Supplementary Material This document presents the mathematical proofs for the equations for Capillary Flow, and Stage 1, 2, and 3 Pressures. Article Title: Theoretical Development and Critical Analysis of Burst Frequency Equations for Passive Valves on Centrifugal Microfluidic Platforms Where presented in the paper, the difference between the proofs shown and the equations from the literature is indicated in boxed sections. The sequence of the equations presented here may not be the same as that presented in the paper: Journal: Medical & Biological Engineering & Computing [eq#] refers to the sequence of equation in this supplementary document (#) refers to the sequence of equations in the paper Authors: Tzer Hwai Gilbert Thio, Salar Soroori, Fatimah Ibrahim, Wisam Alfaqheri, Norhayati Soin, Lawrence Kulinsky, Marc Madou Corresponding Author: Fatimah Ibrahim Medical Informatics & Biological Micro-electro-mechanical Systems (MIMEMS) Specialized Research Laboratory, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia Tel. No. (Office): + 603-7967-6818 Fax No.: +603 7967 4579 E-mail address: [email protected] Page 1 of 33 Page 2 of 33 Calculation of the Burst Frequency for Capillary Valves on Centrifugal Microfluidic Platforms Fluid Flow within an Infinitely Long Channel (Capillary Flow): On a centrifugal microfluidic CD with capillary channels, there are two pressures present: The centrifugal pressure, and the capillary pressure The centrifugal pressure is due to the rotation of the CD: Pcentrifugal = ρω 2 ∆r r where ρ ω ∆r r [eq1] (1) is the density of the liquid is the rotational speed of the CD in rounds per minute (rpm) is the difference between the top and bottom of the liquid levels at rest with respect to the centre of the CD is the average distance of the liquid from the centre of the CD Figure 1: Model of Rectangular Channel The pressure that is due to the liquid-air surface tension, contact angle of the liquid, and the hydraulic diameter of the capillary channel is known as: Pcap = where γ al 4γ al cosθ c Dh [eq2] is the liquid-air surface tension θc is the contact angle of the liquid with respect to the solid wall of the channel Dh is the hydraulic diameter of the channel given as 4 × Area 4wh 2wh Dh = = = Perimeter w + w + h + h w + h where w is the width, and h is the height of the channel (13) For the liquid to move towards the edge of a CD, the centrifugal pressure must be greater than the capillary pressure. This allows us to calculate the burst frequency: Figure 2: Model of Circular Channel (Solid & Sliced) The total interfacial energy within a solid-liquid-air system is expressed as From [eq1] and [eq2] U T = Aslγ sl + Asaγ sa + Alaγ la Pcentrifugal = ρω 2 ∆r r = Pcap Rearranging yields: where Asl , Asa , Ala ω= Pcap γ sl , γ sa , γ la [eq4] (3) are the solid-liquid, solid-air, and liquid-air interface areas, are the corresponding surface energies per unit area. A ρ ∆r r Alternatively: rpm = ω × The surface energies per unit area are related by Young’s equation 30 π = Pcap 30 ρ∆r r π [eq3] (7) Page 3 of 33 γ sl = γ sa − γ la cos θ c [eq5] Page 4 of 33 Substituting Young’s equation into [eq4] gives us We can now consider Asl for various capillary shapes U T = Asl (γ sa − γ la cos θ c ) + Asaγ sa + Ala γ la UT For a circular capillary = ( Asl + Asa )γ sa + ( Ala − Asl cosθ c )γ la The surface boundary between the solid and liquid can be found by Asl = π D x As all the terms in ( Asl + Asa )γ sa are constants, we can denote it as U 0 U T = U 0 + ( Ala − Asl cos θ c )γ la [eq6] (4) where D x (8) is the diameter of a circular capillary is the length of expansion along the liquid’s axis of movement The volume of the liquid can be found as The pressure in the capillary can be derived from the change of total interfacial energy of the solidliquid-air system with respect to the injected liquid volume: Pcap = − dU T dV d d d Pcap = − U 0 + Ala − Asl cosθ c γ la dV dV dV d Since U0 is a constant, U 0 = 0 . This simplifies [eq8] to dV d d Pcap = γ la Asl cosθ c − Ala dV dV [eq7] (2) [eq8] (5) d Ala = 0 (as Ala which is the surface boundary between liquid and air in a dV capillary opening does not change just before reaching the end of the channel we can simplify [eq9] to Pcap = Pcap πD 2 x (9) 4 Hence we can determine for a circular capillary dAsl π D dx 4 = = dV D πD 2 dx 4 [eq11] For a rectangular capillary [eq9] If we further apply d Asl cos θ c γ la dV dA = sl cos θ c γ la dV V = [eq10] (6) The surface boundary can be determined as Asl = 2( w + h) x (10) where w , h are the width and height of the capillary x is the length of expansion along the liquid’s axis of movement The volume of the liquid can be found as V =wh x Hence we can determine for a rectangular capillary dAsl 2( w + h) dx 4 = = dVl w h dx Dh (11) [eq12] (12) Alternatively, manipulating [eq12] gives dAsl ( w + h) =2 dVl wh dAsl 1 1 = 2 + dVl h w Page 5 of 33 [eq13] Page 6 of 33 Hence, for both Circular and Rectangular Capillary Stage 1: Substituting [eq11] into [eq10] yields 4 cos θ c γ la for circular capillary Pcap = D Substituting [eq12] into [eq10] yields 4 cosθ c γ la Pcap = for rectangular capillary Dh The liquid is in a capillary channel, stopped at an opening with a concave meniscus (the meniscus changes from concave to flat) [eq14] According to [eq6] and [eq8], we need to determine Ala and Asl for U T = U 0 + ( Ala − Asl cos θ c )γ la , [eq15] (14) and we also need to determine the volume of the liquid, V. Different from Zeng et al (2000) eq (2) Rh = h2 This is different αh αh CLh Different from Chen et al (2008) eq (2) Substituting [eq13] into [eq10] yields 1 1 Pcap = 2 cosθ c γ la + h w h/2 sin α h h2 Rw = [eq16] (15) w/ 2 sin α w w2 Substituting either [eq14] or [eq15] into [eq3] yields rpm = 4γ al cos θ c 30 ρ ∆r r Dh π αw αw CLw w2 [eq17] Figure 3: Mathematical Model for Stage 1 Meniscus Ala can be found by multiplying the curve length of height, CLh , and the curved length of width, CLw : Ala = CLh × CLw Page 7 of 33 [eq18] Page 8 of 33 Let the curved lengths have angles of 2α w and 2α h , and curve radii of Rw and Rh respectively. We can derive the following from the figure: h/2 - see Figure 3 [eq19] Rh = sin α h w/2 - see Figure 3 [eq20] Rw = sin α w hα h CLh = Rh × 2α h = - see Figure 3 [eq21] sin α h wα w CLw = Rw × 2α w = - see Figure 3 [eq22] sin α w Hence substituting [eq21] and [eq22] into [eq18] yields, hwα hα w Ala = sin α h sin α w [eq23] ATriangle Amh ASector Figure 5: Mathematical Model for Stage 1 Liquid Surface Asl can be found by taking the surface of solid-liquid within the capillary if there was no meniscus ( Ah and Aw ) and subtracting the surface of liquid-air due to the meniscus ( Amh and Amw ). We assume the liquid to progress up to length L from the point of reference (right up to the opening). 