Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models: Marginal models: based on the consequences of dependence on estimating model parameters. • Target of inference is the population. Random effect models: based on the sources of dependence. • Target of inference is the subject. 1 Special case: Linear models Model for mean response: E (Yi) = Xiβ Alternative specifications for variance: • covariance pattern Cov (Yi) = Σi e.g. AR(1) or Toeplitz; 2 • random effects E (Yi|bi) = Xiβ + Z0i,j bi with E (bi) = 0, Cov (bi) = G, whence Σi = Z0i,j GZ00i,j + σ 2Ini 3 Interpretation of β : in both cases, E Yi,j = X0i,j β = X Xi,j,k βk k so ∂E Yi,j ∂Xi,j,k = βk . But also, with random effects, E Yi,j |bi = X0i,j β + Z0i,j bi so, if the kth covariate is not associated with a random effect, ∂E Yi,j |bi ∂Xi,j,k = βk . 4 That is, βk is the rate of change of the mean response as the kth covariate changes, both • on average across subjects (marginally), and • for a specific subject with random effects b (conditionally). This might be either a rate of change over time, if the covariate is time (within-subject factor), or a treatment effect, if the covariate is a dummy variable (between-subject factor). 5 Generalized Linear Models With link function g(·) and inverse link h(·) = g −1(·): • the marginal model is n g E Yi,j o = X0i,j β , or E Yi,j 0 = h Xi,j β ; • the mixed effects model is n g E Yi,j |bi o = X0i,j β ∗ + Z0i,j bi or E Yi,j |bi 0 ∗ 0 = h Xi,j β + Zi,j bi . 6 In the mixed effects case, n E Yi,j = E E Yi,j |bi o o 0 ∗ 0 = E h Xi,j β + Zi,j bi Z 0 ∗ 0 = h Xi,j β + Zi,j bi fb(bi)dbi, n and in general E Yi,j 6 h X0i,j β = for any β . 7 Logistic regression with random intercept: n logit E Yi,j |bi = X0i,j β ∗ + bi o so e E Yi,j |bi = X0i,j β ∗+bi 1+e X0i,j β ∗+bi and E Yi,j = E e X0i,j β ∗+bi 1+e = Z ∞ −∞ e X0i,j β ∗+bi X0i,j β ∗+bi 1+e X0i,j β ∗+bi ×q 1 2πσb2 1 2 2 e− 2 bi /σb dbi. 8 No closed-form solution, but n logit E Yi,j o ≈q √ X0i,j β ∗ 1 + k2σb2 3 = 0.588 and k 2 = 0.346, so where k = 16 15π β≈q β∗ 1 + 0.346σb2 . If σb2 = 8, then β ≈ β ∗/2 9 0.0 0.2 0.4 y 0.6 0.8 1.0 Example: one covariate, sample of size 13 with β1∗ = −1.5, β2∗ = 0.75, g1,1 = σb2 = 4; population average is shown in red, and the approximation in blue. −4 −2 0 2 4 6 8 x 10 Case study: abnormal ECG in a drug trial. options linesize = 80 pagesize = 21 nodate; data ecg; retain id 0; infile ’ecg.txt’ firstobs = 32; input seq r1 r2 count; if seq = 1 then /* Placebo followed by drug */ do i = 1 to count; id = id + 1; trt = 0; y = r1; period = 0; output; trt = 1; y = r2; period = 1; output; end; else /* Drug followed by placebo */ do i = 1 to count; id = id + 1; trt = 1; y = r1; period = 0; output; trt = 0; y = r2; period = 1; output; end; run; 11 title1 ’Marginal Logistic Regression Model’; title2 ’Crossover Trial on Cerebrovascular Deficiency’; proc genmod descending; class id; model y = trt period / d=bin; repeated subject=id / logor=fullclust; run; title1 ’Mixed Effects Logistic Regression Model (Random Intercept)’; title2 ’Crossover Trial on Cerebrovascular Deficiency’; proc nlmixed qpoints=100; /* Initial values from GEE output: */ parms beta1=-1.2433 beta2=.5689 beta3=.2951 g11=1; eta=beta1 + beta2*trt + beta3*period + b; p=exp(eta)/(1 + exp(eta)); model y ~ binary(p); random b ~ normal(0,g11) subject=id; run; SAS output Marginal Logistic Regression Model Crossover Trial on Cerebrovascular Deficiency 1 The GENMOD Procedure Model Information Data Set Distribution Link Function Dependent Variable Number Number Number Number of of of of Observations Read Observations Used Events Trials WORK.ECG Binomial Logit y 134 134 42 134 12 Marginal Logistic Regression Model Crossover Trial on Cerebrovascular Deficiency 2 The GENMOD Procedure Class Level Information Class id Levels 67 Values 1 2 3 21 22 38 39 55 56 4 5 6 23 24 40 41 57 58 7 8 9 25 26 42 43 59 60 10 27 44 61 11 28 45 62 12 29 46 63 13 30 47 64 14 31 48 65 15 32 49 66 16 17 18 19 20 33 34 35 36 37 50 51 52 53 54 67 13 Marginal Logistic Regression Model Crossover Trial on Cerebrovascular Deficiency 3 The GENMOD Procedure Response Profile Ordered Value y Total Frequency 1 2 1 0 42 92 PROC GENMOD is modeling the probability that y=’1’. 14 Marginal Logistic Regression Model Crossover Trial on Cerebrovascular Deficiency 4 The GENMOD Procedure Parameter Information Parameter Effect Prm1 Prm2 Prm3 Intercept trt period Criteria For Assessing Goodness Of Fit Criterion Deviance Scaled Deviance Pearson Chi-Square DF Value Value/DF 131 131 131 163.8863 163.8863 133.5123 1.2510 1.2510 1.0192 15 Marginal Logistic Regression Model Crossover Trial on Cerebrovascular Deficiency 5 The GENMOD Procedure Criteria For Assessing Goodness Of Fit Criterion Scaled Pearson X2 Log Likelihood DF Value Value/DF 131 133.5123 -81.9432 1.0192 Algorithm converged. 16 Marginal Logistic Regression Model Crossover Trial on Cerebrovascular Deficiency 6 The GENMOD Procedure Analysis Of Initial Parameter Estimates Parameter DF Estimate Standard Error Intercept trt period Scale 1 1 1 0 -1.2186 0.5582 0.2743 1.0000 0.3441 0.3784 0.3768 0.0000 Wald 95% Confidence Limits -1.8931 -0.1835 -0.4642 1.0000 -0.5440 1.2998 1.0129 1.0000 ChiSquare Pr > ChiSq 12.54 2.18 0.53 0.0004 0.1402 0.4666 NOTE: The scale parameter was held fixed. 17 Marginal Logistic Regression Model Crossover Trial on Cerebrovascular Deficiency 7 The GENMOD Procedure GEE Model Information Log Odds Ratio Structure Subject Effect Number of Clusters Correlation Matrix Dimension Maximum Cluster Size Minimum Cluster Size Fully Parameterized Clusters id (67 levels) 67 2 2 2 18 Marginal Logistic Regression Model Crossover Trial on Cerebrovascular Deficiency 8 The GENMOD Procedure Log Odds Ratio Parameter Information Parameter Group Alpha1 (1, 2) Algorithm converged. 19 Marginal Logistic Regression Model Crossover Trial on Cerebrovascular Deficiency 9 The GENMOD Procedure Analysis Of GEE Parameter Estimates Empirical Standard Error Estimates Standard Parameter Estimate Error Intercept trt period Alpha1 -1.2433 0.5689 0.2951 3.5617 0.2999 0.2335 0.2319 0.8148 95% Confidence Limits -1.8311 0.1112 -0.1593 1.9647 -0.6556 1.0266 0.7496 5.1587 Z Pr > |Z| -4.15 2.44 1.27 4.37 <.0001 0.0148 0.2030 <.0001 20 Mixed Effects Logistic Regression Model (Random