High-Fidelity Composite Pulse Techniques for Quantum Computation and Simulation Nikolay V. Vitanov Quantum Optics and Quantum Information Group Department of Physics, Sofia University, Bulgaria Quantum Simulations with Trapped Ions Workshop 2013 Old Ship Hotel, Brighton December 17, 2013 Quantum Optics & Quantum Info @ Sofia Uni Andon Rangelov (SU) Peter Ivanov (SU) Svetoslav Ivanov (SU) Genko Vasilev (SU) Boyan Torosov (Milan) Elica Kyoseva (MIT) Iavor Boradjiev (BAS) Tihomir Tenev (BAS) Genko Genov (PhD) Lachezar Simeonov (PhD) Hristina Hristova (PhD) Christo Tonchev (PhD) ACTIVITIES: quantum optics & control, quantum computation, quantum simulation, classical & nonlinear optics, femtosecond physics EU: STREP iQIT AvH: CLGrant Outline Two-state systems Broadband, narrowband, passband, fractional-π pulses Local addressing (subwavelength localization) Composite adiabatic passage Multistate systems Composite STIRAP Suppression of unwanted transitions Conditional gates and entanglement Dicke and NooN states Toffoli gate and Cn -NOT gates C-phase gate Lineshapes smooth pulses of finite duration power narrowing Outline Two-state systems Broadband, narrowband, passband, fractional-π pulses Local addressing (subwavelength localization) Composite adiabatic passage Multistate systems Composite STIRAP Suppression of unwanted transitions Conditional gates and entanglement Dicke and NooN states Toffoli gate and Cn -NOT gates C-phase gate Lineshapes smooth pulses of finite duration power narrowing Coherent excitation resonant small area (fastest) accurate sensitive Excitation Probability 1.0 adiabatic 0.8 composite 0.6 resonant adiabatic large area (slow) inaccurate robust 0.4 0.2 0 0 Nikolay Vitanov 1 2 3 Pulse Area (in units π) (Uni Sofia) 4 CompPulses for QComp & QSim composite moderate area (fast) robust, accurate flexible QSim, Brighton 1 / 26 Amplitudes Phases Composite pulses PN A sequence of phased pulses with an electric field E(t) = n=1 eiφn En (t) PN [Rabi frequencies Ω(t) = n=1 eiφn Ωn (t)] generates the propagator U(φ1 , φ2 , . . . , φN ) = U(φN )U(φN −1 ) · · · U(φ2 )U(φ1 ) The phases φn are used as control parameters which are determined from the condition to produce a transition probability profile of a desired shape. composite pulses ≡ discrete optimal control theory Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 2 / 26 Composite Pulses NMR Levitt & Freeman, JMR 33, 473 (1979) Freeman, Kempsell & Levitt, JJMR 38, 453 (1980) Levitt, Prog. NMR Spectrosc. 