IRF9510, SiHF9510 Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • • • • • • • • - 100 RDS(on) (Ω) VGS = - 10 V 1.2 Qg (Max.) (nC) 8.7 Qgs (nC) 2.2 Qgd (nC) 4.1 Configuration Single S Dynamic dV/dt Rating Repetitive Avalanche Rated P-Channel 175 °C Operating Temperature Fast Switching Ease of Paralleling Simple Drive Requirements Lead (Pb)-free Available Available RoHS* COMPLIANT DESCRIPTION TO-220 Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. G S G D D P-Channel MOSFET ORDERING INFORMATION Package TO-220 IRF9510PbF SiHF9510-E3 IRF9510 SiHF9510 Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER Drain-Source Voltage Gate-Source Voltage Continuous Drain Current VGS at - 10 V TC = 25 °C TC = 100 °C Currenta Pulsed Drain Linear Derating Factor Single Pulse Avalanche Energyb Repetitive Avalanche Currenta Repetitive Avalanche Energya Maximum Power Dissipation Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque SYMBOL LIMIT VDS VGS - 100 ± 20 - 4.0 - 2.8 - 16 0.29 200 - 4.0 4.3 43 - 5.5 - 55 to + 175 300d 10 1.1 ID IDM TC = 25 °C for 10 s 6-32 or M3 screw EAS IAR EAR PD dV/dt TJ, Tstg UNIT V A W/°C mJ A mJ W V/ns °C lbf · in N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. VDD = - 25 V, starting TJ = 25 °C, L = 18 mH, RG = 25 Ω, IAS = - 4.0 A (see fig. 12). c. ISD ≤ - 4.0 A, dI/dt ≤ 75 A/µs, VDD ≤ VDS, TJ ≤ 175 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91072 S09-0017-Rev. A, 19-Jan-09 www.vishay.com 1 IRF9510, SiHF9510 Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 3.5 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient VDS VGS = 0 V, ID = - 250 µA - 100 - - V ΔVDS/TJ Reference to 25 °C, ID = - 1 mA - - 0.091 - V/°C VGS(th) VDS = VGS, ID = - 250 µA - 2.0 - - 4.0 V Gate-Source Leakage IGSS VGS = ± 20 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = - 100 V, VGS = 0 V - - - 100 VDS = - 80 V, VGS = 0 V, TJ = 150 °C - - - 500 Gate-Source Threshold Voltage Drain-Source On-State Resistance Forward Transconductance RDS(on) gfs ID = - 2.4 Ab VGS = - 10 V VDS = - 50 V, ID = - 2.4 Ab µA - - 1.2 Ω 1.0 - - S - 200 - - 94 - - 18 - - - 8.7 Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Total Gate Charge Qg Gate-Source Charge Qgs - - 2.2 Gate-Drain Charge Qgd - - 4.1 Turn-On Delay Time td(on) - 10 - tr - 27 - - 15 - - 17 - - 4.5 - Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance td(off) VGS = 0 V, VDS = - 25 V, f = 1.0 MHz, see fig. 5 VGS = - 10 V ID = - 4.0 A, VDS = - 80 V, see fig. 6 and 13b VDD = - 50 V, ID = - 4.0 A, RG = 24 Ω, RD = 11 Ω, see fig. 10b tf LD LS Between lead, 6 mm (0.25") from package and center of die contact D pF nC ns nH G - 7.5 - - - - 4.0 - - - 16 - - - 5.5 V - 82 160 ns - 0.15 0.30 µC S Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = - 4.0 A, VGS = 0 Vb TJ = 25 °C, IF = - 4.0 A, dI/dt = 100 A/µsb Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. www.vishay.com 2 Document Number: 91072 S09-0017-Rev. A, 19-Jan-09 IRF9510, SiHF9510 Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 101 VGS - 15 V - 10 V - 8.0 V - 7.0 V - 6.0 V - 5.5 V - 5.0 V Bottom - 4.5 V - ID, Drain Current (A) 101 100 - 4.5 V - ID, Drain Current (A) Top 25 °C 175 °C 100 20 µs Pulse Width VDS = - 50 V 20 µs Pulse Width TC = 25 °C 100 101 4 - VDS, Drain-to-Source Voltage (V) 91072_01 - ID, Drain Current (A) 100 - 4.5 V 20 µs Pulse Width TC = 175 °C 100 91072_02 101 - VDS, Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics, TC = 175 °C Document Number: 91072 S09-0017-Rev. A, 19-Jan-09 7 8 9 10 Fig. 3 - Typical Transfer Characteristics RDS(on), Drain-to-Source On Resistance (Normalized) VGS - 15 V - 10 V - 8.0 V - 7.0 V - 6.0 V - 5.5 V - 5.0 V Bottom - 4.5 V 6 - VGS, Gate-to-Source Voltage (V) 91072_03 Fig. 1 - Typical Output Characteristics, TC = 25 °C 101 Top 5 91072_04 3.0 2.5 ID = - 4.0 A VGS = - 10 V 2.0 1.5 1.0 0.5 0.0 - 60- 40 - 20 0 20 40 60 80 100 120 140 160 180 TJ, Junction Temperature (°C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRF9510, SiHF9510 350 VGS = 0 V, f = 1 MHz Ciss = Cgs + Cgd, Cds Shorted Crss = Cgd Coss = Cds + Cgd Capacitance (pF) 280 Ciss 210 140 Coss 70 Crss - ISD, Reverse Drain Current (A) Vishay Siliconix 101 175 °C 100 0 100 101 VDS = - 80 V Operation in this area limited by RDS(on) 5 VDS = - 50 V 16 2 VDS = - 20 V 12 8 4 10 100 µs 5 1 ms 2 1 10 ms 5 2 0.1 5 For test circuit see figure 13 0 0 91072_06 2 4 6 8 QG, Total Gate Charge (nC) TC = 25 °C TJ = 175 °C Single Pulse 2 10-2 0.1 10 Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 5.0 4.0 - VSD, Source-to-Drain Voltage (V) 102 ID = - 4.0 A 3.0 Fig. 7 - Typical Source-Drain Diode Forward Voltage - ID, Drain Current (A) - VGS, Gate-to-Source Voltage (V) 2.0 91072_07 Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 20 VGS = 0 V 10-1 1.0 - VDS, Drain-to-Source Voltage (V) 91072_05 25 °C 91072_08 2 5 1 2 5 10 2 5 102 2 5 103 - VDS, Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91072 S09-0017-Rev. A, 19-Jan-09 IRF9510, SiHF9510 Vishay Siliconix RD VDS VGS D.U.T. RG 4.0 +VDD - 10 V - ID, Drain Current (A) Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 3.0 Fig. 10a - Switching Time Test Circuit 2.0 td(on) td(off) tf tr VGS 10 % 1.0 0.0 25 50 75 100 125 150 90 % VDS 175 TC, Case Temperature (°C) 91072_09 Fig. 10b - Switching Time Waveforms Fig. 9 - Maximum Drain Current vs. Case Temperature Thermal Response (ZthJC) 10 D = 0.5 1 0.2 0.1 PDM 0.05 0.02 0.01 0.1 Single Pulse (Thermal Response) t1 t2 Notes: 1. Duty Factor, D = t1/t2 2. Peak Tj = PDM x ZthJC + TC 10-2 10-5 10-4 10-3 10-2 0.1 1 10 t1, Rectangular Pulse Duration (s) 91072_11 Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case L Vary tp to obtain required IAS IAS VDS D.U.T RG VDS + V DD VDD IAS tp - 10 V tp 0.01 Ω VDS Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91072 S09-0017-Rev. A, 19-Jan-09 Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRF9510, SiHF9510 Vishay Siliconix EAS, Single Pulse Energy (mJ) 700 ID - 1.6 A - 2.8 A Bottom - 4.0 A Top 600 500 400 300 200 100 VDD = - 25 V 0 25 91072_12c 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG - 10 V 12 V 0.2 µF 0.3 µF QGS - QGD D.U.T. VG + VDS VGS - 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91072 S09-0017-Rev. A, 19-Jan-09 IRF9510, SiHF9510 Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit D.U.T. + Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG + • dV/dt controlled by RG • ISD controlled by duty factor "D" • D.U.T. - device under test + - VDD Compliment N-Channel of D.U.T. for driver Driver gate drive P.W. Period D= P.W. Period VGS = - 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % * ISD VGS = - 5 V for logic level and - 3 V drive devices Fig. 14 - For P-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91072. Document Number: 91072 S09-0017-Rev. A, 19-Jan-09 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1
© Copyright 2026 Paperzz