Supplementary Materials Swett et al. Biophys J. 2013 Supplementary Materials for Disruption of intrinsic motions as a mechanism for enzyme inhibition Rebecca J. Swett, G. Andrés Cisneros, and Andrew L. Feig* Department of Chemistry, Wayne State University, 5101 Cass Ave. Detroit, MI, 48202, USA. 1 Supp plementary M Materials Swett et al. Biophys J.. 2013 Figure S1: Workfflow of the cclustering co omparison. FFollowing Appo MD, pepttide docking was perform med. The pepttide bound sstructures were simulate ed, resultingg structures w were clusterred, and com mparison bettween the dockking and the molecular d dynamics waas performed d. 2 Supp plementary M Materials Swett et al. Biophys J.. 2013 Figure S2: Repre esentative m members of tthe top four MD clusterss from the peptide boun nd simulation ns. Clusters 1‐4 aare shown in n blue, green n, pink and ggold respectiively. Backboones are rep presented ass block ribbo on and sidecchains as wire. In both simulations, good clusterring was obsserved, and when compared to the docking clustters describe ed in table S1 and S2, a h high degree of similarityy was presen nt. We interp pret this as ggood agreement betw ween the doccked conform mations sele ected for stuudy, and the conformatio onal cohort described he molecular dynamics by th 3 Supp plementary M Materials Swett et al. Biophys J.. 2013 Figure S3: GMD analysis wass performed d on 10ns ran ndomly sele cted non‐ovverlapping trrajectory seggments from m all fo our simulatio ons. These p plots indicate e that duringg the course of these seggments therre is no majo or rearrrangement o occurring, an nd only sligh ht difference es in the acti vity level. Ass GMD is a technique beetter applied d to lo onger timesccale simulatio ons, these are provided for context only. The sp pikes at the eend and begginning of the p plots are the e consequen nces of generrating and te erminating tthe recrossin ng buffer useed in the calculation. The blue data se eries indicate e overall activity, while ggreen indica tes contact forming and d red is contaact breaaking. 4 Supplementary Materials Swett et al. Biophys J. 2013 Table S1. Initial clustering data for EGWHAHT docking to the TcdB crystal structure, as well as to the 60 and 80 ns dynamically relaxed structures. Crystal Structure Cluster # of % of Rank members states 1 17 17 2 13 13 3 13 13 4 11 11 5 9 9 6 8 8 7 5 5 8 4 4 9 4 4 10 4 4 11 3 3 12 3 3 13 1 1 14 1 1 15 1 1 16 1 1 17 1 1 18 1 1 60 ns Frame Cluster # of Rank members 1 37 2 37 3 14 4 9 5 7 6 7 7 6 8 4 9 4 10 3 11 2 12 2 13 2 80 ns Frame % of Cluster # of % of states Rank members states 27.6 1 24 25 27.6 2 15 15.6 10.4 3 11 11.5 6.7 4 9 9.4 5.2 5 6 6.3 5.2 6 5 5.2 4.5 7 5 5.2 3.0 8 4 4.2 2. 