k\1S 197IJ Subkct Cla~3ifirations Key Words and Phrases Pri'-B.ry 62F07 Secondary 62Q05 Panking and Selection; Indifference zone; Subset . . selection: ApproxiJ!lations. * This research was supported in part by the 0ffice of Naval Research ContracL N00014-67-A-0226-00014 and by the National science Foundation Grant 563080-13995, both at Purdue University. SOME APPROXI~~TIONS IN SELECTION THEORY by Raymond J. Carro11* Department of Statistics University of North Carolina at ~aapeZ Hill Institute of Statistics Mineo Series #957 October, 1974 SOME AP~KOX!~~TIO~S 1M SEL~CTION THEORY by Raymond J. Carroll * Department of Statistics University of Nort;71, Carolina SUMf-1ARY Simple approximations are given for the following: of correctly selecting the largest mean from (1) the probability K normal populations with unknown variance using a subset selection approach cow~o~ (2) the same probabilities for selecting the largest or smallest normal variance using either the subset selection or indifference zone approaches. One class of approximations invclve~ computing tail probabilities of the beta distribution, while another (less efficient) class may be co~puted by hand. The bounds are evaluated and shown to compare quite nicely with known exact results. AMB 1970 Subject Classifications Key Words and Phrases Primary 62F07 Secondary 62QOS Ranking and Selection; Indifference zone; Subset se1ectic!) Approximations. * This research was supported in part by the Office of Tlaval Research Contract 1"lOOOl4-67-A-0226-000l4 a.l1d by the National Science Foundation Grant 563')-8013995, both at Purdue University. -2- 1. INTRODUCTION Dudewicz (1969), Dudewicz and Zaino (1971), and Ramberg (1972) considered the problem of approximatiTIg the probability of correctly selecting the largest mean when one is considering K normal populations with common known variance using Bechhofer's (1954) indifference zone approach; they then used their inequalities to derive explicit approximations (depending on the inverse of the standard nomal c.d.f.) to find the sample size necessary to guarantee a probability requirement outside the indifference zone (see also McDonald (1°71)). In this paper, explicit upper bounds on the probability of a correct selection are obtained for selecting a subset containing the largest or smallest normal mean when the common variance is unknown using Gupta's (lS65) rule, and for the probability of correctly selecting the largest or smallest normal variance using either subset selection or the indifference zone. only easy These bounds are not to obtain, but some of them may be computed by hand. Using them, approxinations are given for the various constants necessary in each and, when compared to explicit tabulated favorably. are shown to behave quite The method of proof is simple and relies on two facts; If (1.1) X is a r.v. and If Xl' X2 , ... of any n 1 E lJ are exchangeable r.v. 's (i.e., the joint distribution ~), m of them depends only on ~A P{X. r > 0 e -ra ~( e rX) . P{X > a} (1.2) results~ problem~ A., 1. then for measurable sets , i=l •... ,n} ~ n IT i=l n P(X. 1. E A.) 1. ~ 1 - I i=l P(x. ~ A.) . 