Supplement materials Text 1: Analysis condition of ICP-MS and AFS The analysis condition of ICP-MS was: the RF generator power was 1350 W, the velocity of flow of plasma gas was 16.0 L·min1, the velocity of flow carrier gas was 1.12 L·min1, the residence time was 30 ms. The pore diameter of skimmer was 0.80 mm. Hg concentrations in the aqueous were analyzed by hydride generation atomic fluorescence spectrometry (HG-AFS) using a Millennium Excalibur system (PSA 10.055. PS Analytical Ltd, UK). The filtrated solution was transferred and reduced by KI–ascorbic acid solution (0.06 mol·L1 KI and 0.01 mol·L1 ascorbic acid) in 3 mol·L1 HCl. The samples were made to a certain volume with ultrapure water and left for half an hour at room temperature. The Hg concentrations were then analyzed. Text S2: Generally speaking, fuzzy comprehensive assessment (FCA) includes five main stages [1] 1) Establish assessment parameters set U as the environmental assessment parameters that were representative of water quality. U u1 , u2 ,..., un , (1) where n is the number of selected parameters (ui). 2) Establish assessment criterion set V of five water quality classes was derived according to GB/T 14848-93 standards. V v1 , v2 ,..., vm , (2) m is the number of water qulity criterion classes (vi). In this stduy, V is established based on GB/T 14848-93 standards. Water quality is classified into five levels: Class I, excellent; Class II, good; Class III, ordinary; Class IV, poor; Class V, bad. 3) Establish the membership function and fuzzy matrix Membership degree which indicates the degree of the parameters belonging to the fuzzy set is calculated by a set of formulas below. 1 x v1 u1 ( x) (v2 x ) / (v2 v1 ) v1 x v2 , 0 x v2 0 x v1 or x v3 u2 ( x ) ( x v1 ) / (v2 v1 ) v1 x v2 , (v x ) / ( v v ) v x v 3 2 2 3 3 (3) (4) 0 x v2 or x v4 u3 ( x) ( x v2 ) / (v3 v2 ) v2 x v3 , (v x ) / (v v ) v x v 4 3 3 4 4 (5) 0 x v3 or x v5 u4 ( x) ( x v3 ) / (v4 v3 ) v3 x v4 , (v x ) / (v v ) v x v 5 4 4 5 5 (6) 0 x v4 u5 ( x) ( x v4 ) / (v5 v4 ) v4 x v5 , x v5 1 (7) The membership degree of each parameter is obtained from the membership function above. The membership of all parameters establishes the fuzzy matrix R: r11 r R 21 rn1 r12 r13 r14 r22 r23 r24 rn 2 rn 3 rn 4 r15 r25 , rn 5 (8) n is the number of assessment parameters. 4) Establish the weight set B Different pollutants have their own impacts on water quality, then different weight is assigned to each pollutant. Here the weights of all parameters are calculated using the formula below: n Wi ai / ai , (9) i 1 ai xi / si , (10) where si is the average of the ith assessment criterion at each level, and xi is the real value of ith assessment parameter (ai). 