A Broad Framework for Joint Modeling And Some Tales From the Unexpected Geert Molenberghs Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat) Universiteit Hasselt & Katholieke Universiteit Leuven, Belgium [email protected] & [email protected] www.ibiostat.be Raleigh, North Carolina State University with: M. Aerts, M. Davidian, M.G. Kenward, D. Rizopoulos, A.A. Tsiatis, G. Verbeke Common Ground for Various Settings Sequential trials Incomplete data outcome & sample size outcome(s) & missigness process Completely random sample size outcome & sample size ‘Informative’ cluster size outcome & cluster size Classical survival (Narrow) joint modeling Random observation times Raleigh, NC, July 13, 2013 time to event & censorship time to event(s) & longitudinal process outcome & measurement schedule 1 A Classic: Joint Models with Missing Data f (yi, r i|Xi, θ, ψ) Selection Models: f (y i|Xi, θ) f (r i|Xi, y oi, y m i , ψ) MCAR −→ f (r i|Xi, ψ) MAR −→ f (r i|Xi, y oi , ψ) MNAR f (r i|Xi, y oi , y m i , ψ) Pattern-mixture Models: f (y i|Xi, ri, θ) f (r i|Xi, ψ) Shared-parameter Models: f (y i|Xi, bi, θ) f (ri|Xi, bi, ψ) Raleigh, NC, July 13, 2013 2 Generic Setting f (y i, ci|θ, ψ) = f (y i|θ) · f (ci|y i, ψ) = f (y i|ci, θ, ψ) · f (ci|θ, ψ) Setting Yi Ci Sequential trials Yi N Incomplete data Yi Ri Completely random sample size Yi N ‘Informative’ cluster size Yi Ti Classical survival Ti Ci (Narrow) joint modeling Yi Ti, . . . Random observation times Yi Ti Raleigh, NC, July 13, 2013 3 Fundamental Concepts Ignorability: f (ci|y i, ψ) = f (ci|y oi, ψ) combined with separability Ancillarity: . S minimally sufficient statistic for θ . T |S does not contain information about θ Raleigh, NC, July 13, 2013 4 Completeness: . g(·) a measurable function of S . E[g(s)] = 0 for all θ =⇒ g(s) = 0 a.e. Weights: f (ci|ψ ∗) f (y i|θ , ψ ) = f (y i|ci, θ ) · f (ci|y i, θ ∗, ψ ∗) ∗ MAR: wi(y i, ci) = wi (y oi, ci) ∗ ∗ = f (y i|ci, θ ∗) · wi(y i, ci, θ ∗, ψ ∗) Deterministic rule: wi(y oi, ci) ∈ {0, 1} Raleigh, NC, July 13, 2013 5 Simple Setting • Observe Yi ∼ N (µ, 1) • Construct sum statistics • Apply a stopping rule, e.g., • If continuation applies, observe Yi, K= i = 1, . . . , n n X i=1 Yi β F α + k n i = n + 1, . . . , 2n • Data: (Y1, . . . , YN , N ) Raleigh, NC, July 13, 2013 6 Stopping Rule β β F α + k = Φ α + k n n • Three important cases: Purely random sample size Probabilistic stopping Purely random sample size Raleigh, NC, July 13, 2013 β=0 β 6= 0 β → +∞ 7 Four Relevant Distributions N Y Y i=1 φ(yi; µ) N |Y β Φ α + k n Y |N z 1−z β β φ(yi; µ)Φ α + k 1 − Φ α + k i=1 n n z 1−z α + βµ α + βµ Φ r 1 − Φ r 2 2 1 + β /n 1 + β /n N Raleigh, NC, July 13, 2013 N Y α + βµ Φ r 2 1 + β /n 8 Joint Likelihood β z β 1−z L(µ) = φ(yi ; µ) · Φ α + k · 1 − Φ α + k i=1 n n N Y `(µ) = − S(µ) = N 1 X (yi − µ)2 2 i=1 N X (yi − µ) i=1 H(µ) = −N Raleigh, NC, July 13, 2013 9 Conditional Likelihood Lc(µ) = QN i=1 φ(yi ; µ)Φ Φ √α+βµ2 N =n : N = 2n : Raleigh, NC, July 13, 2013 α+ 1+β /n z ! β z nk " 1−Φ α 1 − Φ √α+βµ2 !