1. 1. -3- (1.2) is given in Dykstra, Hewett, and Thompson (1973). the beta censity with (a,S) degrees of freedo~ Finally, recall that is O<x<l, and that if VI' V2 parameters with (r , r l are independent standard has a beta densit, Z) degrees of freedom. (unknown) ordering, t~e of a correct selection M~ANS PROBLEM are normal populations with !'leans III' .•. ,Ilk a common unknovffi variance P* (J 2 If lJ [1] ~ (p(eS)) (2.1) r (J 2 for ~1ich the probability If one takes a sample of size Xl' ... ,5[,:l.. , and if rS such that 2 r Thus, one wants to find ~ max x. - l~j~k c the parameter configuration J given lJ l , ... n frolJ. is an has a chi-squared distribution degrees of freedom, Gupta (lq65) proposed to eliminate x.1 and denotes the true ~ ~l lJ 1 , ... ,lJk is at least as large as a specified constant each population anc foms the sal'lple neans independent estimate of ... goal is to find a rule for aU 'parameter configurations. with random variables with shape and 2. THE BOUNDS FOR THE NORMAL Suppose Ga~~a II. 1 if cS r n -1/2 k,r,P * , such that ,lJ k . peeS) ~ P* , whatever -4- Define (2.2) Lemma 2.1. (2.3) A(P * ) = 2(P*)1/k-l - B(a.,S,y) = Pr{Beta r.v. with F(a.,(3,y) = Pr{F r.v. with (a., S) d.f. (a., 13) d.f. ~ ~ y} y} . Using the rule given by (2.1), P{CS} (2.4) ~ {I - ~ (1 _ F(1,r,c 2/2))}k-l ~ {I - 2- 3/2 c(l + c 2/2r)-(r+l)/2 (l + l/r) ~ {1 Hence, the 1. valt.~e (r~1)/2}k-l 2 }k-l - (2- 1/2 (1 + c-/4r))-r/7. of c for w~lich inf peeS) = P* satisfies (2.5) (2.6) where Proof: where Co is the value for which Letting VI IS (2.4) equals P* denote an incorrect selection, one finds by using (1.2), and Vz are independent chi-square r.v. is with respectively. Thus, I and r d.f. -5- Now, by using (1.1), co = ~. f P{bV l ~ o 2 c xb/2r}dP{V 2 00 J e-xc2b/2r o :S ; (1 - 2b)-1/2 =1 (1 _ 2b)-1/2 (1 2 x} :S + dP{V 2 :S x} c 2b/r)-r/2 . The last term achieves its minimum at b = (c 2 2 - 2)/[2(c /r)(1 which yields the two bounds on Note that the value Co r)] , P{CS} . is easily cOMputed using a method of bisection if one has extensive log and exponential tables calculator. + OT a reasonably sophisticated Note also that these approximations hold for the dual problem of selecting the smallest mean. Remark 2.1. The case where n =1 independent replication ( and hence For ex&~ple, and r s; is formed by a small amount of is small) is certainly non-trivial. in any large scale experiment with interactions where one wants the largest cell mean, taking more than one observation from each population may be infeasible economically; thus, the case where r is small (:S 60) is of interest. k is large (~SO) but No tables are available for this problem, but the approximations (see Tables la and Ib) seem to perform quite well. -6- 3. THE BOUNDS FOR THE GAMMA SCALE PARAMETER PROBLEM Suppose that f '-i -( x) = TIl' ... ,TIk are Gamma populations with densities .. , -xIS . r1. I. ( r(r) 13 r)-l X e , x > 0 (i = 1, ... ,k) , where the shape i parameter r is kno\~ (if s.I. = 1 , the density is called a standard Gamma). The goal is to find subset selection and indifference zone rules for selecting 13 I.. . The best set of tables either the largest or smallest scale parameter for selecting the largest S.1 are due to Gupta (1963), while Gupta and Sobel (1962) have tables for selecting the smallest v "1' ... v ,A f , follow the densities k 1 ... It will be assumed that R•• I. ,.L./:k C-F I.