5) Comprehensive assessment The assessment result is obtained using the fuzzy algorithm of B R b1 , b2 , b3 , b4 , b5 , and the assessed subject should be put into the category with the maximum of b j ( j 1, 2,3, 4,5) . Table S1 Sampling site information pollution site as black triangle in sampling site as red circles in Fig. 1 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 coordinate N25°46.284′; E113°09.597′ N25°47.582′; E113°08.856′ N25°47.762′; E113°08.648′ N25°48.115′; E113°10.405′ N25°49.005′; E113°09.225′ N25°49.402′; E113°09.041′ N25°49.495′; E113°8.547′ N25°49.548′; E113°09.551′ N25°49.571′; E113°09.223′ N25°49.604′; E113°08.615′ N25°49.812′; E113°08.599′ N25°49.877′; E113°08.784′ N25°50.554′; E113°08.849′ N25°51.913′; E113°9.595′ N25°52.087′; E113°09.194′ N25°52.289′; E113°09.191′ N25°52.908′; E113°09.662′ N25°52.942′; E113°09.461′ N25°53.170′; E113°08.758′ N25°53.657′; E113°08.816′ well depth/m below 1.0 1.0 1.0 1.2 1.7 2.5 1.5 1.5 2.0 1.7 1.5 1.0 1.2 below 1.0 – 1.5 1.0 below 1.0 10.0 1.0 Fig. 1 use of state non-use from 2008 non-use from 2006 non-use from 2006 being used being used being used being used being used being used being used being used non-use from 2005 non-use from 2003 being used non-use being used being used being used No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 coordinate N25°42.917′; E113°10.970′ N25°43.298′; E113°9.623′ N25°43.161′; E113°09.997′ N25°43.906′; E113°10.547′ N25°44.108′; E113°10.339′ N25°46.303′; E113°09.646′ N25°46.354′; E113°10.349′ N25°46.354′; E113°10.349′ N25°47.718′; E113°09.743′ N25°47.888′; E113°9.169′ N25°48.028′; E113°09.676′ N25°48.054′; E113°09.781′ N25°48.054′; E113°09.781′ N25°48.046′; E113°09.630′ N25°49.970′; E113°08.457′ N25°50.463′; E113°08.519′ N25°50.949′; E113°8.762′ N25°51.379′; E113°08.928′ being used non-use from 2003 Table S2 Limit of detection (LOD), SF and RfD for each heavy metal LOD/(ng·L1) SF/(kg·d·mg1) RfD /(mg·(kg d)1) Cr 0.2 0. 5 0.003 Mn 0.2 – 0.024 Fe 30 – 0.7 Ni 0.3 – 0.02 Cu 1.0 – 0.04 Zn 2.0 – 0.3 As 0.1 1.5 0.0003 Cd 0.01 6.1 0.0005 Ba 0.2 – 0.2 Hg 0.005 – 0.00016 Pb 0.1 0.0085 0.0014 heavy metal wet season 0.64 0.62 0.48 0.53 2.45 0.55 0.45 0.52 0.37 0.41 0.40 0.44 0.46 0.45 0.37 0.52 0.72 0.43 lognormal 0.79 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0.89 0.83 2 3 1 distribution 0.72 2 Origin data of heavy metal in 20 well sampling Cr site No. dry season 1 0.55 Table S3 season 46.27 4.66 5.87 lognormal 1.25 12.47 5.08 2.20 6.65 5.94 6.53 6.81 232.94 723.04 5.68 6.44 1.41 30.30 1.33 2.46 35.78 21.04 150.1 74.78 93.44 lognormal 74.47 154.97 70.99 61.29 93.79 66.74 67.03 62.56 101.57 97.79 93.40 91.70 76.19 518.87 82.34 93.38 101.61 108.09 70.93 78.43 1.46 3.46 Fe Mn 0.96 1.29 0.95 lognormal 0.54 6.76 0.96 1.04 0.72 0.95 1.06 0.86 1.49 1.00 1.14 0.96 0.78 3.09 