# 1−z β + nk 1−z 1+β /n 2 (y − µ) − ln Φ(ν) `(µ) = − 12 PN i i=1 S(µ) = f φ(ν) (y − µ) − β · i i=1 Φ(ν) PN φ(ν) H(µ) = −N + βf2 · [ν · Φ(ν) + φ(ν)] · Φ(ν) 2 2 `(µ) = − 12 PN i=1(yi − µ) − ln [1 − Φ(ν)] S(µ) = f φ(ν) (y − µ) + β · i i=1 1−Φ(ν) PN φ(ν) H(µ) = −N − βf2 · {ν · [1 − Φ(ν)] − φ(ν)} · [1−Φ(ν)] 2 10 Information, Bias, MSE • Notation: r α = α/ 1 + β 2/n f f r β = β/ 1 + β 2/n r ν = (α + βµ)/ 1 + β 2/n • Information: f f + βµ)] I(µ) = n[2 − Φ(α f2 f f + βµ)2 β φ( α f f + βµ)] − Ic(µ) = n[2 − Φ(α f f f + βµ)[1 − Φ(α f + βµ)] Φ(α Raleigh, NC, July 13, 2013 11 • Counterintuitive? N is not ancillary • Some limits: β=0 =⇒ I(µ) ≡ Ic(µ) n −→ ∞ =⇒ I(µ) = Ic(µ) • Both estimators asymptotically unbiased • The conditional score E[Sc (µ)] = 0: conditional likelihood estimator unbiased in finite samples Raleigh, NC, July 13, 2013 12 • Mean squared error . β < +∞: 1 1 f2 + 2 β φ(ν)2 MSE(µ) = n[2 − Φ(ν)] 4n c c ) ' MSE(µ c . β → +∞: 1 1 f2 2 + β φ(ν) n[2 − Φ(ν)] [2 − Φ(ν)]2 Φ(ν)[1 − Φ(ν)]n2 1 1 √ √ MSE(µ) = + φ( nµ)2 n[2 − Φ( nµ)] 4n c √ 1 1 2 √ √ √ √ MSE(µc ) ' + φ( nµ) n[2 − Φ( nµ)] [2 − Φ( nµ)]2 Φ( nµ)[1 − Φ( nµ)]n c Raleigh, NC, July 13, 2013 13 Likelihood Estimators: Conditional Bias • Conditional likelihood estimator: conditionally unbiased • Joint likelihood estimator (β < +∞): β φ(ν) E(µ|N = n) = µ + · 1 + β 2/n nΦ(ν) r β φ(ν) · E(µ|N = 2n) = µ − 1 + β 2/n 2n[1 − Φ(ν)] r • Joint likelihood estimator (β → +∞): √ φ( nµ) √ E(µ|N = n) = µ + √ nΦ( nµ) √ φ( nµ) √ E(µ|N = 2n) = µ − √ 2 n[1 − Φ( nµ)] Raleigh, NC, July 13, 2013 14 • β → +∞ & n → +∞: .µ<0 E(µ|N = n) → 0 E(µ|N = 2n) → µ .µ>0 E(µ|N = n) → µ µ E(µ|N = 2n) → 2 . Yet: asymptotically unbiased Raleigh, NC, July 13, 2013 15 Lack of Incompleteness −→ Counterintuitive Results • N fixed =⇒ K complete • Nice results apply • Lehmann-Scheffé theorem: unbiased complete sufficient Raleigh, NC, July 13, 2013 =⇒ best mean-unbiased 16 • Basu’s theorem: complete sufficient =⇒ independent of any ancillary statistic • Not so in our case! • Sufficient statistic is (N, K) Raleigh, NC, July 13, 2013 17 • Joint distribution: 1 2 pµ (N, k) = p0 (N, k) · exp kµ − nµ 2 β p0 (n, k) = φn(k) · Φ α + k n p0 (2n, k) = φ2n(k) · 1 − βk α + Φ s 2n+β2n2 2n • To establish incompleteness, we must find a function g(k, N ) satisfying: β g(k, 2n) · p0 (2n, k) = − φn(k − z) · g(z, n) · φn(z) · Φ α + z dz n Z Raleigh, NC, July 13, 2013 18 • Example: g(k, n) = ` ! β Φ α + nk g(k, 2n) = − Raleigh, NC, July 13, 2013 ` 1−Φ βk α+ 2n r 2 2n+β 2n , 19 Ordinary Sample Average is Biased and Not Optimal • Generalized sample average: K · [c · I(N = n) + d · I(N = 2n)] µ= N • Expectation: E(µ) = dµ + (c − d)µΦ(ν) + Raleigh, NC, July 13, 2013 2c − d β r · φ(ν) 2 2n 1 + β /n 20 β=0 Generalized Sample Size — completely random sample size • A family of unbiased estimators: 1 − cΦ d= 1−Φ =⇒ E(µ) = µ • Minimum variance: copt = 1 − 1 1−Φ · 2 2−Φ , 2n µ + 2n dopt = 1 + Φ 1 · 2 2−Φ . 