3D View Asl = 2( Ah + Aw − Amh − Amw ) - see Figure 4 [eq24] Where Ah = hL - see Figure 4 [eq25] Aw = wL - see Figure 4 [eq26] Amh = ASector − ATriangle - see Figure 5 [eq27] Where ASector = angle of curvature × radius of curvature Top View ASector - see Figure 3 2α 2 2 = h (π ) × Rh = α h Rh 2π 2 w Aw Amw And L Side View h2 h 2α h = ASector = α h 4 sin α h sin α h 1 - see Figure 3 ATriangle = × height × base 2 h h2 1 × Rh cos α h × h = × cos α h Triangle = 2 2 sin α h ATriangle = h Ah Amh Amh = h 2 cosα h 4 sin α h [eq28] [eq29] h 2α h h 2 cos α h − 2 4 sin α h 4 sin α h [eq30] w 2α w w 2 cos α w − 2 4 sin α w 4 sin α w [eq31] Similarly L Figure 4: Model for Stage 1 Fluid Flow Amw = Page 9 of 33 Page 10 of 33 The volume V can be found by taking the volume of liquid within the capillary if there was no meniscus ( Vhw ) and subtracting the volume of displaced liquid due to the meniscus ( Vmw and Vmh ). We assume the liquid to progress up to length L from the point of reference: Hence substituting [eq25], [eq26], [eq30], and [eq31] into [eq24] yields, h 2α h h 2 cos α h w 2α w w 2 cos α w Asl = 2 hL + wL − + − + 2 2 4 sin α h 4 sin α w 4 sin α h 4 sin α w h2 α h w2 α w − cos α h − − cos α w Asl = 2 (h + w)L − 4 sin α h sin α h 4 sin α w sin α w V = Vhw − Vmw − Vmh - see Figure 6 where Vwh = hwL [eq36] w αw w cos α w h Vmw = Amw × h = − 2 4 sin α w α 4 sin w h 2α h h 2 cos α h wα w Vmh = Amh × CLw = − 2 4 sin α h sin α w 4 sin α h 2 Now, substituting [eq23] and [eq32] into [eq6] yields, U T = U 0 + ( Ala − Asl cos θ c )γ la [eq33] h2 α h − cos α h (h + w)L − hwα α 4 sin α h sin α h h w UT = U 0 + − 2 cos θ c γ la 2 α α sin sin α h w − w w − cos α w 4 sin α w sin α w 2 αw w − cos α w (h + w)L − 4 sin α w sin α w hwα hα w U T = U 0 − 2 cosθ c γ la + γ la 2 αh sin α h sin α w − h − cosα h 4 sin α h sin α h [eq35] [eq32] 2 - see Figure 3, 4, 5, 6 [eq37] - see Figure 3, 4, 5, 6 [eq38] Hence substituting [eq36], [eq37], and [eq38] into [eq35] yields [eq34] (16) w 2α w w 2 cos α w h 2α h h 2 cos α h wα w h − V = hwL − − − 2 2 4 sin α w 4 sin α h 4 sin α h sin α w 4 sin α w αh h 2 wα w hw2 α w − cos α w − − cos α h V = hwL − 4 sin α w sin α w 4 sin α h sin α w sin α h [eq39] (17) Finally, we can apply [eq34] and [eq39] into: dU T [eq40] PStage1 = − dV To simplify the equation, as Ala , Asl and V are functions of α w and α h , we can obtain the burst pressure by letting f to be a function of α w and α h . Hence PStage1 = − Point of Reference for L Vhw Vmw Vmh PStage1 PStage1 Vhw – Vmw Vhw – Vmw – Vmh dU T dU T df =− dV dV df [eq41] ∂U T ∂U T ∂U T ∂α w ∂α h ∂α h ∂f ∂U T + + ∂α ∂α w ∂f w ∂f ∂f ∂α w ∂α h ∂α h = − =− ∂V ∂V ∂V ∂α h ∂f ∂α w ∂α h ∂V ∂α + ∂α + w w ∂f ∂f ∂f ∂α h ∂α w ∂α h −1 ∂U T + ∂U T ∂f ∂f ∂α ∂α α α ∂ ∂ w h w h [eq42] =− −1 ∂V + ∂V ∂f ∂f ∂α ∂α ∂α ∂α w h w h Figure 6: Mathematical Model for Stage 1 Liquid Volume Page 11 of 33 Page 12 of 33 Now