Susan E. Spruill and John O. Rawlings FOUR WAYS TO CREATE GABRIEL'S BIPLOTS FOR GRAPHIC REPRESENTATION OF PRINCIPAL COMPONENT ANALYSES I MIMEO SERIES # 2213 February, 1992 NORTH CAROLINA STATE UNIVERSITY Raleigh, North Carolina MH'EO SE~IES Spruill, S. & Rawlings, FOUR WAYS TO CREATE ff2213GABRIEL'S BIPLOTS FOR GRAPHIC REPRESENTATION OF PRINCIPAL COMPNT. NAME DATE I I f'_ 1 Four Ways to Create Gabriel's Biplots for Graphic Representation of Principal Component Analyses by Susan E. Spruill and John O. Rawlings -----------/ ~~ Institute of Statistics Mimeograph Series No. 2213 February, 1992 ( 1 February 14, 1992 Four Ways to Create Gabriel's Biplots for Graphic Representation of Principal Component Analyses Principal component analysis is a useful tool for diagnosing the correlational structure of a dataset, but the results of this analysis are sometimes difficult to visualize and interpret. Gabriel's G-H biplots (Gabriel, 1971) are informative plots that utilize the principal component analysis to show the relationship among the independent variables (correlation), similarities of individual datapoints (clustering), and relative importance of the observations to each independent variable. The purpose of this exercise was to find ways to utilize SAS and S-PLUS procedures to create Gabriel's G-H biplots. The following examples are four programs that produce Gabriel's G-H biplots. The first program is Gabriel's BIPLOTS program (Gabriel, 1975). Two of the programs are SAS methods (IML and PRINCOMP) and the fourth utilizes S-PLUS (Statistical Sciences, Inc). The data being used in the examples are from Dan Richter's Duke Phase II soils data (1990). Gabriel, K.R., 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika. 58:453-467. Gabriel, K.R., 1975. Appendix: Computer subroutine BIPLOT. in The Joy of Statistics. (unpublished). SAS Institute Inc. SAS/IML User's Guide for Personal Computers. Version 6 Edition. Cary, NC: SAS Institute Inc.1985. 243 pp. SAS Institute Inc. The PRINCOMP procedure. SAS User's Guide: Statistics, Version 5 Edition. Cary, NC: SAS Institute Inc. 1985. pp 621-637. Statistical Sciences, Inc., 1700 Westlake Ave. N., Suite 500, Seattle, WA 98109. ., ') BIPLOTS PROGRAM 3 1 BIPLOTS is located on the NCSUVM system under "NSBD.LOAD" ,,0 (see JCL statements). Input is in Fortran IV format as follows (the column positions of these options are important): col umn # 12345678901234567890123456789012345678901234567 89012345 67890 JCL IISOILS JOB NCS.ES.C5780,SPRUILL II EXEC PGM=BIPLOT IISTEPLIB DD DSN=NSBD.LOAD,DISP=SHR IIFT03F001 DD SYSOUT=A,DCB=(RECFM=FA,BLKSIZE=133) IIFT01F001 DD * DUKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER (SCALED) TITLE NROW NCOL ISYM ITRA NDRO NDCO MTRO MTCO IMTRO IMTCO line 2 54 5 1 BOUND line 3 line 4 1 1 1 COMP IFMT RHSQl 1 1 RHOSQ2 0 0 RHOSQ3 5.000 4 1 0.0 0.0 0.0 (F9.6,4F10.6) -0.073317 -0.127631 0.066638 -0.011778 -0.057094 -0.060112 0.052142 -0.058041 -0.045873 -0.239499 -0.099725 -0.095511 -0.087708 -0.146846 -0.106032 -0.071116 0.223842 0.152030 0.049855 0.098617 DATA -0.077718 -0.053510 -0.097525 -0.060112 column # -0.152015 -0.139739 -0.081048 -0.116532 -0.321833 -0.212413 0.107515 -0.171496 -0.225526 -0.052645 -0.191140 -0.111440 0.094169 -0.168289 0.003958 0.352205 1234567890123456789012345678901234567 890123456789012345 67 890 The first line after the JCL statements is a TITLE statement followed in the second line by these program options: NROW NCOL ISYM = number = number ITRA = NDRO = NDCO = = of rows in data matrix of columns in data matrix 1 if read entire X matrix 2 if read only lower triangle of symmetric X 3 if read only upper triangle of symmetric X 1 if X is not to be transposed before decomposition 2 if X is to be transposed before decomposition type of row deviations to be made before decomposing X: 1 - not adjusted 2 - deviated from means 3 - weighted 4, 5, 6 - contingency tables type of column deviations to be made before decomposing X: (same as NDRO, but only 1, 2, or 3 can be used) 4 MTRO <~ = for use in weighting rows: 1 - no weights 2 - same as NDRO #3 3 - use inverse variance 4 - input vector of weights 5 - input matrix of inverses MTCO = same as MTRO but for columns. IMTRO = 0 - to suppress output of weight matrix 1 - to print out weight matrix IMTCO = same as IMTRO but for columns. The third input line contains the options: BOUND = percent of original sums of squares of X for residuals before stopping. COMP = maximum number of components to be calculated. IFMT = number of format cards to follow. RHOSQ1, RHOSQ2, and RHOSQ3 = Roy's maximum characteristic root distribution for printout of radii of comparison circles. The fourth line is the FORTRAN format code for the input of the ,~ data matrix which follows in the succeeding lines. More details on these options are given in Gabriel, 1975. For this example, the data matrix contains data that is already centered and scaled to unit length. The singular value decomposition of X (n*p) is defined as SVD(X) = V*L*W', where V=roweigenvectors (n*p) , L=root of eigenvalues (p*p) , and W=column eigenvectors (p*p). Coordinates for the plots were computed as G=V, the row eigenvectors, and as H=W*L', the column eigenvectors times the square root of the eigenvalues. The resulting eigenvalues and percent variances were: Order 1 2 3 4 5 Eigenvalue Percent 1.70468 1.37646 0.94223 0.72548 not computed 34.0937 27.5291 18.8445 14.5096 5 • .~ IISOILS JOB NCS.ES.C5780,SPRUILL II EXEC PGM=BIPLOT IISTEPLIB DD DSN=NSBD.LOAD,DISP=SHR IIFT03F001 DD SYSOUT=A,DCB=(RECFM=FA,BLKSIZE=133) IIFT01F001 DD * DUKE FOREST PHASE I I SOILS ANALYSIS - FROM RICHTER (SCALED) 1 1 0 0 5 1 1 1 1 54 0.0 0.0 5.000 4 1 0.0 (F9.6,4F10.6) -0.073317 -0.127631 0.066638 -0.011778 -0.057094 ~0.060112 0.052142 -0.058041 -0.045873 -0.239499 -0.099725 -0.095511 -0.087708 -0.146846 -0.106032 -0.071116 0.223842 0.152030 0.049855 0.098617 0.063128 -0.179259 0.099913 0.129847 0.080822 -0.108528 0.141439 0.144413 0.082639 -0.048196 -0.029302 -0.057000 0.019332 0.078705 -0.106032 -0.156944 0.258653 0.029756 -0.035382 -0.101583 0.032318 -0.145793 0.137598 0.127224 0.125311 -0.031503 -0.062381 0.003697 0.123290 -0.061543 -0.099725 0.046760 -0.162275 0.007892 0.000741 -0.051309 0.065091 0.147620 -0.142912 -0.239499 -0.112930 0.085776 0.062228 0.047233 -0.110481 -0.073317 ~0.157901 0.092296 0.154763 -0.097134 -0.042507 -0.027234 0.125971 0.213773 -0.074890 -0.123933 0.091325 -0.045613 0.077393 -0.074890 -0.150342 0.380071 0.077463 -0.081279 -0.057094 -0.145941 0.106124 0.045792 0.043299 -0.012605 0.124748 -0.078357 -0.034388 -0.036693 -0.070441 0.078533 -0.007054 0.075859 -0.019646 0.147555 0.100540 -0.073144 0.036972 -0.099638 0.049679 0.069730 0.123950 0.202944 0.216396 -0.195010 0.355824 -0.106946 0.055413 -0.212413 0.022986 0.245788 0.012454 0.384552 0.343596 0.174249 -0.082120 0.153716 -0.193545 -0.144223 -0.012605 -0.090923 0.004214 -0.017150 0.006581 -0.154970 0.276598 -0.105937 0.119156 -0.031448 -0.088237 0.190770 -0.025552 0.196931 -0.086524 -0.048196 0.038920 0.102592 0.154435 -0.003910 0.085271 0.120347 -0.006717 0.043386 0.009204 0.054128 0.406441 -0.116700 -0.011938 -0.149469 -0.097134 -0.121733 0.348119 -0.141428 -0.106194 -0.128277 ~0.099725 0.233596 -0.015145 -0.064231 -0.217255 -0.011696 0.127818 0.043386 -0.169139 0.325512 0.305208 -0.197085 0.131183 0.062969 -0.083788 0.230383 -0.016303 0.208156 0.136404 -0.030401 -0.029302 0.028766 -0.057640 -0.045873 0.058577 -0.097525 0.133704 -0.127798 0.173121 0.027435 -0.093123 -0.137217 -0.176708 -0.140289 0.005190 -0.093123 0.015985 0.016125 0.076082 0.049679 0.181967 0.000178 0.118755 0.083950 0.174249 -0.011696 -0.118718 -0.197153 -0.287160 0.027435 -0.099725 -0.060027 -0.029177 0.367200 -0.128277 -0.115130 -0.242659 -0.055636 0.007892 0.361103 0.056526 -0.097024 -0.088911 0.089196 -0.146072 -0.075517 -0.107114 -0.219604 -0.129799 -0.017054 0.043322 -0.050441 -0.170694 0.174433 0.076373 -0.117331 -0.093493 -0.134613 -0.133733 -0.030401 -0.077718 0.152875 -0.121383 -0.026203 0.263227 0.014712 0.093343 0.007305 0.013138 0.125311 -0.077718 -0.152015 -0.321833 -0.212413 0.107515 -0.053510 -0.139739 -0.171496 -0.225526 -0.052645 -0.097525 -0.081048 -0.191140 -0.111440 0.094169 -0.060112 -0.116532 -0.168289 0.003958 0.352205 6 lDUKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER (SCALED) NROW NCOL ISYM ITRA NDRO NDCO MTRO MTCO IMTRO IMTCO 54 5 1 1 1 1 1 1 0 0 BOUND COMP IFMT 5.000 4 1 VARIABLE FORMAT FOR DATA RHOSQl 0.0 RHOSQ2 0.0 MATRIX (F9.6,4Fl0.6) ," 7 RHOSQ3 0.0 1DUKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER (SCALED) DATA MATRIX, -0.07332 -0.06011 -0.09972 -0.07112 0.06313 -0.10853 -0.02930 -0.15694 0.03232 -0.03150 -0.09972 -0.05131 -0.11293 -0.07332 -0.04251 -0.12393 -0.15034 -0.14594 0.12475 0.07853 0.10054 0.06973 0.35582 0.24579 -0.08212 -0.09092 0.27660 0.19077 0.03892 0.12035 0.40644 -0.12173 -0.09972 -0.01170 0.30521 0.23038 -0.02930 -0.09753 -0.09312 -0.09312 0.18197 -0.01170 -0.09972 -0.11513 0.05653 -0.07552 0.04332 -0.11733 -0.07772 0.01471 -0.07772 -0.05351 -0.09753 -0.06011 -0.12763 0.05214 -0.09551 0.22384 -0.17926 0.14144 -0.05700 0.25865 -0.14579 -0.06238 0.04676 0.06509 0.08578 -0.15790 -0.02723 0.09133 0.38007 0.10612 -0.07836 -0.00705 -0.07314 0.12395 -0.10695 0.01245 0.15372 0.00421 -0.10594 -0.02555 0.10259 -0.00672 -0.11670 0.34812 0.23360 0.12782 -0.19708 -0.01630 0.02877 0.13370 -0.13722 0.01599 0.00018 -0.11872 -0.06003 -0.24266 -0.09702 -0.10711 -0.05044 -0.09349 0.15287 0.09334 -0.15201 -0.13974 -0.08105 -0.11653 -0.01178 -0.04587 -0.14685 0.04986 0.12985 0.08264 0.07870 -0.03538 0.12722 0.12329 0.00789 -0.14291 0.04723 0.15476 0.21377 0.07739 -0.08128 0.04330 -0.03669 -0.01965 -0.09964 0.21640 -0.21241 0.34360 -0.14422 0.00658 -0.03145 -0.08652 -0.00391 0.00920 -0.14947 -0.10619 -0.06423 -0.16914 0.06297 0.13640 -0.04587 0.17312 -0.14029 0.07608 0.08395 -0.28716 0.36720 0.00789 0.08920 -0.12980 0.17443 -0.13373 -0.02620 0.01314 -0.21241 -0.22553 -0.11144 0.00396 0.06664 -0.05804 -0.08771 0.15203 0.09991 0.14441 0.01933 0.02976 0.13760 0.00370 -0.16228 0.14762 0.06223 0.09230 0.12597 -0.04561 0.07746 0.04579 -0.03439 0.07586 0.03697 0.20294 0.05541 0.38455 -0.19354 -0.01715 0.11916 0.19693 0.15444 0.04339 -0.01194 -0.14143 -0.01514 0.04339 0.13118 0.20816 -0.05764 -0.12780 -0.17671 0.01612 0.11875 -0.19715 -0.02918 -0.05564 -0.08891 -0.21960 -0.17069 -0.13461 -0.12138 0.00730 -0.32183 -0.17150 -0.19114 -0.16829 8 -0.05709 -0.23950 -0.10603 0.09862 0.08082 -0.04820 -0.10603 -0.10158 0.12531 -0.06154 0.00074 -0.23950 -0.11048 -0.09713 -0.07489 -0.07489 -0.05709 -0.01260 -0.07044 0.14756 0.04968 -0.19501 0.02299 0.17425 -0.01260 -0.15497 -0.08824 -0.04820 0.08527 0.05413 -0.09713 -0.12828 -0.21726 0.32551 -0.08379 -0.03040 0.05858 0.02744 0.00519 0.04968 0.17425 0.02744 -0.12828 0.36110 -0.14607 -0.01705 0.07637 -0.03040 0.26323 0.12531 0.10751 -0.05264 0.09417 0.35221 ~, lDUKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER (SCALED) PRODUCT MATRIX· 1 O.99999830D+OO -O.35611405D+OO O.45217659D+OO O.51606429D-Ol O.48697931D-Ol 2 -O.35611405D+OO O.99999938D+OO O.14355015D+OO O.25729240D-Ol -O.16764408D+OO 3 O.45217659D+OO O.14355015D+OO O.l0000003D+Ol O.49558986D+OO -O.84879438D-Ol 4 O.51606429D-Ol O.25729240D-Ol O.49558986D+OO O.l0000009D+Ol -O.19551719D-Ol 5 O.48697931D-Ol -O.16764408D+OO -O.84879438D-Ol -O.19551719D-Ol O.99999897D+OO EUCLIDEAN NORM O.499999786D+Ol 9 1DUKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER (SCALED) 1TH COMPONENT CORRESPONDING TO ROOT 0.329531323D+01 0.130564D+01 (SQUARE OF ROOT 0.170468D+01 ) 70 ITERATIONS. REMAINDER 34.093707 PERCENT 65.9063 PERCENT W(J) V(I) 0.0119 -0.0690 -0.1326 0.0509 0.1387 0.0552 0.0365 -0.0770 0.1413 0.0441 -0.1242 0.0022 0.0028 0.0939 0.1364 -0.0471 -0.0778 -0.0247 0.0251 0.0592 0.0240 0.2142 0.0940 0.4259 -0.2005 -0.0383 0.1696 0.1472 0.0840 0.0728 0.1079 -0.1854 -0.0837 -0.0671 0.2308 0.2550 -0.0633 -0.0478 -0.1736 0.51827827D+00 -0.96441436D-01 0.0080 -0.0467 -0.0897 0.0344 0.0939 0.0373 0.0247 -0.0521 0.0956 0.0298 -0.0840 0.0015 0.0019 0.0635 0.0923 -0.0319 -0.0527 -0.0167 0.0170 0.0400 0.0163 0.1449 0.0636 0.2882 -0.1357 -0.0259 0.1148 0.0996 0.0569 0.0493 0.0730 -0.1255 -0.0566 -0.0454 0.1562 0.1725 -0.0428 -0.0323 -0.1175 -0.0015 0.0087 0.0167 -0.0064 -0.0175 -0.0069 -0.0046 0.0097 -0.0178 -0.0056 0.0156 -0.0003 -0.0003 -0.0118 -0.0172 0.0059 0.0098 0.0031 -0.0032 -0.0074 -0.0030 -0.0270 -0.0118 -0.0536 0.0253 0.0048 -0.0214 -0.0185 -0.0106 -0.0092 -0.0136 0.0233 0.0105 0.0085 -0.0291 -0.0321 0.0080 0.0060 0.0219 0.67732351D+00 0.0105 -0.0610 -0.1173 0.0450 0.1227 0.0488 0.0322 -0.0681 0.1250 0.0390 -0.1098 0.0019 0.0024 0.0830 0.1206 -0.0417 -0.0688 -0.0218 0.0222 0.0523 0.0212 0.1894 0.0831 0.3766 -0.1773 -0.0339 0.1500 0.1302 0.0743 0.0644 0.0954 -0.1640 -0.0740 -0.0593 0.2041 0.2255 -0.0560 -0.0423 -0.1536 10 0.51180928D+00 -0.37024567D-01 0.0079 -0.0461 -0.0886 0.0340 0.0927 0.0369 0.0244 -0.0514 0.0944 0.0295 -0.0830 0.0015 0.0018 0.0627 0.0912 -0.0315 -0.0520 -0.0165 0.0168 0.0395 0.0161 0.1431 0.0628 0.2846 -0.1340 -0.0256 0.1133 0.0984 0.0562 0.0487 0.0721 -0.1239 -0.0559 -0.0448 0.1542 0.1704 -0.0423 -0.0319 -0.1160 -0.0006 0.0033 0.0064 -0.0025 -0.0067 -0.0027 -0.0018 0.0037 -0.0068 -0.0021 0.0060 -0.0001 -0.0001 -0.0045 -0.0066 0.0023 0.0038 0.0012 -0.0012 -0.0029 -0.0012 -0.0104 -0.0045 -0.0206 0.0097 0.0019 -0.0082 -0.0071 -0.0041 -0.0035 -0.0052 0.0090 0.0040 0.0032 -0.0112 -0.0123 0.0031 0.0023 0.0084 " -0.0014 0.1618 -0.2115 0.0973 -0.0638 0.0226 -0.1864 -0.0014 -0.1611 -0.1228 0.0043 -0.2729 -0.1868 -0.1782 -0.1110 -0.0009 0.1095 -0.1431 0.0658 -0.0432 0.0153 -0.1261 -0.0010 -0.1090 -0.0831 0.0029 -0.1847 -0.1264 -0.1206 -0.0751 0.0002 -0.0204 0.0266 -0.0123 0.0080 -0.0028 0.0235 0.0002 0.0203 0.0155 -0.0005 0.0344 0.0235 0.0224 0.0140 -0.0012 0.1431 -0.1870 0.0860 -0.0564 0.0200 -0.1648 -0.0013 -0.1424 -0.1086 0.0038 -0.2413 -0.1652 -0.1576 -0.0982 11 -0.0009 0.1081 -0.1413 0.0650 -0.0426 0.0151 -0.1246 -0.0009 -0.1076 -0.0821 0.0029 -0.1824 -0.1248 -0.1191 -0.0742 0.0001 -0.0078 0.0102 -0.0047 0.0031 -0.0011 0.0090 0.0001 0.0078 0.0059 -0.0002 0.0132 0.0090 0.0086 0.0054 1DUKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER (SCALED) 1TH RESIDUAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 -0.0814 -0.0134 -0.0100 -0.1055 -0.0308 -0.1458 -0.0540 -0.1049 -0.0633 -0.0613 -0.0157 -0.0528 -0.1148 -0.1368 -0.1348 -0.0920 -0.0977 -0.1292 0.1078 0.0385 0.0843 -0.0752 0.2922 -0.0424 0.0536 -0.0650 0.1618 0.0911 -0.0179 0.0711 0.3334 0.0037 -0.0431 0.0337 0.1490 0.0578 0.0135 -0.0652 0.0244 -0.0922 0.0725 0.1314 -0.1656 -0.1261 0.0435 -0.1122 0.2302 -0.1618 0.1484 -0.0524 0.2490 -0.1280 -0.0568 0.0311 0.0654 0.0861 -0.1461 -0.0101 0.0854 0.3703 0.1030 -0.0752 0.0004 -0.0701 0.1509 -0.0951 0.0661 0.1285 -0.0006 -0.0846 -0.0070 0.1132 0.0025 -0.1031 0.3248 0.2231 0.1194 -0.1680 0.0158 0.0208 0.1277 -0.1591 0.0158 0.0206 -0.1453 -0.0478 0.0561 0.0030 0.0295 0.1071 -0.0228 0.0956 -0.0129 0.0978 0.0126 -0.0353 -0.0525 0.1457 0.0598 0.0093 0.0053 -0.0039 0.1463 0.0676 -0.0566 0.0235 0.0157 0.0136 -0.0277 0.0079 -0.0162 0.0167 -0.0308 0.0667 0.0801 -0.0210 -0.1074 0.0225 0.0589 0.1027 -0.0729 -0.0173 -0.0017 -0.0855 -0.0232 0.0173 -0.0243 -0.0101 -0.1152 12 -0.0197 0.0002 -0.0582 0.0159 0.0371 0.0458 0.0543 0.0160 0.0328 0.0938 0.0909 -0.1444 0.0454 0.0920 0.1226 0.1089 -0.0293 0.0598 -0.0535 -0.0592 -0.1157 0.0733 -0.2752 0.0590 -0.0102 0.0322 -0.1448 -0.1849 -0.0601 -0.0395 -0.2216 0.0177 -0.0083 -0.1243 -0.0913 -0.0340 -0.0036 0.2051 -0.0243 0.0770 -0.0242 -0.1458 0.3022 -0.0565 -0.2428 -0.1124 0.1011 0.0875 -0.0455 -0.1043 -0.1053 0.1321 -0.0594 -0.0053 -0.2394 -0.1103 -0.0926 -0.0683 -0.0772 -0.0609 -0.0138 -0.0692 0.1504 0.0508 -0.1847 0.0275 0.1948 -0.0223 -0.1568 -0.0800 -0.0411 0.0893 0.0576 -0.0919 -0.1372 -0.2213 0.3223 -0.0726 -0.0181 0.0555 0.0251 -0.0032 0.0496 0.1821 0.0172 -0.1236 ,. 44 45 46 47 48 49 50 51 52 53 54 -0.0720 0.0412 0.0506 0.0443 -0.0083 0.0054 0.0118 0.1069 0.0729 0.0231 0.0150 -0.2507 -0.0942 -0.1306 -0.0506 -0.1138 0.1374 0.0939 -0.1864 -0.1633 -0.1035 -0.1305 0.0008 -0.1089 -0.0548 -0.1694 0.0078 -0.0127 0.0035 -0.0805 -0.0063 -0.0335 -0.0701 0.0505 0.0741 -0.0052 0.1754 -0.0261 0.0559 0.0102 -0.0301 -0.1007 0.0077 0.0781 CANONICAL WEIGHTS FOR COLS 0.518278 -0.096441 0.677324 0.511809 -0.037025 FOR ROWS 0.011896 -0.069014 -0.132588 0.050851 0.138740 0.055150 FOR ROWS 0.036467 -0.076958 0.141298 0.044095 -0.124151 0.002175 FOR ROWS 0.002766 0.093862 0.136411 -0.047142 -0.077810 -0.024685 FOR ROWS 0.025082 0.059163 0.024026 0.214162 0.093974 0.425889 FOR ROWS -0.200535 -0.038326 0.169611 0.147225 0.084037 0.072849 FOR ROWS 0.107928 -0.185395 -0.083716 -0.067110 0.230825 0.254973 FOR ROWS -0.063302 -0.047801 -0.173641 -0.001366 0.161793 -0.211495 FOR ROWS 0.097292 -0.063786 0.022588 -0.186386 -0.001416 -0.161064 FOR ROWS -0.122849 0.004331 -0.272894 -0.186799 -0.178239 -0.110993 13 0.3580 -0.1450 -0.0261 0.0763 -0.0382 0.2573 0.1255 0.0943 -0.0617 0.0856 0.3468 lDUKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER (SCALED) PRODUCT MATRIX 1 O.54209893D+OO -0.27090794D+00 -0.14623940D+00 -0.40057758D+00 0.81409169D-Ol 2 -O.27090794D+00 O.98414419D+OO 0.25490365D+00 O.10987183D+OO -0.17373100D+00 3 -0.14623940D+00 O.25490365D+00 0.21794707D+00 -O.95356886D-Ol -0.42130027D-Ol 4 -0.40057758D+00 0.10987183D+00 -0.95356886D-Ol 0.55346089D+OO 0.12751227D-Ol 5 0.81409169D-Ol -0.17373100D+OO -0.42130027D-Ol O.12751227D-Ol 0.99766216D+00 EUCLIDEAN NORM 0.329531323D+Ol 14 lDUKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER (SCALED) 2TH COMPONENT CORRESPONDING TO ROOT 0.191885761D+Ol 0.117322D+Ol (SQUARE OF ROOT 0.137646D+Ol ) 53 ITERATIONS. REMAINDER 27.529124 PERCENT 38.3772 PERCENT W(J) V(I) -0.0195 0.1212 -0.0311 0.1635 -0.1133 0.1885 0.0378 0.2490 -0.0920 0.0269 0.0391 0.1384 0.1569 0.0211 0.0999 0.1397 0.3006 0.1417 -0.0828 -0.0796 -0.1174 0.2070 -0.2475 -0.0006 0.0602 0.0924 -0.1221 -0.0557 0.0417 -0.0595 -0.2249 0.2529 0.2403 -0.0712 -0.1648 -0.0167 -0.0142 0.1260 -0.1136 -0.44116641D+00 0.0101 -0.0628 0.0161 -0.0846 0.0586 -0.0976 -0.0196 -0.1289 0.0476 -0.0139 -0.0202 -0.0716 -0.0812 -0.0109 -0.0517 -0.0723 -0.1556 -0.0733 0.0429 0.0412 0.0608 -0.1071 0.1281 0.0003 -0.0312 -0.0478 0.0632 0.0288 -0.0216 0.0308 0.1164 -0.1309 -0.1244 0.0368 0.0853 0.0086 0.0073 -0.0652 0.0588 0.70660841D+00 -0.0162 0.1005 -0.0258 0.1355 -0.0939 0.1563 0.0313 0.2064 -0.0763 0.0223 0.0324 0.1148 0.1300 0.0175 0.0828 0.1158 0.2492 0.1175 -0.0687 -0.0660 -0.0973 0.1716 -0.2052 -0.0005 0.0499 0.0766 -0.1012 -0.0462 0.0345 -0.0493 -0.1865 0.2096 0.1992 -0.0590 -0.1367 -0.0138 -0.0117 0.1045 -0.0942 0.20393611D+00 -0.0047 0.0290 -0.0074 0.0391 -0.0271 0.0451 0.0090 0.0596 -0.0220 0.0064 0.0093 0.0331 0.0375 0.0050 0.0239 0.0334 0.0719 0.0339 -0.0198 -0.0190 -0.0281 0.0495 -0.0592 -0.0002 0.0144 0.0221 -0.0292 -0.0133 0.0100 -0.0142 -0.0538 0.0605 0.0575 -0.0170 -0.0394 -0.0040 -0.0034 0.0301 -0.0272 15 0.27873814D+00 -0.43219424D+00 -0.0064 0.0397 -0.0102 0.0535 -0.0370 0.0616 0.0124 0.0814 -0.0301 0.0088 0.0128 0.0453 0.0513 0.0069 0.0327 0.0457 0.0983 0.0463 -0.0271 -0.0260 -0.0384 0.0677 -0.0809 -0.0002 0.0197 0.0302 -0.0399 -0.0182 0.0136 -0.0195 -0.0736 0.0827 0.0786 -0.0233 -0.0539 -0.0054 -0.0046 0.0412 -0.0371 0.0099 -0.0615 0.0158 -0.0829 0.0574 -0.0956 -0.0192 -0.1263 0.0466 -0.0136 -0.0198 -0.0702 -0.0795 -0.0107 -0.0506 -0.0708 -0.1524 -0.0718 0.0420 0.0404 0.0595 -0.1049 0.1255 0.0003 -0.0305 -0.0469 0.0619 0.0282 -0.0211 0.0302 0.1140 -0.1282 -0.1219 0.0361 0.0836 0.0084 0.0072 -0.0639 0.0576 0.0472 -0.0919 -0.1797 0.1308 -0.2437 -0.0201 -0.0988 -0.0630 -0.0562 -0.0030 0.0089 -0.2083 -0.1280 -0.1065 -0.2056 -0.0244 0.0476 0.0930 -0.0677 0.1261 0.0104 0.0512 0.0326 0.0291 0.0016 -0.0046 0.1078 0.0663 0.0551 0.1064 0.0391 -0.0762 -0.1490 0.1084 -0.2020 -0.0167 -0.0819 -0.0523 -0.0466 -0.0025 0.0074 -0.1727 -0.1061 -0.0883 -0.1705 0.0113 -0.0220 -0.0430 0.0313 -0.0583 -0.0048 -0.0236 -0.0151 -0.0134 -0.0007 0.0021 -0.0498 -0.0306 -0.0255 -0.0492 16 0.0154 -0.0301 -0.0588 0.0428 -0.0797 -0.0066 -0.0323 -0.0206 -0.0184 -0.0010 0.0029 -0.0681 -0.0419 -0.0348 -0.0672 -0.0239 0.0466 0.0911 -0.0663 0.1236 0.0102 0.0501 0.0320 0.0285 0.0015 -0.0045 0.1056 0.0649 0.0540 0.1043 ;> 1DUKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER (SCALED) 2TH RESIDUAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 -0.0915 0.0493 -0.0261 -0.0209 -0.0894 -0.0483 -0.0344 0.0240 -0.1109 -0.0474 0.0045 0.0189 -0.0336 -0.1259 -0.0831 -0.0198 0.0579 -0.0559 0.0649 -0.0027 0.0235 0.0319 0.1641 -0.0427 0.0847 -0.0172 0.0986 0.0623 0.0036 0.0402 0.2170 0.1346 0.0813 -0.0031 0.0637 0.0492 0.0062 0.0000 -0.0344 -0.0678 0.0249 0.0384 -0.0979 -0.1100 -0.0571 -0.0864 0.0947 -0.0679 -0.0079 -0.0838 0.0426 -0.0517 -0.0791 -0.0013 -0.0494 -0.0439 -0.1635 -0.0928 -0.0304 0.1210 -0.0144 -0.0065 0.0664 0.0272 -0.0207 0.1101 0.0666 0.0786 -0.0772 0.0166 0.0392 0.0786 0.0518 0.0834 0.1151 0.0238 0.1784 -0.0314 0.0296 0.0325 0.0232 -0.0649 -0.0233 0.0968 0.0036 -0.1562 0.0608 -0.0260 0.0370 0.0679 0.0043 0.0505 -0.0220 0.0382 0.0347 -0.0417 -0.0618 0.1126 0.0223 0.0043 -0.0186 -0.0373 0.0743 0.0337 -0.0367 0.0426 0.0438 -0.0360 0.0315 0.0081 -0.0306 -0.0054 -0.0016 0.0801 0.0702 -0.0068 -0.0536 -0.0380 0.0014 0.1198 -0.0335 -0.0133 0.0017 -0.1157 0.0040 0.0060 -0.0023 0.0329 -0.1465 17 -0.0134 -0.0394 -0.0481 -0.0376 0.0742 -0.0159 0.0420 -0.0654 0.0629 0.0850 0.0781 -0.1896 -0.0059 0.0852 0.0900 0.0632 -0.1276 0.0135 -0.0264 -0.0331 -0.0773 0.0056 -0.1943 0.0592 -0.0299 0.0020 -0.1049 -0.1667 -0.0737 -0.0200 -0.1480 -0.0650 -0.0869 -0.1010 -0.0374 -0.0285 0.0011 0.1639 0.0129 0.0616 0.0059 -0.0871 0.2594 -0.0664 -0.1814 -0.1282 0.1840 0.0301 0.0500 -0.0851 0.0209 0.0855 -0.0458 0.0145 -0.1692 -0.0308 -0.0819 -0.0177 -0.0064 0.0916 0.0580 -0.1112 0.1100 -0.0087 -0.0797 -0.0980 0.1945 0.0082 -0.1100 -0.1419 -0.0693 0.1105 0.0275 -0.2060 -0.0090 -0.0994 0.2862 -0.1562 -0.0265 0.0483 0.0890 -0.0608 0.0736 0.1355 -0.0739 -0.0573 44 45 46 47 48 49 50 51 52 53 54 -0.1981 0.0308 -0.0006 0.0117 -0.0374 0.0039 0.0164 -0.0009 0.0066 -0.0321 -0.0914 -0.0487 -0.0775 -0.0486 0.0016 -0.0672 0.1399 0.0865 -0.0137 -0.0571 -0.0152 0.0400 0.0591 -0.1041 -0.0311 -0.1544 0.0213 -0.0120 0.0013 -0.0307 0.0243 -0.0080 -0.0209 0.1302 0.0807 0.0271 0.1960 -0.0077 0.0569 0.0073 0.0381 -0.0588 0.0425 0.1454 CANONICAL WEIGHTS FOR COLS -0.441166 0.706608 0.203936 0.278738 -0.432194 FOR ROWS -0.019483 0.121247 -0.031099 0.163500 -0.113258 0.188486 FOR ROWS 0.037808 0.248984 -0.091979 0.026881 0.039057 0.138430 FOR ROWS 0.156864 0.021064 0.099855 0.139652 0.300629 0.141685 FOR ROWS -0.082848 -0.079617 -0.117405 0.206959 -0.247513 -0.000635 FOR ROWS 0.060195 0.092398 -0.122067 -0.055695 0.041657 -0.059511 FOR ROWS -0.224924 0.252881 0.240329 -0.071175 -0.164838 -0.016660 FOR ROWS -0.014153 0.126009 -0.113584 0.047222 -0.091920 -0.179704 FOR ROWS 0.130770 -0.243676 -0.020144 -0.098844 -0.063033 -0.056162 FOR ROWS -0.002995 0.008915 -0.208346 -0.128039 -0.106533 -0.205639 18 0.2345 -0.1552 -0.0762 0.0443 -0.0667 0.2558 0.1300 -0.0113 -0.1266 0.0315 0.2426 lDUKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER (SCALED) PRODUCT MATRIX 1 0.27420240D+00 o .15817718D+00 -0.22400014D-Ol -0.23131496D+00 -0.18103905D+00 2 0.15817718D+00 0.29688617D+00 0.56552307D-Ol -0.16123309D+00 0.24662765D+00 3 -0.22400014D-Ol 0.56552307D-Ol 0.16070036D+00 -0.17360119D+00 0.79190792D-Ol 4 -0.23131496D+00 -0.16123309D+00 -0.17360119D+00 0.44651724D+00 0.17857148D+00 5 -0.18103905D+00 0.24662765D+00 0.79190792D-Ol 0.17857148D+00 0.74055144D+00 EUCLIDEAN NORM 0.191885761D+Ol 19 10UKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER (SCALEO) 3TH COMPONENT CORRESPONOING TO ROOT 0.9766314960+00 0.9706830+00 (SQUARE OF ROOT 0.9422260+00 ) 62 ITERATIONS. REMAINOER 18.844530 PERCENT 19.5326 PERCENT W(J) -0.336857710+00 V(I) -0.0457 0.0149 -0.1984 0.0649 -0.1333 0.0436 0.1642 -0.0537 0.0788 -0.0258 0.0528 -0.0173 -0.0557 0.0182 -0.0114 0.0037 0.1319 -0.0431 0.0012 -0.0004 0.0429 -0.0140 -0.2378 0.0778 -0.0232 0.0076 -0.0138 0.0045 0.0383 -0.0125 0.0233 -0.0076 0.0230 -0.0075 0.0735 -0.0240 -0.1309 0.0428 0.0917 -0.0300 -0.0439 0.0143 -0.0808 0.0264 -0.2076 0.0679 0.2169 -0.0709 -0.0244 0.0080 0.0323 -0.0989 -0.1985 0.0649 -0.1452 0.0475 0.0748 -0.0245 -0.0028 0.0084 -0.3044 0.0995 -0.0663 0.0217 -0.1472 0.0481 0.2317 -0.0758 -0.1774 0.0580 -0.0480 0.0157 0.0445 -0.0146 0.1475 -0.0482 -0.0441 0.0144 0.13 597 6500+00 -0.0060 -0.0262 -0.0176 0.0217 0.0104 0.0070 -0.0074 -0.0015 0.0174 0.0002 0.0057 -0.0314 -0.0031 -0.0018 0.0051 0.0031 0.0030 0.0097 -0.0173 0.0121 -0.0058 -0.0107 -0.0274 0.0286 -0.0032 -0.0131 -0.0262 -0.0192 0.0099 0.0011 -0.0402 -0.0088 -0.0194 0.0306 -0.0234 -0.0063 0.0059 0.0195 -0.0058 0.132622130-01 -0.0006 -0.0026 -0.0017 0.0021 0.0010 0.0007 -0.0007 -0.0001 0.0017 0.0000 0.0006 -0.0031 -0.0003 -0.0002 0.0005 0.0003 0.0003 0.0009 -0.0017 0.0012 -0.0006 -0.0010 -0.0027 0.0028 -0.0003 -0.0013 -0.0026 -0.0019 0.0010 0.0001 -0.0039 -0.0009 -0.0019 0.0030 -0.0023 -0.0006 0.0006 0.0019 -0.0006 20 0.409711060+00 -0.0182 -0.0789 -0.0530 0.0653 0.0313 0.0210 -0.0222 -0.0045 0.0525 0.0005 0.0171 -0.0946 -0.0092 -0.0055 0.0152 0.0093 0.0091 0.0293 -0.0521 0.0365 -0.0174 -0.0321 -0.0825 0.0863 -0.0097 -0.0393 -0.0790 -0.0577 0.0298 0.0034 -0.1210 -0.0264 -0.0586 0.0922 -0.0705 -0.0191 0.0177 0.0587 -0.0175 0.836658970+00 -0.0371 -0.1611 -0.1083 0.1333 0.0640 0.0429 -0.0453 -0.0092 0.1072 0.0010 0.0348 -0.1931 -0.0189 -0.0112 0.0311 0.0189 0.0186 0.0597 -0.1063 0.0745 -0.0356 -0.0656 -0.1686 0.1762 -0.0198 -0.0803 -0.1612 -0.1179 0.0608 0.0068 -0.2472 -0.0539 -0.1196 0.1882 -0.1441 -0.0390 0.0362 0.1198 -0.0358 0.1097 0.1241 -0.1128 0.0702 0.3198 -0.1227 -0.0613 0.1150 -0.0569 0.2626 0.1216 0.0043 -0.1439 0.0540 0.3075 -0.0359 -0.0406 0.0369 -0.0230 -0.1046 0.0401 0.0200 -0.0376 0.0186 -0.0858 -0.0398 -0.0014 0.0471 -0.0177 -0.1005 0.0145 0.0164 -0.0149 0.0093 0.0422 -0.0162 -0.0081 0.0152 -0.0075 0.0347 0.0161 0.0006 -0.0190 0.0071 0.0406 0.0014 0.0016 -0.0015 0.0009 0.0041 -0.0016 -0.0008 0.0015 -0.0007 0.0034 0.0016 0.0001 -0.0019 0.0007 0.0040 21 0.0436 0.0494 -0.0449 0.0279 0.1272 -0.0488 -0.0244 0.0457 -0.0226 0.1044 0.0484 0.0017 -0.0572 0.0215 0.1223 0.0891 0.1008 -0.0916 0.0570 0.2597 -0.0996 -0.0498 0.0934 -0.0462 0.2132 0.0988 0.0035 -0.1169 0.0439 0.2497 1DUKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER (SCALED) 3TH RESIDUAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 -0.1064 -0.0155 -0.0697 0.0328 -0.0636 -0.0310 -0.0526 0.0203 -0.0678 -0.0470 0.0185 -0.0589 -0.0412 -0.1304 -0.0706 -0.0121 0.0654 -0.0319 0.0221 0.0273 0.0092 0.0055 0.0963 0.0282 0.0768 -0.0495 0.0337 0.0149 0.0281 0.0430 0.1175 0.1129 0.0332 0.0726 0.0057 0.0335 0.0208 0.0483 -0.0488 -0.0319 0.0655 0.0015 -0.0749 -0.1039 -0.0309 -0.0688 0.0730 -0.0783 -0.0148 -0.0764 0.0441 -0.0692 -0.0793 -0.0069 -0.0180 -0.0409 -0.1617 -0.0979 -0.0335 0.1180 -0.0242 0.0108 0.0543 0.0330 -0.0100 0.1375 0.0380 0.0818 -0.0642 0.0428 0.0583 0.0688 0.0507 0.1235 0.1239 0.0433 0.1478 -0.0080 0.0360 0.0266 0.0037 -0.0591 -0.0378 0.0804 0.0185 -0.1655 0.0614 -0.0235 0.0387 0.0658 0.0033 0.0499 -0.0212 0.0384 0.0330 -0.0417 -0.0624 0.1156 0.0225 0.0044 -0.0190 -0.0376 0.0740 0.0328 -0.0351 0.0414 0.0444 -0.0349 0.0342 0.0053 -0.0303 -0.0041 0.0009 0.0819 0.0692 -0.0069 -0.0496 -0.0371 0.0033 0.1168 -0.0312 -0.0127 0.0012 -0.1176 0.0046 0.0046 -0.0039 0.0343 -0.1474 22 0.0048 0.0395 0.0050 -0.1029 0.0428 -0.0368 0.0641 -0.0609 0.0104 0.0845 0.0610 -0.0951 0.0033 0.0906 0.0747 0.0540 -0.1367 -0.0158 0.0257 -0.0696 -0.0599 0.0377 -0.1117 -0.0271 -0.0202 0.0413 -0.0259 -0.1090 -0.1034 -0.0234 -0.0270 -0.0386 -0.0283 -0.1932 0.0332 -0.0094 -0.0167 0.1052 0.0304 0.0179 -0.0435 -0.0422 0.2315 -0.0293 -0.0202 -0.0199 0.0507 -0.0339 0.0072 -0.0398 0.0302 -0.0217 -0.0468 -0.0203 0.0239 -0.0119 -0.0707 -0.0488 -0.0253 0.0729 -0.0017 -0.0049 0.0356 0.0269 -0.0141 0.0706 0.0183 0.0280 -0.0297 0.0193 0.0486 0.0497 0.0206 0.0412 0.0448 0.0201 0.0980 -0.0122 0.0125 0.0122 -0.0308 -0.0250 -0.0155 0.0347 0.0177 -0.1143 44 45 46 47 48 49 50 51 52 53 54 -0.0935 -0.0093 -0.0206 0.0493 -0.0560 0.0897 0.0562 0.0005 -0.0404 -0.0144 0.0091 -0.0909 -0.0613 -0.0406 -0.0135 -0.0597 0.1052 0.0704 -0.0142 -0.0381 -0.0223 -0.0006 0.0550 -0.1025 -0.0303 -0.1558 0.0220 -0.0154 -0.0002 -0.0307 0.0262 -0.0087 -0.0249 0.0030 0.1295 0.0514 0.1502 0.0149 -0.0475 -0.0410 0.0364 -0.0016 0.0210 0.0231 CANONICAL WEIGHTS FOR COLS -0.336858 0.135976 0.013262 0.409711 0.836659 FOR ROWS -0.045707 -0.198421 -0.133344 0.164157 0.078816 0.052788 FOR ROWS -0.055724 -0.011387 0.131950 0.001238 0.042911 -0.237811 FOR ROWS -0.023234 -0.013814 0.038338 0.023295 0.022956 0.073549 FOR ROWS -0.130940 0.091684 -0.043868 -0.080809 -0.207551 0.216919 FOR ROWS -0.024352 -0.098886 -0.198528 -0.145154 0.074822 0.008427 FOR ROWS -0.304370 -0.066310 -0.147245 0.231734 -0.177374 -0.048019 FOR ROWS 0.044538 0.147547 -0.044060 0.109709 0.124123 -0.112824 FOR ROWS 0.070224 0.319777 -0.122678 -0.061284 0.115021 -0.056869 FOR ROWS 0.262550 0.121624 0.004292 -0.143916 0.054009 0.307483 23 -0.0252 -0.0556 -0.0264 -0.0491 -0.0205 0.0425 0.0313 -0.0148 -0.0097 -0.0123 -0.0071 lDUKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER (SCALED) PRODUCT MATRIX 1 O.16728506D+OO O.20133560D+OO -O.18190640D-Ol -O.10127426D+OO O.84513269D-Ol 2 O.20133560D+OO O.27946478D+OO O.54853145D-Ol -O.21372552D+OO O.13943440D+OO 3 -O.18190640D-Ol O.54853145D-Ol O.16053464D+OO -O.17872094D+OO O.68735900D-Ol 4 -O.10127426D+OO -O.21372552D+OO -O.17872094D+OO O.28835219D+OO -O.14441274D+OO 5 O.84513269D-Ol O.13943440D+OO O.68735900D-Ol -O.14441274D+OO O.80994829D-Ol EUCLIDEAN NORM O.976631496D+OO 24 1DUKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER (SCALED) 4TH COMPONENT CORRESPONDING TO ROOT 0.251154285D+00 0.851750D+00 (SQUARE OF ROOT 0.725477D+00 ) 18 ITERATIONS. REMAINDER 14.509550 PERCENT 5.0231 PERCENT W(J) V (I) -0.1110 -0.0704 -0.0753 0.1758 -0.1221 0.0210 -0.1411 0.1048 -0.0810 -0.1641 -0.0670 0.0750 -0.0450 -0.2544 -0.1735 -0.0872 0.2550 -0.0092 -0.0143 0.1239 0.0925 -0.0473 0.2503 0.0654 0.1035 -0.1062 0.0692 0.1667 0.1719 0.0748 0.1528 0.1646 0.0721 0.3409 -0.0407 0.0460 0.0436 -0.0995 -0.0903 0.35854040D+00 -0.0339 -0.0215 -0.0230 0.0537 -0.0373 0.0064 -0.0431 0.0320 -0.0247 -0.0501 -0.0205 0.0229 -0.0138 -0.0777 -0.0530 -0.0266 0.0779 -0.0028 -0.0044 0.0378 0.0283 -0.0144 0.0765 0.0200 0.0316 -0.0324 0.0211 0.0509 0.0525 0.0228 0.0467 0.0503 0.0220 0.1041 -0.0124 0.0141 0.0133 -0.0304 -0.0276 0.58204681D+00 -0.0550 -0.0349 -0.0373 0.0871 -0.0606 0.0104 -0.0700 0.0520 -0.0401 -0.0814 -0.0332 0.0372 -0.0223 -0.1261 -0.0860 -0.0432 0.1264 -0.0046 -0.0071 0.0614 0.0459 -0.0234 0.1241 0.0324 0.0513 -0.0526 0.0343 0.0826 0.0852 0.0371 0.0758 0.0816 0.0357 0.1690 -0.0202 0.0228 0.0216 -0.0493 -0.0448 0.27199628D+00 -0.58919296D+00 -0.0257 -0.0163 -0.0174 0.0407 -0.0283 0.0049 -0.0327 0.0243 -0.0188 -0.0380 -0.0155 0.0174 -0.0104 -0.0589 -0.0402 -0.0202 0.0591 -0.0021 -0.0033 0.0287 0.0214 -0.0110 0.0580 0.0152 0.0240 -0.0246 0.0160 0.0386 0.0398 0.0173 0.0354 0.0381 0.0167 