~ samples of size n were available from each population, then nX , ,nXk would still have Gamma l '.J densities with shape parameter nr , so it suffices to conSI._,er n = 1 ) . The problem of selecting the largest 13[1] $ 13[2] ... ~ $ B[k] Pi will be considered first. denote the correct (unknown) ranking of the I. the first integer so that P{CS I r = r O' 13(1] solved assuming n and (assuming n Since c =1 nr = 1. = 1 with r known) selects max l~j~k X. J 0 TI. I. 0 $ 1 if (0 < c < 1) in (3.1) corresponds to the indifference zone rule, one can get answers to both problems by using (3.1) with ~,d Thus, this problem may be The subset selection approach assumes that c is n r O ' where is as large as = ... = S[Ic-l] = o8[k]} = P* x.I. ; .: (3.1) where which gives rise to the largest of II. parameter~ and selects the The indifference zone formulation assumes population Let = 1 simultaneously). Let c ~ 1, 0 ~ 1 (but not c =1 -7- A (P*) 2 A (P*) 3 (3.2) lemma 3.1. =1 _ (p*)l/k-l = (A 2 (p*)fl/r . Using the rule (3.1), ? -r - {(I + co)-/4co} k- l J , so that in the subset selection case, co (3.5) (3.6) ~ * )}, B- l (r,r,A (p*))/{1 - B-1 (r, r ,A (P) 2 Z ~ 2 * 2 A2 (P*) - 1 - [(2 AZ(P ) .. 1) 2 _ 1J1/ and in the indifference zone formulation pees I &) ~ P* when (c = 1) , the smallest r such that satisfies (3.7) (3.8) r 1 = first number r such that B(r,r.o/(l (3.9) r Z = first number r such that r + 0)) ::; AZ(P *) ~ - log Az~P*)/ldg (1+0)2/ 40 Proof: Again, the proof is a simple application of (1.1) and (1. 2) . From (1. 2), if V1 ,and V_ are i.ndependent withf,ie,nsJties 2 (r (r) r~.xr-1e-x ;, then -8- (3.10) co !(-l = [1 - "D(r,r'l+Co)] . This gives (3.3). From (1.1), 00 (3.11) P{V 2 ~ coV } k = (1 ~ f e-x/a(l - co/a)-rdP (V o (1 + which gives (3.4). 2 co) /4co ~ a > (3.8), do T~e req~ire x) for Co < a Co , (1 - co/a) (1 + l/a) , (3.5) and (3.6) are now immediate. now follow from (3.3) and (3.4) with Remark 3. 1. ~ - co/a)-r(l + l/a)-r A sinple argument shows that for (3.12) 2 c (3.7), (3.8) and (3.9) =1 approximations (3.5) and (3.7), while better th~, (3.6) and the use of a computer routine to calculate the Beta distTi- bution, while (3.6) and (3.8) may be done by hand. Note also that the results permit the use of a mixture of the subset selection and indifference zone approaches. The corresponding problem of selecting the SWRllest rule that selects I S[i]/S[l] ~ 0 1 ~ 1 ously). would use the if x.I (3.13) with 1T. S.I ~ c l (but min v A. l~j~k c 1 = 1. J (l and c ) 1 ~ 0 1 1 = may not happen simul tane- For exact results, these rules are Gifferent and cannot be solved by -9- solving the largest parameter case: however, the approximations are symmetric in that in Le~~a 3.1, if one sets ° = 1/° 1 and c = l/c l ' one gets appro- priate bOQ'1ds. Of course, the proble!!" of selecting norr'a1 variances is covered by these results. Remark 3.2. The simple method given here also can be used to yield approxiwations for the indifference zone soallest) ~ince B. 1. proble~ of selecting the t largest (or \'lhen tables are not generally available for this problem if Carroll, Gupta, and r~ang t~2 (see (1974) however), the approximations so derived waule be of interest in practice. 