, M. X.; Yue, L. H. Pillow-shaped porous CuO as anode material for lithium-ion batteries. Inorg. Chem. Commun. 2011, 14, 38–41. [S7] Wang, F.; Tao, W. Z.; Zhao, M. S.; Xu, M. W.; Yang, S. C.; Sun, Z. B.; Wang, L. Q.; Song, X. P. Controlled synthesis of uniform ultrafine cuo nanowires as anode material for lithium-ion batteries. J. Alloys Compd. 2011, 509, 9798–9803. [S8] Ke, F. S.; Huang, L.; Wei, G. Z.; Xue, L. J.; Li, J. T.; Zhang, B.; Chen, S. R.; Fan, X. Y.; Sun, S. G. One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochim. Acta 2009, 54, 5825–5829. [S9] Mai, Y. J.; Wang, X. L.; Xiang, J. Y.; Qiao, Y. Q.; Zhang, D.; Gu, C. D.; Tu, J. P. CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim. Acta 2011, 56, 2306–2311. [S10] Sahay, R.; Suresh Kumar, P.; Aravindan, V.; Sundaramurthy, J.; Ling, W. C.; Mhaisalkar, S. G.; Ramakrishna, S.; Madhavi, S. High aspect ratio electrospun CuO nanofibers as anode material for lithium-ion batteries with superior cycleability. J. Phys. Chem. C 2012, 116, 18087–18092. [S11] Wang, L. L.; Gong, H. X.; Wang, C. H.; Wang, D. K.; Tang, K. B.; Qian, Y. T. Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity. Nanoscale 2012, 4, 6850–6855. [S12] Hu, L.; Huang, Y. M.; Zhang, F. P.; Chen, Q. W. CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale 2013, 5, 4186–4190. [S13] Venkatachalam, S.; Zhu, H. W.; Masarapu, C.; Hung, K. H.; Liu, Z.; Suenaga, K.; Wei, B. Q. In-situ formation of sandwiched structures of nanotube/CuxOy/Cu composites for lithium battery applications. ACS Nano 2009, 3, 2177–2184. [S14] Banerjee, A.; Singh, U.; Aravindan, V.; Srinivasan, M.; Ogale, S. Synthesis of CuO nanostructures from Cu-based metal organic framework (MOF-199) for application as anode for Li-ion batteries. Nano Energy 2013, 2, 1158–1163. [S15] Zhang, Y.; Wang, X.; Zeng, L.; Song, S. Y.; Liu, D. P. Green and controlled synthesis of Cu2O-graphene hierarchical nanohybrids as high-performance anode materials for lithium-ion batteries via an ultrasound assisted approach. Dalton Trans. 2012, 41, 4316–4319. [S16] Ko, S.; Lee, J. I.; Yang, H. S.; Park, S.; Jeong, U. Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. Adv. Mater. 2012, 24, 4451–4456. | www.editorialmanager.com/nare/default.asp
© Copyright 2026 Paperzz