from [eq34], we can derive ∂U T ∂U T and : ∂α w ∂α h Now from [eq39], we can derive w2 α w ∂ γ la − 2 cos θ c γ la − cos α w − ∂α w 4 sin α w sin α w ∂U T hwα h ∂ α w cos θ c γ la w 2 ∂ α w cos α w γ la + = − ∂α w sin α h ∂α w sin α w 2 ∂α w sin 2 α w sin α w ∂U T hwα h ∂ α w w 2 cos θ c ∂ α w + γ la = γ la − cot α w ∂α w sin α h ∂α w sin α w 2 ∂α w sin 2 α w ∂U T hwα h sin α w − α w cos α w w 2 cos θ c sin 2 α w − α w 2 sin α w cos α w + γ la = γ la + csc 2 α w ∂α w sin α h 2 sin 2 α w sin 4 α w ∂U T ∂ = ∂α w ∂α w hwα hα w sin α h sin α w 1 α w cos α w α w 2 cos α w w 2 cos θ c 1 1 2 + sin α − sin 2 α + γ la sin α − sin 3 α 2 sin 2 α w w w w w ∂U T hwα h 1 w 2 cos θ c 1 α cos α α cos α = γ la − w 2 w + γ la − w 2 w ∂α w sin α h sin α w sin α w sin α w sin α w sin α w hwα h ∂U T = γ la sin α h ∂α w w 2 cos θ c hwα h ∂U T = γ la + ∂α w sin α h sin α w ∂U T ∂α h ∂U T ∂α h 1 α h cos α h sin α − sin 2 α h h α h cos α h ∂U T hwα w γ la 1 = − ∂α h sin α w sin α h sin 2 α h h 2 cos θ c γ la 1 α h 2 cos α h + 2 sin α − sin 3 α 2 h h h 2 cos θ c γ la 2 α h 2 cos α h + 2 sin α − sin 3 α 2 h h α h cos α h h 2 cos θ c γ la 1 α h cos α h hwα w γ la 1 + = − − sin α w sin α h sin 2 α h sin 2 α h sin α h sin 2 α h h 2 cos θ c hwα w sin α h − α h cos α h = γ la + sin α w sin 2 α h sin α h ∂U T ∂α h αw αh h 2 wα w ∂ − cos α w − − cos α h α α α α α sin ∂ 4 sin sin sin w w h w h ∂ αw ∂V hw2 ∂ α w h2w α h =− − cot α w − − cos α h ∂α w 4 ∂α w sin 2 α w ∂α w sin α w 4 sin α h sin α h hw2 ∂V ∂ =− ∂α w ∂α w 4 sin α w sin 2 α w − α w 2 sin α w cos α w sin α w − α w cos α w h2 w α h + ccs 2α w − − cos α h 4 sin α w sin 2 α w 4 sin α h sin α h 1 α w 2 cos α w α w cos α w ∂V hw 2 1 h2w α h 1 − =− − + − cos α h − ∂α w 4 sin 2 α w sin 3 α w sin 2 α w 4 sin α h sin α h sin 2 α w sin α w ∂V hw2 =− ∂α w 4 α 2 cos α w ∂V hw 2 2 h2w − =− − w 3 ∂α w 4 sin 2 α w sin α w 4 sin α h αh 1 α w cos α w sin α − cos α h sin α − sin 2 α h w w 1 α w cos α w α w cos α w hw 2 1 h2w αh ∂V − =− − − cos α h − ∂α w 2 sin α w sin α w sin 2 α w 4 sin α h sin α h sin 2 α w sin α w hw 2 ∂V h2w = − + ∂α w 2 sin α w 4 sin α h [eq43] αh sin α w − α w cos α w − cos α h α sin sin 2 α w h [eq45] h 2 wα w ∂ 1 α h ∂V =− − cos α h ∂α h 4 sin α w ∂α h sin α h sin α h 2 αh h wα w ∂ cos α h ∂V =− − ∂α h 4 sin α w ∂α h sin 2 α h sin α h hwα hα w sin α h sin α w ∂U T hwα w γ la = sin α w ∂α h ∂U T ∂α h ∂ h2 αh γ la − 2 cos θ c γ la − cos α h − α α α ∂ 4 sin sin h h h cos α h hwα w ∂ α h h 2 cos θ c γ la ∂ α h γ la − = − − sin α w ∂α h sin α h 2 ∂α h sin 2 α h sin α h hwα w ∂ α h h 2 cos θ c γ la ∂ α h γ la + = − cot α h sin α w ∂α h sin α h 2 ∂α h sin 2 α h hwα wγ la sin α h − α h cos α h h 2 cos θ cγ la sin 2 α h − α h 2 sin α h cos α h + = + ccs 2α h sin α w sin 2 α h 2 sin 4 α h ∂U T ∂ = ∂α h ∂α h ∂U T ∂α h sin α w − α w cos α w sin 2 α w ∂V ∂V and : ∂α w ∂α h h 2 wα w ∂ α h ∂V =− − cot α h ∂α h 4 sin α w ∂α h sin 2 α h h 2 wα w sin 2 α h − α h 2 sin α h cos α h ∂V =− + csc2 α h ∂α h 4 sin α w sin 4 α h α 2 sin α h cosα h h 2 wα w 1 1 ∂V =− − h + 4 sin α w sin 2 α h sin 4 α h sin 2 α h ∂α h + sin 2 α h 1 α 2 cosα h h 2 wα w 2 ∂V =− − h 3 ∂α h 4 sin α w sin 2 α h sin α h h 2 wα w sin α h α h cos α h ∂V =− − ∂α h 2 sin α w sin 3 α h sin 4 α h sin α h