0.0790 -0.0094 0.0107 0.0101 -0.0231 -0.0209 25 0.0557 0.0353 0.0378 -0.0882 0.0613 -0.0105 0.0708 -0.0526 0.0406 0.0824 0.0336 -0.0376 0.0226 0.1277 0.0871 0.0438 -0.1280 0.0046 0.0072 -0.0622 -0.0464 0.0237 -0.1256 -0.0328 -0.0519 0.0533 -0.0348 -0.0836 -0.0863 -0.0375 -0.0767 -0.0826 -0.0362 -0.1711 0.0204 -0.0231 -0.0219 0.0499 0.0453 0.33397600D+00 -0.0316 -0.0200 -0:0214 0.0500 -0.0347 0.0060 -0.0401 0.0298 -0.0230 -0.0467 -0.0191 0.0213 -0.0128 -0.0724 -0.0494 -0.0248 0.0725 -0.0026 -0.0041 0.0352 0.0263 -0.0135 0.0712 0.0186 0.0294 -0.0302 0.0197 0.0474 0.0489 0.0213 0.0435 0.0468 0.0205 0.0970 -0.0116 0.0131 0.0124 -0.0283 -0.0257 -0.0563 0.1249 0.0604 -0.3966 -0.0959 -0.1899 ..:0.0920 -0.1615 -0.0757 0.1543 0.1124 -0.0503 -0.0374 -0.0435 -0.0233 -0.0172 0.0381 0.0184 -0.1211 -0.0293 -0.0580 -0.0281 -0.0493 -0.0231 0.0471 0.0343 -0.0154 -0.0114 -0.0133 -0.0071 -0.0279 0.0619 0.0299 -0.1966 -0.0476 -0.0941 -0.0456 -0.0800 -0.0375 0.0765 0.0557 -0.0249 -0.0185 -0.0215 -0.0116 -0.0130 0.0289 0.0140 -0.0919 -0.0222 -0.0440 -0.0213 -0.0374 -0.0175 0.0358 0.0260 -0.0116 -0.0087 -0.0101 -0.0054 26 0.0282 -0.0627 -0.0303 0.1990 0.0481 0.0953 0.0462 0.0810 0.0380 -0.0774 -0.0564 0.0252 0.0188 0.0218 0.0117 -0.0160 0.0355 0.0172 -0.1128 -0.0273 -0.0540 -0.0262 -0.0459 -0.0215 0.0439 0.0320 -0.0143 -0.0106 -0.0124 -0.0066 IDUKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER (SCALED) 4TH RESIDUAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 -0.0725 0.0060 -0.0467 -0.0209 -0.0263 -0.0374 -0.0095 -0.0117 -0.0430 0.0031 0.0390 -0.0818 -0.0275 -0.0527 -0.0176 0.0145 -0.0125 -0.0290 0.0264 -0.0106 -0.0191 0.0199 0.0198 0.0082 0.0452 -0.0171 0.0126 -0.0360 -0.0244 0.0202 0.0708 0.0626 0.0112 -0.0315 0.0181 0.0195 0.0075 0.0787 -0.0212 -0.0147 0.0274 -0.0169 0.0462 -0.0489 0.0040 -0.0315 -0.0141 -0.0177 -0.0253 -0.0064 -0.0079 -0.0290 0.0021 0.0263 -0.0552 -0.0185 -0.0356 -0.0119 0.0098 -0.0084 -0.0196 0.0178 -0.0071 -0.0129 0.0135 0.0134 0.0055 0.0305 -0.0115 0.0085 -0.0243 -0.0165 0.0136 0.0478 0.0423 0.0075 -0.0212 0.0122 0.0131 0.0050 0.0531 -0.0143 -0.0099 0.0185 -0.0114 0.0312 0.0871 -0.0072 0.0561 0.0251 0.0316 0.0450 0.0115 0.0141 0.0517 -0.0037 -0.0469 0.0983 0.0330 0.0634 0.0212 -0.0174 0.0150 0.0349 -0.0318 0.0127 0.0229 -0.0240 -0.0238 -0.0099 -0.0543 0.0205 -0.0151 0.0433 0.0294 -0.0242 -0.0851 -0.0753 -0.0134 0.0378 -0.0218 -0.0234 -0.0090 -0.0945 0.0255 0.0177 -0.0329 0.0203 -0.0555 27 -0.0509 0.0042 -0.0328 -0.0147 -0.0185 -0.0263 -0.0067 -0.0082 -0.0302 0.0022 0.0274 -0.0574 -0.0193 -0.0370 -0.0124 0.0102 -0.0087 -0.0204 0.0186 -0.0074 -0.0134 0.0140 0.0139 0.0058 0.0317 -0.0120 0.0088 -0.0253 -0.0172 0.0142 0.0497 0.0440 0.0078 -0.0221 0.0127 0.0137 0.0052 0.0552 -0.0149 -0.0103 0.0192 -0.0119 0.0325 0.0023 -0.0002 0.0015 0.0007 0.0008 0.0012 0.0003 0.0004 0.0014 -0.0001 -0.0012 0.0026 0.0009 0.0017 0.0006 -0.0005 0.0004 0.0009 -0.0008 0.0003 0.0006 -0.0006 -0.0006 -0.0003 -0.0014 0.0005 -0.0004 0.0011 0.0008 -0.0006 -0.0023 -0.0020 -0.0004 0.0010 -0.0006 -0.0006 -0.0002 -0.0025 0.0007 0.0005 -0.0009 0.0005 -0.0015 44 45 46 47 48 49 50 51 52 53 54 -0.0642 0.0487 0.0075 0.0986 -0.0329 0.0426 0.0219 0.0159 -0.0290 -0.0011 0.0162 -0.0433 0.0328 0.0051 0.0665 -0.0222 0.0287 0.0147 0.0107 -0.0196 -0.0008 0.0109 0.0772 -0.0585 -0.0090 -0.1184 0.0395 -0.0512 -0.0263 -0.0191 0.0349 0.0013 -0.0195 -0.0451 0.0342 0.0053 0.0692 -0.0231 0.0299 0.0153 0.0111 -0.0204 -0.0008 0.0114 CANONICAL WEIGHTS FOR COLS 0.358540 0.582047 0.271996 -0.589193 0.333976 FOR ROWS -0.111039 -0.070384 -0.075251 0.175758 -0.122148 0.021022 FOR ROWS -0.141132 0.104833 -0.080955 -0.164125 -0.067014 0.074972 FOR ROWS -0.045044 -0.254434 -0.173517 -0.087229 0.255012 -0.009184 FOR ROWS -0.014253 0.123910 0.092549 -0.047293 0.250345 0.065420 FOR ROWS 0.103491 -0.106188 0.069247 0.166685 0.171947 0.074781 FOR ROWS 0.152837 0.164643 0.072058 0.340913 -0.040723 0.046033 FOR ROWS 0.043617 -0.099494 -0.090318 -0.056277 0.124895 0.060390 FOR ROWS -0.396623 -0.095921 -0.189877 -0.092013 -0.161459 -0.075677 FOR ROWS 0.154329 0.112359 -0.050276 -0.037417 -0.043463 -0.023314 28 0.0020 -0.0016 -0.0002 -0.0031 0.0010 -0.0014 -0.0007 -0.0005 0.0009 0.0000 -0.0005 1DUKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER (SCALED) 4 CO-ORDINATES FOR BIPLOT (FOR AT MOST FIRST 6 COMPONENTS) G -VECTOR FOR ROWS (G=V) -------- (AA) (BB) (LL) (WW) (AH) (AT) (BF) (MM) (XX) (AJ) (AU) (BG) (CC) (NN) (YY) (AK) (AV) (BH) .(AW) (BJ) 1 0.0119 -0.1242 0.0240 0.1079 0.1618 -0.2729 -0.0690 0.0022 0.2142 -0.1854 -0.2115 -0.1868 -0.1326 0.0028 0.0940 -0.0837 0.0973 -0.1782 0.0509 0.0939 0.4259 -0.0671 -0.0638 -0.1110 2 -0.0195 0.0391 -0.1174 -0.2249 -0.0919 -0.2083 0.1212 0.1384 0.2070 0.2529 -0.1797 -0.1280 -0.0311 0.1569 -0.2475 0.2403 0.1308 -0.1065 3 -0.0457 0.0429 -0.0439 -0.3044 0.1241 0.0043 -0.1984 -0.2378 -0.0808 -0.0663 -0.1128 -0.1439 4 -0.1110 -0.0670 0.0925 0.1528 0.1249 -0.0503 -0.0704 0.0750 -0.0473 0.1646 0.0604 -0.0374 (EE) (QQ) (FF) (RR) (AC) (AE) (AY) (GG) (SS) (AD) (AP) (AZ) (AQ) (BC) (JJ) (00) (AF) (AR) (BD) 0.1387 0.1364 -0.2005 0.2308 0.0226 0.0552 -0.0471 -0.0383 0.2550 -0.1864 0.0365 -0.0778 0.1696 -0.0633 -0.0014 -0.0770 -0.0247 0.1472 -0.0478 -0.1611 0.1413 0.0251 0.0840 -0.1736 -0.1228 0.0441 0.0592 0.0728 -0.0014 0.0043 0.1635 0.0211 -0.0006 -0.0712 -0.2437 -0.2056 -0.1133 0.0999 0.0602 -0.1648 -0.0201 0.1885 0.1397 0.0924 -0.0167 -0.0988 0.0378 0.3006· -0.1221 -0.0142 -0.0630 0.2490 0.1417 -0.0557 0.1260 -0.0562 -0.0920 -0.0828 0.0417 -0.1136 -0.0030 0.0269 -0.0796 -0.0595 0.0472 0.0089 -0.1333 -0.0232 -0.2076 -0.1472 0.0702 0.0540 0.1642 -0.0138 0.2169 0.2317 0.3198 0.3075 0.0788 0.0383 -0.0244 -0.1774 -0.1227 0.0528 0.0233 -0.0989 -0.0480 -0.0613 -0.0557 0.0230 -0.1985 0.0445 0.1150 -0.0114 0.0735 -0.1452 0.1475 -0.0569 0.1319 -0.1309 0.0748 -0.0441 0.2626 0.0012 0.0917 0.0084 0.1097 0.1216 -0.0753 -0.0450 0.2503 0.0721 -0.3966 -0.0435 0.1758 -0.2544 0.0654 0.3409 -0.0959 -0.0233 -0.1221 -0.1735 0.1035 -0.0407 -0.1899 0.0210 -0.0872 -0.1062 0.0460 -0.0920 -0.1411 0.2550 0.0692 0.0436 -0.1615 0.1048 -0.0092 0.1667 -0.0995 -0.0757 -0.0810 -0.0143 0.1719 -0.0903 0.1543 -0.1641 0.1239 0.0748 -0.0563 0.1124 (DD) (PP) (ZZ) (AL) (AB) (AM) (AX) (AN) (HH) (TT) (KK) (W) (AG) (AS) (BE) ( 29 H -VECTOR FOR COLUMNS (H=LAMDA*W) (00) (01) (02) (03) (04) 1 0.6767 -0.1259 0.8843 0.6682 -0.0483 2 -0.5176 0.8290 0.2393 0.3270 -0.5071 3 -0.3270 0.1320 0.0129 0.3977 0.8121 4 ODIAG(X'RR'X) 0.3054 0.4958 0.2317 -0.5018 0.2845 0.999998D+00 0.999999D+00 0.100000D+01 0.100000D+01 0.999999D+00 OTHE FOLLOWING ARE GOODNESS OF FIT COEFFICIENTS FOR COLUMNS oRANK oRANK oRANK oRANK oRANK oRANK oRANK oRANK 1 1 2 2 3 3 4 4 0.4579 0.5421 0.7258 0.2742 0.8327 0.1673 0.9260 0.0740 0.0159 0.9841 0.7031 0.2969 0.7205 0.2795 0.9663 0.0337 0.7821 0.2179 0.8393 0.1607 0.8395 0.1605 0.8931 0.1069 0.4465 0.5535 0.5535 0.4465 0.7116 0.2884 0.9635 0.0365 INTERLEAVED WITH RESIDUAL SUM OF SQUARES 0.0023 0.9977 0.2594 0.7406 0.9190 0.0810 0.9999 0.0001 30 IDUKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER' (SCALED) G AND H VECTOR PLOT -0.45 -0.27 -0.09 0.09 0.27 11-------------------1-------------------1-------------------1-------------------1-------------------1 o --- 0.88 o .81 0.75 0.69 0.63 0.56 0.50 0.44 0.38 0.31 0.25 0.19 0.13 I I I I I I I I I I I I I I I I I I I 01 SS HH AJ AI< XX FF I NN I MM 0.06 I I I LL AN -0.31 -0.38 -0.44 I -0.50 I I I -0.56 -0.63 -0.69 -0.75 -0.81 -0.88 -0.94 0.17 0.14 0.11 0.05 0.08 I I 0.02 ZZI -0.02 I WW ?? -0.05 -0.08 -0.11 I BG I I I I I AU BF 0.20 I AY I I I I 0.23 I I I I I UU I 0.26 I Z I I 0.29 I AE AL I 0.32 021 I BC I -0.25 AP CC I 0.35 I I I 0.41 0.38 I AB BD 0.44 I AV I -0.19 3 I I -0.00 -0.13 DD I I I I I -0.06 \, I I I I I I I I I I I I I I I I I I I -0.14 -0.17 -0.20 I BJ AH AW 04 YY 0 I I I I I I I I I I I I -0.23 I -0.26 I I I I I I I I I I I I I I I I 11-------------------1-------------------1-------------------1-------------------1-------------------1 -0.94 -0.56 -0.19 0.19 0.56 31 -0.29 -0.32 -0.35 -0.38 -0.41 -0.44 1DUKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER (SCALED) J -VECTOR FOR ROWS (J=LAMDA*V) -------------------------(JJ) (00) (KK) (W) (AQ) (BC) (AF) (AR) (BD) (AS) 0.0476 -0.1016 0.2215 -0.0826 -0.0018 -0.1005 -0.0322 0.1922 -0.0624 -0.2103 0.1845 0.0327 0.1097 -0.2267 -0.1604 0.0576 0.0772 0.0951 -0.0018 0.0057 0.2211 0.1638 0.1084 -0.0195 -0.1160 0.0444 0.3527 -0.1432 -0.0166 -0.0740 0.2921 0.1662 -0.0653 0.1478 -0.0659 -0.1079 -0.0972 0.0489 -0.1333 -0.0035 0.0315 -0.0934 -0.0698 0.0554 0.0105 0.0765 0.0372 -0.0236 -0.1722 -0.1191 0.0512 0.0226 -0.0960 -0.0466 -0.0595 -0.0541 0.0223 -0.1927 0.0432 0.1116 -0.0111 0.0714 -0.1409 0.1432 -0.0552 0.1281 -0.1271 0.0726 -0.0428 0.2549 0.0012 0.0890 0.0082 0.1065 0.1181 0.1497 -0.2167 0.0557 0.2904 -0.0817 -0.0199 -0.1040 -0.1478 0.0881 -0.0347 -0.1617 0.0179 -0.0743 -0.0904 0.0392 -0.0784 -0.1202 0.2172 0.0590 0.0372 -0.1375 0.0893 -0.0078 0.1420 -0.0847 -0.0645 -0.0690 -0.0121 0.1465 -0.0769 0.1314 -0.1398 0.1055 0.0637 -0.0479 0.0957 (03) (04) (AA) (BB) (CC) (LL) (MM) (NN) (WW) (XX) (AH) (AT) (BF) (AJ) (BG) (YY) (AK) (AV) (BH) (DD) (PP) (ZZ) (AL) (AW) (BJ) 1 0.0155 -0.1621 0.0314 0.1409 0.2112 -0.3563 -0.0901 0.0028 0.2796 -0.2421 -0.2761 -0.2439 -0.1731 o .0036 0.1227 -0.1093 0.1270 -0.2327 0.0664 0.1225 0.5561 -0.0876 -0.0833 -0.1449 2 -0.0229 0.0458 -0.1377 -0.2639 -0.1078 -0.2444 0.1423 0.1624 0.2428 0.2967 -0.2108 -0.1502 -0.0365 0.1840 -0.2904 0.2820 0.1534 -0.1250 3 -0.0444 0.0417 -0.0426 -0.2954 0.1205 0.0042 -0.1926 -0.2308 -0.0784 -0.0644 -0.1095 -0.1397 4 -0.0946 -0.0571 0.0788 0.1302 0.1064 -0.0428 -0.0599 0.0639 -0.0403 0.1402 0.0514 -0.0319 K -VECTOR (AU) FOR COLUMNS (EE) (QQ) (AB) (AM) (AX) (AC) (AN) (AY) (FF) (GG) (SS) (AD) (AP) (AZ) 0.1811 0.1781 -0.2618 0.3014 0.0295 0.0720 -0.0616 -0.0500 0.3329 -0.2434 0.1918 0.0247 -0.0007 -0.0835 -0.2859 -0.2413 -0.1329 0.1172 0.0706 -0.1934 -0.0236 -0.1294 -0.0226 -0.2015 -0.1429 0.0682 0.0524 0.1593 -0.0134 0.2106 0.2249 0.3104 0.2985 -0.0641 -0.0384 0.2132 0.0614 -0.3378 -0.0370 (RR) (HH) (TT) (AE) (K=W) (01) (02) 0.5183 -0.0964 0.6773 0.5118 -0.0370 2 -0.4412 0.7066 0.2039 0.2787 -0.4322 3 -0.3369 0.1360 0.0133 0.4097 0.8367 0.3585 0.5820 0.2720 -0.5892 0.3340 1 4 ODIAG(XC'CX' ) 0.295041D-01 0.219186D-01 0.384200D-01 0.291927D-01 0.887911D-01 0.210732D+00 0.105441D-01 0.165690D+00 0.114120D+00 0.691651D-01 