Applied Microbiology and Biotechnology Metagenomes reveal microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor Jinxing Ma1, Zhiwei Wang1*, Huan Li2, Hee-Deung Park3, Zhichao Wu1 1. State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China 2. Majorbio Pharm Technology Co.,Ltd., Shanghai 201203, PR China 3. School of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, South Korea Corresponding Author * Tel./fax: +86-21-65980400; E-mail address: [email protected] (Z. Wang) S1 Section I Metagenomic DNA extraction protocol Initially, 500 mL of S1 was filtered through a 0.1-μm filter membrane (Supor®-100, Pall Corporation, U.S.). 20 mL of S2, S3 and S4 were centrifuged at 6000 rpm for 10 min, and the sediments were recovered though decantation of the supernatant. The extraction of DNA from microbial cells collected from the filter membrane (S1) and sediments (S2, S3 and S4) was then conducted using the E.Z.N.A.® Soil DNA kit (Omega Bio-Tek, Inc., Norcross, GA, U.S.). Briefly, a 15-mL tube containing 1.0 g of spiked samples, 0.5 g of glass beads, and a series of buffers was subject to vortexing and bead beating. DNA samples were isolated by using isopropanol-kit elution buffer, treated with inhibitor removal reagents and bound to spin columns. DNA was then washed and eluted from columns with elution buffer according to the manufacturer’s protocol. Afterwards, the quality of DNA samples was assessed using a 1.0 % (w/v) agarose gel electrophoresis and the concentration measured with a NanoDrop spectrophotometer. Table S1 Operating parameters of the MBR and CAS system MBR CAS system Treatment capacity, m3/d 0.3 Treatment capacity, m3/d 60,000 Membrane flux, L/(m2 h) 15 Effluent suction cycle, min 10/2 Anaerobic zone HRTa, h 1.6 Anaerobic zone HRT, h 1.5 Anoxic zone HRT, h 6.7 Anoxic zone HRT, h 1.5 Oxic zone HRT, h 6.7 Oxic zone HRT, h 4.7 SRTb, d 60 SRT, d 10 MLSSc, g/L 4~5 MLSS, g/L 2.5 R1d 3 R1d 0.5~1.0 R2e 0.5 Ref 2~3 S2 Anaerobic and anoxic zone DO, mg/L <0.2 Oxic zone DO, mg/L 1~3 a. HRT, hydraulic retention time; b. SRT, sludge retention time; c. MLSS, concentration of mixed liquors suspended solids; d. R1, return rate of mixed liquor from oxic zone to anoxic zone; e. R2, return rate of mixed liquor from anoxic zone to anaerobic zone; f. Ref, return rate of sludge to anaerobic zone; g. DO, concentration of dissolved oxygen. Fig. S1 Pairwise comparison of COG classification of S3-S1 and S3-S4. S3 80 80 Predicted proteins S1 S2 60 60 40 40 20 20 0 0 0 20 40 60 80 80 0 40 60 80 40 60 80 80 S3 Predicted proteins 20 S4 60 60 40 40 20 20 0 0 0 20 40 60 80 SSU rRNA 0 20 SSU rRNA Fig. S2 Correlation between different taxonomic results based on SSU rRNA gene tags and predicted proteins at phylum level. S4 500 Flavobacterium 400 300 200 100 0 0.0 .2 .4 .6 .8 1.0 .2 .4 .6 .8 1.0 .4 .6 .8 1.0 .4 .6 .8 1.0 500 Thauera 400 Number of reads 300 200 100 0 0.0 500 Dechloromonas 400 300 200 100 0 0.0 .2 200 Comamonas 150 100 50 0 0.0 .2 Identity Fig. S3 Identities of protein-coding genes of S1 with the representative sequences of genera of Flavobacterium, Thauera, Comamonas and Dechloromonas. Abundances of the predicted proteins are corrected by mapping the sequencing reads to the assembly contigs. S5 35 S3 S2 S1 30 b 20 15 10 5 Thiobacillus Rubrivivax Chryseobacterium Rhodanobacter Kangiella Azospira Polaromonas Chthoniobacter Azoarcus