2n µ + 2n • No uniform optimum • Ordinary sample average is not optimal Raleigh, NC, July 13, 2013 21 Generalized Sample Size β 6= 0 — stopping rule • All generalized sample averages biased • This includes ordinary sample average! • Asymptotically unbiased (as we known from likelihood) Raleigh, NC, July 13, 2013 22 Generalization 1: Arbitrary Number of Looks • Our stopping rule β Φ α + k n for β → +∞ can be generalized to arbitrary numbers of looks n1 < n2 < . . . < nL by applying Φ αj + βj k nj • Results carry over Raleigh, NC, July 13, 2013 23 Generalization 2: Completely Random Sample Size • Allow for sample sizes with probabilities n 0 1 ··· m πn π0 π1 ··· πm • Incomplete sufficient statistic: g(z, n) = bn m X n=0 Raleigh, NC, July 13, 2013 πn · bn = 0 24 • Generalized sample average: K · an · I(N = n) µ= n=0 n m X • Unbiased generalized sample average: an = 1 + bn • Optimal estimator: an = Raleigh, NC, July 13, 2013 1 µ2 + σ 2/n m πk X k=0 µ2 + σ 2/k 25 Generalization 3: Missing Data • Our stopping rule β Φ α + k n for 0 < β < +∞ corresponds to MAR missingness in independent data • Can be generalized to longitudinal sequences Joint likelihood ≡ selection model representation Conditional likelihood ≡ pattern-mixture model Raleigh, NC, July 13, 2013 26 • Assume, for example Y i = (Y i1 , Y i2) . first block always observed . second one possibly missing • Sample average is not an option: 1 µ1 = N d N X i=1 y i1 n n 1 X 1 X 1 −1 d µ2 = y − Σ21 Σ11 y − n i=1 i2 n i=1 i1 N Raleigh, NC, July 13, 2013 N X i=1 y i1 27 Generalization 4: Informative Cluster Sizes • Either: Model for two random variables: . Outcomes Y i . Cluster size ti • Or: model for three random variables: . Outcomes Y i . Observed cluster size ti . Theoretical cluster size ni ≥ ti • Entirely similar to missing-data setting Raleigh, NC, July 13, 2013 28 Generalization 5: Joint Model for Longitudinal and Survival Data • Model for two, three, or four random variables: . Longitudinal process Y i . Time-to-event outcome Ti . Censoring time Ci . Missing data process Ri • Formulate an appropriate “shared-parameter model” • Results carry over Raleigh, NC, July 13, 2013 29 Conclusions • Commonality across seemingly unrelated settings • Ordinary sample average loses its ‘perfect status’ . Already with completely random sample size ←− lack of completeness . More so with deterministic or probabilistic stopping rule • It nevertheless is a valid estimator: . Asymptotically unbiased (unbiased for CRSS) . Almost optimal . Asymptotically optimal . Consistent with the likelihood Raleigh, NC, July 13, 2013 30
© Copyright 2026 Paperzz