Supporting information for “Modern analysis of an ancient integrated farming arrangement: life cycle assessment of a mulberry dyke and pond system” Miguel F. Astudillo, Gunnar Thalwitz, Fritz Vollrath* Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK *Corresponding author: Fritz Vollrath Phone: +44 (0) 1865 271216; email: [email protected] Contents: Table S1: Composition parameters Table S2: Yields and feed conversion ratios Table S3: Emission factors Table S4: quality indices for uncertainty analysis S1 Table S1: Composition parameters description value Unit Ref. N - elephant grass 2.26 Kg N / t fresh elephant grass (1) N - silkworm litter 0.9 Kg N / 100 Kg of dry silkworm litter (2) N - fish 25 Kg N / 1 t of fresh fish (3) N - grass carp feaces 0.832 Kg N / 100 kg dry feaces (4) N – feaces 1.5 g N / 100 g feaces dry basis (db) (5) N - urine annual 2.5 Kg N/ person / year (6) N - pupae 4% Kg N / kg pupae (fresh) (7) C – silkworm litter 40% (%) kg C / Kg dry SW litter (8) C – Elephant grass 41.6% (%) kg C / Kg dry E. Grass (9) C – human feaces 50% (%) kg C / Kg dry h. feaces (10) C - human urine 14% (%) kg C / Kg dry urine (10) C - phytoplankton 50% (45-50%) dry basis (11) Moisture silkworm litter 60% (12) Moisture mulberry 70% (13) Moisture vegetables 95% Moisture grass carp detritus 93.7% (4) Moisture elephant grass 85.3% (1) Cocoon shell ratio 0.2 based on celery Kg shell/Kg cocoon (2) S2 Table S2: Yields and feed conversion ratios description value Unit Ref. Vegetable yield 3.75 t fresh/ha dike/y (14) Elephant grass yield 142 t fresh/ha/y (1) Mulberry yield 16.18 t / ha mulb /y based on response to N (15) Fish yield 0.94 t / ha pond / y 22.4 t /ha pond /y (16) Silkworm litter 53% % of mulberry yield (14) % vegetables to pond 80% (14) % E. Grass to grass carp 25% (14) % E. Grass to detritus 75% (14) FCR grass carp 50 Kg E. grass / kg fish fresh basis (fb) (14) Grass carp detritus / ingesta 0.75 Kg detritus / kg ingesta (db) (14) FCR cocoons to mulberry 15 Kg cocoons / kg mulberry (fb) (14) FCR manure (db) to fish 8.3 Kg manure (db)/ kg fish (fb) (17) FCR pupae (fb) to fish (fb) 5 Kg pupae / kg fish (fb) (18) E. grass area 0.05 ha / ha of DPS (19) Mulberry area 0.45 ha / ha of DPS (19) Pond area 0.5 ha / ha of DPS (19) Phytoplankton production net primary N readily available in organic waste 60% (20) S3 Table S3: Emission factors description value Unit Ref. N2O-N direct 1.3% Kg N2O-N /100 kg N to pond (21) % of C in sediment mineralized 75% Kg C / 100 Kg C in sediments (22) 40% Kg CH4-C / 100 Kg C (22) % of CH4 oxidised 65% Kg CH4 / 100 kg CH4 (23) % of N to sediment 65% Kg N sediments / 100kg N applied to (24) the pond NH3-N from the pond 0.125 Kg NH3-N / kg N input (25) N2O-N from composting 192 g N2O / t fresh org. waste (26) CH4 from composting 778 g CH4 / t fresh org. waste (26) % of uneaten (detritus) 60% % C mineralized methanogenesis via phytoplankton (14) Labour req. 2381 Mandays /ha system / y (16) Urine / person / day 75 g / person day (db) (10) Feaces / person / day 375 g feaces / person / day (10) Quicklime 0.76 t / ha pond / y (16) N loss during composting 27% (27) Table S4: quality indices for uncertainty analysis Parameter (reliability, completeness, temporal correlation, geographical correlation, further tech correlation, basic uncertainty) Variability of CH4 emissions (1,2,1,3,3) Basic uncertainty is from (28). Using a property of lognormal 2 distrib. 