Acidovorax Thauera Solitalea Sulfurovum Pseudogulbenkiania Neisseria Hahella Candidatus_Accumulibacter Sulfurimonas Leptothrix Dechloromonas Chromobacterium Pseudomonas Flavobacterium No_Rank Other 0 S6 Other 0 30 25 20 15 Number of sequences S3 S2 S1 35 Pseudovibrio Photobacterium Nitrobacter Hydrogenivirga Sulfuricella Desulfurispirillum Brevundimonas Thioalkalivibrio Campylobacter Thiocapsa Methylobacter Nitrospira Thiobacillus Maricaulis Methylibium Hahella Aromatoleum Curvibacter Burkholderia Stenotrophomonas Magnetospirillum Sulfurovum Sorangium Nitratiruptor Beggiatoa Variovorax Sterolibacterium Saccharophagus Flavobacterium Chromobacterium Pseudoxanthomonas Pseudogulbenkiania Leptothrix Azoarcus Aeromonas Shewanella Polaromonas Hydrogenophaga Tolumonas Sulfurimonas Candidatus_Accumulibacter Arcobacter No_Rank Methyloversatilis Albidiferax Acinetobacter Thiovulum Rhodanobacter Alicycliphilus Acidovorax Azospira Sulfuricurvum Dechloromonas Thauera Sulfurospirillum Geobacter Pseudomonas 25 Number of sequences 40 a 10 5 0 Other Cecembia Azoarcus Cupriavidus Pedobacter Haliscomenobacter Maribacter Riemerella Belliella Azospira Alicycliphilus Rhodothermus Solitalea Thauera Dyadobacter Runella Niastella Thiobacillus Niabella Candidatus_Accumulibacter Dechloromonas Campylobacter Pseudomonas Wolinella Acidovorax Flavobacterium No_Rank Sulfurimonas 0 d S3 S2 S1 12 10 8 6 Number of sequences S3 S2 S1 14 Other Zobellia Sulfurovum Methylomicrobium Nitrosomonas Cecembia Thauera Maribacter Alicycliphilus Marivirga Dechloromonas Leptospira Leptonema Indibacter Muricauda Cupriavidus Polaromonas Azoarcus Leptothrix Sphingomonas Syntrophobacter Imtechella Flavobacterium Sulfurimonas Haliscomenobacter Candidatus_Accumulibacter Acidovorax No_Rank Pseudomonas 20 15 10 Number of sequences 16 c 4 2 30 25 5 Fig. S4 Taxonomy of the coding genes in denitrification. (a) coding genes of nar, (b) coding genes of nirK (NO-forming), (c) coding genes of norB, and (d) coding genes of nosZ. Taxonomy of the corresponding sequences was conducted using BLAST search against NCBI database S7 (ftp://ftp.ncbi.nih.gov/pub/taxonomy). For each sequence, the blast result with the highest bit score was selected. (a) (b) 0.35 4.0 S3 0.30 0.25 0.20 0.15 0.10 0.05 r(amo)/r(AOB) (E-3) Relative abundance (%) S2 0.00 3.0 2.0 1.0 0.0 S2 S3 Fig. S5 a) Relative abundances of AOB and NOB in S2 and S3 and b) r(amo)/r(AOB) in S2 and S3. r(amo) represents the relative abundances of amo in predicted proteins and r(AOB) the relative abundances of AOB based on 16S rRNA gene tags. Table S2 Abundances of coding genes associated with nitrification, denitrification and dissimilatory nitrate reduction to ammonium.a Definition Gene name S1 S2 S3 Ammonia monooxygenase amoA 0 0 34 amoB 0 0 39 amoC 0 4 35 Hydroxylamine oxygenase hao 202 33 81 Nitrate reductase napA 784 355 585 napB 364 179 137 napC 247 192 148 S8 napG 746 109 220 napH 874 381 296 narB 0 0 0 narC 0 0 0 narG 2025 1306 1013 narH 630 380 453 narI 239 321 199 nirK 1162 1936 1182 nirS 0 0 0 norB 1140 2346 1512 norC 216 441 305 Nitrous oxide reductase nosZ 1202 2721 3628 Nitrite reductase nrfA 1157 138 136 nrfB 22 0 0 nrfC 218 0 0 nrfD 260 0 0 nrfH 0 0 0 Nitrite reductase (NO-forming) Nitric oxide reductase a. Total reads of S1~S3 mapped to KEGG pathways are 5156200, 6080374 and 5624636, respectively. S9
© Copyright 2026 Paperzz