IRF740, SiHF740 Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Dynamic dV/dt Rating 400 RDS(on) (Ω) VGS = 10 V Qg (Max.) (nC) 63 • Fast Switching Qgs (nC) 9.0 • Ease of Paralleling 32 • Simple Drive Requirements Qgd (nC) Configuration Single COMPLIANT DESCRIPTION TO-220 Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. G S D RoHS* • Lead (Pb)-free Available D G Available • Repetitive Avalanche Rated 0.55 S N-Channel MOSFET ORDERING INFORMATION Package TO-220 IRF740PbF SiHF740-E3 IRF740 SiHF740 Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 400 Gate-Source Voltage VGS ± 20 Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta ID IDM Linear Derating Factor Energyb UNIT V 10 6.3 A 40 1.0 W/°C mJ EAS 520 Repetitive Avalanche Currenta IAR 10 A Repetitive Avalanche Energya EAR 13 mJ Single Pulse Avalanche Maximum Power Dissipation TC = 25 °C Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw PD 125 W dV/dt 4.0 V/ns TJ, Tstg - 55 to + 150 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. VDD = 50 V, starting TJ = 25 °C, L = 9.1 mH, RG = 25 Ω, IAS = 10 A (see fig. 12). c. ISD ≤ 10 A, dI/dt ≤ 120 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91054 S09-0267-Rev. B, 23-Feb-09 www.vishay.com 1 IRF740, SiHF740 Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 1.0 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS VGS = 0 V, ID = 250 µA 400 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.49 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.0 V Gate-Source Leakage IGSS VGS = ± 20 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 400 V, VGS = 0 V - - 25 VDS = 320 V, VGS = 0 V, TJ = 125 °C - - 250 Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage µA - - 0.55 Ω gfs VDS = 50 V, ID = 6.0 Ab 5.8 - - S Input Capacitance Ciss VGS = 0 V, - 1400 - Output Capacitance Coss VDS = 25 V, - 330 - Reverse Transfer Capacitance Crss f = 1.0 MHz, see fig. 5 - 120 - Total Gate Charge Qg - - 63 - - 9.0 Drain-Source On-State Resistance Forward Transconductance RDS(on) ID = 6.0 Ab VGS = 10 V Dynamic VGS = 10 V ID = 10 A, VDS = 320 V, Gate-Source Charge Qgs Gate-Drain Charge Qgd - - 32 Turn-On Delay Time td(on) - 14 - Rise Time Turn-Off Delay Time Fall Time tr td(off) see fig. 6 and 13b LD Internal Source Inductance LS nC VDD = 200 V, ID = 10 A - 27 - RG = 9.1 Ω, RD = 20 Ω, see fig. 10b - 50 - - 24 - - 4.5 - - 7.5 - - - 10 - - 40 - - 2.0 - 370 790 ns - 3.8 8.2 µC tf Internal Drain Inductance pF Between lead, 6 mm (0.25") from package and center of die contact D ns nH G S Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G TJ = 25 °C, IS = 10 A, VGS = 0 S Vb TJ = 25 °C, IF = 10 A, dI/dt = 100 A/µsb V Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. www.vishay.com 2 Document Number: 91054 S09-0267-Rev. B, 23-Feb-09 IRF740, SiHF740 Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted VGS 15 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom 4.5 V 101 100 4.5 V 25 °C 100 20 µs Pulse Width VDS = 50 V 20 µs Pulse Width TC = 25 °C 100 10-1 10-1 101 4 VDS, Drain-to-Source Voltage (V) 91054_01 ID, Drain Current (A) 101 4.5 V 100 20 µs Pulse Width TC = 150 °C 10-1 91054_02 100 Fig. 2 - Typical Output Characteristics, TC = 150 °C Document Number: 91054 S09-0267-Rev. B, 23-Feb-09 3.0 2.5 7 8 9 10 ID = 10 A VGS = 10 V 2.0 1.5 1.0 0.5 0.0 - 60 - 40 - 20 0 101 VDS, Drain-to-Source Voltage (V) 6 Fig. 3 - Typical Transfer Characteristics RDS(on), Drain-to-Source On Resistance (Normalized) Top 5 VGS, Gate-to-Source Voltage (V) 91054_03 Fig. 1 - Typical Output Characteristics, TC = 25 °C VGS 15 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom 4.5 V 150 °C 101 ID, Drain Current (A) ID, Drain Current (A) Top 91054_04 20 40 60 80 100 120 140 160 TJ, Junction Temperature (°C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRF740, SiHF740 Vishay Siliconix 2500 Capacitance (pF) 2000 1500 ISD, Reverse Drain Current (A) VGS = 0 V, f = 1 MHz Ciss = Cgs + Cgd, Cds Shorted Crss = Cgd Coss = Cds + Cgd Ciss 1000 Coss 500 Crss 101 VDS, Drain-to-Source Voltage (V) 91054_05 VGS = 0 V 0.70 1.10 VSD, Source-to-Drain Voltage (V) 5 VDS = 320 V Operation in this area limited by RDS(on) 2 16 VDS = 200 V VDS = 80 V 8 4 102 5 10 µs 2 10 100 µs 5 1 ms 2 1 10 ms 5 For test circuit see figure 13 0 TC = 25 °C TJ = 150 °C Single Pulse 2 0.1 0 91054_06 15 30 45 60 75 QG, Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Drain-to-Source Voltage www.vishay.com 4 1.50 1.30 103 ID = 10 A 12 0.90 Fig. 7 - Typical Source-Drain Diode Forward Voltage ID, Drain Current (A) VGS, Gate-to-Source Voltage (V) 100 91054_07 Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 20 25 °C 10-1 0.50 0 100 150 °C 101 0.1 91054_08 2 5 1 2 5 10 2 5 102 2 5 103 VDS, Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91054 S09-0267-Rev. B, 23-Feb-09 IRF740, SiHF740 Vishay Siliconix RD VDS 10 VGS ID, Drain Current (A) 8 D.U.T. RG 6 + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 4 Fig. 10a - Switching Time Test Circuit 2 VDS 0 150 90 % Fig. 9 - Maximum Drain Current vs. Case Temperature 10 % VGS 25 50 75 100 125 TC, Case Temperature (°C) 91054_09 td(on) td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response (ZthJC) 10 1 0 - 0.5 PDM 0.2 0.1 0.1 t1 0.05 t2 Notes: 1. Duty Factor, D = t1/t2 2. Peak Tj = PDM x ZthJC + TC Single Pulse (Thermal Response) 0.02 0.01 10-2 10-5 10-4 10-3 10-2 0.1 1 10 t1, Rectangular Pulse Duration (S) 91054_11 Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case L Vary tp to obtain required IAS VDS VDS tp VDD D.U.T RG + - IAS V DD VDS 10 V tp 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91054 S09-0267-Rev. B, 23-Feb-09 IAS Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRF740, SiHF740 Vishay Siliconix EAS, Single Pulse Energy (mJ) 1200 ID 4.5 A 5.3 A Bottom 10 A Top 1000 800 600 400 200 0 VDD = 50 V 25 91054_12c 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG 10 V 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91054 S09-0267-Rev. B, 23-Feb-09 IRF740, SiHF740 Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91054. Document Number: 91054 S09-0267-Rev. B, 23-Feb-09 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1
© Copyright 2024 Paperzz