Quantum Information and Metrology with RF Traps at NIST D. J. Wineland, NIST, Boulder, CO NIST- Boulder ions: J. Amini (PostDoc, Berkeley)‡ J. C. Bergquist (NIST) S. Bickman (PostDoc, Yale) & M. Biercuk (GTRI) % R. B. Blakestad (student, CU)♣ J. J. Bollinger (NIST) R. Bowler (student, CU) J. Britton (PostDoc, CU) K. Brown (PostDoc, U. Md.) J. Chou (PostDoc, Cal Tech) Y. Colombe (PostDoc, ENS) D. Hanneke (PostDoc, Harvard) J. Home (PostDoc, Oxford) @ D. Hume (student, CU) † W. Itano (NIST) T –R Tan (Student, CU) J. D. Jost (PostDoc, CU) M. Thorpe (PostDoc, CU) E. Knill (NIST)* H. Uys (PostDoc, U. Arizona) # D. Leibfried (NIST) A. VanDevender (PD, U. Illinois) D. Leibrandt (PostDoc, MIT) U. Warring (PD, Heidelberg) Y. Lin (student , CU) A. Wilson (guest researcher) C. Ospelkaus (PD, Hamburg) D. J. Wineland (NIST) T. Rosenband (NIST) J. Yao (student , CU) * NIST computation division, Boulder † Current address: Optical freq. meas. group, NIST ‡ Current address: Georgia Tech. Res. Inst. # Current address: CSIR, South Africa % Current address: University of Sydney & Current address: Vescent Photonics, Denver @ Current address: ETH, Zürich ♣ Current address: JQI, U. Md. Summary: • scaling to larger systems (increase fidelity and number) - best 2-qubit gates (Innsbruck) ε < 0.01 - ion arrays * transporting quantum information * trap fabrication & steps toward simulation * qubit detection (integrated optics) * low-temperature traps * scaling with gates - alternate strategies?, e.g., microwave gates • metrology, e.g. atomic clocks • prospects Multiplexed trap arrays Scale up? a+b a artiste: D. Leibfried -10 -5 0 c axial modes only -15 d b a carrier 2a 40 20 2b,a+c c-a b-a b-a 2b,a+c d a+b c 2a b c-a 60 b+c Fluorescence counts Mode competition – example: axial modes, N = 4 ions b+c a (C.O.M.) b (stretch) c (Egyptian) d (stretch-2) 5 Raman Detuning δR (MHz) 10 15 mode amplitudes Examples: Linear arrays: NIST (M. Rowe et al., Quant. Inf. Comp. 2, 257 (2002)) S. A. Schulz et al., New J. Phys. 10, 045007 (2008) Schmidt-Kaler group Traps with junctions (2-D): W. Hensinger et al., (Monroe group) Appl. Phys. Lett. 88, 034101 (2006) R. Blakestad et al., (NIST) PRL 102, 153002 (2009) Pseudopotential near junction 0.3 eV Maxwell: harmonic confinement ⇒ pseudopotential bumps (J. H. Wesenberg, PRA 78, 063410 (2008)) • primary mechanisms identified (R.heating Blakestad et al., ◊ PRL RF noise at ΩRF(2009)) ± ωz 102, 153002 ◊ DAC updating rate • heating < 1 quantum/transfer (R. Blakestad et al., PRL 102, 153002 (2009)) Surface-electrode traps • repeatable component library • two-layer construction with vias • “backside” loading • transport in linear sections and through “Y” junctions Gold on Quartz 1 mm ~150 zone “racetrack” (J. Amini et al. New J. Phys. 12, 033031 (2010)) Surface traps ⇒ one route to complex simulations More general Heisenberg/Ising-type couplings : like two qubit-gates R. Schmied, J. Wesenberg, D. Leibfried PRL 102, 233002 (2009) Integrated Optics Problem with ions: charging of optics evaporated gold quartz substrate quartz fiber NA = 0.37, 2.1% collection η(fiber) = 0.3 x η(multi-element lens, NA = 0.5) photo Control height with differential RF Aaron VanDevender, Yves Colombe et al., PRL 105, 023001 (2010) (in collaboration with Sandia National Labs) Cold Trap (4 K) Kenton Brown, Christian Ospelkaus, Yves Colombe, Andrew Wilson LHe Reservoir Radiation shield Ion trap Laser beam ports Schwarzschild (reflective) imaging optics vacuum “Pillbox” (bake at 150° C) CCD and detection (PMT) ~ 20 cm •ion lifetime → ∞ ((Be+)*+ H2 → BeH+ + H apparently eliminated) • good (RF) qubit flopping (F = 2,mF = -2〉 ↔ |F = 1,mF = -1〉) after ~ 500 flops 8 6 5-zone test trap 4 (Au on X-tal quartz) 2 0 40 µm 25 50 75 100 4900 4925 4950 4975 5000 τ (µs) → (backside illumination) Low heating (sometimes) SE(ω): spectral density of electric-field fluctuations Be+, Mg+ (NIST) GaAS U. Mich. Cadmium T = 150 K U. Mich. Strontium @ T = 4 K (MIT) surface electrode traps ⊗ X-trap NIST 4 K surface trap Deslauriers et al. PRL 97 (2006) and R. J. Epstein, et al. PRA 76 033411-1 (2007) Coupling ions in separate wells τexchange d ∝ d3 • generalization of quantum-logic spectroscopy (D. Heinzen, DJW, PRA 42 2977 (1990)) • step towards coupling to other quantum systems • new entanglement schemes • precursor to arrays for simulation 40 µm 5-zone “4-wire” surface-electrode test trap (Au on crystaline quartz) trap photo, PPT ions T≅4K (e.g. Schmied, Wesenberg, Leibfried PRL 102, 233002 (09)) (backside illumination) 4.125 4.12 4.115 4.11 Be+ ions, d = 40 µm, fz = 4.1 MHz 6 3 kHz thermal state transfer 〈n〉 destination ion 〈n〉 3 4.105 τcoupling(µs) → 4.1 400 800 Scaling with gates Scale up? a (C.O.M.) b (stretch) c (Egyptian) axial modes only qubit ion refrigerator -15 ion -10 -5 0 d 2a c carrier b 9Be+ a 24Mg+ b+c a+b qubit “packet” a 40 2b,a+c c-a d (stretch-2) b-a b-a 2b,a+c d a+b c 2a b c-a 60 b+c Fluorescence counts Mode competition – example: axial modes, N = 4 ions 20 5 Raman Detuning δR (MHz) 10 15 mode amplitudes “hybrid” qubit system |F, mF〉 9Be+ 2S 1/2 ~1.0 GHz Hyperfine levels B = 119.64 G 103 MHz 69 MHz “hybrid” qubit system qubit for memory, transport, rotations Magnetic-fieldindependent manifold Coherence time ~ 15 s C. Langer, et al, Phys. Rev. Lett. 95 060502 (2005) “hybrid” qubit system qubit for two-qubit (phase) gates Programmable (universal) 2-qubit quantum processor (David Hanneke, Jonathan Home, John Jost et al., Nature Physics 6, 13 (2010).) Theory: arbitrary unitary U (SU4): B. Kraus and J. I. Cirac, Phys. Rev. A 63 062309 (2001) V. V. Shende, et al, Phys. Rev. A 69 062321 (2004) qubit 1 qubit 2 Experiment: phase gates A B plus, laser cooling 160 randomly chosen operators U, apply to average final state fidelity = 79.1(4.5) extension: entangled mechanical oscillators 240 μm A 4 μm B John Jost, Jonathan Home, Jason Amini, David Hanneke et al., Nature, 459, 683 (2009) Alternateive strategies: RF magnetic field gates? Why? Get rid of the lasers! static magnetic field gradient: Wunderlich group (Siegen): Adv. At. Mol. Opt. Phys. 49, 295 (2003) M. Johanning et al., PRL 102, 073004 (2009) Chuang group (MIT): S. Wang et al., Appl. Phys. Lett. 94, 094103 (2009) Meschede group (Bonn): L. Förster et al., PRL 103, 233001 (2009) AC magnetic field gradient Dehmelt – g-2 “AC Stern Gerlach effect” NIST: Christian Ospelkaus et al., PRL 101, 090502 (2008) “5-wire” surface-electrode trap (Christian Ospelkaus, Ulrich Warring, …) τπ ~ 20 ns (2,-2) (2,-1) (2,0) (2,+1) 25Mg+ 0.02 0.04 τ(µs) → ~1.7 GHz (field independent, B ≅ 220 gauss) (F,mF) 40 µm (3,+1) Trap RF (3,-1) Trap RF (3,0) (3,-2) (3,-3) Lamb-Dicke parameter η ~ 1/3000 trap photo, PPT ion Applications to metrology: Al+ “quantum-logic clock” (James Chou, David Hume, Mike Thorpe, Till Rosenband ) 1P 1 Coulomb interaction 2P 3/2 3P 0 Al+ optical qubit λ = 167 nm λ = 267 nm 1S 0 (F=1, mF = -1) 2S 1/2 Be+ hyperfine qubit → motion → (F=2, mF = -2) Shopping list: • “More and better” ♦ reduce gate errors further ♦ scale to many qubits • couple ion qubits to other quantum systems * e.g., macroscopic systems • simulations, applications in spectroscopy • smaller structures ⇒ everything gets better ♦ but, solve heating problem! Ion “trapology” workshop (NIST Boulder, February 16, 17, 2011)) NIST- Boulder ions: J. Amini (Postdoc, Berkeley)‡ J. C. Bergquist (NIST) S. Bickman (PD, Yale) & M. Biercuk (GTRI) % R. B. Blakestad (student, CU)♣ J. J. Bollinger (NIST) R. Bowler (student, CU) J. Britton (Postdoc, CU) K. Brown (Postdoc, U. Md.) J. Chou (Postdoc, Cal Tech) Y. Colombe (Postdoc, ENS) D. Hanneke (Postdoc, Harvard) J. Home (Postdoc, Oxford) @ D. Hume (student, CU) † T –R Tan (Student, CU) W. Itano (NIST) M. Thorpe (PD, CU) J. D. Jost (Postdoc, CU) H. Uys (Postdoc, U. Arizona) # E. Knill (NIST)* A. VanDevender (PD, U. Illinois) D. Leibfried (NIST) U. Warring (PD, Heidelberg) D. Leibrandt (PD, MIT) A. Wilson (guest researcher) Y. Lin (student , CU) C. Ospelkaus (PD, Hamburg) D. J. Wineland (NIST) J. Yao (student , CU) T. Rosenband (NIST) * NIST computation division, Boulder † Current address: Optical freq. meas. group, NIST ‡ Current address: Georgia Tech Res. Inst. # Current address: CSIR, South Africa % Current address: University of Sydney & Current address: Vescent Photonics, Denver @ Current address: ETH, Zürich ♣ Current address: JQI, U. Md.
© Copyright 2026 Paperzz