3.0 9 4 4.2 2.2 10 3 3.1 1.5 11 3 3.1 1.5 12 3 3.1 1.5 13 2 2.1 14 1 1.0 15 1 1.0 5 Supplementary Materials Swett et al. Biophys J. 2013 Table S2. Initial clustering data for HQSPWHH docking to the TcdB crystal structure, as well as to the 60 and 80 ns dynamically relaxed structures. Crystal Structure Cluster # of % of Rank members states 1 29 29 2 23 23 3 12 12 4 8 8 5 7 7 6 5 5 7 4 4 8 3 3 9 2 2 10 2 2 11 2 2 12 2 2 13 1 1 60 ns Frame Cluster # of Rank members 1 70 2 29 3 23 4 5 5 3 6 3 7 2 8 1 9 1 10 1 % of states 50.7 21.0 16.7 3.6 2.2 2.2 1.4 0.72 0.72 0.72 6 80 ns Frame Cluster # of % of Rank members states 1 32 32 2 19 19 3 17 17 4 7 7 5 5 5 6 5 5 7 4 4 8 3 3 9 3 3 10 2 2 11 1 1 12 1 1 13 1 1 Supplementary Materials Swett et al. Biophys J. 2013 Table S3. Clustering data for the full peptide bound MD trajectories. Cluster Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 P1 # of % of members states 27 17 17 17 16 16 16 16 14 13 12 11 11 11 11 11 11 10 10 10 9 9 7 4 3 8.7 5.5 5.5 5.5 5.2 5.2 5.2 5.2 4.5 4.2 3.9 3.6 3.6 3.6 3.6 3.6 3.6 3.2 3.2 3.2 2.9 2.9 2.3 1.3 0.97 Cluster Rank P2 # of members % of states 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 71 33 31 22 18 16 16 14 14 10 9 9 8 7 2 2 1 1 1 1 1 1 1 1 24.5 11.4 10.7 7.6 6.2 5.5 5.5 4.8 4.8 3.4 3.1 3.1 2.8 2.4 0.69 0.69 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 7 Supplementary Materials Swett et al. Biophys J. 2013 Table S4: Comparison between the Molecular Dynamics clusters and the docking clusters. Following superposition, RMSDs were calculated, and the cluster to which each structure belonged was identified. There is strong agreement between the molecular dynamics structures and the docking clusters. MD cluster 1 2 3 4 Crystal Docking cluster 3 1 2 2 MD cluster 1 2 3 4 Crystal Docking cluster 4 2 2 2 RMSD (Å) 0.849 0.986 1.028 1.013 RMSD (Å) 0.919 1 1.042 0.93 MD cluster 1 2 3 4 MD cluster 1 2 3 4 EGWHAHT 60 ns Docking cluster RMSD (Å) 2 0.969 1 0.804 2 0.902 2 1.013 HQSPWHH 60 ns Docking cluster RMSD (Å) 1 0.941 3 0.958 1 0.76 1 0.754 8 MD cluster 1 2 3 4 80 ns Docking cluster 3 1 1 2 RMSD (Å) 0.849 0.986 0.969 1.013 MD cluster 1 2 3 4 80 ns Docking cluster 3 1 1 2 RMSD (Å) 0.818 1.05 1.099 0.959 Supplementary Materials Swett et al. Biophys J. 2013 Table S5: Protein‐water H‐bonds with occupancy >90% of the total trajectory for the Apo‐TcdB simulation. Residue name, number, and H‐bond position are included. Residues within the active site are colored yellow. Residue Number Position % of frames GLU 302 OE1 97.06% ASP 286 OD2 96.76% GLU 438 OE2 95.96% GLU 245 OE2 95.59% GLU 