4. TABLES AND EVALUATION OF THE BOUNDS The reSults of Sections 2 and 3 gave bounds using twa methods; Method I uses (1.2) and requires evaluation of Beta probabilities, while Method II uses (1.1) and gives bounds which may be conputed by hand. uniformly better than the Method II bounds. The Method I bounds ar~ Letting Problem 1 be that of Section 2, Problem 2 that of selecting the largest or sMallest gamma scale using subset selection, and Problem 3 that of selecting the largest or gamma scale using the indifference zone, Tables 1 t~rough smalle[~ 3 lead to the following conclusions: (4.1) Method I bounds are very good for all three problems, and get better as as either r or P* increase. It appears hOlllever, that as k -10- .increases, the. ratio of the Nethod' I bounds to· the .exact :~re~n:l1ts also increases slightly. Thus, i f is the largest covered by k existing exact tables, and if the ratio of the bound to the exact results is (4.2) a, one might, for k > ko ' c1.ivide the Methoc I bound by ? Method II bounds perform uniformly well in Problem 1 and quite well for Problem 2 i f conservative. ~ r 10. For Problem 3, they seem to be somewhat For Problem 1, the ratio of Method I bounds to the exact results decreases as ratio decreases as r r 1 or k, or P* P* increase. For Problem 2, this increase, but increases as if one wants to select the largest gamma scale parameter. k increases In this latter case, one should use the method suggested in (4.1). (4.3) Conclusions about the bounds from Problem 3 are difficult to mm:e, since this author for as 0 ~ .50. 0, or applied. can derive exact results from existing tables only It may be that the Method II bounds actually get worse P* increase, so that the suggestion in (4.1) might be The Method II bounds seem to get worse as k increases if in Pro1:len 3 one wants the largest parameter, but better otherwise. (4.4) Recall that the Hetholl II bounds (2.6), (3.6), and (3.9) Jrlay be compute}. by hand. Their good perforBaTIce in these problems will be quite helpful. Tables la and lb compare the bounds given by (2.5) and (2.6) respectivel with the tables of Gupta and Sobel (1957) for k :: 2, 10, 18, 30, 50 and P* = .90, .95, .99 r = 16(4)24, 36, 40, 60, 120, 3f The numbers in parentheses are the ratio of these bounds to the exact results and are most informative. -11- Tables 2a and 2b are concerned with the bounds (3.5) and (3.6) respectively for the problem of selectin~ the largest gamma scale parameter. bounds are conpared with the exact results of Gupta (1963) for 4(2)10, 10(10)50, k = 4(2)10 and P* = .90, .95, .99. v These = 2r = The perform2nce of the bounds of this paper for selecting the smallest gamma scale para~eter, while not included