blah

Supporting information for “Modern analysis of an
ancient integrated farming arrangement: life cycle
assessment of a mulberry dyke and pond system”
Miguel F. Astudillo, Gunnar Thalwitz, Fritz Vollrath*
Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
*Corresponding author: Fritz Vollrath
Phone: +44 (0) 1865 271216; email: [email protected]
Contents:
Table S1: Composition parameters
Table S2: Yields and feed conversion ratios
Table S3: Emission factors
Table S4: quality indices for uncertainty analysis
S1
Table S1: Composition parameters
description
value
Unit
Ref.
N - elephant grass
2.26
Kg N / t fresh elephant grass
(1)
N - silkworm litter
0.9
Kg N / 100 Kg of dry silkworm litter
(2)
N - fish
25
Kg N / 1 t of fresh fish
(3)
N - grass carp feaces
0.832
Kg N / 100 kg dry feaces
(4)
N – feaces
1.5
g N / 100 g feaces dry basis (db)
(5)
N - urine annual
2.5
Kg N/ person / year
(6)
N - pupae
4%
Kg N / kg pupae (fresh)
(7)
C – silkworm litter
40%
(%) kg C / Kg dry SW litter
(8)
C – Elephant grass
41.6% (%) kg C / Kg dry E. Grass
(9)
C – human feaces
50%
(%) kg C / Kg dry h. feaces
(10)
C - human urine
14%
(%) kg C / Kg dry urine
(10)
C - phytoplankton
50%
(45-50%) dry basis
(11)
Moisture silkworm litter
60%
(12)
Moisture mulberry
70%
(13)
Moisture vegetables
95%
Moisture grass carp detritus
93.7%
(4)
Moisture elephant grass
85.3%
(1)
Cocoon shell ratio
0.2
based on celery
Kg shell/Kg cocoon
(2)
S2
Table S2: Yields and feed conversion ratios
description
value
Unit
Ref.
Vegetable yield
3.75
t fresh/ha dike/y
(14)
Elephant grass yield
142
t fresh/ha/y
(1)
Mulberry yield
16.18
t / ha mulb /y based on response to N (15)
Fish yield
0.94
t / ha pond / y
22.4
t /ha pond /y
(16)
Silkworm litter
53%
% of mulberry yield
(14)
% vegetables to pond
80%
(14)
% E. Grass to grass carp
25%
(14)
% E. Grass to detritus
75%
(14)
FCR grass carp
50
Kg E. grass / kg fish fresh basis (fb)
(14)
Grass carp detritus / ingesta
0.75
Kg detritus / kg ingesta (db)
(14)
FCR cocoons to mulberry
15
Kg cocoons / kg mulberry (fb)
(14)
FCR manure (db) to fish
8.3
Kg manure (db)/ kg fish (fb)
(17)
FCR pupae (fb) to fish (fb)
5
Kg pupae / kg fish (fb)
(18)
E. grass area
0.05
ha / ha of DPS
(19)
Mulberry area
0.45
ha / ha of DPS
(19)
Pond area
0.5
ha / ha of DPS
(19)
Phytoplankton
production
net
primary
N readily available in organic waste 60%
(20)
S3
Table S3: Emission factors
description
value
Unit
Ref.
N2O-N direct
1.3%
Kg N2O-N /100 kg N to pond
(21)
% of C in sediment mineralized
75%
Kg C / 100 Kg C in sediments
(22)
40%
Kg CH4-C / 100 Kg C
(22)
% of CH4 oxidised
65%
Kg CH4 / 100 kg CH4
(23)
% of N to sediment
65%
Kg N sediments / 100kg N applied to
(24)
the pond
NH3-N from the pond
0.125
Kg NH3-N / kg N input
(25)
N2O-N from composting
192
g N2O / t fresh org. waste
(26)
CH4 from composting
778
g CH4 / t fresh org. waste
(26)
% of uneaten
(detritus)
60%
%
C
mineralized
methanogenesis
via
phytoplankton
(14)
Labour req.
2381
Mandays /ha system / y
(16)
Urine / person / day
75
g / person day (db)
(10)
Feaces / person / day
375
g feaces / person / day
(10)
Quicklime
0.76
t / ha pond / y
(16)
N loss during composting
27%
(27)
Table S4: quality indices for uncertainty analysis
Parameter
(reliability, completeness, temporal correlation,
geographical correlation, further tech correlation,
basic uncertainty)
Variability of CH4 emissions
(1,2,1,3,3)
Basic uncertainty is from (28).
Using a property of lognormal
2
distrib. 𝑆𝐷[𝑋] = 𝐸[𝑋]√𝑒 𝜎 − 1
S4
References cited in the supporting information:
1.
Binh LH, Nung H V (1995) Intensive farming on pure and legume-based Elephant grass
for cutting. Proceedings of the Fourth Meeting of Regional Working Group on Grazing
and Feed Resources of Southeast Asia, ed FAO, pp 125–128.
2.
Dandin SB, Jayaswal J, Giridhar K (2003) Handbook of sericulture technologies (Central
Silk Board, Bangalore, India). 2003rd Ed.
3.
Edwards P (1993) Environmental issues in integrated agriculture-aquaculture and
wastewater-fed culture systems. Environment and Aquaculture in Developing Countries,
eds Pullin RSV, Rosenthal H, Maclean JL (ICLARM, Manila), pp 139–170. Available at:
http://www.worldfishcenter.org/libinfo/Pdf/Pub CP6 31.pdf.
4.
Pandit NPN, Shrestha MMK, Yi Y, Diana JJS (2004) Polyculture of grass carp and nile
tilapia with napier grass as the sole nutrient input in the subtropical climate of Nepal. New
Dimensions in Farmed Tilapia, 6th International Symposium on Tilapia in Aquaculture,
eds Bolivar R, Mair G, Fitzsimmons K (FAO, Manila), pp 558–573. Available at:
http://ag.arizona.edu/azaqua/ista/ista6/ista6web/pdf/558.pdf.
5.
Esrey SA (2000) Ecological sanitation - closing the loop to food security. Ecosan Closing the Loop in Wastewater Management and Sanitation, eds Werner C, Schlick J,
Witte G, Hildebrandt A (GTZ, Bonn, Germany), pp 34–44. Available at:
http://ceadserv1.nku.edu/longa/haiti/kids/sanitation/ecosan-Symposium-Bonnproceedings.pdf.
6.
Kirchmann H, Pettersson S (1995) Human urine - Chemical composition and fertilizer use
efficiency. Fertil Res 40:149–154.
7.
Bukkens SGF (1997) The nutritional value of edible insects. Ecol Food Nutr 36(2-4):287–
319. Available at: http://www.tandfonline.com/doi/abs/10.1080/03670244.1997.9991521
[Accessed June 9, 2014].
8.
Sharma S, Madan M (1992) Optimal utilization of ericulture waste. Resour Conserv
Recycl 7(4):295–304. Available at:
http://linkinghub.elsevier.com/retrieve/pii/092134499290024V.
9.
Strezov V, Evans TJ, Hayman C (2008) Thermal conversion of elephant grass
(Pennisetum purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresour Technol
99(17):8394–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18406608 [Accessed
September 24, 2014].
S5
10.
Muñoz I, Milà i Canals L, Clift R (2008) Consider a Spherical Man. J Ind Ecol 12(4):521–
538. Available at: http://doi.wiley.com/10.1111/j.1530-9290.2008.00060.x [Accessed
November 20, 2013].
11.
Colman JA, Edwards P (1987) Feeding pathways and environmental constraints in wastefed aquaculture: balance and optimization. Detritus and Microbial Ecology in
Aquaculture., eds Moriarty DJW, Pullin RSV (ICLARM, Manila), pp 240–281.
12.
Tzenov P, Petkov Z, Vasileva Y, Arkova - Pantaleeva D, Ichim M (2008) Identification
and possible utilization of some silkworm rearing waste products. Exploitation of
Agricultural and Food Industry by-Products and Waste Material through the Application
of Modern Processing Techniques (Institute of Bioengineering, Biotechnology and
Environmental Protection, Bucharest), pp 42–48. Available at: http://www.bacsasilk.org/user_pic/international.pdf.