0.103989D+00 0.722133D-01 0.341302D-01 0.326379D-01 0.183740D+00 0.744438D-01 0.205691D+00 o.248582D-01 0.595667D-01 0.731221D-01 0.697246D-01 0.292210D-01 o. 110702D+00 o. 116067D+00 0.784341D-01 0.498070D-01 0.189404D+00 0.904867D-01 0.238855D-01 0.373784D-01 0.146268D+00 0.856372D-01 0.152923D+00 0.174439D-01 0.825408D-01 0.105435D+00 OTHE FOLLOWING ARE GOODNESS OF FIT COEFFICIENTS FOR ROWS (BE) ( ----------------------(00) (AG) 0.694940D-01 0.385276D-01 0.182923D+00 0.186766D+00 0.431765D-01 0.160189D+00 0.846251D-01 0.698172D-01 0.739011D-01 0.617905D-01 0.106445D+00 0.366917D-01 0.356868D+00 0.194254D-01 0.116201D+00 o. 136314D+00 0.594369D-01 0.169578D+00 INTERLEAVED WITH RESIDUAL SUM OF SQUARES 32 ORANK ORANK ORANK ORANK ORANK ORANK ORANK 1 1 2 2 3 3 4 0.0082 0.6820 0.1174 0.0001 0.5031 0.0003 0.0487 0.2080 0.4722 0.4549 0.0839 0.1014 0.1034 0.0564 0.0971 0.0283 0.4654 0.0367 0.1388 0.1748 0.4315 0.2788 0.4657 0.0337 0.5345 0.0806 0.8664 0.7721 0.0767 0.4430 0.0942 0.3189 0.1029 0.0502 0.5670 0.9537 0.6478 0.0523 0.6553 0.0002 0.5273 0.5594 0.0974 0.0337 0.0175 0.7175 0.0000 0.7440 0.2254 0.0013 0.6703 0.0293 0.0123 0.5642 0.0610 0.1064 0.7328 0.0296 0.0384 0.1238 0.0861 0.0572 0.0367 0.0380 0.0566 0.0336 0.0197 0.1726 0.0939 0.0357 0.0391 0.0281 0.0206 0.0282 0.0282 0.0681 0.1717 0.0477 0.0202 0.0301 0.0617 0.0487 0.0311 0.0104 0.1909 0.1251 0.1041 0.1452 0.0694 0.0054 0.0037 0.0705 0.0270 0.0174 0.0400 0.0601 0.1496 0.1988 0.0489 0.0233 0.0698 0.0152 0.0884 0.0248 0.0625 0.0259 0.7365 0.0460 0.4100 0.2479 0.0197 0.5254 0.8819 0.1486 0.4554 0.2164 0.7262 0.6518 0.8753 0.8195 0.1932 0.7365 0.9177 0.7814 0.6247 0.3604 0.1804 0.4305 0.6830 0.9376 0.5321 0.8664 0.8282 0.4368 0.6283 0.4813 0.3341 0.7167 0.4247 0.7980 0.7879 0.0958 0.8005 0.9570 0.6740 0.3459 0.8817 0.1761 0.6647 0.8855 0.2394 0.4311 0.0287 0.8804 0.0784 0.8171 0.2255 0.0057 0.9857 0.0287 0.0102 0.7782 0.0408 0.0801 0.9442 0.0283 0.0045 0.4671 0.0493 0.0566 0.0190 0.0243 0.0077 0.0067 0.0177 0.0482 0.0086 0.0080 0.0274 0.0187 0.0196 0.0194 0.0093 0.0091 0.0874 0.0477 0.0153 0.0184 0.0412 0.0444 0.0287 0.0055 0.1212 0.0371 0.0246 0.1383 0.0320 0.0050 0.0034 0.0487 0.0093 0.0144 0.0284 0.0156 0.1260 0.1170 0.0484 0.0099 0.0643 0.0109 0.0884 0.0247 0.0027 0.0926 0.7815 0.0234 0.9463 0.7485 0.0041 0.8067 0.8951 0.0904 0.7360 0.2189 0.8105 0.6716 0.9178 0.8332 0.3267 0.7392 0.9188 0.9203 0.8490 0.9138 0.1805 0.6625 0.7450 0.9797 0.7494 0.9907 0.8345 0.7191 0.9637 0.7131 0.4563 0.7201 0.8389 0.8205 0.9639 0.4267 0.9855 0.9757 0.8512 0.6215 0.9050 0.8263 0.8363 0.9735 0.2675 0.8995 0.3134 0.9233 0.2569 0.8683 0.7947 0.5664 0.9858 0.0268 0.0084 0.9633 0.0037 0.0268 0.9814 0.0115 0.0040 0.9924 0.0239 0.0564 0.0132 0.0229 0.0051 0.0062 0.0148 0.0477 0.0084 0.0029 0.0110 0.0025 0.0196 0.0115 0.0075 0.0030 0.0468 0.0033 0.0147 0.0092 0.0040 0.0246 0.0235 0.0054 0.0340 o .0330 0.0042 0.0877 0.0023 0.0028 0.0016 0.0282 0.0074 0.0030 0.0139 0.0036 0.1214 0.0207 0.0342 0.0063 0.0519 0.0078 0.0234 0.0108 0.0027 0.3958 0.8661 0.0039 0.9983 0.7868 0.0014 0.8757 0.9334 0.0013 0.9836 0.8693 0.9662 0.9849 0.9230 0.9809 0.9859 0.9971 0.9955 0.9220 0.9141 0.9188 0.9986 0.9889 0.9577 0.9908 0.9929 0.9994 0.9220 0.9697 0.9951 0.9485 0.9531 0.9290 33 ORANK 4 0.9193 0.9275 0.9964 0.9780 0.9930 0.9889 0.9821 0.7179 0.9805 0.9580 0.9700 0.9929 0.9563 0.9319 0.8385 0.9977 0.5278 0.9382 0.9461 0.9348 0.9955 0.0178 0.0052 0.9729 0.0001 0.0227 0.9999 0.0074 0.0026 0.9947 0.0015 0.0094 0.0023 0.0011 0.0048 0.0007 0.0003 0.0005 0.0005 0.0029 0.0063 0.0024 0.0000 0.0004 0.0012 0.0014 0.0013 0.0002 0.0069 0.0010 0.0005 0.0044 0.0020 0.0014 0.0170 0.0133 0.0004 0.0034 0.0011 0.0013 0.0002 0.0210 0.0015 0.0007 0.0025 0.0010 0.0072 0.0140 0.0080 0.0002 0.0330 0.0037 0.0062 0.0016 0.0009 0.0029 0.0000 0.0009 34 IDUKE FOREST PHASE II SOILS ANALYSIS - FROM RICHTER (SCALED) J AND K VECTOR PLOT -0.59 -0.35 -0.12 o --- 0.12 0.35 11-------------------1-------------------1-------------------1-------------------1-------------------1 I I 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 01 I I I I I I I I I I I I I I I I I I I I I SS AJ ?? XX NN MM DD I 0.15 0.10 -0.00 I I I AC LL I BD I I -0.10 I I I I -0.15 -0.20 I -0.25 I I I -0.35 I -0.50 -0.55 -0.60 -0.65 -0.70 -0.75 Z AL AS UU AY JJAT EE WW ?? BG AD 0.57 0.53 0.49 0.45 0.41 0.37 0.33 0.30 0.26 0.22 0.18 0.14 I I I 0.10 I 0.06 I I I 0.02 ZZI -0.02 I I -0.06 I I I I -0.14 -0.10 I AM AU I I -0.18 I -0.22 I BF I -0.45 AN BC I -0.40 AP CC I -0.30 I AB I I I -0.05 02 AV I 0.05 03 FF I I I I I I I I I I I I I I I I I I I I I I BJ AW I I I I I I I I I I I I I I I AH I YY I 04 00 I I I I I I I I I I I I I I I 11-------------------1-------------------1-------------------1-------------------1-------------------1 -0.75 -0.45 -0.15 0.15 35 0.45 -0.26 -0.30 -0.33 -0.37 -0.41 -0.45 -0.49 -0.53 -0.57 SAS/IML The second analysis is labelled as SAS/IML. This program uses matrix algebra to center and scale the data matrix, compute the singular value decomposition of this matrix and create the G and H coordinates. The SVD subroutine was called to compute the biplots. See page 6 of SAS/IML output. The vectors were hand drawn from the (0,0) point to the H coordinate labels (T, C, D, M, and S). Notice that the entire plot is scaled on both axes to range between -1 and 1. This helps to standardize the plots. 37 ********************************************************************** ** DATA: /spruill/sasuser/richter-soils/working.biplots ** ** ** ** ** PGM: /spruill/sasuser/richter-soils/soils_biplot.pgm ** ** ** analysis of Duke phase I I growth data using soil measurements ** ** made by Dan Richter ( using IML for SVD of X matrix) ** *********************************************************************., options Is=80 PS=60i data workingiinfile 'working.biplots'i input @1 block 0 r m t s c di runi proc imlireset nologi use workingi read all into ai id=a ( 11: 54,1: 3 I ) i x=a ( 11: 54,4: 8 I ) i xmean=x ( 1+, I ) /nrow (x) i xphi=shape(l,nrow(x),l)i xcent=x-xphi*xmeani ss=xcent'*xcenti std=sqrt(inv(diag(ss)))i xscaled=xcent*stdi n_l=53i call svd(v,l,w,xscaled)i eigenvec=wi Isq=(I##2)ieigenval=lsqi prop=lsqllsq ( 1+, I ) i h=w*diag(l')i g=Vi prin=xscaled*w*sqrt(n_l)i vscaled=v*2i r = { l l m ll Ilt ll IISII Ile ll "dll}; rl= {""ecl" "vec2" "vec3" "vec4" "vec5" print print print print print print xscaled(lcolname=rl)i eigenval I prOPi eigenvec(lrowname=r colname=rll)i g ( Icolname=rll ) i prin(lcolname=rll)i h ( Irowname=r I) i *********************., * setting up the * ,. * scaled X matrix * ,. * from the data set *i *********************., * n_l =(# of obs.-l)*i *********************., * computing the * ,. * singular value * ,. * decomposition of * ,. * XSCALED, and * ,. * relabelling the * ,. * vectors to match * ,. * the names that * ,. * Gabriel uses. *i *********************., * concatenating matrices *i idv=idl Ivscaledi *********************., * creating SAS *i * datasets for use *i * in making the *i * biplots. *i *********************., create pcs from h (Irowname=rl)i append from h (Irowname=rl)i create ids from idvi append from idvi quiti *********************************************************************., * The end of IML. Next steps are to plot the eigenvectors of the * ,. * variables and the principal component scores of the data in the * ,. * G-H format that Gabriel uses. *i *********************************************************************., 38 data pc;set pcs; pcl=coll; pc2=co12; drop coll-co15; pc3=co13; pc4=co14; pc5=co15; data idandviset ids; block=colli o3=co12; ph=co13; el=co14; e2=co15i e3=co16; e4=co17; e5=co18; drop coll-co18; data all;set pc idandv; OX=Oi oy=Oi proc print data=all(obs=lO)i proc plot; plot pc2*pcl=r oy*ox='.' e2*el=block/overlay haxis =-1 to 1 by .25 vaxis=-l to 1 by .25; title 'plot of first and second principle component'i runi 39 16:10 Friday, November 2, 1990 SAS XSCALED m -0.073317 -0.060112 -0.099725 -0.071116 0.0631282 ~0.108528 -0.029302 -0.156944 0.032318 -0.031503 -0.099725 -0.051309 -0.11293 -0.073317 -0.042507 -0.123933 -0.150342 -0.145941 0.1247484 0.0785332 0.1005405 0.0697303 0.3558245 0.2457883 -0.08212 -0.090923 0.2765984 0.1907702 0.0389202 0.120347 0.4064411 -0.121733 -0.099725 -0.011696 0.3052078 0.2303832 -0.029302 -0.097525 -0.093123 -0.093123 0.1819673 -0.011696 -0.099725 -0.11513 0.056526 -0.075517 0.0433217 -0.117331 -0.077718 0.0147122 -0.077718 -0.05351 -0.097525 -0.060112 t -0.127631 0.0521417 -0.095511 0.2238423 -0.179259 0.1414395 -0.057 0.2586533 -0.145793 -0.062381 0.0467603 0.0650907 0.0857755 -0.157901 -0.027234 0.0913251 0.3800713 0.106124 -0.078357 -0.007054 -0.073144 0.1239499 -0.106946 0.0124538 0.1537158 0.0042136 -0.105937 -0.025552 0.1025924 -0.006717 -0.1167 0.3481192 0.2335961 0.1278178 -0.197085 -0.016303 0.0287662 0.1337037 -0.137217 0.0159854 0.0001775 -0.118718 -0.060027 -0.242659 -0.097024 -0.107114 -0.050441 -0.093493 0.152875 0.0933431 -0.152015 -0.139739 -0.081048 -0.116532 s 0.0666384 -0.058041 -0.087708 0.1520299 0.099913 0.1444128 0.0193323 0.0297556 0.1375975 0.0036972 -0.162275 0.14762 0.0622285 0.0922959 0.1259715 -0.045613 0.0774627 0.0457916 -0.034388 0.0758591 0.0369718 0.2029441 0.0554132 0.3845515 -0.193545 -0.01715 0.1191562 0.1969306 0.1544353 0.0433862 -0.011938 -0.141428 -0.015145 0.0433862 0.1311832 0.2081558 -0.05764 -0.127798 -0.176708 0.0161251 0.1187553 -0.197153 -0.029177 -0.055636 -0.088911 -0.219604 -0.170694 -0.134613 -0.121383 0.0073053 -0.321833 -0.171496 -0.19114 -0.168289 40 c -0.011778 -0.045873 -0.146846 0.0498553 0.1298471 0.0826388 0.0787048 -0.035382 0.1272244 0.1232904 0.0078923 -0.142912 0.0472326 0.1547626 0.213773 0.0773934 -0.081279 0.0432986 -0.036693 -0.019646 -0.099638 0.2163956 -0.212413 0.3435958 -0.144223 0.006581 -0.031448 -0.086524 -0.00391 0.0092037 -0.149469 -0.106194 -0.064231 -0.169139 0.0629687 0.1364038 -0.045873 0.1731214 -0.140289 0.0760821 0.0839501 -0.28716 0.3671999 0.0078923 0.0891955 -0.129799 0.1744327 -0.133733 -0.026203 0.0131377 -0.212413 -0.225526 -0.11144 0.0039583 d -0.057094 -0.239499 -0.106032 0.0986174 0.0808218 -0.048196 -0.106032 -0.101583 0.1253109 -0.061543 0.0007415 -0.239499 -0.110481 -0.097134 -0.07489 -0.07489 -0.057094 -0.012605 -0.070441 0.1475554 0.0496795 -0.19501 0.022986 0.1742488 -0.012605 -0.15497 -0.088237 -0.048196 0.0852707 0.0541284 -0.097134 -0.128277 -0.217255 0.3255117 -0.083788 -0.030401 0.0585773 0.0274349 0.0051904 0.0496795 0.1742488 0.0274349 -0.128277 0.3611029 -0.146072 -0.017054 0.0763729 -0.030401 0.263227 0.1253109 0.1075152 -0.052645 0.0941685 0.3522051 1 SAS 16:10 Friday, November 2, 1990 EIGENVAL L PROP 1.7046854 1.305636 0.3409371 1.3764558 1.1732245 0.2752912 0.9422275 0.970684 0.1884455 0.7254771 0.8517494 0.1450954 0.2511542 0.5011529 0.0502308 EIGENVEC m t s e d vee1 0.5182809 -0.096445 0.6773226 0.5118073 -0.037023 vee2 -0.441164 0.706608 0.2039395 0.2787401 -0.432195 vee3 -0.336857 0.1359768 0.0132626 0.4097121 0.8366586 41 vee4 0.358541 0.5820473 0.2719949 -0.589193 0.3339764 vee5 0.542895 0.3662442 -0.652293 0.3812418 -0.017296 2 16:10 Friday, November 2, 1990 SAS G vee1 0.0118963 -0.069014 -0.132588 0.0508503 0.1387404 0.0551489 0.0364666 -0.076959 0.1412979 0.0440954 -0.124151 0.0021749 0.0027658 0.0938616 0.1364107 -0.047143 -0.077811 -0.024686 0.025082 0.0591633 0.0240265 0.2141615 0.093976 0.4258884 -0.200536 -0.038326 0.1696119 0.1472257 0.0840369 0.0728491 0.1079298 -0.185397 -0.083717 -0.06711 0.2308257 0.2549732 -0.063302 -0.047802 -0.173641 -0.001366 0.1617937 -0.211494 0.0972908 -0.063785 0.022588 -0.186386 -0.001416 -0.161063 -0.122849 0.0043314 -0.272893 -0.186799 -0.178238 -0.110992 vee2 -0.019482 0.1212471 -0.031099 0.1635 -0.113258 0.188487 0.0378085 0.2489842 -0.091978 0.026881 0.0390561 0.1384306 0.1568634 0.0210639 0.0998558 0.1396521 0.3006285 0.1416843 -0.082848 -0.079617 -0.117406 0.2069599 -0.247512 -0.000633 0.0601936 0.0923977 -0.122066 -0.055694 0.0416583 -0.059511 -0.224923 0.2528799 0.2403291 -0.071176 -0.164837 -0.016659 -0.014153 0.1260084 -0.113585 0.0472224 -0.091919 -0.179705 0.1307707 -0.243676 -0.020144 -0.098845 -0.063033 -0.056162 -0.002996 0.0089153 -0.208348 -0.128039 -0.106534 -0.20564 vee3 -0.045708 -0.198421 -0.133344 0.1641575 0.0788156 0.052788 -0.055724 -0.011388 0.1319499 0.0012378 0.0429113 -0.237811 -0.023234 -0.013815 0.0383382 0.0232957 0.0229556 0.0735487 -0.130941 0.0916846 -0.043867 -0.08081 -0.207551 0.2169194 -0.024353 -0.098886 -0.198527 -0.145154 0.0748219 0.0084271 -0.30437 -0.06631 -0.147245 0.2317331 -0.177373 -0.048019 0.044538 0.1475466 -0.04406 0.1097095 0.1241231 -0.112824 0.0702251 0.3197767 -0.122678 -0.061284 0.1150213 -0.056868 0.26255 0.1216241 0.0042922 -0.143917 0.0540082 0.3074831 42 vec4 -0.111039 -0.070385 -0.075251 0.1757579 -0.122148 0.021022 -0.141132 0.1048327 -0.080956 -0.164126 -0.067014 0.0749712 -0.045044 -0.254435 -0.173517 -0.087229 0.2550115 -0.009184 -0.014253 0.12391 0.0925486 -0.047293 0.2503448 0.0654194 0.1034914 -0.106188 0.0692472 0.1666844 0.171947 0.0747816 0.1528373 0.1646439 0.0720583 0.3409121 -0.040723 0.0460332 0.0436168 -0.099494 -0.090317 -0.056277 0.1248948 0.0603899 -0.396622 -0.095921 -0.189876 -0.092013 -0.161459 -0.075677 0.1543289 0.1123597 -0.050276 -0.037417 -0.043463 -0.023314 vee5 -0.266421 0.0219008 -0.171723 -0.076812 -0.096673 -0.13764 -0.035029 -0.043131 -0.158173 0.011387 0.143334 -0.300606 -0.100902 -0.193864 -0.064704 0.0533145 -0.045792 -0.106769 0.0971518 -0.038855 -0.070173 0.0733213 0.0727981 0.0302053 0.1660121 -0.06274 0.0462478 -0.132494 -0.089791 0.0741244 0.2601951 0.2302576 0.041029 -0.115635 0.066647 0.0715413 0.0273851 0.2891547 -0.07806 -0.054022 0.100533 -0.062216 0.1698431 -0.236099 0.1789481 0.0275928 0.3623002 -0.120904 0.1565031 0.0803142 0.0583084 -0.10662 -0.004119 0.0596164 3 SAS PRIN vec1 0.113076 -0.655993 -1.260274 0.4833411 1.3187513 0.5241998 0.346621 -0.731509 1.3430615 0.4191349 -1.180079 0.0206731 0.0262898 0.8921705 1. 2966078 -0.448105 -0.739611 -0.234641 0.2384092 0.5623577 0.2283759 2.0356427 0.8932582 4.0481434 -1. 906126 -0.364296 1. 6121909 1.3994056 0.7987854 0.6924431 1. 0258915 -1. 762226 -0.795742 -0.63789 2.1940387 2.4235646 -0.601694 -0.454362 -1.650484 -0.012986 1. 5378775 -2.010292 0.9247661 -0.606288 0.2147026 -1. 771627 -0.013461 -1.530934 -1.167698 0.0411706 -2.593893 -1.775555 -1.694183 -1.055003 vec2 -0.166403 1. 0355965 -0.26562 1. 3964865 -0.967356 1.6099054 0.32293 2.1266247 -0.785602 0.2295959 0.3335862 1.1823641 1.3398026 0.1799107 0.8528886 1.192797 2.5677293 1.210154 -0.707621 -0.680023 -1.002786 1. 7676867 -2.114052 -0.00541 0.5141258 0.7891879 -1.042591 -0.475697 0.3558121 -0.508295 -1.92111 2.159899 2.0526997 -0.607925 -1.407903 -0.14229 -0.120886 1.0762629 -0.970154 0.403336 -0.785103 -1. 534898 1.1169387 -2.081284 -0.172055 -0.844256 -0.538379 -0.479692 -0.025588 0.0761473 -1.779542 -1.093611 -0.909924 -1.75641 16:10 Friday, November 2, 1990 vec3 -0.323002 -1. 40218 -0.942298 1.1600493 0.5569653 0.373036 -0.393782 -0.080472 0.9324484 0.0087473 0.3032407 -1.680536 -0.16419 -0.097625 0.2709237 0.1646232 0.1622203 0.5197455 -0.925317 0.6479065 -0.309997 -0.571056 -1.466695 1.532901 -0.172093 -0.698799 -1.402931 -1. 025761 0.5287431 0.0595517 -2.150886 -0.468592 -1.040536 1. 6375851 -1.253441 -0.339335 0.3147362 1.0426658 -0.311358 0.7752825 0.8771391 -0.797294 0.4962586 2.2597618 -0.866928 -0.433076 0.8128193 -0.401871 1. 8553587 0.8594792 0.0303316 -1.017014 0.3816591 2.1728865 43 vec4 -0.688536 -0.436443 -0.46662 1.0898449 -0.75742 0.1303541 -0.875135 0.6500497 -0.501994 -1. 017717 -0.415544 0.4648839 -0.279308 -1.577707 -1.07595 -0.540893 1.5812827 -0.056948 -0.08838 0.7683446 0.573878 -0.293257 1. 5523453 0.4056542 0.6417324 -0.658453 0.42939 1. 0335816 1. 066214 0.4637078 0.947718 1.0209291 0.4468211 2.1139378 -0.252516 0.2854439 0.2704606 -0.616948 -0.560042 -0.348961 0.7744514 0.3744672 -2.459388 -0.59479 -1.177391 -0.570558 -1. 001177 -0.469263 0.9569674 0.6967233 -0.311753 -0.232018 -0.269509 -0.144564 vec5 -0.972024 0.0799039 -0.626521 -0.280243 -0.352706 -0.502171 -0.1278 -0.157363 -0.577084 0.041545 0.5229465 -1.096746 -0.368137 -0.707304 -0.23607 0.1945152 -0.167069 -0.38954 0.3544533 -0.141761 -0.256023 0.2675091 0.2656002 0.1102025 0.6056866 -0.228903 0.1687326 -0.483397 -0.327597 0.2704392 0.9493082 0.8400828 0.149692 -0.421888 0.243158 0.2610146 0.0999131 1. 0549658 -0.284796 -0.197097 0.3667895 -0.226992 0.6196635 -0.861397 0.652883 0.1006709 1.3218335 -0.44111 0.5709935 0.293022 0.2127353 -0.388999 -0.015027 0.2175074 4 SAS H m t s c d Exiting IML. OBS R 1 2 3 4 5 6 7 8 9 10 OBS 1 2 3 4 5 6 7 8 9 10 m t s c d 0.6766863 -0.125922 0.8843367 0.6682341 -0.048339 PCl 0.67669 -0.12592 0.88434 0.66823 -0.04834 -0.517584 0.8290098 0.2392668 0.3270247 -0.507062 PC2 -0.51758 0.82901 0.23927 0.32702 -0.50706 16:10 Friday, November 2, 1990 -0.326982 0.1319905 0.0128738 0.397701 0.8121311 PC3 -0.32698 0.13199 0.01287 0.39770 0.81213 0.3053871 0.4957584 0.2316715 -0.501844 0.2844642 PC4 0.30539 0.49576 0.23167 -0.50184 0.28446 5 0.2720734 0.1835444 -0.326898 0.1910604 -0.008668 PC5 BLOCK 03 0.27207 0.18354 -0.32690 0.19106 -0.00867 3 3 3 3 3 PH 3 4 5 3 4 El 0.02379 -0.13803 -0.26518 0.10170 0.27748 E2 -0.03896 0.24249 -0.06220 0.32700 -0.22652 E3 -0.09142 -0.39684 -0.26669 0.32831 0.15763 44 E4 -0.22208 -0.14077 -0.15050 0.35152 -0.24430 E5 -0.53284 0.04380 -0.34345 -0.15362 -0.19335 3 3 3 4 4 OX OY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 plot of first and second principle component 6 16:10 Friday, November 2, 1990 Symbol is value of R. Symbol used is '.'. Symbol is value of BLOCK. Plot of PC2*PC1. Plot of OY*OX. Plot of E2*E1. PC2 1. 00 + 0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 -1. 00 I I I I + I I I I + I I I I + I I I I + I I I I + I I I I + I I I I + I I I I + I 3 4 3 s 4 3 5 3 5 5 5 5 5 5 -+--------+-------~+--------+--------+--------+--------+--------+--------+ -1.00 -0.75 -0.50 -0.25 0.00 1. 00 PC1 NOTE: 54 obs had missing values. 63 obs hidden. 45 0.25 0.50 0.75 SAS PRINCOMP 46 SAS PRINCOMP The third analysis uses SAS PRINCOMP to compute all necessary portions of the singular value decomposition. The results are output into SAS datasets (STATS and PRINX) and manipulated to produce the graphs. Page one of the output shows the usual PRINCOMP output. Notice that the eigenvalues proportions match the and previous computations from IML and BIPLOTS. The output labelled as EIGENVECTORS are the W vectors and match the results of the SVD of XSCALED and the column canonical weights of the BIPLOTS output. Page two of the output is a printout of the STATS dataset as SAS produces it. The dataset PRINX, listed on page 3, contains what SAS calls the principal component scores of the observations. They are a function of the G coordinates and can be computed as PRINX=G*L*(n-l) or PRINX=XSCALED*W*SQRT(n-l). The latter equation was used in the SAS/IML example in the matrix called PRIN (see page 4 of SAS/IML). Datasets were concatenated, and the center reference coordinate (0,0) was created in dataset PC. Here the Hand G coordinates were computed as Hj=Wj*SQRT(EIGVAL) and Gi =2*(V i /SQRT(EIGVAL*(n-l)). Again, G is arbitrarily rescaled by a factor of 2 for plotting purposes. G and H were plotted using the same options as those in the SAS/IML example. 47 ********************************************************************** ** DATA: /spruill/sasuser/richter-soils/working.biplots ** ** ** ** ** PGM: /spruill/sasuser/richter-soils/moresoil.pgm ** ** ** analysis of Duke phase II growth data using soil measurements ** ** made by Dan Richter (computing biplots from PROC PRINCOMP) ** *********************************************************************., options ls=80 PS=60i data workingiinfile 'working.biplots'i input @I block 0 r m t s c di *********************************************************************., ** RUNNING PRINCOMP AND OUTPUTTING THE RESULTS INTO A SAS DATASET **i ** CALLED "STATS". ** i *********************************************************************., proc sortiby block 0 ri proc princomp out=prinx prefix=w outstat=statsi var m t s c di proc print data=statsi title 'output of dataset STATS'i proc print data=prinxivar block 0 r wl-w5i title 'output of dataset PRINX'i *********************************************************************., ** PULLING EIGENVALUES FROM PRINCOMP OUTPUT TO BE USED TO COMPUTE **i ** THE "H" COORDINATES FOR GABRIEL'S BIPLOTS. THE EIGENVALUES ARE **i ** RELABELLED AT THIS TIME, BECAUSE THE SAS LABELS ARE MISLEADING. **i *********************************************************************., data eigvaliset statsiif _type_='EIGENVAL'i eigvall=mi eigva12=ti eigva13=si eigva14=ci eigva15=di drop m t s c di *********************************************************************., ** PULLING EIGENVECTORS FROM THE PRINCOMP OUTPUT TO USED TO MAKE **i ** THE "G" COORDINATES FOR GABRIEL'S BIPLOTS. THIS DATASET WILL BE **i ** TRANSPOSED IN ORDER TO HAVE THE PROPER ORIENTATION FOR PLOTTING **i *********************************************************************.I data eigveciset statsiif _type_='SCORE'i proc transpose out=newivar m t s c di id _name_i ********************************************************************., ** CONCATENATING THE "EIGVAL" AND TRANSPOSED "EIGVEC" (NEW) DATA- **., ** SETS WITH THE PRINCIPAL COMPONENT SCORES FOUND IN "PRINX". AT **., **., ** THIS TIME THE ORIGIN IS DEFINED AS "OY" AND "OX", AND THE **., ** "H" AND "G" COORDINATES ARE CREATED AS DEFINED BY GABRIEL. **., ** **., ** THE EIGENVALUES ARE MULTIPLIED BY (N-I). THIS WAS NOT A **., ** NECESSARY STEP IN IML BECAUSE THE X MATRIX WAS CENTERED AND **., ** SCALED BEFORE THE SINGULAR VALUE DECOMPOSITION. ** THE RESCALING OF THE "G"s BY 2 IS ARBITRARY AND IS USED SIMPLY **., **., ** TO SPREAD THE DATA POINTS OUT ON THE PLOTS. THE FEWER NUMBER ** OF OBSERVATIONS THAT EXIST, THE LESS NECESSARY THIS RESCALING. **., **., ** LIKEWISE, THE LARGER THE NUMBER OF OBSERVATIONS USED, THE **., ** LARGER THE SCALER WILL HAVE TO BE IN ORDER TO BE EFFECTIVE. 