404 OE1 95.22% GLU 299 OE1 94.49% GLU 227 OE1 94.49% GLU 199 OE1 94.49% GLU 302 OE2 94.12% GLU 341 OE2 94.12% GLU 495 OE1 94.12% GLU 540 OE2 94.12% ASP 163 OD1 94.12% GLU 159 OE1 94.12% GLU 217 OE2 94.12% GLU 195 OE2 94.12% GLU 217 OE1 94.12% GLU 341 OE1 93.75% GLU 502 OE2 93.75% GLU 95 OE2 93.75% ASP 181 OD2 93.75% GLU 32 OE2 93.38% GLU 367 OE2 93.38% GLU 159 OE2 93.38% GLU 299 OE2 93.01% GLU 39 OE1 93.01% ASP 29 OD2 93.01% ASP 22 OD2 93.01% ASP 392 OD2 93.01% GLU 227 OE2 93.01% GLU 199 OE2 93.01% ASP 29 OD1 93.01% ASP 51 OD1 92.65% ASP 442 OD1 92.65% ASP 433 OD2 92.65% GLU 226 OE1 92.65% ASP 61 OD2 92.28% GLU 472 OE1 92.28% ASP 163 OD2 92.28% GLU 245 OE1 92.28% GLU 347 OE2 91.91% GLU 333 OE1 91.91% GLU 329 OE2 91.91% ASP 152 OD1 91.91% GLU 155 OE1 91.91% Residue Number Position GLU 226 OE2 ASP 219 OD2 ASP 421 OD1 GLU 195 OE1 ASP 51 OD2 ASP 339 OD1 GLU 347 OE1 ASP 461 OD1 GLU 486 OE1 ASP 433 OD1 ASP 497 OD1 GLU 502 OE1 GLU 340 OE2 GLU 39 OE2 GLU 367 OE1 GLU 540 OE1 GLU 196 OE2 GLU 77 OE1 GLU 515 OE2 ASP 461 OD2 ASP 523 OD2 GLU 532 OE2 GLU 256 OE2 ASP 204 OD2 GLU 495 OE2 GLU 438 OE1 GLU 256 OE1 ASP 152 OD2 ASP 22 OD1 ASP 365 OD1 GLU 155 OE2 GLU 420 OE2 ASP 219 OD1 GLU 486 OE2 GLU 177 OE1 GLU 449 OE1 GLU 82 OE1 GLU 226 OE2 ASP 219 OD2 ASP 421 OD1 GLU 195 OE1 ASP 51 OD2 ASP 339 OD1 GLU 347 OE1 ASP 461 OD1 9 % of frames 91.91% 91.91% 91.91% 91.91% 91.91% 91.54% 91.54% 91.54% 91.54% 91.54% 91.54% 91.54% 91.18% 91.18% 91.18% 91.18% 91.18% 90.81% 90.81% 90.81% 90.44% 90.44% 90.44% 90.44% 90.44% 90.44% 90.44% 90.44% 90.07% 90.07% 90.07% 90.07% 90.07% 90.07% 90.07% 90.07% 90.07% 91.91% 91.91% 91.91% 91.91% 91.91% 91.54% 91.54% 91.54% Supplementary Materials Swett et al. Biophys J. 2013 10 Supplementary Materials Swett et al. Biophys J. 2013 Table S6: Protein‐water H‐bonds with occupancy >90% of the total trajectory for the UPG‐TcdB simulation. Residue name, number, and H‐bond position are included. Residues within the active site are colored yellow. Residue Number Position % of frames GLU 420 OE1 96.02% GLU 77 OE2 95.42% GLU 347 OE2 94.82% GLU 329 OE1 94.62% GLU 325 OE1 94.22% GLU 540 OE1 94.22% GLU 199 OE1 93.82% GLU 199 OE2 93.82% GLU 196 OE2 93.63% GLU 220 OE2 93.63% GLU 540 OE2 93.63% GLU 420 OE2 93.43% GLU 367 OE2 93.23% GLU 77 OE1 93.03% GLU 515 OE2 93.03% GLU 302 OE2 93.03% GLU 85 OE1 93.03% GLU 347 OE1 93.03% ASP 29 OD1 92.83% GLU 196 OE1 92.83% ASP 181 OD1 92.83% ASP 181 OD2 92.83% GLU 217 OE1 92.83% GLU 217 OE2 92.83% GLU 302 OE1 92.83% ASP 296 OD1 92.63% ASP 152 OD1 92.63% GLU 438 OE2 92.43% GLU 438 OE1 92.43% ASP 355 OD1 92.43% GLU 177 OE1 92.43% ASP 219 OD2 92.23% ASP 163 OD1 92.23% GLU 341 OE2 92.23% ASP 497 OD2 