18, 61 (1986) Freeman, Spin Choreography (Spektrum, Oxford, 1997) Polarization Optics West & Makas, JOSA 39, 791 (1949) Destriau & Prouteau, J. Phys. Radium 10, 53 (1949) Pancharatnam, Proc. Indian Acad. Sci. A41, 130 (1955); A41, 137 (1955) Harris, Ammann & Chang, JOSA 54, 1267 (1964) McIntyre & Harris, JOSA 58, 1575 (1968) Quantum Optics & Quantum Info Blatt’s group: Nature 422, 408 (2003); Nature Phys. 4, 839 (2008); PRL 102, 040501 (2009) Wunderlich’s group: PRL 98, 023003 (2007); PRA 77, 052334 (2008); PRL 110, 200501 (2013) Composite pulses: SU(2) method coherently driven two-state quantum system i~∂t c(t) = H(t)c(t) H(t) = (~/2)Ω(t) e−iD(t) |ψ1 ihψ2 | + h.c. Rt D(t) = 0 ∆(t0 )dt0 ; detuning ∆ = ω0 − ω; Rabi frequency Ω(t) evolution described by the SU(2) propagator U: c(t) = U(t, ti )c(ti ) a b U= Cayley-Klein parameters a and b −b∗ a∗ transition probability p = |b|2 = 1 − |a|2 Rt ∆ = 0 =⇒ a = cos(A/2), b = −i sin(A/2) A = tif Ω(t)dt pulse area constant phase shift φ in the field: Ω(t) → Ω(t) eiφ a b eiφ U(φ) = −b∗ e−iφ a∗ composite sequence of N phased pulses =⇒ overall propagator U(N ) = U(φN )U(φN −1 ) · · · U(φ2 )U(φ1 ) Torosov & NVV, PRA 83, 053420 (2011) Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 3 / 26 BB, NB and PB composite pulses broadband (BB), narrowband (NB), passband (PB) 1.0 Excitation Probability Excitation Probability 1.0 0.8 0.6 0.4 0.2 0.0 0.8 0.6 0.4 0.2 0.0 0 1 2 3 Pulse Area Hin units ΠL 4 0 1 2 3 Pulse Area Hin units ΠL 4 Excitation Probability 1.0 BB: flat top around A = π k U (N) ] [∂A 11 A=π = 0 (k = 0, 1, 2, . . .) 0.8 0.6 NB: flat bottom around A = 0 and 2π k U (N) ] [∂A 12 A=0 = 0 (k = 0, 1, 2, . . .) 0.4 0.2 0.0 0 Nikolay Vitanov 1 2 3 Pulse Area Hin units ΠL (Uni Sofia) 4 PB: flat top around A = π and flat bottom around A = 0 CompPulses for QComp & QSim QSim, Brighton 4 / 26 BB, NB and PB composite pulses broadband (BB), narrowband (NB), passband (PB), half-π 1.0 Excitation Probability Excitation Probability 1.0 0.8 0.6 0.4 0.2 0.0 0.6 0.4 0.2 0.0 0 1 2 3 Pulse Area Hin units ΠL 4 0 1 2 3 Pulse Area Hin units ΠL 4 0 1 2 3 Pulse Area Hin units ΠL 4 1.0 Excitation Probability 1.0 Excitation Probability 0.8 0.8 0.6 0.4 0.2 0.0 0.8 0.6 0.4 0.2 0.0 0 Nikolay Vitanov 1 2 3 Pulse Area Hin units ΠL (Uni Sofia) 4 CompPulses for QComp & QSim QSim, Brighton 4 / 26 Deviation Transition Probability Broadband composite pulses 1.0 0.8 3 a sequence of N = 2n + 1 identical pulses with anagram phases (φ1 , φ2 , · · · , φn , φn+1 , φn , · · · , φ2 , φ1 ) 15 45 9 11 25 5 7 1 0.6 (N) 0.4 φk 0.2 0 100 j k j k k = n + 1 − k+1 2 2 10-2 0, 10-4 45 10-6 0 25 15 11 9 7 0.5 5 3 1 1.0 Pulse Area (in units π) 1.5 range wherein error < 10−4 0.006π for 1 pulse 0.26π for 5 pulses 0.62π for 25 pulses 0.82π for 125 pulses 2π N 0, 32 , 0 π 2 4 , , 0 π 5 5 8 4 6 , , ,0 π 7 7 7 8 12 6 8 , , , ,0 π 9 9 9 9 ··· 0, 45 , 6 4 0, 7 , 7 , 8 6 12 , , , 9 9 9 p = 1 − cos2N (A/2) 2.0 transition probability p → 1 for large N if A 6= 2mπ optimize against variations in pulse area to arbitrary order A = π(1 + ) =⇒ p ∼ 1 − (π/2)2N Torosov & NVV, PRA 83, 053420 (2011) Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 5 / 26 Deviation Transition Probability Broadband composite pulses 1.0 0.8 3 a sequence of N = 2n + 1 identical pulses with anagram phases (φ1 , φ2 , · · · , φn , φn+1 , φn , · · · , φ2 , φ1 ) 15 45 9 11 25 5 7 1 0.6 (N) 0.4 φk 0.2 0 100 j k j k k = n + 1 − k+1 2 2 10-2 0, 10-4 45 10-6 0 25 15 11 9 7 0.5 5 3 1 1.0 Pulse Area (in units π) 1.5 range wherein error < 10−4 0.006π for 1 pulse 0.26π for 5 pulses 0.62π for 25 pulses 0.82π for 125 pulses AG Halfmann (Darmstadt); Pr3+ : Y2 Si O5 Nikolay Vitanov (Uni Sofia) 2π N 0, 32 , 0 π 2 4 , , 0 π 5 5 8 4 6 , , ,0 π 7 7 7 8 12 6 8 , , , ,0 π 9 9 9 9 ··· 0, 45 , 6 4 0, 7 , 7 , 8 6 12 , , , 9 9 9 p = 1 − cos2N (A/2) 2.0 transition probability p → 1 for large N if A 6= 2mπ optimize against variations in pulse area to arbitrary order A = π(1 + ) =⇒ p ∼ 1 − (π/2)2N Torosov & NVV, PRA 83, 053420 (2011) CompPulses for QComp & QSim QSim, Brighton 5 / 26 Narrowband composite pulses a sequence of N = 2n + 1 identical pulses with sign-alternating phases (φ1 , φ2 , −φ2 , φ3 , −φ3 , · · · , φn+1 , −φn+1 ) (N ) φk = (−)k k 2π 2 N (k = 1, 2, . . . , N ) Transition Probability 1.0 0, 32 , − 23 π 2 0, 5 , − 25 , 54 , − 45 π 2 2 4 4 6 0, 7 , − 7 , 7 , − 7 , 7 , − 67 π 2 4 4 6 6 8 2 , − 9 , 9 , − 9 , 9 , − 9 , 9 , − 98 π 9 0.8 0.6 0, ··· 0.4 p = sin2N (A/2) = pN 0.2 0 0 0.5 1.0 1.5 Pulse Area (in units π) 2.0 transition probability NVV, PRA 84, 065404 (2011) Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 6 / 26 Local addressing Electric Field (arb. units) Blatt, PRL 102, 040501 (2009): Toffoli gate 1.0 0.5 Excitation can be localized in any desired spatial range around the center. ⇓ We can “beat the diffraction limit”!!! 0 1.0 Excitation Bloch, Nature 471, 319 (2011) 0.8 0.6 The physical reason is the destructive interference of the ingredient pulses in the composite sequence. 3 0.4 9 25 0.2 125 0 -2 -1 0 1 Radial Distance (arb. units) 2 SS Ivanov & NVV, Opt. Lett. 36, 1275 (2011) Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 7 / 26 Passband composite pulses nested NB (ν1 , ν2 , . . . , ν2m+1 ) and BB (β1 , β2 , . . . , β2n+1 ) (N ) νk PN(B) = [1 − (1 − p)Nb ]Nn PB(N) = 1 − (1 − pNn )Nb (N ) φk = 2π N Population Inversion P 1.0 0.8 1 0.6 0.4 0.2 0 1.0 0.8 0.6 0.4 0.2 0 (Uni Sofia) 2π 2m+1 k j k n + 1 − k+1 2 2 0.2 0.4 E. Kyoseva & NVV, PRA, Dec 2013 Nikolay Vitanov 2 P = 1 − cos2N (A/2) = 1 − (1 − p)N Population Inversion P nested BB into NB N3 (B3 ) = (β1 + ν1 , β2 + ν1 , β3 + ν1 , β1 + ν2 , β2 + ν2 , β3 + ν2 , β1 + ν3 , β2 + ν3 , β3 + ν3 ) N3 (B3 ) = (0, 23 , 0, 32 , 34 , 23 , 43 , 0, 34 )π k P = sin2N (A/2) = pN N3 = (ν1 , ν2 , ν3 ) = 0, 23 , − 23 π 2 B3 = (β1 , β2 , β3 ) = 0, 3 , 0 π nested NB into BB B3 (N3 ) = (β1 + ν1 , β1 + ν2 , β1 + ν3 , β2 + ν3 , β2 + ν2 , β2 + ν1 , β3 + ν1 , β3 + ν2 , β3 + ν3 ) B3 (N3 ) = (0, 23 , 34 , 0, 34 , 23 , 0, 32 , 43 )π = (−)k CompPulses for QComp & QSim 0.6 0.8 1.0 1.2 1.4 Pulse Area (in units of π) 1.6 1.8 2.0 QSim, Brighton 8 / 26 Multi-point composite pulses √ √ P = 1 at areas π, π 2, π 3 √ π, π 2 √P = 1 at areas √ [(A/ 8)0 , Aπ/2 , (A/ 8)0 ] [(0.83A)0 , (0.83A)0.65π , (0.83A)0 ] [(0.72A)0 , (0.72A)0.63π , (0.72A)0 ] Excitation Probability 0.8 0.6 0.4 0.2 0.0 0.0 Excitation Probability 1.0 0.5 1.0 1.5 Pulse Area Hin units ΠL 0.8 0.6 0.4 0.2 0.0 0.0 2.0 1 1 0.1 0.1 Excitation Probability Excitation Probability 1.0 0.01 0.001 10-4 10-5 10-6 0.0 Nikolay Vitanov 0.5 1.0 1.5 Pulse Area Hin units ΠL (Uni Sofia) 2.0 0.5 1.0 1.5 Pulse Area Hin units ΠL 2.0 0.5 1.0 1.5 Pulse Area Hin units ΠL 2.0 0.01 0.001 10-4 10-5 10-6 0.0 CompPulses for QComp & QSim QSim, Brighton 9 / 26 Multi-point composite pulses √ √ √ √ P = 1 at areas π, π 2, π 3, π 4, π 5 √ √ √ P = 1 at areas π, π 2, π 3, π 4 1.0 Excitation Probability Excitation Probability 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.5 1.0 1.5 2.0 Pulse Area Hin units ΠL 2.5 Excitation Probability Excitation Probability 0.1 0.001 10 -5 10-6 0.0 0.4 0.2 0.5 1.0 1.5 2.0 Pulse Area Hin units ΠL 2.5 3.0 0.5 1.0 1.5 2.0 Pulse Area Hin units ΠL 2.5 3.0 1 0.01 10 0.6 0.0 0.0 3.0 1 -4 0.8 0.5 1.0 1.5 2.0 Pulse Area Hin units ΠL 2.5 3.0 0.1 0.01 0.001 10-4 10-5 10-6 0.0 may be useful for sideband cooling Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 10 / 26 Composite adiabatic passage (level crossing) Transition Probability p Torosov, Guerin & NVV, PRL 106, 233001 (2011) 1.0 9 5 0.8 3 0.6 1 1 0.2 (a) 0 0 10 1 3 (c) 1 (b) transition probability =⇒ p → 1 for large N (a 6= ±1) 5 9 -4 10 -6 10 0 2 4 6 0 2 4 6 8 Peak Rabi Frequency Ω0 (in units 1/T) Nikolay Vitanov (Uni Sofia) 2π N p = 1 − a2N (d) 5 10 k j k j k = n + 1 − k+1 2 2 these “magic phases” optimize AP against variations in the pulse area and the chirp rate to arbitrary order 0.4 -2 1−p (N) φk 5 CompPulses for QComp & QSim (0, 2, 0) π/3 (0, 4, 2, 4, 0) π/5 (0, 6, 4, 8, 4, 6, 0) π/7 (0, 8, 6, 12, 8, 12, 6, 8, 0) π/9 ··· QSim, Brighton 11 / 26 Composite adiabatic passage (level crossing) Transition Probability p Torosov, Guerin & NVV, PRL 106, 233001 (2011) 1.0 9 5 0.8 3 0.6 1 1 0.2 (a) 0 0 10 1 3 (c) 1 (b) transition probability =⇒ p → 1 for large N (a 6= ±1) 5 9 -4 10 -6 10 0 2 4 6 0 2π N p = 1 − a2N (d) 5 10 k j k j k = n + 1 − k+1 2 2 these “magic phases” optimize AP against variations in the pulse area and the chirp rate to arbitrary order 0.4 -2 1−p (N) φk 5 2 4 6 8 Peak Rabi Frequency Ω0 (in units 1/T) (0, 2, 0) π/3 (0, 4, 2, 4, 0) π/5 (0, 6, 4, 8, 4, 6, 0) π/7 (0, 8, 6, 12, 8, 12, 6, 8, 0) π/9 ··· experiment in Pr3+ : Y2 Si O5 Schraft, Halfmann, Genov & NVV, PRA 88, 063406 (2013) Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 11 / 26 Universal composite pulses U(φ) = a −b∗ e−iφ b eiφ a∗ U(N) = U(φN )U(φN−1 ) · · · U(φ2 )U(φ1 ) eliminate the coefficients of the lowest powers of a in U (N) =⇒ a set of equations for the phases the phases do not depend on the interaction parameters! p = 1 − |a|m → 1 for sufficiently large m(N ) for any field! 