𝑆𝐷[𝑋] = 𝐸[𝑋]√𝑒 𝜎 − 1 S4 References cited in the supporting information: 1. Binh LH, Nung H V (1995) Intensive farming on pure and legume-based Elephant grass for cutting. Proceedings of the Fourth Meeting of Regional Working Group on Grazing and Feed Resources of Southeast Asia, ed FAO, pp 125–128. 2. Dandin SB, Jayaswal J, Giridhar K (2003) Handbook of sericulture technologies (Central Silk Board, Bangalore, India). 2003rd Ed. 3. Edwards P (1993) Environmental issues in integrated agriculture-aquaculture and wastewater-fed culture systems. Environment and Aquaculture in Developing Countries, eds Pullin RSV, Rosenthal H, Maclean JL (ICLARM, Manila), pp 139–170. Available at: http://www.worldfishcenter.org/libinfo/Pdf/Pub CP6 31.pdf. 4. Pandit NPN, Shrestha MMK, Yi Y, Diana JJS (2004) Polyculture of grass carp and nile tilapia with napier grass as the sole nutrient input in the subtropical climate of Nepal. New Dimensions in Farmed Tilapia, 6th International Symposium on Tilapia in Aquaculture, eds Bolivar R, Mair G, Fitzsimmons K (FAO, Manila), pp 558–573. Available at: http://ag.arizona.edu/azaqua/ista/ista6/ista6web/pdf/558.pdf. 5. Esrey SA (2000) Ecological sanitation - closing the loop to food security. Ecosan Closing the Loop in Wastewater Management and Sanitation, eds Werner C, Schlick J, Witte G, Hildebrandt A (GTZ, Bonn, Germany), pp 34–44. Available at: http://ceadserv1.nku.edu/longa/haiti/kids/sanitation/ecosan-Symposium-Bonnproceedings.pdf. 6. Kirchmann H, Pettersson S (1995) Human urine - Chemical composition and fertilizer use efficiency. Fertil Res 40:149–154. 7. Bukkens SGF (1997) The nutritional value of edible insects. Ecol Food Nutr 36(2-4):287– 319. Available at: http://www.tandfonline.com/doi/abs/10.1080/03670244.1997.9991521 [Accessed June 9, 2014]. 8. Sharma S, Madan M (1992) Optimal utilization of ericulture waste. Resour Conserv Recycl 7(4):295–304. Available at: http://linkinghub.elsevier.com/retrieve/pii/092134499290024V. 9. Strezov V, Evans TJ, Hayman C (2008) Thermal conversion of elephant grass (Pennisetum purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresour Technol 99(17):8394–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18406608 [Accessed September 24, 2014]. S5 10. Muñoz I, Milà i Canals L, Clift R (2008) Consider a Spherical Man. J Ind Ecol 12(4):521– 538. Available at: http://doi.wiley.com/10.1111/j.1530-9290.2008.00060.x [Accessed November 20, 2013]. 11. Colman JA, Edwards P (1987) Feeding pathways and environmental constraints in wastefed aquaculture: balance and optimization. Detritus and Microbial Ecology in Aquaculture., eds Moriarty DJW, Pullin RSV (ICLARM, Manila), pp 240–281. 12. Tzenov P, Petkov Z, Vasileva Y, Arkova - Pantaleeva D, Ichim M (2008) Identification and possible utilization of some silkworm rearing waste products. Exploitation of Agricultural and Food Industry by-Products and Waste Material through the Application of Modern Processing Techniques (Institute of Bioengineering, Biotechnology and Environmental Protection, Bucharest), pp 42–48. Available at: http://www.bacsasilk.org/user_pic/international.pdf. 13. Ganga G (2003) Comprehensive sericulture, volume 1 (Science Publishers, Inc., Enfield, USA). 