α h cos α h 2 sin α − sin 2 α h h sin α h − α h cos α h h 2 wα w ∂V =− ∂α h 2 sin α h sin α w sin 2 α h h 2 wα w ∂V =− 2 sin α w sin α h ∂α h [eq44] Page 13 of 33 [eq46] Page 14 of 33 Now if we assume that α w is changing in such a way that the meniscus now starts to changes from concave to flat (on its way to becoming convex); while α h remains constant, we can simplify [eq42] to: ∂U T ∂α w PStage1 =− [eq47] ∆α h = 0 ∂V ∂α w Now, substituting [eq43] and [eq45] into [eq47] yields PStage1 w cosθ c hwα h + sin α h sin α w sin α w − α w cosα w sin 2 α w =− hw2 sin α w − α w cos α w h2w α h − + − cos α h sin 2 α w 2 sin α w 4 sin α h sin α h w 2 cosθ c hwα h + sin α h sin α w γ la PStage1 = hw 2 h2w + 2 sin α w 4 sin α h Asl = 2( Ah + Aw + Amh + Amw ) Where Ah = hL Aw = wL Now, if we assume that α h approaches 0, then we will have w 2 cosθ c hwα h + sin α h sin α w γ la PStage1 α h →0 PStage1 α h →0 PStage1 α h →0 = 2 2 hw h w + 2 sin α w 4 sin α h αh − cos α h sin α h αh→0 w 2 cosθ c 2 sin α w = γ la + hw 2 α sin w hw 2γ w = la cosθ c + sin α w w h Note: αh sin α h The derivative of the equations for this is similar to that of Stage 1. The differences are as such: For Stage 1: we subtract away the meniscus Area and Volume For Stage 2: we add on the meniscus Area and Volume w 2 cosθ c + hw sin α w hw 2 sin α w 2 - see Figure 4 [eq51] - see Figure 4 - see Figure 4 [eq52] [eq53] Amh = h 2α h h 2 cos α h − 2 4 sin α h 4 sin α h - see Figure 4 [eq54] Amw = w 2α w w 2 cos α w − 2 4 sin α w 4 sin α w - see Figure 4 [eq55] γ la = [eq50] Asl can be found by taking the surface of solid-liquid within the capillary if there was no meniscus ( Ah and Aw ) and adding the surface of liquid-air due to the meniscus ( Amh and Amw ). We assume the liquid to progress up to length L from the point of reference (right up to the opening). [eq48] αh − cos α h sin α h The liquid is in the capillary channel, stopped at the opening. The meniscus becomes convex from the flat transitory stage and starts to expand beyond the opening with the convex profile Ala is the same as from Stage 1: hwα hα w Ala = sin α h sin α w 2 γ la Stage 2: Hence substituting [eq52], [eq53], [eq54], and [eq55] into [eq51] yields, [eq49] (20) h 2α h h 2 cos α h w 2α w w 2 cos α w Asl = 2 hL + wL + − + − 2 2 4 sin α h 4 sin α h 4 sin α w 4 sin α w h2 αh w2 α w Asl = 2(h + w)L + − cos α h + − cos α w [eq56] 4 sin sin 4 sin sin α α α α h h w w =1 α h →0 Page 15 of 33 Page 16 of 33 Now, substituting [eq50] and [eq56] into [eq6] yields Hence h2 αh − cosα h (h + w)L + hwα hα w 4 sin α h sin α h UT = U0 + − 2 cosθ c γ la 2 α α sin sin αw h w + w − cos α w α α 4 sin sin w w w2 α w − cos α w (h + w)L + 4 sin α w sin α w hwα hα w U T = U 0 − 2 cosθ c γ la + γ la 2 αh sin α h sin α w + h − cos α h 4 sin α h sin α h PStage 2 = − PStage 2 = − where Vwh = hwL w 2α w w 2 cos α w h Vmw = Amw × h = − 2 4 sin α w 4 sin α w h 2α h h 2 cos α h wα w Vmh = Amh × CLw = − 2 4 sin α h sin α w 4 sin α h −1 ∂V ∂f ∂f ∂α + ∂V ∂α ∂α ∂α w h w h Now from [eq57], we can derive [eq58] [eq65] ∂U T ∂U T and : ∂α w ∂α h ∂U T ∂ ∂ hwα hα w w2 α w γ la − 2 cosθ c γ la − cos α w = + ∂α w 4 sin α w sin α w ∂α w ∂α w sin α h sin α w ∂U T hwα h ∂ α w cosθ c γ la w 2 ∂ α w cos α w γ la − = − ∂α w sin α h ∂α w sin α w 2 ∂α w sin 2 α w sin α w ∂U T hwα h ∂ α w w 2 cosθ c ∂ α w 2 − γ la = γ la − cot α w ∂α w sin α h ∂α w sin α w 2 ∂α w sin α w ∂U T hwα h sin α w − α w cos α w w 2 cosθ c sin 2 α w − α w 2 sin α w cos α w − γ la = γ la + csc 2 α w 4 α ∂α w sin α h sin 2 α w 2 sin w [eq59] [eq60] [eq61] α cos α α 2 cos α w ∂U T hwα h 1 w 2 cosθ c 1 1 2 = γ la − w 2 w − γ la − w 3 + 2 ∂α w sin α h sin α w sin α w 2 sin α sin α sin α w w w α cos α α cos α ∂U T hwα h 1 w 2 cos θ c 1 = γ la − w 2 w − γ la − w 2 w ∂α w sin α h sin α w sin α w sin α w sin α w sin α w Hence substituting [eq59], [eq60], and [eq61] into [eq58] yields w 2α w w 2 cosα w h 2α h h 2 cos α h wα w h + V = hwL + − − 2 2 4 sin α w 4 sin α h 4 sin α h sin α w 4 sin α w αh h 2 wα w hw2 α w V = hwL + − cos α w + − cos α h α α α 4 sin α w sin α w 4 sin sin sin h w h −1 ∂U T + ∂U T ∂f ∂f ∂α w ∂α h ∂α w ∂α h [eq64] [eq57] The volume V can be found by taking the volume of liquid within the capillary if there was no meniscus ( Vhw ) and adding the volume of displaced liquid due to the meniscus ( Vmw and Vmh ). We assume the liquid to progress up to length L from the point of reference: V = Vhw + Vmw + Vmh dU T dU T df =− dV dV df w 2 cosθ c hwα h ∂U T = γ la − + sin α h ∂α w sin α w sin α w − α w cosα w sin 2 α w [eq66] [eq62] Finally, we can apply [eq57] and [62] into PStage 2 = − dU T dV [eq63] To simplify the equation, as Ala , Asl and V are functions of α w and α h , we can obtain the burst pressure by letting f to be a function of α w and α h . Page 17 of 33 Page 18 of 33 ∂U T ∂ = ∂α h ∂α h hwα hα w ∂ h2 α h γ la − 2 cosθ c γ la − cos α h ∂α h 4 sin α h sin α h sin α h sin α w 2 h cosθ c γ la ∂ α h cos α h ∂U T hwα w ∂ α h γ la − − = ∂α h sin 2 α h sin α h ∂α h sin α w ∂α h sin α h 2 h 2 wα w ∂ 1 α h ∂V = − cos α h ∂α h 4 sin α w ∂α h sin α h sin α h 2 h wα w ∂ α h cos α h ∂V = − ∂α h 4 sin α w ∂α h sin 2 α h sin α h ∂U T hwα w ∂ α h h 2 cosθ c γ la ∂ α h γ la − = − cot α h ∂α h sin α w ∂α h sin α h 2 ∂α h sin 2 α h 2 2 ∂U T hwα wγ la sin α h − α h cos α h h cosθ c γ la sin α h − α h 2 sin α h cosα h − = + ccs 2α h 2 4 ∂α h sin α w sin α h 2 sin α h h 2 wα w ∂ α h ∂V 2 = − cot α h ∂α h 4 sin α w ∂α h sin α h h 2 wα w sin 2 α h − α h 2 sin α h cos α h ∂V = + csc 2 α h ∂α h 4 sin α w sin 4 α h 1 α cos α − h 2 h sin α sin α h h ∂U T hwα wγ la 1 α cos α = − h 2 h ∂α h sin α w sin α h sin α h α 2 sin α h cos α h h 2 wα w 1 ∂V 1 = − h + ∂α h 4 sin α w sin 2 α h sin 4 α h sin 2 α h ∂U T hwα wγ la = ∂α h sin α w h 2 cos θ c γ la − 2 2 h cosθ c γ la − 2 1 α 2 cos α h 1 2 − h 3 + 2 sin α sin α sin αh h h 2 α 2 cos α h 2 − h 3 sin α h sin α h 1 α cos α α cos α h 2 cos θ c γ la 1 − h 2 h − − h 2 h 2 sin sin α α sin sin sin α h α α h h h h 2 h cosθ c hwα w sin α h − α h cos α h ∂U T = γ la − + ∂α h sin α w sin 2 α h sin α h ∂U T hwα wγ la = ∂α h sin α w α 2 cos α h h 2 wα w 2 ∂V = − h 3 ∂α h 4 sin α w sin 2 α h sin α h sin α h α h cos α h h 2 wα w ∂V = − ∂α h 2 sin α w sin α h sin 2 α h sin 2 α h [eq67] sin α h − α h cos α h h 2 wα w ∂V = ∂α h 2 sin α h sin α w sin 2 α h ∂ αw ∂V hw 2 ∂ α w h2w α h 2 = − cot α w + − cos α h ∂α w 4 ∂α w sin α w 4 sin α sin α h h ∂α w sin α w sin α w − α w cosα w hw 2 sin 2 α w − α w 2 sin