On the Analysis of Tuberculosis Studies with Intermittent Missing Sputum Data Daniel Scharfstein Johns Hopkins University [email protected] July 12, 2013 Daniel O. Scharfstein Tuberculosis Studies with Missing Sputum Data Happy Birthday! Daniel O. Scharfstein Tuberculosis Studies with Missing Sputum Data Collaborators I I I I I Andrea Rotnitzky Maria Abraham Aidan McDermott Lawrence Geiter Richard Chaisson Daniel O. Scharfstein Tuberculosis Studies with Missing Sputum Data Observed Data 66 61 56 51 46 1:n0 41 36 31 26 21 16 1 4 7 1 4 7 11 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 Ethambutol 71 Moxifloxacin 1 2 3 4 5 6 7 8 Daniel O. Scharfstein 1 2 3 4 5 6 7 8 Tuberculosis Studies with Missing Sputum Data Example of Patient Data Line 1 2 Culture Results Converter? 1 ? N 2 + N 3 ? ? Visit 4 ? Daniel O. Scharfstein 5 ? ? 6 Y 7 Y 8 Y L R+1 S 3 6 {3, 4, 6} Tuberculosis Studies with Missing Sputum Data Observed Data 66 61 56 51 46 1:n0 41 36 31 26 21 16 1 4 7 1 4 7 11 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 Ethambutol 71 Moxifloxacin 1 2 3 4 5 6 7 8 9 Daniel O. Scharfstein 1 2 3 4 5 6 7 8 9 Tuberculosis Studies with Missing Sputum Data Example of Patient Data Line 1 2 I I I I Culture Results Converter? 1 ? N 2 + N 3 ? ? Visit 4 ? 5 ? ? 6 Y 7 Y 8 Y L R+1 S 3 6 {3, 4, 6} Need assumptions on the distribution of time of culture conversion given observed data. 3: V3 -, V5 -; 4: V3+, V5-; 6: V5+ Forward time: visit 3, visit 5 given 3-, visit 5 given 3+ Reverse time: visit 5, visit 3 given 5- Daniel O. Scharfstein Tuberculosis Studies with Missing Sputum Data Example of Patient Data Line 1 2 3 4 5 6 Culture Results Converter? Culture Results Converter? Culture Results Converter? 1 ? N ? N ? N 2 + N + N + N 3 ? ? ? N ? ? Visit 4 ? N Y Daniel O. Scharfstein 5 ? ? + N Y 6 Y Y Y 7 Y Y Y 8 Y Y Y L R+1 S 3 6 {3, 4, 6} 6 6 {6} 3 4 {3, 4} Tuberculosis Studies with Missing Sputum Data Example of Patient Data Line 1 2 3 4 5 6 7 8 9 10 Culture Results Converter? Culture Results Converter? Culture Results Converter? Culture Results Converter? Culture Results Converter? 1 ? N ? N ? N ? N ? N 2 + N + N + N + N + N 3 ? ? ? N ? ? + N Y Visit 4 ? N Y Y Y Daniel O. Scharfstein 5 ? ? + N Y Y Y 6 Y Y Y Y Y 7 Y Y Y Y Y 8 Y Y Y Y Y L R+1 S 3 6 {3, 4, 6} 6 6 {6} 3 4 {3, 4} 4 4 {4} 3 3 {3} Tuberculosis Studies with Missing Sputum Data Benchmark Assumptions We postulate that P[T = r + 1|O = o] = P[T = r + 1|O = o (r ) ] (1) P[T = k|T ≤ k, O = o] = P[T = k|O = o (k−1) ] (2) Daniel O. Scharfstein Tuberculosis Studies with Missing Sputum Data Sensitivity Analysis P[T = r + 1|O = o] = P[T = r + 1|O = o (r ) ] exp(α) hr +1 (o (r ) ; α) P[T = k|T ≤ k, O = o] = Daniel O. Scharfstein P[T = k|O = o (k−1) ] exp(α) hk (o (k−1) ; α) Tuberculosis Studies with Missing Sputum Data (3) (4) Curse of Dimensionality I I I I Need to estimate for each realization O = o with |S| > 1, P[T = k|O = o (k−1) ] These probabilities cannot be estimated non-parametrically. Postulate a parametric model for the law of the observed data O given baseline covariates X . This model induces parametric models for P[T = k|O = o (k−1) ], that ultimately enable estimation of P[T = k|O = o] by borrowing information across strata O = o (k−1) . Daniel O. Scharfstein Tuberculosis Studies with Missing Sputum Data Model for Observed Data I I Ok = (Mkc , Ckobs , Mks , Skobs ); O = X , O K . Model the law of O given X by modeling the distribution of Ok given O k−1 and X for all k = 1, . . . , K . logit{P[Mkc = 1|O k−1 , X ]} = a(k, Ok−1 , X ; γ (a) ) logit{P[Ckobs = 1|Mkc = 0, O k−1 , X ]} = b(k, Ok−1 , X ; γ (b) ) logit{P[Mks = 1|Mkc , Ckobs , O k−1 , X ]} = c(k, Mkc , Ckobs , Ok−1 , X ; γ (c) ) logit{P[Skobs = 1|Mks = 0, Mkc , Ckobs , O k−1 , X ]} = d(k, Mkc , Ckobs , Ok−1 , X ; γ (d) ) Daniel O. Scharfstein Tuberculosis Studies with Missing Sputum Data Inference I I We can express for all realizations O = o with |S| > 1, the conditional probability P[T = k|O = o (k−1) ] as a given functions of o (k−1) and γ = (γ (a) , γ (b) , γ (c) , γ (d) ). We can express P[T = r + 1|O = o] and P[T = k|T ≤ k, O = o] as given functions, P[T = r + 1|O = o; γ; α] and P[T = k|T ≤ k, O = o; γ; α] of o, γ and α. Daniel O. Scharfstein Tuberculosis Studies with Missing