92.23% GLU 177 OE2 92.03% ASP 22 OD1 91.83% ASP 421 OD2 91.83% ASP 219 OD1 91.83% Residue Number Position % of frames GLU 325 OE2 91.83% GLU 85 OE2 91.63% ASP 523 OD2 91.63% GLU 333 OE2 91.63% GLU 341 OE1 91.43% ASP 336 OD1 91.43% GLU 245 OE2 91.24% GLU 213 OE2 91.24% GLU 329 OE2 91.24% GLU 340 OE2 91.24% GLU 23 OE2 91.04% ASP 203 OD1 91.04% ASP 203 OD2 91.04% ASP 109 OD1 91.04% GLU 155 OE2 91.04% ASP 163 OD2 91.04% ASP 57 OD1 90.84% GLU 486 OE1 90.84% ASP 355 OD2 90.84% ASP 497 OD1 90.84% ASP 204 OD2 90.64% ASP 296 OD2 90.64% GLU 299 OE2 90.64% GLU 159 OE2 90.64% ASP 365 OD2 90.44% GLU 495 OE2 90.44% GLU 159 OE1 90.44% GLU 23 OE1 90.24% GLU 95 OE2 90.24% GLU 472 OE2 90.24% GLU 227 OE1 90.24% ASP 152 OD2 90.24% GLU 155 OE1 90.24% ASP 336 OD2 90.24% GLU 220 OE1 90.04% GLU 513 OE1 90.04% GLU 333 OE1 90.04% GLU 532 OE1 90.04% 11 Supplementary Materials Swett et al. Biophys J. 2013 Table S7: Protein‐water H‐bonds with occupancy >90% of the total trajectory for the P1‐TcdB simulation. Residue name, number, and H‐bond position are included. Residues within the active site are colored yellow. Residue Number Position % of frames ASP 219 OD 99.80% GLU 217 OE 99.80% ASP 204 OD 99.80% GLU 195 OE 99.80% GLU 199 OE 99.80% GLU 39 OE 99.80% GLU 155 OE 99.80% GLU 159 OE 99.80% GLU 438 OE 99.80% ASP 163 OD 99.80% ASP 22 OD 99.80% GLU 449 OE 99.80% GLU 77 OE 99.80% ASP 61 OD 99.80% GLU 495 OE 99.80% GLU 196 OE 99.60% GLU 227 OE 99.60% GLU 279 OE 99.60% GLU 404 OE 99.60% GLU 367 OE 99.60% GLU 513 OE 99.60% GLU 486 OE 99.60% GLU 472 OE 99.60% GLU 313 OE 99.60% GLU 340 OE 99.60% GLU 302 OE 99.60% GLU 226 OE 99.40% GLU 220 OE 99.40% GLU 256 OE 99.40% GLU 325 OE 99.40% GLU 250 OE 99.40% GLU 347 OE 99.40% GLU 299 OE 99.40% GLU 333 OE 99.40% ASP 433 OD 99.40% GLU 341 OE 99.40% ASP 461 OD 99.40% GLU 533 OE 99.20% ASP 29 OD 99.20% GLU 33 OE 99.20% GLU 82 OE 99.20% GLU 85 OE 99.20% ASP 57 OD 99.20% Residue Number Position % of frames ASP 392 OD 99.00% ASP 365 OD 99.00% ASP 152 OD 99.00% ASP 336 OD 99.00% GLU 32 OE 99.00% GLU 502 OE 99.00% ASP 310 OD 99.00% ASP 124 OD 98.80% ASP 109 OD 98.80% GLU 44 OE 98.80% ASP 421 OD 98.80% ASP 181 OD 98.80% GLU 420 OE 98.80% ASP 523 OD 98.80% ASP 339 OD 98.80% GLU 147 OE 98.60% LEU 543 OT 98.60% GLU 329 OE 98.60% GLU 540 OE 98.60% ASP 423 OD 98.60% ASP 203 OD 98.40% GLU 95 OE 98.40% ASP 120 OD 98.40% GLU 261 OE 98.40% GLU 213 OE 98.40% GLU 1 OE 98.40% ASP 51 OD 98.40% GLU 23 OE 98.40% ASP 442 OD 98.20% GLU 532 OE 98.20% GLU 177 OE 98.20% GLU 245 OE 98.00% ASP 524 OD 97.80% GLU 358 OE 97.60% TYR 7 OT 97.60% GLU 258 OE 97.60% ASP 296 OD 97.41% ASP 239 OD 97.21% ASP 355 OD 97.01% ASP 167 OD 96.61% ASP 480 OD 95.21% GLU 