α w cosα w h2w α h ∂V = + ccs 2α w + − cos α h 4 4 sin α w sin 2 α w ∂α w 4 sin α h sin α h 1 α cos α α 2 cos α w ∂V hw 2 1 h2w αh 1 2 + = − w 3 + − cos α h − w 2 w 2 ∂α w 4 sin α w sin α sin α w sin α w 4 sin α h sin α h sin α w w 2 2 αh α cos α α 2 cos α w ∂V hw 2 h w 1 + = − w 3 − cos α h − w 2 w ∂α w 4 sin 2 α w sin α w 4 sin α h sin α h sin α w sin α w ∂V hw 2 h2w = + ∂α w 2 sin α w 4 sin α h [eq69] PStage 2 ∆α h = 0 ∂U T ∂α w = − ∂V ∂α w [eq70] Now, substituting [eq66] and [eq68] into [eq70] yields w 2 cosθ c hwα h sin α w − α w cos α w γ la − + sin α h sin 2 α w sin α w PStage 2 = − hw2 sin α w − α w cos α w h2w αh + − cos α h sin 2 α w 2 sin α w 4 sin α h sin α h αh 1 α cos α − cos α h − w 2 w sin α w sin α h sin α w αh sin α w − α w cos α w − cos α h α sin sin 2 α w h Now if we assume that α w is changing in such a way that the meniscus changes from almost flat to convex, while α h remains constant, we can simplify [eq65] to: αh h 2 wα w ∂V ∂ hw 2 α w ∂ = − cos α w + − cos α h α α α α ∂α w ∂α w 4 sin α w sin α w ∂ 4 sin sin sin w h w h 1 α w cos α w h2w sin α − sin 2 α + 4 sin α w h w h 2 wα w sin α h α h cos α h ∂V = − ∂α h 2 sin α w sin 3 α h sin 4 α h ∂V ∂V and : Now from [eq62], we can derive ∂α w ∂α h ∂V hw 2 = ∂α w 2 sin α w w 2 cosθ c hwα h + sin α h sin α w γ la − [eq68] PStage 2 = − Page 19 of 33 hw2 h2w + 2 sin α w 4 sin α h αh − cos α h sin α h [eq71] Page 20 of 33 Now, if we assume that α h approaches 0, then we will have w 2 cosθ c hwα h + sin α h sin α w γ la − PStage 2 α h →0 PStage 2 α h →0 PStage 2 α h →0 PStage 2 α h →0 =− hw 2 h2w + 2 sin α w 4 sin α h αh − cos α h sin α h αh→0 w 2 cosθ c 2 sin α w = −γ la − + hw 2 α sin w hw 2γ w = − la − cosθ c + sin α w w h 2γ la w = cos θ c − sin α w w h Stage 3: The liquid has expanded beyond the border of the opening (opening with an angle β), with a convex meniscus w 2 cosθ c + hw sin α w γ la − =− hw 2 2 sin α w 3D View Vhw ( Vmw + Vmh ) Vow [eq72] (22) Mistake in Chen et al (2008) eq (15) Ala Top View XC Note: αh sin α h =1 α h →0 L X CL w CLw Aw Aow L X CL cos β Amw Side View h Ah Aoh CLh Amh Figure 7: Model for Stage 2 Page 21 of 33 Page 22 of 33 Asl can be found by taking the surface of solid-liquid within the capillary if there was no meniscus ( Ah and Aw ) and adding the surface of solid-liquid due to the opening ( Aoh and Aow ), and due to the X CL cos β meniscus ( Amh and Amw ). β Asl = 2( Ah + Aw + Aoh + Aow + Amh + Amw ) X CL CLw w - see Figure 7 [eq73] Where Ah = hL - see Figure 7 [eq74] Aw = wL - see Figure 7 [eq75] - see Figure 7, 8 [eq76] - see Figure 7, 8 [eq77] X Aoh = CL × h cos β Aow = ( X CL ) × w + X CL × ( X CL tan β ) Amh = ASector − ATriangle Aow [eq78] Amw Where ASector = angle of curvature × radius of curvature Figure 8: Model for Stage 2 Meniscus ASector = X CL cos β αw αw 2 X CL tan β β And X CL w/ 2 CLw w/ 2 β Rw 2α h (π ) × Rh 2 = α h Rh 2 2π h2 h 2α h = ASector = α h 4 sin α h sin α h 1 ATriangle = × height × base 2 1 h h2 ATriangle = × Rh cos α h × h = × cos α h 2 2 sin α h ATriangle = X CL tan β Amh = Rw cos α w h 2 cosα h 4 sin α h [eq79] [eq31g] h 2α h h 2 cos α h h2 − = 2 4 sin α h 4 sin α h 4 sin α h αh − cos α h sin α h [eq80] Amw = ASector − ATriangle [eq81] Where ASector = angle