5 pulses: (0, 5, 2, 5, 0)π/6 (0, −1, 2, −1, 0)π/6 13 pulses: (0, 9, 42, 11, 8, 37, 2, 37, 8, 11, 42, 9, 0)π/24 (0, 15, 6, 13, 40, 35, 46, 35, 40, 13, 6, 15, 0)π/24 Genov, Schraft, NVV & Halfmann, in preparation Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 12 / 26 Universal composite pulses U(φ) = a −b∗ e−iφ b eiφ a∗ U(N) = U(φN )U(φN−1 ) · · · U(φ2 )U(φ1 ) eliminate the coefficients of the lowest powers of a in U (N) =⇒ a set of equations for the phases the phases do not depend on the interaction parameters! p = 1 − |a|m → 1 for sufficiently large m(N ) for any field! 5 pulses: (0, 5, 2, 5, 0)π/6 (0, −1, 2, −1, 0)π/6 13 pulses: (0, 9, 42, 11, 8, 37, 2, 37, 8, 11, 42, 9, 0)π/24 (0, 15, 6, 13, 40, 35, 46, 35, 40, 13, 6, 15, 0)π/24 Genov, Schraft, NVV & Halfmann, in preparation Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 12 / 26 Outline Two-state systems Broadband, narrowband, passband, fractional-π pulses Local addressing (subwavelength localization) Composite adiabatic passage Multistate systems Composite STIRAP Suppression of unwanted transitions Conditional gates and entanglement Dicke and NooN states Toffoli gate and Cn -NOT gates C-phase gate Lineshapes smooth pulses of finite duration power narrowing Composite STIRAP 2 2 S Wp P P S S P Ws Wp Ws 3 3 1 1 2 D Wp Ws S P S P S P 3 1 Nikolay Vitanov 2 D Wp Ws 3 1 (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 13 / 26 Composite STIRAP 2 2 S P P S S Wp (0, 1; 3, 3; 1, 0)π/3 P Ws (0, 4; 5, 8; 3, 3; 8, 5; 4, 0)π/5 Ws Wp 3 3 1 D Wp Ws S P S P S P 20 2 D Wp Ws 3 3 Infidelity 1-P3 Infidelity 1-P3 1 1 0.1 0.01 0.001 10-4 10-5 10-6 Peak Rabi Frequency W0 H1TL 2 1 1 D=0 Gaussian 3 5 0 5 10 1 0.1 3 0.01 D=30T Gaussian 0.001 5 10-4 10-5 10-6 0 5 10 15 15 20 1 20 25 30 Peak Rabi Frequency W0 H1TL Nikolay Vitanov (Uni Sofia) 1 0.1 0.01 0.001 10-4 10-5 10-6 1 0.1 0.01 0.001 10-4 10-5 10-6 D=0 sine sq. 1 3 5 10 15 3 D=100T sine sq. 0.9999 0.9 0.7 10 0.5 0.3 5 0.1 0.5 1.0 1.5 2.0 20 5 0 15 0 0.0 20 1 5 Peak Rabi Frequency W0 H1TL 1 15 P > 1-10-4 0.9999 0.9 0.7 10 0.5 0.3 0.1 5 0.0 0.5 1.0 1.5 2.0 Delay Τ HTL 0 10 20 30 40 50 Peak Rabi Frequency W0 H1TL Torosov& NVV, PRA 87, 043418 (2013) CompPulses for QComp & QSim QSim, Brighton 13 / 26 Suppression of Unwanted Transitions 3 3 2 2 Ω23 Ω13 Ω12 Δ 2 Ω13 Δ 1 1 0 σ+ σ− 1 Ω01 Ω12 Δ 1.5 Ω12 σ− 0.9 1 0.8 0.6 0.99 0.9 0.7 0.5 0.3 0.1 0.3 0.5 0.7 0.99 0.5 2 Detuning (in units of 1/T) 1.0 0.1 RMS Pulse Area (in units of π) 3 0.1 0.3 