48 **., CAUTIONl 1 1 **., ** DO NOT USE A SCALER THAT WILL RESULT IN "G"s THAT ARE BEYOND ** RANGE OF -l<=G<=l. **j ********************************************************************., data pCjif _n_=l then set eigvaljset new prinxj oy=Ojox=Ojdrop m t s C dj if block=. then dOj ********************., h1=w1*sqrt(eigval1)j * CREATING "H" *j h2=w2*sqrt(eigva12)j ********************., h3=w3*sqrt(eigva13)jendj ** if block ne . then dOj gl=2*(w1/(sqrt(eigval1*53)))j g2=2*(w2/(sqrt(eigva12*53)))j g3=2*(w3/(sqrt(eigva13*53)))jendj drop _type_ w1-w5; proc printjtitle 'output of dataset ********************., * CREATING "G" *; ********************., PC, with G"s and H"s'; ********************************************************************., ** PLOTTING THE COORDINATES IN THE G-H FORMAT THAT GABRIEL USES. **j , ************~*******************************************************. proc plotj plot h2*h1=_name_ oy*ox='.' g2*gl=block/overlay haxis =-1 to 1 by .25 vaxis=-l to 1 by .25; title 'plot of FIRST and SECOND principal components'j runj 49 SAS 12:01 Wednesday, November 7, 1990 Principal Component Analysis 54 Observations 5 Variables Simple Statistics M T S C Mean 26.57870370 0.0538333333 Std 15.60401981 0.0308751289 39.26944444 19.54777778 3.019814815 8.16800694 3.42631089 1.047481239 D Correlation Matrix T S C D -.3561 1.0000 0.1435 0.0257 - .1676 0.4522 0.1435 1.0000 0.4956 -.0849 0.0516 0.0257 0.4956 1.0000 -.0196 0.0487 - .1676 -.0849 -.0196 1.0000 M M T S C D 1.0000 -.3561 0.4522 0.0516 0.0487 Eigenvalues of the Correlation Matrix W1 W2 W3 W4 W5 Eigenvalue Difference Proportion Cumulative 1.70469 1.37646 0.94223 0.72548 0.25115 0.328230 0.434228 0.216750 0.474323 0.340937 0.275291 0.188446 0.145095 0.050231 0.34094 0.61623 0.80467 0.94977 1.00000 Eigenvectors M T S C D W1 W2 W3 W4 W5 0.518281 -.096445 0.677323 0.511807 -.037023 -.441164 0.706608 0.203939 0.278740 -.432195 -.336857 0.135977 0.013263 0.409712 0.836659 0.358541 0.582047 0.271995 -.589193 0.333976 0.542895 0.366244 -.652293 0.381242 -.017296 50 1 OBS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 _TYPE_ output of dataset STATS 2 12:01 Wednesday, November 7, 1990 _NAME_ MEAN STD N CaRR CaRR CaRR CaRR CaRR EIGENVAL SCORE SCORE SCORE SCORE SCORE M T S C D Wi W2 W3 W4 W5 M 26.5787 15.6040 54.0000 1.0000 -0.3561 0.4522 0.0516 0.0487 1. 7047 0.5183 -0.4412 -0.3369 0.3585 0.5429 T S C D 39.2694 8.1680 54.0000 -0.3561 1. 0000 0.1435 0.0257 -0.1676 1. 3765 -0.0964 0.7066 0.1360 0.5820 0.3662 19.5478 3.4263 54.0000 0.4522 0.1435 1. 0000 0.4956 -0.0849 0.9422 0.6773 0.2039 0.0133 0.2720 -0.6523 3.0198 1.0475 54.0000 0.0516 0.0257 0.4956 1. 0000 -0.0196 0.7255 0.5118 0.2787 0.4097 -0.5892 0.3812 0.0538 0.0309 54.0000 0.0487 -0.1676 -0.0849 -0.0196 1. 0000 0.2512 -0.0370 -0.4322 0.8367 0.3340 -0.0173 51 3 output of dataset PRINK 12:01 Wednesday, November 7, 1990 OBS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 BLOCK 0 R W1 W2 W3 W4 W5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 0.02629 0.89217 1.29661 -0.44810 -0.73961 -0.23464 0.11308 -0.65599 -1.26027 0.48334 1.31875 0.52420 0.34662 -0.73151 1.34306 0.41913 -1.18008 0.02067 1.02589 -1.76223 -0.79574 -0.63789 2.19404 2.42356 0.23841 0.56236 0.22838 2.03564 0.89326 4.04814 -1.90613 -0.36430 1.61219 1.39941 0.79879 0.69244 -1.16770 0.04117 -2.59389 -1.77555 -1.69418 -1.05500 -0.60169 -0.45436 -1.65048 -0.01299 1.53788 -2.01029 0.92477 -0.60629 0.21470 -1.77163 -0.01346 -1.53093 1. 33980 0.17991 0.85289 1.19280 2.56773 1.21015 -0.16640 1. 03560 -0.26562 1. 39649 -0.96736 1.60991 0.32293 2.12662 -0.78560 0.22960 0.33359 1.18236 -1. 92111 2.15990 2.05270 -0.60793 -1. 40790 -0.14229 -0.70762 -0.68002 -1. 00279 1. 76769 -2.11405 -0.00541 0.51413 0.78919 -1. 04259 -0.47570 0.35581 -0.50830 -0.02559 0.07615 -1. 77954 -1. 09361 -0.90992 -1. 75641 -0.12089 1.07626 -0.97015 0.40334 -0.78510 -1. 53490 1.11694 -2.08128 -0.17205 -0.84426 -0.53838 -0.47969 -0.16419 -0.09763 0.27092 0.16462 0.16222 0.51975 -0.32300 -1.40218 -0.94230 1.16005 0.55697 0.37304 -0.39378 -0.08047 0.93245 0.00875 0.30324 -1. 68054 -2.15089 -0.46859 -1.04054 1.63759 -1.25344 -0.33934 -0.92532 0.64791 -0.31000 -0.57106 -1.46670 1.53290 -0.17209 -0.69880 -1.40293 -1.02576 0.52874 0.05955 1. 85536 0.85948 0.03033 -1.01701 0.38166 2.17289 0.31474 1. 04267 -0.31136 0.77528 0.87714 -0.27931 -1. 57771 -1. 07595 -0.54089 1.58128 -0.05695 -0.68854 -0.43644 -0.46662 1.08984 -0.75742 0.13035 -0.87513 0.65005 -0.50199 -1.01772 -0.41554 0.46488 0.94772 1. 02093 0.44682 2.11394 -0.25252 0.28544 -0.08838 0.76834 0.57388 -0.29326 1. 55235 0.40565 0.64173 -0.65845 0.42939 1. 03358 1.06621 0.46371 0.95697 0.69672 -0.31175 -0.23202 -0.26951 -0.14456 0.27046 -0.61695 -0.56004 -0.34896 0.77445 0.37447 -2.45939 -0.59479 -1.17739 -0.57056 -1. 00118 -0.46926 -0.36814 -0.70730 -0.23607 0.19452 -0.16707 -0.38954 -0.97202 0.07990 -0.62652 -0.28024 -0.35271 -0.50217 -0.12780 -0.15736 -0.57708 0.04155 0.52295 -1.09675 0.94931 0.84008 0.14969 -0.42189 0.24316 0.26101 0.35445 -0.14176 -0.25602 0.26751 0.26560 0.11020 0.60569 -0.22890 0.16873 -0.48340 -0.32760 0.27044 0.57099 0.29302 0.21274 -0.38900 -0.01503 0.21751 0.09991 1.05497 -0.28480 -0.19710 0.36679 -0.22699 0.61966 -0.86140 0.65288 0.10067 1.32183 -0.44111 52 ~0.79729 0.49626 2.25976 -0.86693 -0.43308 0.81282 -0.40187 output of dataset OBS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 _NAME_ M T S C D OBS OX 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 PC, with G's and H's 12:01 Wednesday, November 7, 1990 EIGVALl EIGVAL2 EIGVAL3 EIGVAL4 EIGVAL5 1.70469 1. 70469 1.70469 1. 70469 1.70469 1. 70469 1.70469 1. 70469 1. 70469 1. 70469 1. 70469 1. 70469 1.70469 1. 70469 1. 70469 1. 70469 1. 70469 1. 70469 1. 70469 1. 70469 1. 70469 1. 70469 1. 70469 1. 70469 1. 70469 1. 70469 1.37646 1. 37646 1. 37 646 1. 37646 1. 37 646 1. 37 646 1. 37 646 1. 37 646 1. 37 646 1. 37 646 1. 37 646 1. 37 646 1.37646 1. 37 646 1. 37 646 1.37646 1. 37 646 1. 37 646 1. 37 646 1. 37 646 1. 37 646 1. 37 646 1.37646 1.37646 1.37646 1.37646 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 H1 H2 H3 0.67669 -0.12592 0.88434 0.66823 -0.04834 -0.51758 0.82901 0.23927 0.32702 -0.50706 -0.32698 0.13199 0.01287 0.39770 0.81213 53 BLOCK 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 1 1 1 R OY 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Gl G2 G3 0.00553 0.18772 0.27282 -0.09429 -0.15562 -0.04937 0.02379 -0.13803 -0.26518 0.10170 0.27748 0.11030 0.07293 -0.15392 0.28260 0.08819 -0.24830 0.00435 0.21586 -0.37079 -0.16743 0.31373 0.04213 0.19971 0.27930 0.60126 0.28337 -0.03896 0.24249 -0.06220 0.32700 -0.22652 0.37697 0.07562 0.49797 -0.18396 0.05376 0.07811 0.27686 -0.44985 0.50576 0.48066 -0.04647 -0.02763 0.07668 0.04659 0.04591 0.14710 -0.09142 -0.39684 -0.26669 0.32831 0.15763 0.10558 -0.11145 -0.02278 0.26390 0.00248 0.08582 -0.47562 -0.60874 -0.13262 -0.29449 output of dataset OBS _NAME_ 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 PC I with GIS and HIs 5 12:01 Wednesday I November 7 1 1990 EIGVALl EIGVAL2 EIGVAL3 EIGVAL4 EI GVAL 5 BLOCK 1. 70469 1. 70469 1. 70469 1. 70469 1. 70469 1.70469 1. 70469 1. 70469 1. 70469 1.70469 1.70469 1.70469 1.70469 1.70469 1.70469 1. 70469 1.70469 1.70469 1.70469 1.70469 1. 70469 1.70469 1.70469 1.70469 1.70469 1.70469 1.37646 1.37646 1.37646 1.37646 1.37646 1.37646 1.37646 1.37646 1.37646 1.37646 1.37646 1. 37646 1.37646 1. 37646 1. 37646 1. 37646 1. 37646 1. 37646 1. 37646 1. 37646 1.37646 1.37646 1. 37646 1. 37646 1. 37646 1.37646 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 0.25115 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 OBS a R OY OX 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 1 1 1 2 2 2 3 3 3 4 4 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hi H2 H3 54 Gl G2 G3 -0.13422 0.46165 0.50995 0.05016 0.11833 0.04805 0.42832 0.18795 0.85178 -0.40107 -0.07665 0.33922 0.29445 0.16807 0.14570 -0.24570 0.00866 -0.54579 -0.37360 -0.35648 -0.22198 -0.12660 -0.09560 -0.34728 -0.00273 0.32359 -0.14235 -0.32967 -0.03332 -0.16570 -0.15923 -0.23481 0.41392 -0.49502 -0.00127 0.12039 0.18480 -0.24413 -0.11139 0.08332 -0.11902 -0.00599 0.01783 -0.41670 -0.25608 -0.21307 -0.41128 -0.02831 0.25202 -0.22717 0.09444 -0.18384 0.46347 -0.35475 -0.09604 -0.26188 0.18337 -0.08773 -0.16162 -0.41510 0.43384 -0.04871 -0.19777 -0.39705 -0.29031 0.14964 0.01685 0.52510 0.24325 0.00858 -0.28783 0.10802 0.61497 0.08908 0.29509 -0.08812 0.21942 0.24825 output of dataset OBS _NAME_ 53 54 55 56 57 58 59 PC, with G's and H's 6 12:01 Wednesday, November 7, 1990 EIGVAL1 EIGVAL2 EIGVAL3 EIGVAL4 EIGVAL5 BLOCK 1.70469 1.70469 1. 70469 1. 70469 1. 70469 1. 70469 1. 70469 1.37646 1.37646 1.37646 1.37646 1. 37646 1.37646 1. 37646 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.94223 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.72548 0.25115 0.25115 0,25115 0.25115 0.25115 0.25115 0.25115 5 5 5 5 5 5 5 OBS 0 R OY OX 53 54 55 56 57 58 59 4 5 5 5 6 6 6 5 3 4 5 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hi H2 H3 55 Gl G2 G3 -0.42299 0.19458 -0.12757 0.04518 -0.37277 -0.00283 -0.32213 -0.35941 0.26154 -0.48735 -0.04029 -0.19769 -0.12607 -0.11232 -0.22565 0.14045 0.63955 -0.24536 -0.12257 0.23004 -0.11374 plot of FIRST and SECOND principal components 7 12:01 Wednesday, November 7, 1990 Symbol is value of JJAME_. Symbol used is '.'