10 OE 95.21% ASP 497 OD 94.21% GLU 21 OE 93.41% 12 Supplementary Materials Swett et al. Biophys J. 2013 Table S8: Protein‐water H‐bonds with occupancy >90% of the total trajectory for the P2‐TcdB simulation. Residue name, number, and H‐bond position are included. Residues within the active site are colored yellow. Residue Number Position % of frames ASP 61 OD 99.80% GLU 245 OE 99.80% GLU 217 OE 99.80% ASP 181 OD 99.80% GLU 85 OE 99.60% GLU 420 OE 99.60% GLU 39 OE 99.40% GLU 325 OE 99.40% GLU 329 OE 99.40% ASP 109 OD 99.40% GLU 147 OE 99.40% GLU 256 OE 99.40% GLU 177 OE 99.40% GLU 77 OE 99.20% ASP 336 OD 99.20% ASP 392 OD 99.20% GLU 367 OE 99.00% ASP 51 OD 99.00% GLU 196 OE 99.00% ASP 423 OD 99.00% ASP 365 OD 98.80% ASP 497 OD 98.80% GLU 486 OE 98.80% ASP 163 OD 98.80% GLU 199 OE 98.80% GLU 195 OE 98.80% GLU 82 OE 98.61% ASP 22 OD 98.61% GLU 333 OE 98.61% GLU 532 OE 98.61% GLU 449 OE 98.61% GLU 250 OE 98.61% ASP 204 OD 98.61% GLU 313 OE 98.41% ASP 120 OD 98.41% ASP 124 OD 98.41% ASP 480 OD 98.41% Residue Number Position % of frames ASP 524 OD 98.41% GLU 404 OE 98.41% GLU 155 OE 98.41% GLU 372 OE 98.21% GLU 227 OE 98.21% ASP 203 OD 98.21% GLU 502 OE 98.01% GLU 44 OE 98.01% GLU 95 OE 98.01% GLU 513 OE 98.01% GLU 220 OE 98.01% ASP 310 OD 97.81% ASP 461 OD 97.81% ASP 152 OD 97.81% ASP 433 OD 97.81% GLU 213 OE 97.81% GLU 495 OE 97.61% ASP 29 OD 97.61% ASP 523 OD 97.41% GLU 533 OE 97.41% GLU 279 OE 97.41% ASP 219 OD 97.41% ASP 167 OD 97.21% ASP 57 OD 97.01% GLU 261 OE 97.01% ASP 355 OD 96.81% GLU 472 OE 96.81% GLU 10 OE 96.22% GLU 32 OE 96.22% GLU 21 OE 96.22% GLU 33 OE 96.02% ASP 270 OD 95.62% GLU 23 OE 95.42% ASP 421 OD 94.02% GLU 347 OE 93.63% ASP 286 OD 91.63% 13 Supplementary Materials Swett et al. Biophys J. 2013 Table S9: Complete salt‐bridge interaction tables: All detected salt bridges for the Apo simulation are shown below. Participating residues are paired by row. Residues in the active site are highlighted in yellow. Residue 1 Residue 2 ASP ASP GLU GLU ASP GLU ASP GLU GLU GLU GLU ASP GLU GLU GLU GLU GLU GLU ASP GLU GLU ASP ASP ASP ASP ASP GLU ASP GLU GLU GLU GLU ASP GLU ASP GLU ASP GLU 296 181 449 213 29 438 497 372 540 77 21 270 147 532 250 95 313 32 423 532 449 132 392 365 203 61 177 524 486 10 279 404 480 502 204 220 57 250 LYS LYS ARG LYS ARG ARG LYS LYS ARG LYS ARG ARG LYS LYS LYS LYS LYS ARG ARG LYS LYS ARG LYS LYS LYS LYS6 LYS LYS LYS ARG LYS LYS LYS LYS LYS LYS LYS LYS 353 182 445 182 6 445 87 87 536 74 68 273 143 528 278 391 505 6 173 535 452 241 278 96 207 4 174 528 50 6 278 408 485 374 207 216 76 401 ASP 124 LYS 96 Residue 1 ASP GLU GLU ASP ASP GLU GLU GLU GLU GLU GLU GLU ASP GLU GLU GLU GLU ASP GLU