Intercept) Crossover Trial on Cerebrovascular Deficiency The NLMIXED Procedure Specifications Data Set Dependent Variable Distribution for Dependent Variable Random Effects Distribution for Random Effects Subject Variable Optimization Technique Integration Method WORK.ECG y Binary b Normal id Dual Quasi-Newton Adaptive Gaussian Quadrature 21 10 Mixed Effects Logistic Regression Model (Random Intercept) Crossover Trial on Cerebrovascular Deficiency The NLMIXED Procedure Dimensions Observations Used Observations Not Used Total Observations Subjects Max Obs Per Subject Parameters Quadrature Points 134 0 134 67 2 4 100 22 11 Mixed Effects Logistic Regression Model (Random Intercept) Crossover Trial on Cerebrovascular Deficiency The NLMIXED Procedure Parameters beta1 beta2 beta3 g11 NegLogLike -1.2433 0.5689 0.2951 1 76.6705695 Iteration History Iter Calls NegLogLike Diff MaxGrad Slope 1 2 3 4 3 5 7 9 75.877218 71.2225189 70.9616922 69.3279449 0.793351 4.654699 0.260827 1.633747 3.143617 0.769971 0.959227 0.692069 -31.3385 -36.6519 -1.3592 -1.90957 23 12 Mixed Effects Logistic Regression Model (Random Intercept) Crossover Trial on Cerebrovascular Deficiency The NLMIXED Procedure Iteration History Iter Calls NegLogLike Diff MaxGrad Slope 5 6 7 8 9 10 11 12 13 10 11 12 15 17 19 21 23 25 69.0008522 68.5033645 68.2882471 68.1688967 68.1357412 68.1309946 68.1302223 68.1301696 68.1301694 0.327093 0.497488 0.215117 0.11935 0.033156 0.004747 0.000772 0.000053 2.006E-7 0.679054 0.630885 0.611136 0.296866 0.085458 0.021189 0.013186 0.000147 0.000046 -0.73402 -0.57466 -0.17656 -0.0794 -0.01492 -0.00549 -0.00148 -0.0001 -3.62E-7 24 13 Mixed Effects Logistic Regression Model (Random Intercept) Crossover Trial on Cerebrovascular Deficiency The NLMIXED Procedure NOTE: GCONV convergence criterion satisfied. Fit Statistics -2 Log Likelihood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better) 136.3 144.3 144.6 153.1 25 14 Mixed Effects Logistic Regression Model (Random Intercept) Crossover Trial on Cerebrovascular Deficiency 15 The NLMIXED Procedure Parameter Estimates Parameter beta1 beta2 beta3 g11 Estimate Standard Error DF t Value Pr > |t| Alpha Lower -4.0816 1.8631 1.0375 24.4355 1.6711 0.9269 0.8189 18.8489 66 66 66 66 -2.44 2.01 1.27 1.30 0.0173 0.0485 0.2096 0.1994 0.05 0.05 0.05 0.05 -7.4180 0.01241 -0.5974 -13.1974 26 Mixed Effects Logistic Regression Model (Random Intercept) Crossover Trial on Cerebrovascular Deficiency The NLMIXED Procedure Parameter Estimates Parameter beta1 beta2 beta3 g11 Upper Gradient -0.7452 3.7137 2.6725 62.0685 -8.31E-6 0.000028 -0.00005 -1.34E-7 27 16 Notes • The treatment effect is significant in both analyses, but much larger in the mixed effects model than in the marginal model. • The proc nlmixed fit has a very large ĝ1,1 of 24.4, but with a large standard error and a non-significant t-statistic. • But the proc nlmixed output gives AIC = 144.3 and the “independence” part of the proc genmod output gives Log Likelihood = -81.9432, whence AIC = (−2) × (−81.9432) + 2 × 3 = 169.9, showing that including the variance parameter leads to a much better fit. 28
© Copyright 2026 Paperzz