Sputum Data Inference I I Estimate γ by γ b using maximum likelihood. P b Estimate P[T = k] by n1 i=1 P[T i = k; α] where b P[Ti = k; α] equals 0 if k ∈ / Si , equals 1 if |S| = 1 and k ∈ Si , equals P[T = Ri + 1|O = Oi ; γ b; α] if |Si | > 1 and k = Ri + 1, and equals {1 − P[T = Ri + 1|O = Oi ; γ b ; α]} (1 − P[T = s|T ≤ s, O = Oi ; γ b ; α]) × k<s<R +1 i Y k∈Si P[T = k|T ≤ k, O = Oi ; γ b ; α] I if |Si | > 1 and k ∈ Si , k < Ri + 1. Confidence intervals by non-parametric bootstrap. Daniel O. Scharfstein Tuberculosis Studies with Missing Sputum Data Data Analysis I I I Treatment groups were not balanced with respect to the cavitation status at baseline; 81.1% and 56.9% have cavitation in the moxifloxacin and ethambutol arms, respectively. Estimate for each treatment group, the distribution of time of culture conversion by a weighted average of cavitation-specific distribution of time of culture conversion. Weights are taken to be the marginal (i.e., not conditional on treatment arm) proportion of patients with and without cavitation at baseline, respectively. Daniel O. Scharfstein Tuberculosis Studies with Missing Sputum Data Data Analysis I I I Under benchmark assumption, the estimated probabilities of being a culture converter at or by week 8 are 92.5% and 75.5% in the moxafloxacin and ethmabutol arms, respectively. Estimated difference is 17.0% (95% CI: [4.5%,29.3%]). Benchmark analysis suggests a statistically significant difference in culture conversion at or by week 8 in favor of moxifloxacin. Daniel O. Scharfstein Tuberculosis Studies with Missing Sputum Data Data Analysis 0.9 0.8 0.5 0.6 0.7 Probability 0.8 0.7 0.6 0.5 Probability 0.9 1.0 Ethambutol 1.0 Moxifloxacin -10 -5 0 5 α1 Daniel O. Scharfstein -10 -5 0 5 α0 Tuberculosis Studies with Missing Sputum Data -5 0 Moxifloxacin -10 α1 (Moxifloxacin) 5 Data Analysis -10 -5 0 5 α0 (Ethambutol) Daniel O. Scharfstein Tuberculosis Studies with Missing Sputum Data Data Analysis 1.0 Ethambutol 1.0 Moxifloxacin Probability 0.6 0.8 0 5 0.0 0.2 0.4 0.6 0.4 0.2 0.0 Probability 0.8 -2 0 0 2 4 6 8 Visit Daniel O. Scharfstein 0 2 4 6 8 Visit Tuberculosis Studies with Missing Sputum Data Data Analysis 0.00 0.05 0.10 Signed Distance -0.20 -0.10 -0.10 0.00 0.05 0.10 Ethambutol -0.20 Signed Distance Moxifloxacin -10 -5 0 5 α1 Daniel O. Scharfstein -10 -5 0 5 α0 Tuberculosis Studies with Missing Sputum Data Data Analysis I I I Compare the treatment-specific distributions of time to culture conversion. Estimate a common treatment effect over time, using Cox(1972) logistic model for discrete survival data. This model assumes that hz (k) = τk exp(βz) k = 1. . . . , 8, z = 0, 1 1 − hz (k) I where hz (k) = Pz [T = k|T ≥ k] and τ1 , . . . , τ8 ≥ 0. exp(β) is the ratio of the odds of first becoming a culture converter at visit k given culture conversion at or after visit k comparing moxifloxacin to ethambutol. Daniel O. Scharfstein Tuberculosis Studies with Missing Sputum Data Data Analysis I For each choice of α0 and α1 , we minimize the following objective function: )2 ( 1 X 8 X b hz (k) − τk exp(βz) 1−b hz (k) z=0 k=1 I I with respect τ1 , . . . , τ8 ≥ 0 and β, where b bz [T = k|T ≥ k]. hz (k) = P For each choice of α0 and α1 , this method finds the ”closest” fitting logistic model to the ”data”: { b hz (k) : k = 1, . . . , 8, z = 0, 1}. Even if the model is incorrectly specified, still provides a valid test of the null hypothesis of no treatment effect. Daniel O. Scharfstein Tuberculosis Studies with Missing Sputum Data Data Analysis I Under benchmark assumption, the estimated hazard ratio is 3.41 (95% CI: [1.16,16.90]), indicating that patients treated with moxifloxacin have a statistically significant shorter time of culture conversion than those treated with ethambutol. Daniel O. Scharfstein Tuberculosis Studies with Missing Sputum Data 5 Data Analysis -10 -5 α1 0 Moxafloxacin -10 -5 0 5 α0 Daniel O. Scharfstein Tuberculosis Studies with Missing Sputum Data Discussion I I I I I I Roshamon Coarsening at Random Everything is relative. Sensitivity analysis parameters are not scientifically interpretable. Look at induced distributions Requires scientific judgement. Daniel O. Scharfstein Tuberculosis Studies with Missing Sputum Data
© Copyright 2026 Paperzz