ASP GLU GLU GLU ASP GLU ASP GLU ASP GLU GLU GLU ASP ASP GLU GLU GLU GLU ASP 14 51 502 261 336 286 495 472 256 532 33 540 533 167 420 21 372 438 421 532 167 486 159 256 442 313 461 199 120 540 347 250 109 181 299 39 227 261 152 Residue 2 LYS ARG LYS LYS ARG ARG ARG ARG ARG LYS LYS ARG ARG LYS ARG LYS LYS LYS ARG LYS LYS ARG ARG ARG LYS LYS LYS LYS ARG LYS LYS LYS LYS LYS LYS LYS ARG LYS 48 499 191 322 273 499 406 194 165 48 535 536 173 184 18 374 452 184 536 170 401 158 241 445 316 452 247 356 165 324 408 231 184 353 45 231 262 182 Supplementary Materials Swett et al. Biophys J. 2013 Table S10: Complete salt‐bridge interaction tables: All detected salt bridges for the UPG‐TcdB simulation are shown below. Participating residues are paired by row. Residues in the active site are highlighted in yellow. Residue 1 Residue 2 Residue 1 ASP GLU GLU GLU GLU GLU GLU GLU ASP GLU ASP GLU ASP GLU ASP GLU ASP GLU ASP GLU ASP GLU GLU ASP GLU GLU ASP ASP 296 540 10 21 449 10 77 95 461 32 270 449 392 532 132 299 365 177 61 147 203 486 279 524 404 358 57 181 LYS ARG ARG ARG LYS LYS LYS LYS LYS ARG ARG LYS LYS LYS ARG LYS LYS LYS LYS LYS LYS LYS LYS LYS LYS LYS LYS LYS 353 536 16 68 463 7 74 391 463 6 273 452 278 535 241 303 96 174 64 216 207 50 278 528 408 353 76 184 GLU GLU GLU GLU GLU GLU GLU GLU ASP GLU GLU GLU GLU GLU ASP GLU GLU GLU GLU ASP GLU GLU ASP GLU ASP ASP ASP GLU 261 502 256 33 533 159 258 372 421 372 532 486 261 256 442 21 227 313 10 461 502 199 120 250 109 181 480 495 LYS ARG ARG LYS ARG ARG ARG LYS LYS LYS ARG LYS ARG ARG ARG ARG LYS LYS LYS LYS LYS LYS LYS LYS LYS LYS LYS ARG 191 499 194 48 536 158 262 374 184 87 536 401 262 241 445 18 231 316 11 452 505 247 356 408 231 182 485 499 ASP 124 LYS 96 ASP 29 ARG 6 Residue 2 15 Supplementary Materials Swett et al. Biophys J. 2013 Table S11: Complete salt‐bridge interaction tables: All detected salt bridges for the P1 simulation are shown below. Participating residues are paired by row. Residues in the active site are highlighted in yellow. Residue 1 GLU GLU ASP GLU ASP GLU ASP GLU GLU ASP ASP GLU GLU GLU ASP GLU GLU ASP ASP GLU GLU ASP GLU GLU GLU ASP GLU ASP GLU 21 449 124 245 181 10 497 313 372 421 57 227 32 256 497 532 404 480 423 404 220 120 177 250 261 181 33 365 372 Residue 2 ARG ARG LYS LYS LYS ARG ARG LYS LYS LYS LYS LYS ARG ARG LYS LYS LYS LYS LYS LYS LYS LYS ARG LYS LYS LYS LYS LYS LYS Residue 1 68 445 119 278 182 6 499 316 87 184 76 231 6 241 380 535 401 50 184 408 216 356 455 408 191 184 48 96 374 GLU GLU GLU GLU ASP ASP GLU ASP GLU GLU ASP GLU GLU ASP ASP GLU ASP GLU ASP ASP GLU GLU ASP GLU GLU ASP GLU ASP ASP 16 540 472 159 21 524 270 213 461 358 95 132 147 533 203 