here, turns out to be even better. Tables 3a and 3b give the performance of the bounds derived from (3.8) and (3.9) for the indifferenc0 zone problem of selecting the largest gamma scale parameter (again, these bounds will perform slightly better if one wishes to select the smallest scale parameter). The exact results were derived from Gupta (1963) and Gupta and Sobel (1962); direct comparisons are fairly difficult since the range of 0 values one can obtain using the above tables does not include anything for which TI1US, the bOillld given in (3.8) and any 0 > .50 , which is the most interesting case. seel~s very practical for use where 8 > .5 k , and use of the suggestion given in (4.1) should improve the per- formance of (3.9). Acknowledgement. I wish to thank Professor S. S. Gupta for his support during the writing of my doctoral dissertation, where Method II was studied. -12- REFERENCES [1] Bechhofer, R. E. (1954). A single-sample multiple decision procedure for ranking means of normal populations with known variances. Statist. 25, 16-39. Ann. Math. [2] Carroll, P.. J., Gupta, S. S. and Huang, D. Y. (1974). On selection procedures for the t best populations and some related problems. ~meo graph Series #369~ Purdue University. [3] Dudewicz, E. J. problems. An approximation to the sample size in selection Ann. Math. Statist. ~O, 492-497. (1969). [4] Dudewicz, E. J. and Zaino, N. A. Jr. (1971). Sample size for selection. In Statistical Decision Theory and Related Topics. (edited by S. S. Gupta and J. Yackel), 347-362, Academic Press, IJew York. [5] n. A. Jr. (1973). Events which are almost independent. Ann. Statist. !_, 674-681. [6] Gupta, S. S. populations. (1963). en a selection and ranking procedure for gamma Ann. Inst. Statist. Math. 14, 199-216. [7] Gupta, S. S. (1965). Dykstra, R. L., Hewett, John E., and Thompson, rules. [8] On some multiple decision Teahnometrias. I, 225-245. Gupta, S. S. and Sobel, M. (1957). selection and ranking problems. [9] [10] (selection and rankin; On a statistic which arises in Ann. Math. Statist. ~~, 957-967. Gupta, S. S. and Sobel, M. (1962). On the smallest of several correlated F statistics. Biometrika. 49, 509-523. McDonald, G. C. (1971). en approximating constants required to implement a selection procedure based on ranks. In Statistical Decision Theory and Related Tonics. (edited by S. S. Gupta and J. Yachel) , 299-312, Academic Press, New York. [11] Rambe~g, Statist. J. S. (1972). 43, 1977-1930. Selection sample size approximations. Ann. Math. -13- TA8LE la. Values of the Bound given ~ 2 10 (1. 00) (1.00) (1. 00) 3.54 4.04 5.14 (1.10) (1. 07) (1. 04) 1. 87 2.43 3.57 (1. 00) (1. 00) (1. 00) 3.47 3.94 4.95 (1.10) (1. 07) (1.03) 5.34 1. 86 2.42 3.52 (1. 00) (1. 00) (1. 00) 3.42 3.87 4.84 (1. 09) (1.06) (1.03) 36 1.84 2.38 3.44 (1.00) (1.00) (1. 00) 3.35 3.77 4.65 40 1.84 2.38 3.42 (1. 00) (1. 00) (1. 00) 1.83 2.36 3.38 20 24 60 120 360 a (2.S)a,b • 18 1. 89 2.46 3.65 16 by 30 (1.13) (1.09) (1. 06) 4.34 4.83 5.92 (1. 07) (1.12) (1. OS) (1. 05) 4.22 4.67 5.66 (1.14) (1.10) (1.06) 4.99 5.98 3.82 4.25 5.20 (1.11) (1.08) (1.13) (1.10) (LOS) 4.46 4.87 5.79 (1.11) (1. 