1st Ed. 14. Ruddle K, Christensen V (1993) An energy flow model of the mulberry dike-carp pond farming system of the Zhujiang Delta, Guandong Province, China. Trophic Models of Aquatic Ecosystem, eds Christensen V, Pauly D (ICLARM, Manila), pp 48–55. Available at: http://www.worldfishcenter.org/libinfo/Pdf/Pub CP6 26.pdf. 15. CSRTI (2013) Annual report 2012-2013 (Mysore) Available at: http://silk.csrtimys.res.in/sites/default/files/menufiles/ar-201213.pdf. 16. Ruddle K, Zhong G (1988) Integrated agriculture-aquaculture in South China: the dikepond system in the Zhujiang Delta (Cambridge University Press, New York). 17. Zhu Y, Yang Y, Wan J, Hua D, Mathias J a. (1990) The effect of manure application rate and frequency upon fish yield in integrated fish farm ponds. Aquaculture 91:233–251. Available at: http://linkinghub.elsevier.com/retrieve/pii/004484869090191O. 18. Coche AG, Muir JF, Laughlin T (1996) Simple methods for aquaculture: management for freshwater fish clture ponds and water practices (FAO, Rome) Available at: ftp://ftp.fao.org/fi/cdrom/fao_training/FAO_Training/General/x6709e/x6709e10.htm#MR 068. 19. Ruddle K, Hanzeng D, Guozhao L (1986) Energy exchanges and the energy efficiency of household ponds in the dike-pond system of the Zhujiang Delta , China. Bull Natl Museum Ethnol 11:323–343. 20. Nguyen TLT, Hermansen JE, Mogensen L (2010) Environmental consequences of different beef production systems in the EU. J Clean Prod 18:756–766. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0959652610000119 [Accessed July 15, 2014]. S6 21. Hu Z, et al. (2013) Nitrogen transformations in intensive aquaculture system and its implication to climate change through nitrous oxide emission. Bioresour Technol 130:314–20. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23313675 [Accessed November 19, 2013]. 22. Riise JC, Roos N (1997) Benthic metabolism and the effects of bioturbation in a fertilised polyculture fish pond in northeast Thailand. Aquaculture 150:45–62. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0044848696014664. 23. Detweiler AM, et al. (2014) Characterization of methane flux from photosynthetic oxidation ponds in a wastewater treatment plant. Water Sci Technol 70(6):980. Available at: http://www.iwaponline.com/wst/07006/wst070060980.htm. 24. Nhan DK, Verdegem MCJ, Milstein A, Verreth J a V (2008) Water and nutrient budgets of ponds in integrated agriculture-aquaculture systems in the Mekong Delta, Vietnam. Aquac Res 39:1216–1228. Available at: http://doi.wiley.com/10.1111/j.13652109.2008.01986.x [Accessed June 19, 2014]. 25. Gross A, Boyd CE, Wood CWW (2000) Nitrogen transformations and balance in channel catfish ponds. Aquac Eng 24:1–14. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0144860900000625. 26. Amlinger F, Peyr S, Cuhls C (2008) Green house gas emissions from composting and mechanical biological treatment. Waste Manag Res 26(1):47–60. Available at: http://wmr.sagepub.com/cgi/doi/10.1177/0734242X07088432 [Accessed June 27, 2013]. 27. Sommer SG (2001) Effect of composting on nutrient loss and nitrogen availability of cattle deep litter. Eur J Agron 14(2):123–133. 28. Selvam BP, Natchimuthu S, Bastviken D (2014) Methane and carbon dioxide emissions from inland waters in India - Implications for large scale greenhouse gas balances Department of Thematic Studies – Water and Environmental Studies , Linköping University , Current address : Department of Physical Geog. S7
© Copyright 2026 Paperzz