0.7 0 0.99 0.9 0.7 0.5 0.3 0.1 0.99 0.5 0.9 0.4 -2 0 0.2 0 -0.50 -0.25 0 Ellipticity θ 0.25 0.25 0.5 0 0.25 Mixing Angle θ (in units of π) 0.5 0.50 GT Genov & NVV, PRL 110, 133002 (2013) Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 14 / 26 Outline Two-state systems Broadband, narrowband, passband, fractional-π pulses Local addressing (subwavelength localization) Composite adiabatic passage Multistate systems Composite STIRAP Suppression of unwanted transitions Conditional gates and entanglement Dicke and NooN states Toffoli gate and Cn -NOT gates C-phase gate Lineshapes smooth pulses of finite duration power narrowing Entangled Dicke and NooN states Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 15 / 26 Entangled Dicke and NooN states Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 15 / 26 Toffoli gate (C2 -NOT) |ccti → |ccti |000i → |000i |001i → |001i |010i → |010i |011i → |011i |100i → |100i |101i → |101i |110i → |111i |111i → |110i 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 6 CNOT gates by the circuit model 5 CNOT gates with an ancilla state Lanyon et al., Nature Phys. 5, 134 (2009) Beyond the circuit model Blatt’s group: trapped ions, 15 laser pulses, 71% fidelity, LD regime T. Monz et al., Phys. Rev. Lett. 102, 040501 (2009) Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 16 / 26 Toffoli gate (C2 -NOT) |110i → |111i |111i → |110i ν=0 111 Ω02 SS Ivanov & NVV, Phys. Rev. A 84, 022319 (2011) for the second-sideband transition 2 Ων,ν+2 = Ωe−η /2 η 2 χν,ν+2 L2 (η 2 ) χν,ν+2 = √ ν (ν+1)(ν+2) ν=2 110 101 Ω24 χ02 = 011 Ω24 χ24 = ν=4 100 010 001 Ω46 ν=6 000 χ46 = 1 √ 2 12−8η 2 +η 4 √ 4 3 4 360−480η 2 +180η −24η 6 +η 8 √ 24 30 Toffoli gate: Ω02 is a π-pulse Ω24 and Ω46 are even-π-pulses C. Monroe et al., PRA 55, R2489 (1997); B. DeMarco et al., PRL 89, 267901 (2002) Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 17 / 26 Toffoli gate (C2 -NOT) and Cn -NOT gates SS Ivanov & NVV, Phys. Rev. A 84, 022319 (2011) Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 18 / 26 C-phase gate with overlapping pulses MSJ gate bichromatic field (first red and blue sidebands) − − P + † −iφk + aeiφk ) H(t) = N k=1 gk (t)σ(φk )(a e control-phase gate U = D(α)G(Jk,l ) U = exp i π σ1x σ2x Pulse Amplitude g0 4 −iφk σ x k=1 Ak (t, ti )e k Ak (t, ti ) = 0 0 Rt ti h P i x x G(Jk,l ) = exp i N k<l Jk,l σk σl R R Jk,l (t, ti ) = sin (φk − φl ) tt dt1 tt1 dt2 [gk (t2 )gl (t1 ) − gk (t1 )gl (t2 )] i T 2T Time dt1 gk (t1 ) i 3T 4T present gate, type I g0 Pulse Amplitude α(t, ti ) = −i PN Sorensen-Molmer: off-resonant, sequential pulses 0 0 Τ T T+Τ 2T+2Τ Time Milburn-Schneider-James: resonant, sequential pulses present gate, type II Sorensen & Molmer, PRA 62, 022311 (2000) Milburn, Schneider & James, FP 48, 801 (2000) Simeonov, Ivanov & NVV, PRA (2014) Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim g0 Pulse Amplitude Simeonov et al: resonant, overlapping pulses equal areas; phases 0, π2 , π, − π2 0 0 Τ T T+Τ 2T Time QSim, Brighton 2T+Τ 19 / 26 C-phase gate with overlapping pulses p MSJ gate g0 Pulse Amplitude HaL - Π2 0 x 4 3 1 2 0 0 T 2T Time 3T 4T - Π2 p present gate, type I g0 Pulse Amplitude HbL -2 Π 6 - Π6 0 x - Π6 -2 Π 6 0 0 Τ T T+Τ 2T+2Τ Time p present gate, type II HcL Pulse Amplitude g0 -2 Π 5 - Π5 0 - Π5 x pulse shape rect sin sin2 sin3 sin4 sin5 sin6 MSJ T 0.627 0.984 1.253 1.477 1.671 1.846 2.005 pulse shape rect sin sin2 sin3 sin4 sin5 sin6 MSJ T 0.627 0.984 1.253 1.477 1.671 1.846 2.005 present, type I τ /T T speed-up 0.500 0.724 15.5% 0.413 1.094 27.3% 0.362 1.370 34.4% 0.327 1.597 39.3% 0.303 1.794 43.0% 0.284 1.971 45.9% 0.268 2.131 48.4% present, type II τ /T T speed-up 0.500 0.793 26.5% 0.454 1.091 47.1% 0.424 1.327 55.8% 0.393 1.539 60.4% 0.365 1.731 63.3% 0.341 1.905 65.5% 0.321 2.065 67.3% gate duration 4T for MSJ 2T + 2τ for type I 2T + τ for type II -2 Π 5 0 0 Τ T T+Τ 2T Time 2T+Τ L Simeonov, P Ivanov & NVV, PRA 2014 Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 20 / 26 C-phase gate with overlapping pulses p MSJ gate g0 Pulse Amplitude HaL - Π2 0 x 4 3 1 2 0 0 T 2T Time 3T 4T - Π2 p present gate, type I g0 Pulse Amplitude HbL -2 Π 6 - Π6 0 x - Π6 -2 Π 6 0 0 Τ T T+Τ 2T+2Τ Time p present gate, type II HcL Pulse Amplitude g0 -2 Π 5 - Π5 0 - Π5 x pulse shape rect sin sin2 sin3 sin4 sin5 sin6 MSJ T 0.627 0.984 1.253 1.477 1.671 1.846 2.005 pulse shape rect sin sin2 sin3 sin4 sin5 sin6 MSJ T 0.627 0.984 1.253 1.477 1.671 1.846 2.005 present, type I τ /T T speed-up 0.500 0.724 15.5% 0.413 1.094 27.3% 0.362 1.370 34.4% 0.327 1.597 39.3% 0.303 1.794 43.0% 0.284 1.971 45.9% 0.268 2.131 48.4% present, type II τ /T T speed-up 0.500 0.793 26.5% 0.454 1.091 47.1% 0.424 1.327 55.8% 0.393 1.539 60.4% 0.365 1.731 63.3% 0.341 1.905 65.5% 0.321 2.065 67.3% gate duration 4T for MSJ 2T + 2τ for type I 2T + τ for type II -2 Π 5 0 0 Τ T T+Τ 2T Time 2T+Τ L Simeonov, P Ivanov & NVV, PRA 2014 Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 20 / 26 Outline Two-state systems Broadband, narrowband, passband, fractional-π pulses Local addressing (subwavelength localization) Composite adiabatic passage Multistate systems Composite STIRAP Suppression of unwanted transitions Conditional gates and entanglement Dicke and NooN states Toffoli gate and Cn -NOT gates C-phase gate Lineshapes smooth pulses of finite duration power narrowing Lineshapes in Coherent Excitation 1.0 Ω = 4Γ Ω = 3Γ Ω = 2Γ Ω=Γ Ω = 0.1Γ Excitation Probability 0.8 CW laser excitation: power broadening is a paradigm! Pulsed excitation: extent of power broadening depends on how the signal is collected! 