04) 4.14 4.57 5.50 (1. 09) (1. 05) (1. 02) 3.72 4.12 4.98 (1.10) (1.07) (1. 03) 4.02 4.41 5.24 (1.11) (1.08) (1. 04) 4.31 4.68 5.50 (1.13) (1. 09) (1. 05) 3.33 3.75 4.61 (1. 08) (1. 05) (1. 02) 3.70 4.10 4.94 (1.10) (1.07) t.oo 4.38 5.19 (1.11) (1. 08) (1. 04) 4.28 4.65 5.45 (1.13) (1.09) (1.05) (1. 00) (1. 00) (1. 00) 3.29 3.69 4.51 (1. 08) (1. 05) (1.02) 3.64 4.02 4.81 (1. 06) (1. 02) 3.93 4.29 5.06 (1.11) (1.07) (1. 03) 4.19 4.54 5.28 (1.12) (1.08) (1.04) 1.31 2.34 3.33 (1. DC) (1. 00) (1. 00) 3.24 (1.07) (1. 04) (1.02) 3.59 3.95 4.70 (1. 09) (1.05) (1.02) 3.36 4.20 (1.11) 4.11 (1.06) 4.92 (1. 03) 4.44 5.14 (1.11) (1. 07) (1. 03) 1. 80 2.32 3.31 (1.00) (1. 00) (1. 00) 3.22 3.60 (1. 07) (1. 04) (1. 02) 3.55 3.91 4.63 (1. 03) (1. 05) (1. 02) 3.82 (1. 09) 4.14 4.84- (1.06) (1.02) For each 3.63 4.42 4.36 3.98 4.47 5.56 3.88 4.3L1· r ~ the first row is for and the third for P* (1.03) (1. 09) p* = .90 (1.15) (1.11) 50 4.70 5.18 6.28 (1.18) (1.13) (1. 09) 4.55 (1.16) (1.12) (1.07) (1.15) (1.06) 4.05 4.33 5.03 , the second for (1.10) (1. 07) (1. 03) P* = .95 , = .99 b The numbers in parentheses are the ratios of the bound in (2.5) with exact results given in Gupta and Sobel (1957). -14- TABLE lb. Values of the Bound given by (2.6)a 7 b • \ \ lc \"'. r\ 16 20 2 \ 10 18 3.74 4.34 5.59 (1. 97) (1. 75) (1. 53) 5.48 6.01 7.24 (1.70) (1. 58) (1.47) 5.96 6.50 3.69 (1. 97) (1. 74) (1.51) 5.30 (1. 68) (1. 57) (1. 44) 5.74 6.21 7.30 (1. 66) 5.79 (1.66) (1. 55) (1. 42) 4.25 5.41 3.65 6.83 30 6.90 8.13 (1. 69) (1. 57) (1. 47) 6.75 7.30 8.55 (1.69) (1.57) (1.47) 6.03 6.57 7.64 (1.64) (1. 56) (1.43) 6.45 (1.56) (1. 43) 6.92 8.01 (1.64) (1.55) (1. 43) 5.59 6.05 7.03 (1. 63) (1. 54) (1. 41) 5.92 6.37 7.35 (1. 62) (1. 53) (1.40) 6.25 (1. 61) 6.68 7.66 (1. 52) (1.40) 5.33 5.76 6.61 (1. 60) (1.50) (1. 37) 5.67 (1. 57) 6.Q5 6.83 (1.49) (1.36) 5.94 6.32 7.15 (1.56) (1.43) (1. 36) 5.61 (1.57) (1.48) (1. 36) 5.88 6.25 7.04 (1.55) (1. 47) (1. 36) (1.54) (1.45) (1.32) 5.72 6.05 6.77 (1. 52) (1. 44) (1. 32) (1.52) (1. 43) (1. 32) 5.56 5.87 (1.50) (1.42) (1. 31) 5.45 5.74 6.34 (1.48) (1.40) (1. 29) 5.39 5.67 6 .2~ (1.47) (1. 39) (1. 28) 7.73 (1.70) (1. 58) (1.47) 6.36 4.20 5.28 (1. 96) (1.73) (1. 50) 5.19 5.65 3.58 4.09 (1. 93) (1. 71) 5.01 5.08 (1.47) 6.28 (1.63) (1.51) (1.38) 3.57 4.07 5.05 (1. 93) 4.98 (1. 62) (1. 71) (1. 47) 5.38 6.21 (1.51) (1. 38) 5.32 5.70 6.54 (1. 59) (1.49) (1. 37) 60 3.54 4.01 4.94 (1. 93) (1.59) (1. 46) 4.37 5.23 6.01 (1.60) (1.49) (1. 36) 5.19 5.56 6.30 (1. 56) (1.49) (1. 34) 3.51 3.96 4.35 (1.92) (1. 69) 4.76 5.12 5.41 (1. 54) (1.45) 5.63 (1.45) 5.83 (1.58) (1.47) (1. 34) 5.07 120 6.08 (1. 32) 6.30 3.47 3.92 4.78 (1. 91) (1. 68) (1. 44) 4.70 5.03 5.70 (1. 57) (1. 46) 4.99 5.23 (1. 33) 5.30 5.96 (1.53) (1. 43) (1. 32) 5.52 6.14 (1. SO) (1. 41) (1. 30) 3.46 3.90 4.74 (1.91) (1.67) (1.44) 4.67 (1.56) (1. 45) (1.32) 4.96 5.27 5.88 (1. 52) (1.43) (1. 31) t; .18 5.47 6.06 (1.49) (1.40) (1.29) 24 36 40 360 00 6.65 5.41 4.99 5.65 50 5.99 6.79 5.47 5.81 6.54 5.32 6.50 aFor each r , the first row is for p* = . 