167 502 392 177 152 296 486 77 109 495 329 61 279 204 124 Residue 2 ARG ARG ARG ARG LYS ARG LYS LYS LYS LYS ARG LYS ARG LYS LYS ARG LYS LYS LYS LYS LYS LYS LYS LYS LYS LYS LYS LYS LYS 536 406 158 18 528 273 182 463 353 391 241 143 536 207 170 499 278 174 182 353 50 74 231 380 322 64 278 207 96 Supplementary Materials Swett et al. Biophys J. 2013 Table S12: Complete salt‐bridge interaction tables: All detected salt bridges for the P2 simulation are shown below. Participating residues are paired by row. Residues in the active site are highlighted in yellow. Residue 1 GLU GLU GLU GLU GLU ASP GLU GLU GLU GLU GLU ASP ASP GLU ASP GLU GLU ASP ASP GLU GLU ASP GLU GLU ASP GLU ASP GLU GLU GLU GLU ASP GLU GLU GLU ASP GLU 213 21 372 358 199 57 21 147 155 313 227 163 270 449 392 532 502 203 61 279 404 204 495 220 124 533 365 372 261 472 10 167 256 77 532 461 486 Residue 2 LYS ARG LYS LYS ARG LYS ARG LYS ARG LYS LYS ARG ARG LYS LYS LYS LYS LYS LYS LYS LYS LYS ARG LYS LYS ARG LYS LYS LYS ARG ARG ARG ARG LYS ARG LYS LYS Residue 1 182 18 87 353 194 76 68 143 158 505 231 165 273 452 278 535 505 207 64 278 408 207 499 216 96 526 96 374 191 406 6 165 194 74 165 463 50 GLU ASP GLU GLU GLU GLU GLU ASP GLU ASP ASP ASP ASP GLU ASP GLU GLU ASP GLU GLU GLU GLU GLU GLU GLU ASP GLU ASP GLU GLU ASP GLU GLU GLU GLU ASP ASP 17 95 442 333 261 32 258 159 480 533 132 423 461 124 313 421 502 532 167 261 256 33 404 177 77 449 296 10 120 250 449 497 177 420 299 540 524 181 Residue 2 LYS ARG ARG ARG ARG ARG ARG LYS ARG ARG ARG ARG LYS LYS LYS ARG ARG LYS ARG ARG LYS LYS LYS LYS LYS LYS LYS LYS LYS ARG LYS ARG ARG LYS ARG LYS LYS 391 445 526 194 6 262 158 50 536 241 455 455 119 316 184 499 536 170 262 241 48 401 174 76 463 353 11 356 408 445 485 173 194 353 536 528 182 Supplementary Materials Swett et al. Biophys J. 2013 Figure S4: Apo‐TcdB PCA crossplots. Clockwise from upper left, plots indicate PC1 vs. PC2, PC2 vs. PC3, proportion of variance vs. Eigenvalue rank, and PC3 vs. PC1. 18 Supplementary Materials Swett et al. Biophys J. 2013 Figure S5: UPG‐TcdB PCA crossplots. Clockwise from upper left, plots indicate PC1 vs. PC2, PC2 vs. PC3, proportion of variance vs. Eigenvalue rank, and PC3 vs. PC1. 19 Supplementary Materials Swett et al. Biophys J. 2013 Figure S6: P1‐TcdB PCA crossplots. Clockwise from upper left, plots indicate PC1 vs. PC2, PC2 vs. PC3, proportion of variance vs. Eigenvalue rank, and PC3 vs. PC1. 20 Supplementary Materials Swett et al. Biophys J. 2013 Figure S7: P2‐TcdB PCA crossplots. Clockwise from upper left, plots indicate PC1 vs. PC2, PC2 vs. PC3, proportion of variance vs. Eigenvalue rank, and PC3 vs. PC1. 21
© Copyright 2026 Paperzz