13.
Ganga G (2003) Comprehensive sericulture, volume 1 (Science Publishers, Inc., Enfield,
USA). 1st Ed.
14.
Ruddle K, Christensen V (1993) An energy flow model of the mulberry dike-carp pond
farming system of the Zhujiang Delta, Guandong Province, China. Trophic Models of
Aquatic Ecosystem, eds Christensen V, Pauly D (ICLARM, Manila), pp 48–55. Available
at: http://www.worldfishcenter.org/libinfo/Pdf/Pub CP6 26.pdf.
15.
CSRTI (2013) Annual report 2012-2013 (Mysore) Available at:
http://silk.csrtimys.res.in/sites/default/files/menufiles/ar-201213.pdf.
16.
Ruddle K, Zhong G (1988) Integrated agriculture-aquaculture in South China: the dikepond system in the Zhujiang Delta (Cambridge University Press, New York).
17.
Zhu Y, Yang Y, Wan J, Hua D, Mathias J a. (1990) The effect of manure application rate
and frequency upon fish yield in integrated fish farm ponds. Aquaculture 91:233–251.
Available at: http://linkinghub.elsevier.com/retrieve/pii/004484869090191O.
18.
Coche AG, Muir JF, Laughlin T (1996) Simple methods for aquaculture: management for
freshwater fish clture ponds and water practices (FAO, Rome) Available at:
ftp://ftp.fao.org/fi/cdrom/fao_training/FAO_Training/General/x6709e/x6709e10.htm#MR
068.
19.
Ruddle K, Hanzeng D, Guozhao L (1986) Energy exchanges and the energy efficiency of
household ponds in the dike-pond system of the Zhujiang Delta , China. Bull Natl Museum
Ethnol 11:323–343.
20.
Nguyen TLT, Hermansen JE, Mogensen L (2010) Environmental consequences of
different beef production systems in the EU. J Clean Prod 18:756–766. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S0959652610000119 [Accessed July 15, 2014].
S6
21.
Hu Z, et al. (2013) Nitrogen transformations in intensive aquaculture system and its
implication to climate change through nitrous oxide emission. Bioresour Technol
130:314–20. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23313675 [Accessed
November 19, 2013].
22.
Riise JC, Roos N (1997) Benthic metabolism and the effects of bioturbation in a fertilised
polyculture fish pond in northeast Thailand. Aquaculture 150:45–62. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S0044848696014664.
23.
Detweiler AM, et al. (2014) Characterization of methane flux from photosynthetic
oxidation ponds in a wastewater treatment plant. Water Sci Technol 70(6):980. Available
at: http://www.iwaponline.com/wst/07006/wst070060980.htm.
24.
Nhan DK, Verdegem MCJ, Milstein A, Verreth J a V (2008) Water and nutrient budgets
of ponds in integrated agriculture-aquaculture systems in the Mekong Delta, Vietnam.
Aquac Res 39:1216–1228. Available at: http://doi.wiley.com/10.1111/j.13652109.2008.01986.x [Accessed June 19, 2014].
25.
Gross A, Boyd CE, Wood CWW (2000) Nitrogen transformations and balance in channel
catfish ponds. Aquac Eng 24:1–14. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S0144860900000625.
26.
Amlinger F, Peyr S, Cuhls C (2008) Green house gas emissions from composting and
mechanical biological treatment. Waste Manag Res 26(1):47–60. Available at:
http://wmr.sagepub.com/cgi/doi/10.1177/0734242X07088432 [Accessed June 27, 2013].
27.
Sommer SG (2001) Effect of composting on nutrient loss and nitrogen availability of
cattle deep litter. Eur J Agron 14(2):123–133.
28.
Selvam BP, Natchimuthu S, Bastviken D (2014) Methane and carbon dioxide emissions
from inland waters in India - Implications for large scale greenhouse gas balances
Department of Thematic Studies – Water and Environmental Studies , Linköping
University , Current address : Department of Physical Geog.
S7