blah

Nano Res.
Electronic Supplementary Material
Epitaxial growth of hyperbranched Cu/Cu2O/CuO core–
shell nanowire heterostructures for lithium-ion batteries
Yuxin Zhao1,2,§, Ying Zhang1,§, Hu Zhao3, Xuejin Li1, Yanpeng Li1, Ling Wen1, Zifeng Yan1 (), and
Ziyang Huo4 ()
1
State Key Laboratory for Heavy Oil Processing, PetroChina Key Laboratory of Catalysis, China University of Petroleum, Qingdao 266580,
China
2
SINOPEC Safety Engineering Institute, No 218, Yan’an 3 Road, Shinan District, Qingdao 266071, China
3
China Petroleum Pipeline Bureau, 87 Guangyang Road, Langfang 065000, China
4
Queensland Micro- and Nanotechnology Centre Nathan Campus, Griffith University, 170 Kessels Road, NATHAN QLD 4111, Australia
§
These authors contributed equally to this work.
Supporting information to DOI 10.1007/s12274-015-0783-1
Figure S1 (a) HRTEM of interface in Cu@Cu2O core-shell NW. (b) Enlarged view taken from framed area as induced by white box.
(c) Constructed inverse FFT images along the (110) plane direction for the panel (b). The pink areas show the typical lattice fringe
distortion at the Cu-Cu2O interface.
Address correspondence to Zifeng Yan, [email protected]; Ziyang Huo, [email protected]
Nano Res.
Figure S2 (a) TEM images of Cu@Cu2O@CuO core−shell NW grown from the Cu NWs only exposed to arid air (60 ºC) at various
reaction stages by setting the reaction time. (b) Dark-filed TEM image of Cu@Cu2O@CuO NW. Inset red gird shows the O/Cu atomic
ratio extracted from TEM along the diameter of the NW (indicated by the bright green arrows in the TEM image).
Figure S3 TEM images of NS-NWs hollow tube resulted by over oxidation.
Figure S4 (a) HRTEM image of the junction area between branch and backbone. (b) Corresponding inverse FFT images along the
epitaxial growth direction for the area squared in panel (a).
| www.editorialmanager.com/nare/default.asp
Nano Res.
Figure S5 Columbic efficiency of Cu/Cu2O/CuO NS-NW and Cu/Cu2O/CuO NW cells during charge/discharge cycling test at a current
density of 100 mA·g–1.
Table S1
Comparison of various CuO based nanostructures electrochemical performances as anode for Li-ion battery
Type of CuO based
nanostructures
Reversible capacities
for first (mAh·g–1)
Capacity fading after cyclic
test (mAh·g–1 per cycle)
Number of
cycles
C-rate/current
density
Ref.
720
0.7
100
0.05 mA·cm–2 (0.05 C)
[S1]
657
10.85
20
134 mA·g–1 (0.2 C)
[S2]
750
<3
50
0.2 C
[S3]
CuO polycrystalline NWsa
CuO nanodisc/MWCNT
b
CuO hollow microspheres
[S4]
CuO/C hollow spheres
560
2.4
50
CuO hierarchical hollow
micro/nanostructures
~560
13
20
0.1 C
[S5]
Pillow shaped CuO
~370
1
50
67 mA·g–1 (0.1 C)
[S6]
Ultrafine CuO NWs
680
CuO nanoribbons
7
495
CuO/graphene
–0.41
561
c
CuO NFs
275
2.76
453
d
30
50
0.26
100
100 mA·g
–1
–1
67 mA·g (0.1 C)
100 mA·g
67 mA·g
[S7]
–1
[S8]
–1
100 mA·g
[S9]
–1
–1
[S10]
Cu/Cu2O/CuO NS-NWs
589
<1
50
100 mA·g
This study
Cu/Cu2O/CuO NWs
480
<1
50
100 mA·g–1
This study
a
NWs: nanowires; bMWCNT: multi walled carbon nanotube; cNFs: nanofibers; dNS: nanosheet.
Table S2
Comparison of various CuxO based nanostructures rate capacity performances as anode for Li-ion battery
Type of CuxO based
nanostructures
Minimum current Capacities at minimum Maximum current Capacities at maximum
density (mA·g–1) current density (mAh·g–1) density (mA·g–1) current density (mAh·g–1)
Ref.
Porous CuO NRsa
300
654
3,600
410
[S11]
CuO/Cu2O hollow
polyhedrons
100
480
1,600
130
[S12]
CuO NFsb
11
453
222
167
[S10]
74.4
514
18,600
220
[S13]
50
600
2,000
210
[S14]
100
560
1,000
165
[S4]
67
760
1,072
420
[S7]
NT/CuxOy/Cu composites
MOF derived CuO
nanostructures
CuO/C hollow spheres
c
Ultrafine CuO NWs
www.theNanoResearch.com∣www.Springer.com/journal/12274 | Nano
Research
Nano Res.
(Continued)
Type of CuxO based
nanostructures
Minimum current Capacities at minimum Maximum current Capacities at maximum
density (mA·g–1) current density (mAh·g–1) density (mA·g–1) current density (mAh·g–1)
Ref.