9D , the second for p* = .95, and the third for p* = .99. b fhe numbers in parentheses are'the ratios of (2.6) with the exact results of Gupta and Sobel (1957). -15- TABLE 2a. Values of the Bound given '"" v ~"k 4 by (3.5)a,b • 3 10 4. ::>0000 0.12558 (1.26609) 0.08,388 (1.23980) 0.03513 (1. 22411) 0.09372 (1.440.39) 0.06307 (1.41118) 0.02682 (1. 37937) 0.07818 (1.57333) 0.05269 (1.55640) 0.02272 (1.49637) 0.06806 (1. 70445) 0.04623 (1. 64387) 0.01967 (1. 62714) 5.00000 0.17931 (1.17531) 0.14638 (1.14773) 0.07761 (1.12097) 0.05935 (1. 27389) 0.11882 (1.24558) 0.06417 (1.21547) 0.13873 (1. 3.5518) 0.10434 (1.32259) 0.05703 (1.26244) 0.12558 (1. 41738) 0.09489 (1.38048) 0.05214 (1. 32324) 3.00000 0.25298 (1.13051) 0.17931 (1.11499) 0.11821 (1. 032(3) 0.21148 (1.20581) 0.1672e (1.17764) 0.10137 (1.14431) 0.18897 (1. 26475) 0.15024- (1.22472) 0.09198 (1.18510) 0.17398 (1. 31053) 0.13873 (1.26868) 0.08561 (1.21484) ).00000 0.29743 (1.10613) 0.23933 (1.09052) 0.15413 (1.06405) 0.25452 (1.16691) 0.20719 (1.14387) 0.13557 (1.10644) 0.23114 (1. 20706) 0.18897 (1.13008) 0.12497 (1.13631) 0.21507 (1. 24611) 0.17667 (1. 21128) O.117EO (1.15647) :::.00000 0.43367 (1. 06071) 0.37588 (1.04320) 0.28200 (1.03190) 0.39083 (1. 09510) 0.34163 (1. 07426) 0.25992 (1. 05032) 0.36670 (1.11535) 0.32172 (1.09413) 0.24612 (1.06452) 0.34959 (1.13276) 0.30821 (1.10639) 0.23709 0.07555) 0.50866 (1. 04589) 0.45300 (1. 03753) 0.36125 (1.09620) 0.46863 (1.06695) ].00000 0.42074 (1.05290) 0.44430 (1. 03364) 0.40034 (1. J6909) 0.32428 (1.04539) 0.42867 (1. 09408) 0.38706 (1.07734) 0.31493 (1.05103) 0.49762 (1.06707) 0.45506 (1.05480) 0.38052 (1. 03280) 0.48245 (1.07577) 0.33812 (1. 03512) 0.55801 (1. 03762) 0.50644- (1.02678) 0.41583 (1.01964) 0.S198S (1.05607) :'.00000 0.00000 0.59439 (1.03298) 0.54503 (1.02371) 0.45817 (1. 01491) 0.55801 (1.04837) 0.51423 (1.03650) 0.43669 (1. 02132) 0.47391 (1.04450) 0.39367 (1.02624) 0.53696 (1.05781) 0.49653 (1. 02906) 0.42272 (1.02906) I 0.44175 (1.06170) 0.37036 (1.0395':) 0.52211 (1. 06491) 0.41338 (1.03171) 0.41388 (1.03171) a For each r , the first row is for p* = .90 , the second for p* = .95, and the third for p* = .99 . b The numbers in parentheses are the ratios of (3.5) to exact results given by Gupta (1963). v = 2r . -16- TABLE 2b. Values of the Bound given \. \ by (3.6)a)b . \ k v\\ 10 4 6 8 4.00000 0.05133 (3.09740) 0.03486 (2.93339) 0.01489 (2.88734) 0.03897 (3.46429) 0.02663 (3.34252) 0.01146 (3.22880) 0.03258 (3.77528) 0.02232 (3.67324) 0.00966 (3.52010) 0.02853 (4.06533) 0.019.59 (3.87G08) 0.00850 (3.76508) 6.00000 0.09816 (2.36356) 0.07409 (2.26748) 0.04047 (2.14948) 0.03031 (2.S2780) 0.06105 (2. ~·2415) 0.03370 (2.31441) 0.07057 (2.66409) 0.05386 (2.56193) 0.02991 (2.40744) 0.06416 (2.77438) 0.04910 (2.66'787) 0.02737 (2.52061) 8.00000 0.14005 (2.04217) 0.11143 (1.97425) 0.06866 (1. 86426) 0.11395 (2.14385) 0.09534- (2.06640) 0.05940 (1.95.300) 0.10713 (2.23089) 0.03622 (2.13399) 0.05406 (2.01631) 0.09922 (2.29803) 0.08007 (2.197g6) 0.05042 (2.06272) 0.17648 (0.86421) 0.14501 (1.79983) 0.09604 (1.70757) 0.15335 (1.93671) 0.12691 (1.86746) 0.03499 (1.76498) 0.14021 (1. ge9S'1) 10.00000 0.11650 (1.91410) 0.07851 (1.80859) 0.13130 (2.04107) 0.10941 (1. 