. Symbol is value of BLOCK. Plot of H2*H1. Plot of OY*OX. Plot of G2*Gl. H2 1. 00 + I I I I 0.75 + I I I I 0.50 + I I 3 4 3 I I 0.25 + I I I I 0.00 + I S 4 3 5 3 5 I I I 5 5 -0.25 + I I I I 5 5 5 4 -0.50 + I I I I -0.75 + I I I I -1.00 + I 5 4 D M -+--------+--------+--------+--------+--------+--------+-----~--+--------+ -1.00 -0.75 -0.50 -0.25 0.00 H1 NOTE: 54 obs had missing values. 63 obs hidden. 56 0.25 0.50 0.75 1.00 S-PLUS The fourth analysis is labelled as $-PLUS in which a function named BIPLOT has been created. This function also uses matrix algebra to compute the singular value decomposition of the data matrix. Like the BIPLOTS program that is located on the NCSUVM system, the data matrix must already contain data that is centered and scaled to unit length. Start with an ASCII file containing the centered and scaled data (example XSCALED.DAT) : XSCALED.DAT => -0.073317 -0.127631 -0.060112 0.066638 -0.011778 -0.057094 0.052142 -0.058041 -0.045873 -0.239499 -0.099725 -0.095511 -0.087708 -0.146846 -0.106032 0.049855 0.098617 -0.077718 -0.152015 -0.321833 -0.212413 0.107515 -0.071116 0.223842 0.152030 -0.053510 -0.139739 -0.171496 -0.225526 -0.052645 -0.097525 -0.081048 -0.191140 -0.111440 0.094169 -0.060112 -0.116532 -0.168289 0.352205 0.003958 and created an S-PLUS data file using the following commands: r_list(m=O,t=O,s=O,c=O,d=O} xscaled_scan ("XSCALED. DAT" ,r) . Next, convert the new S-PLUS data set, xscaled, into an S-PLUS matrix called xscaledm, as follows: xscaledm_cbind(xscaled$m,xscaled$t,xscaled&s,xscaled$c, xscaled$d} . The BIPLOT function can be invoked on the matrix xscaledm as follows: output_biplot(xscaledm,dataname="Mottling"} 58 where a data set labeled output will be created to contain the results of the singular value decomposition of xscaledm. If an S~ PLUS graphics window is opened before invoking the BIPLOT function (e.g. suntools(), Xll()) then a graph of the biplots will be displayed. The function dataname= will label the graph with the supplied quote. 59 biplot funetion(input, a = 1, b = 2, dataname, rname = "Row", ename = "Column") ( if(!is.matrix(input» stop ("biplot () needs a matrix") if(dataname == "") stop ("No data name given for heading!") nr <- nrow(input) ne <- neol(input) x.svd <- svd(input) eolmark <- diag(x.svd$d) %*% t(x.svd$v) prop <- matrix(x.svd$d A 2/sum(x.svd$d A 2), nrow = ne, neol = 1) lim <- max (abs (eolmark[a, ]» lim2 <- max(abs(x.svd$u» k < - lim/ lim2 oldpar <- par par (mar = e ( 6 , 6, 8, 6» plot (eolmark[a, ], eolmark[b, ], xlim = e( - lim, lim), ylim = e( - lim, lim), xlab = "", ylab = "", type = "n") points(O, 0, peh = ".") arrows(e(rep(O, ne», e(rep(O, ne», colmark[a, ], eolmark[b, ], size = 0.1) points (k * x. svd$u [, a], k * x. svd$u [, b], peh = "+") text(k * x.svd$u[, a] - 0.03 * lim, k * x.svd$u[, b], labels = seq( l:nr), cex = 0.6) text (eolmark[a, + 0.03 * lim, eolmark[b, ], labels = seq(l:ne), eex = 0.6) mtext(paste("Biplots of Dimensions ", a, "and", b, ",", dataname, "data"), side = 3, line = 6, eex = 1.5) title(mpg = e(4, 2, 0), xlab = paste ("Dimension " a, ",", ename, "Information"» title(mpg = e(3, 1, 0), ylab = paste ("Dimension " b, ",", ename, "Information") ) axis(3, signif(seq( - k * lim2, k * lim2, length = 5), digits = 2), labels = e(signif(seq( - lim2, lim2, length = 5), digits = 2») mtext(paste("Dimension", a, ",", rname, "Information"), side = 3, line = 3) axis(4, signif(seq( - k * lim2, k * lim2, length = 5), digits = 2), labels = e(signif(seq( - lim2, lim2, length = 5), digits = 2», srt = 90) mtext(paste("Dimension,", b, ",", rname, "Information"), side = 4, line = 4) text ( - lim, - lim, label = round (prop [a, 1], digits = 3), eex = 0.6) arrows ( - lim + 0.1 * lim, - lim, - lim + 0.3 * lim, - lim, size = 0.05) text ( - lim, - lim + 0.2 * lim, label = round(prop[b, 1], digits = 3), eex = 0.6) arrows ( - lim, - lim + 0.3 * lim, - lim, - lim + 0.5 * lim, size = 0.05) z <- list (x.svd$u, x.svd$d, eolmark, prop) names(z) <- e("u", "d", "eolmark", "prop") par <- oldpar z 60 Output of S-PLUS BIPLOT FUNCTION $u: [1, ] [2, ] [3, ] [4, ] [5, ] [6, ] [7, ] [8, ] [9, ] [10, ] [11, ] [12, ] [13, ] [14, ] [15, ] [16, ] [17,] [18, ] [19, ] [20, ] [21, ] [22, ] [23, ] [24, ] [25, ] [26, ] [27, ] [28, ] [29, ] [30, ] [31, ] [32, ] [33, ] [34, ] [35, ] [36, ] [37, ] [38, ] [39, ] [40, ] [41, ] [42, ] [43, ] [44, ] [45, ] [46, ] [47, ] [48, ] [49, ] [50, ] [51, ] [52, ] [53, ] [54, ] [ , 1] 0.011895803 -0.069013746 -0.132588382 0.050851063 0.138739920 0.055150046 0.036466777 -0.076957816 0.141297763 0.044095321 -0.124150871 0.002175445 0.002766280 0.093861805 0.136410883 -0.047142424 -0.077810029 -0.024684744 0.025081630 0.059162879 0.024025708 0.214162341 0.093974466 0.425888880 -0.200535383 -0.038326163 0.169610994 0.147225495 0.084036785 0.072848818 0.107928341 -0.185395403 -0.083715509 -0.067110008 0.230825107 0.254973230 -0.063301551 -0.047801330 -0.173641136 -0.001365828 0.161793082 -0.211495227 0.097291520 -0.063785814 0.022587782 -0.186386180 -0.001416054 -0.161063502 -0.122848507 0.004331369 -0.272893647 -0.186799307 -0.178238770 -0.110993296 [ , 2] [ , 3] [,4] [ , 5] 0.0194826517 -0.045707425 -0.11103916 -0.26642158 -0.1212472592 -0.198421182 -0.07038373 0.02190028 0.0310985241 -0.133343562 -0.07525109 -0.17172273 -0.1634996842 0.164156958 0.17575785 -0.07681147 0.1132583686 0.078815721 -0.12214807 -0.09667329 -0.1884861821 0.052788184 0.02102217 -0.13763970 -0.0378080935 -0.055723612 -0.14113183 -0.03502841 -0.2489842416 -0.011387406 0.10483300 -0.04313169 0.0919785479 0.131949848 -0.08095516 -0.15817331 -0.0268808202 0.001237775 -0.16412534 0.01138677 -0.0390565804 0.042910675 -0.06701450 0.14333353 -0.1384302661 -0.237810994 0.07497224 -0.30060545 -0.1568637554 -0.023234035 -0.04504363 -0.10090141 -0.0210636780 -0.013814281 -0.25443444 -0.19386484 -0.0998552700 0.038338003 -0.17351734 -0.06470437 -0.1396521836 0.023295233 -0.08722870 0.05331366 -0.3006286176 0.022955793 0.25501168 -0.04579199 -0.1416846614 0.073549240 -0.00918414 -0.10676921 0.0828476068 -0.130940460 -0.01425302 0.09715133 0.0796170394 0.091684340 0.12390964 -0.03885511 0.1174054944 -0.043867678 0.09254865 -0.07017374 -0.2069588799 -0.080809402 -0.04729316 0.07332128 0.2475126055 -0.207550517 0.25034455 0.07279854 0.0006353057 0.216919302 0.06541958 0.03020522 -0.0601949072 -0.024352085 0.10349106 0.16601182 -0.0923982058 -0.098886067 -0.10618768 -0.06274003 0.1220667810 -0.198527892 0.06924706 0.04624768 0.0556949920 -0.145153968 0.16668494 -0.13249374 -0.0416574581 0.074822057 0.17194691 -0.08979065 0.0595109241 0.008426929 0.07478138 0.07412552 0.2249235876 -0.304369821 0.15283744 0.26019490 -0.2528811098 -0.066309888 0.16464322 0.23025708 -0.2403294054 -0.147245392 0.07205813 0.04102950 0.0711754525 0.231733590 0.34091257 -0.11563302 0.1648379534 -0.177373715 -0.04072334 0.06664725 0.0166604138 -0.048019315 0.04603311 0.07154117 0.0141530656 0.044537662 0.04361694 0.02738453 -0.1260088538 0.147546677 -0.09949438 0.28915434 0.1135844718 -0.044060015 -0.09031807 -0.07805915 -0.0472222687 0.109708960 -0.05627685 -0.05402233 0.0919200591 0.124123281 0.12489503 0.10053386 0.1797043799 -0.112824181 0.06039038 -0.06221641 -0.1307701368 0.070224482 -0.39662259 0.16984313 0.2436758242 0.319776947 -0.09592093 -0.23609930 0.0201442300 -0.122677719 -0.18987662 0.17894856 0.0988443214 -0.061284052 -'0.09201262 0.02759313 0.0630329180 0.115021413 -0.16145875 0.36230069 0.056161677 -0.056868623 -0.07567730 -0.120904317 0.002995186 0.262550174 0.15432914 0.156503043 -0.008915284 0.121624463 0.11235912 0.080314776 0.208346203 0.004292493 -0.05027604 0.058308710 0.128038589 -0.143915928 -0.03741740 -0.106619866 0.106532625 0.054008985 -0.04346337 -0.004119236 0.205639286 0.307483182 -0.02331395 0.059617173 61 • $d: [1] 1.3056357 1.1732245 0.9706833 0.8517495 0.5011530 $colmark: [1, [2, [3, [4, [5, [ ,4] [ , 2] [ , 3] [ , 5] [ ,1] ] 0.6766826 -0.1259174 0.88433775 0.6682365 -0.04834057 ] 0.5175872 -0.8290103 -0.23926287 -0.3270224 0.50706087 ] -0.3269822 0.1319901 0.01287341 0.3976997 0.81213090 ] 0.3053866 0.4957581 0.23167270 -0.5018448 0.28446391 ] 0.2720737 0.1835448 -0.32689815 0.1910601 -0.00866748 $prop: [,1] [1,] [2,] [3,] [4,] [5,] • 0.34093707 0.27529124 0.18844530 0.14509550 0.05023088 62 • • Biplots of Dimensions 1 and 2 , Mottling data Dimension 1 , Row Information -0.43 0.0 -0.21 0.43 0.21 C') ~ o ci-l 51+ ctS 21 + E .... .E C 34+ 48+ E (\J C 0 :;::; ~.p- C 0 ci 52+ E .... .E C 0 TO" (\J 54+ 42+ C 0 :;::; ctS ::l 23+ 31+ 44+ ::0 a:. 3+ 0 49+ ci 36+ 37+ 0 0 24+ (\J 11 + c: 25+ C 0 '00 26+ C 2 +.38+ 16+18 (]) E .Q (/) 15+ C 3 Q) E 43+ Q 4+ Q 6+ ~--1 1 32+ I 33s++ TO" t\! 22+ 0 I 17+ 0275 J_ 0.341 I • I -0.5 I 0.0 Dimension 1 ,Column Information I 0.5 C') r~ '( • • ., l r General Comments: The BIPLOTS program was used as the yard stick on which the other three options were measured. There were a number of reasons for wanting to find an alternative to this program: 1) The program is not widely available or well documented 2) The options are cryptic and in rigid FORTRAN format 3) Usually the data matrix has to be manipulated (eg. centered and/or scaled) before decomposing. 4) The output is lengthy and cumbersome. The singular value decomposition and plotting processes can be easily programmed in matrix language (IML, or S-PLUS), but this too is cumbersome if one is not familiar with matrix algebra. Minor details dependent on the dataset format make this process difficult to generalize for use by nonstatisticians. This procedure is more general in the BIPLOT function of S-PLUS. The PRINCOMP procedure on the other hand is available to any organization using SAS. The process is straight forward and documented in the SAS manuals, and is generalized to run on any dataset format or size. The manipulations of the output are simple SAS data steps that can also be generalized, making this method more appealing than the IML of BIPLOTS. Data used in these examples are courtesy of Dan Richter, 1990, from soils analysis of Duke Forest Phase II. This research was funded by the Southern Commercial Forest Forest Research Cooperative . • 63
© Copyright 2025 Paperzz