0.72 0.69 0.58 1.05 0.68 0.64 Ni 4.70 2.01 1.65 lognormal 1.31 3.98 1.58 1.59 1.37 1.81 1.24 1.52 1.47 1.55 2.37 2.70 1.70 9.93 4.51 1.34 2.12 7.78 2.06 1.48 Cu 54.34 34.67 59.75 lognormal 37.45 86.41 51.06 76.31 53.91 61.00 61.84 66.60 43.22 62.72 100.95 116.87 70.57 208.47 73.74 46.40 58.15 53.83 57.02 53.85 Zn 16.07 0.46 3.04 lognormal 0.59 2.79 0.54 0.46 0.82 2.91 0.24 0.26 0.43 0.39 1.04 0.79 0.25 16.09 0.32 0.53 1.21 3.81 0.30 0.99 As 0.22 0.06 0.05 lognormal 0.07 0.16 0.03 0.03 0.03 0.04 0.03 0.03 0.16 0.45 0.07 0.04 0.03 0.67 0.03 0.03 0.05 0.09 0.05 0.06 Cd 115.94 109.94 103.36 lognormal 104.54 91.18 103.56 80.63 89.64 115.46 93.35 91.88 128.56 94.54 112.16 93.39 105.76 209.86 103.94 76.12 65.79 120.94 60.74 92.39 Ba 0.1 0.02 0.05 lognormal 0.02 0.04 0.01 0.01 0.05 0.03 0.02 0.04 0.06 0.05 0.07 0.09 0.14 0.82 0.01 0.01 0.01 0.03 0.02 0.02 Hg 0.28 1.27 0.79 normal 0.38 2.06 1.44 2.20 1.82 2.43 3.65 1.57 0.52 0.41 3.95 1.56 2.03 1.77 4.03 1.62 0.76 0.39 2.23 1.25 Pb 0.77 0.78 0.88 0.80 0.85 0.67 0.76 0.70 0.65 0.97 0.70 0.41 0.65 0.72 0.76 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 normal 0.76 5 distribution 0.79 4 3.24 lognormal 2.62 3.77 0.93 8.21 4.93 17.06 20.57 9.56 1471.54 3.64 5.62 4.03 42.93 0.95 4.48 17.10 113.2 97.15 lognormal 80.4 67.95 52.7 83.94 93.4 63.95 86.39 78.77 179.7 83.12 79.63 85.64 128.6 68.31 82.58 0.77 0.65 lognormal 1.02 0.79 0.79 0.80 1.19 1.16 0.86 0.67 2.00 5.89 2.62 1.18 1.00 1.01 0.91 4.25 normal 1.30 1.94 1.12 1.32 1.03 2.55 2.08 1.76 1.51 2.32 2.94 2.88 1.63 1.70 2.74 1.41 34.68 normal 41.29 40.17 33.24 31.56 56.18 40.79 43.62 33.11 34.62 45.64 50.09 30.20 32.72 23.94 26.46 40.08 2.48 lognormal 1.26 0.56 0.43 1.03 3.64 0.37 0.55 0.25 2.25 0.50 0.33 2.87 3.99 0.21 0.76 10.38 0.02 lognormal 0.08 0.02 0.03 0.03 0.05 0.04 0.03 0.04 0.45 0.07 0.02 0.23 0.05 0.02 0.03 0.22 101.54 lognormal 67.84 70.42 82.52 46.35 134.04 99.43 107.44 65.45 82.9 131.94 116.14 111.94 101.64 107.24 107.84 117.84 0.01 lognormal 0.01 0.01 0.02 0.03 0.07 0.03 0.04 0.05 0.07 0.05 0.03 0.02 0.01 0.02 0.02 0.04 normal 0.89 1.14 0.60 1.49 0.46 0.17 0.13 0.76 1.36 0.26 0.71 0.30 0.77 1.24 1.02 2.44 0.70 Table S4 season dry Frequency of quality of individual heavy metal in dry and wet seasons index Cr Mn Fe Ni Cu Zn As Cd Ba Hg Pb I 1 0.9 0.9 1 1 1 0.95 0.95 0.3 0.95 1 II 0 0 0.05 0 0 0 0.05 0.05 0.7 0.05 0 III 0 0.05 0.05 0 0 0 0 0 0 0 0 IV 0 0.05 0 0 0 0 0 0 0 0 0 V 0 0 0 0 0 0 0 0 0 0 0 I 1 0.95 0.9 1 1 1 0.9 1 0.05 1 1 II 0 0 0.1 0 0 0 0.1 0 0.95 0 0 III 0 0 0 0 0 0 0 0 0 0 0 IV 0 0.05 0 0 0 0 0 0 0 0 0 V 0 0 0 0 0 0 0 0 0 0 0 season wet season References 1. Huang F, Wang X, Lou L, Zhou Z, Wu J. Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Research, 2010, 44(5): 1562–1572
© Copyright 2026 Paperzz