0.6 0.4 0.2 0 -8 -6 P ∝ -4 -2 0 2 4 Detuning (in units Γ) 6 If collected during excitation: → typical power broadening 8 If collected after excitation: strong dependence on the pulse shape due to coherent adiabatic population return! 1 ∆2 + Γ2 /4 + Ω2 /4 Shape rectangular sinn gaussian sech lorentziann Nikolay Vitanov Duration finite finite infinite infinite infinite (Uni Sofia) Smooth no partly yes yes yes Linewidth ∆∝Ω ∆ ∝ Ω1/(n+1) ∆ ∝ ln Ω ∆ ∝ const ∆ ∝ Ω−1/(2n−1) CompPulses for QComp & QSim Broadening linear root logarithmic no NARROWING! QSim, Brighton 21 / 26 Power non-broadening in pulsed excitation Fluorescence 7.5 GW/cm2 2.5 GW/cm2 0.75 GW/cm2 Ionization Halfmann, Rickes, NVV & Bergmann, Opt. Commun. 220, 353 (2003) Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim QSim, Brighton 22 / 26 Smooth pulses of finite duration 1 Transition Probability Rabi Frequency Hin units 1TL 3Π 2Π Π 0.1 0.01 0.001 10-4 10-5 10-6 0 10 20 30 Detuning Hin units 1TL 40 50 0 10 0 1 T 2 0 T n=1 -2 10 f (t) = sinn (πt/T ) (0 5 t 5 T ) non-analytic! (n!π n Ω)2 P = sin2 ηn+1 n (n!π Ω)2 + (∆n+1 T n )2 ∆1 = 2 n!π n Ω Tn Excited State Population Time Hin units TL -4 10 -6 10 0 10 n=2 -2 10 1 n+1 -4 10 -6 10 0 Boradjiev & NVV, PRA 88, 013402 (2013) Nikolay Vitanov (Uni Sofia) CompPulses for QComp & QSim 10 20 30 40 50 Detuning (in units 1/T) QSim, Brighton 23 / 26 2 1 Deviation from Complete Inversion Smooth pulses of finite duration ∆ Ω 0 0.1 0.01 0.001 1 2 3 0.0001 0 4 0.00001 0 10 20 30 40 50 40 50 Detuning (in units 1/T) È0; 0 È1; 1 Inversion Infidelity È1; 0 È0; 1 È0; 2 (Uni Sofia) -2 10 1 -3 10 2 0 -4 10 -5 10 -6 10 0 Boradjiev & NVV, PRA 88, 013402 (2013) Nikolay Vitanov -1 10 È1; 2 10 20 30 Trap Frequency ν (in units 1/T) CompPulses for QComp & QSim QSim, Brighton 24 / 26 Lineshapes: Power narrowing f (t) = ∆1 T = 2 " Raman-driven fine-structure doublet in Na Rydberg atoms by microwave pulses lz, lz2 , sech, sech2 , gs 1 [1 + (t/T )2 ]n 1 1 (2n + 1)n+ 2 (2n − 1)2n− 2 (4n)n ΩT # 1 2n−1 from adiabatic condition Boradjiev & NVV, Opt. Commun. 288, 91 (2013) Nikolay Vitanov (Uni Sofia) Conover, PRA 84, 063416 (2011) CompPulses for QComp & QSim QSim, Brighton 25 / 26 CAMEL 10 Control of Atoms, Molecules and Ensembles by Light Nessebar, Black Sea coast, 23-27 June 2014 camel10.quantum-bg.org CAMEL 10 Control of Atoms, Molecules and Ensembles by Light Nessebar, Black Sea coast, 23-27 June 2014 camel10.quantum-bg.org Outline Two-state systems Broadband, narrowband, passband, fractional-π pulses Local addressing (subwavelength localization) Composite adiabatic passage Multistate systems Conditional gates and entanglement smooth pulses of finite duration power narrowing TH AN K Lineshapes YO Dicke and NooN states Toffoli gate and Cn -NOT gates C-phase gate U! Composite STIRAP Suppression of unwanted transitions
© Copyright 2026 Paperzz