95601) 0.07405 (1.83655) J.OOOOO 0.30324 (1.51696) 0.26690 (1.47621) 0.20543 (1.41657) 0.27673 (1.54666) 0.24500 (1. 4~7(6) 0.19036 (1.43412) ~.261l7 (1. 56606) 0.23201 (1.51718) 0.18126 (1. 44541) 0.25039" (1.53151) 0.22296 (1.529L!·4) 0.17486 (1.45835) "J. oooeo 0.38037 (1. 39681) 0.34421 (1. 36545) 0.28018 (1. 41337) 0.35420 (1.41163) 0.32172 (1.37698) 0.26482 (1. 32567) 0.33835 (1. 42455) 0.30322 (1.33862) 0.25415 (1.33385) 0.32729 (1.43299) 0.29874 (1.39583) 0.24715 (1. 33028) -1. 00000 0.43513 (1.33063) 0.39914 (1. 30281) 0.33512 (1.26523) 0.40899 (1.34233) 0.37683 (1. 31360) 0.31868 (1.26771) 0.39334 (1.34996) 0.36335 (1. 32105) 0.30860 (1. 27351) 0.38237 (1.35733) 0.35384 (1.32548) 0.30140 (1. 2773.5) 0.00000 0.47607 (1. 2(971) 0.44100 (1.26531) 0.37785 (1.23066) 0.45063 (1.29819) 0.41911 (1.27175) 0.36146 (1. 23388) 0.43532 (1.30477) 0.40532 (1. 27647.) 0.35136 (1.23304) 0.42456 (1. 30960) 0.39642 (1.28147) 0.34414 (1. 24076) \ '-'-' a For each r , the first row is for and the third for p* = .99 . b The numbers in parentheses are the ratios of (3.6) to exact results given by Gupta (1963) . v = 2r p* = .90 , the second for p* = .95 , -17- TABLE 3a. = 2r Values of v .25 .30 .35 .40 .45 by (3.8)a,b . 10 6 4 ',,- given 8 11 17 (1.00) (1.10) (1. 00) 10 13 20 (1. 25) (1.08) (1.11) 12 14 21 (1. 20) (1.16) (1. 05) 12 15 23 (1. 20) (1. 07) (1.15) 11 14 (1.00) (1. 00) 13 17 (1. 00) 25 15 13 27 (1. 25) (1. 12) (1.03) 16 20 23 (1.33) (1. 25) 22 (1. 08) (1. 21) (1. 04) 13 18 17 21 32 (1.21) (1.05) (1. 06) 19 24 29 (1. 08) (1.12) (1. 03) 35 (1.18) (1.20) (1.09) 21 25 36 (1.31) (1.13) (1. 05) 17 23 , 37 (1. 06) (1. 04) (1. 02) 21 27 (1.16) (1.12) (1. 05) 24 30 45 (1.20) (LIS) (1. 07) 26 33 47 (1.18) (1.17) (1.06) 22 (1.10) (1. 07) (1. 04) (1.16) (1.12) 31 39 58 (1.19) (1.14) 34 42 61 (1.21) (1.16) 30 48 42 28 36 54 - - (1.07) - a For each c , the first row is for the third for p* = .99 . b The numbers in parentheses are the ratios of these results to exact results given by Gupta (1963). p* = .90 , the second for p* - .95 , -18- TABLE 3b. Values of v = 2r given IE IS (1. 90) 26 (1. 44) 26 31 (2.16) (1. 93) (1.57) 57 (2.12) (1. 86) (1.58) .425 33 46 65 (2.11) (1. 91) (1. 54) .45 44 S3 74 58 70 .25 .35 44 34 .40 41 (2.00) {3.9)a b . 5 8 6 4 by 10 18 21 28 (2.25) (1.75) (1. 55) 19 23 30 (1. 90) (1. 91) (1.50) 20 24 31 (2.00) (1.71) (1. 55) 30 32 LlO 50 (2.00) (1. 90) (1. 56) 34 "R:> '.' 48 (2.14) (1. 75) (1. 60) 52 (2.12) (1.31) (1.52) 39 46 62 (2.16) (1.91) (1. 55) 42 49 65 (2.10) (1.83) (1. 54) 44 51 67 (7. .00) (1. 82) (1.52) 44 52 70 (2.20) (1.85) (1. 52) 48 56 74 (2.18) (1.83) (1.54 ) 51 59 77 (2.12) (1. 96) (1.54) (2.00) (1. 89) (1. 60) 50 60 (2.08) (1. 87) SS (2.11) (1. 88) 58 67 (2.07) (1. 86) (2.23) (1. 91) 66 78 35 - .50 - (2.20) (1. 85) - 64 72 154 - - (2. 00) (1.83) - 76 88 (2.11) (1. 96) - a For each t'i , the first row is for and the third for p* = .99 • b The numbers in parentheses are the ratios of these results to exact results given in Gupta (1963). F* = .SO , the second for p* = .95 ,
© Copyright 2025 Paperzz