CuO nanoribbons
100
594
800
332
[S8]
Cu2O-graphene
100
404
1,000
~100
[S15]
Mesoporous CuO
particles/CNTd
120
590
18,000
120
[S16]
Cu@Cu2O@CuO NS-NWse
100
589
10,000
65.3
This study
10,000
6.9
This study
Cu@Cu2O@CuO NWs
a
b
100
c
480
d
e
NRs: nanorods; NFs: nanofibers; NWs: nanowires; CNT: carbon nanotube; NS: nanosheet.
References
[S1] Chen, L. B.; Lu, N.; Xu, C. M.; Yu, H. C.; Wang, T. H. Electrochemical performance of polycrystalline CuO nanowires as anode
material for Li ion batteries. Electrochim. Acta 2009, 54, 4198–4201.
[S2] Seo, S. D.; Jin, Y. H.; Lee, S. H.; Shim, H. W.; Kim, D. W. Low-temperature synthesis of CuO-interlaced nanodiscs for lithium
ion battery electrodes. Nanoscale Res. Lett. 2011, 6, 397.
[S3] Wang, S. Q.; Zhang, J. Y.; Chen, C. H. Dandelion-like hollow microspheres of CuO as anode material for lithium-ion batteries.
Scr. Mater. 2007, 57, 337–340.
[S4] Huang, X. H.; Wang, C. B.; Zhang, S. Y.; Zhou, F. CuO/C microspheres as anode materials for lithium ion batteries. Electrochim.
Acta 2011, 56, 6752–6756.
[S5] Gao, S. Y.; Yang, S. X.; Shu, J.; Zhang, S. X.; Li, Z. D.; Jiang, K. Green fabrication of hierarchical cuo hollow micro/nanostructures
and enhanced performance as electrode materials for lithium-ion batteries. J. Phys. Chem. C 2008, 112, 19324–19328.
[S6] Wan, M.; Jin, D. L.; Feng, R.; Si, L. M.; Gao, M. X.; Yue, L. H. Pillow-shaped porous CuO as anode material for lithium-ion
batteries. Inorg. Chem. Commun. 2011, 14, 38–41.
[S7] Wang, F.; Tao, W. Z.; Zhao, M. S.; Xu, M. W.; Yang, S. C.; Sun, Z. B.; Wang, L. Q.; Song, X. P. Controlled synthesis of uniform
ultrafine cuo nanowires as anode material for lithium-ion batteries. J. Alloys Compd. 2011, 509, 9798–9803.
[S8] Ke, F. S.; Huang, L.; Wei, G. Z.; Xue, L. J.; Li, J. T.; Zhang, B.; Chen, S. R.; Fan, X. Y.; Sun, S. G. One-step fabrication of CuO
nanoribbons array electrode and its excellent lithium storage performance. Electrochim. Acta 2009, 54, 5825–5829.
[S9] Mai, Y. J.; Wang, X. L.; Xiang, J. Y.; Qiao, Y. Q.; Zhang, D.; Gu, C. D.; Tu, J. P. CuO/graphene composite as anode materials
for lithium-ion batteries. Electrochim. Acta 2011, 56, 2306–2311.
[S10] Sahay, R.; Suresh Kumar, P.; Aravindan, V.; Sundaramurthy, J.; Ling, W. C.; Mhaisalkar, S. G.; Ramakrishna, S.; Madhavi, S. High
aspect ratio electrospun CuO nanofibers as anode material for lithium-ion batteries with superior cycleability. J. Phys. Chem. C
2012, 116, 18087–18092.
[S11] Wang, L. L.; Gong, H. X.; Wang, C. H.; Wang, D. K.; Tang, K. B.; Qian, Y. T. Facile synthesis of novel tunable highly porous
CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity. Nanoscale 2012, 4,
6850–6855.
[S12] Hu, L.; Huang, Y. M.; Zhang, F. P.; Chen, Q. W. CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic
framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale 2013, 5, 4186–4190.
[S13] Venkatachalam, S.; Zhu, H. W.; Masarapu, C.; Hung, K. H.; Liu, Z.; Suenaga, K.; Wei, B. Q. In-situ formation of sandwiched
structures of nanotube/CuxOy/Cu composites for lithium battery applications. ACS Nano 2009, 3, 2177–2184.
[S14] Banerjee, A.; Singh, U.; Aravindan, V.; Srinivasan, M.; Ogale, S. Synthesis of CuO nanostructures from Cu-based metal organic
framework (MOF-199) for application as anode for Li-ion batteries. Nano Energy 2013, 2, 1158–1163.
[S15] Zhang, Y.; Wang, X.; Zeng, L.; Song, S. Y.; Liu, D. P. Green and controlled synthesis of Cu2O-graphene hierarchical
nanohybrids as high-performance anode materials for lithium-ion batteries via an ultrasound assisted approach. Dalton Trans.
2012, 41, 4316–4319.
[S16] Ko, S.; Lee, J. I.; Yang, H. S.; Park, S.; Jeong, U. Mesoporous CuO particles threaded with CNTs for high-performance
lithium-ion battery anodes. Adv. Mater. 2012, 24, 4451–4456.
| www.editorialmanager.com/nare/default.asp