of curvature × radius of curvature Figure 9: Mathematical Model for Stage 2 Meniscus According to [eq6] and [eq8], we need to determine Ala and Asl for U T = U 0 + ( Ala − Asl cos θ c )γ la , and we also need to determine the volume of the liquid, V. ASector ASector Page 23 of 33 2α w (π )× Rw 2 = α w Rw 2 - see Figure 9 2π 2 w + X CL tan β = α w + 2 X CL tan β = α w 2 w sin α w 2 sin α w 2 (w + 2 X CL tan β ) α w = 2 sin α w ASector = ( ) 2 [eq82] Page 24 of 33 And ATriangle ATriangle ATriangle ATriangle = Amw = Amw = hα h sin α h (w + 2 X CL tan β )α w CLw = Rw × 2α w = sin α w 1 × height × base [eq83] 2 1 - see Figure 7 = × (Rw cos α w ) × 2 w + X CL tan β 2 2 w + X CL tan β cos α × w + X tan β = 2 w CL 2 sin α w w + 2 X CL tan β w + 2 X CL tan β cos α w × = 2 sin 2 α w CLh = Rh × 2α h = ATriangle = (( ) ( ) ) (( ) (w + 2 X CL tan β )2 cos α w ) Ala = − 4 sin α w αw sin α − cos α w w [eq85] Hence substituting [eq74], [eq75], [eq76], [eq77], [eq80], and [eq85] into [eq73] yields: 2 αh X hL + wL + CL h + X CL w + X CL 2 tan β + h − cos α h cos β 4 sin α h sin α h Asl = 2 2 (w + 2 X CL tan β ) α w + − cos α w sin α α 4 sin w w 2 ( w + 2 X CL tan β ) α w h L(h + w) + X CL − cos α w cos β + w + X CL tan β + 4 sin α w sin α w Asl = 2 [eq86] 2 αh h + − cos α h 4 sin α sin α h h Ala can be found by multiplying the curve length of height, CLh , and the curved length of width, CLw : Ala = CLh × CLw Note: this is the same method as in [eq18] - see Figure 7 h(w + 2 X CL tan β )α hα w sin α h sin α w [eq92] Now, substituting [eq86] and [eq92] into [eq6] yields, 4 sin α w (w + 2 X CL tan β )2 [eq91] Note: The derivation of [eq89] and [eq91] are similar to that of [eq20] and [eq22], except with different representation of “w”. (w + 2 X CL tan β )2 α w (w + 2 X CL tan β )2 cos α w 4 sin 2 α w - see Figure 9 Substituting [eq90] and [eq91] into [eq87] yields: [eq84] 4 sin α w [eq90] L(h + w) + X CL h + w + X CL tan β cos β 2 β α h ( w + 2 X tan ) ( w + 2 X tan ) β α α CL w CL h w − 2 + − cos α w cos θ c γ la UT = U 0 + sin α h sin α w 4 sin α w sin α w 2 αh h + − cos α h 4 sin α sin α h h h L(h + w) + X CL cos β + w + X CL tan β 2 hα h α w (w + 2 X CL tan β ) α w U T = U 0 + γ la (w + 2 X CL tan β ) − 2γ la cos θ c + sin α − cos α w sin α h sin α w 4 sin α w w h2 αh + 4 sin α sin α − cos α h h h [eq93] (24) Mistake in Chen et al (2008) eq (16) [eq87] Let the curved lengths have angles of 2α w and 2α h , and curve radii of Rw and Rh respectively. We can derive the following: h/2 [eq88] Rh = sin α h w + X tan β (w + 2 X CL tan β ) CL = - see Figure 9 [eq89] Rw = 2 sin α w 2 sin α w ( ) Page 25 of 33 Page 26 of 33 The volume V can be found by taking the volume of liquid within the capillary ( Vhw ) and adding the volume of liquid at the opening (Vow ) and the volume of the liquid in the meniscus ( Vmw and Vmh ). We assume the liquid to progress up to length Xc from the point of reference (and XCL = XC – L): V = Vhw + Vow + (Vmw + Vmh ) Where Vwh = hwL ( ) 2 Vow = Aow h = X CL w + X CL tan β h [eq94] - see Figure 5, 6, 7 [eq95] - see Figure 5, 6, 7 [eq96] pressure as follows: Pburst = − 4 sin α w (w + 2 X CL tan β )2 α w hwL + X CL w + X CL 2 tan β h + sin α − cos α w h 4 sin α w w V = (w + 2 X CL tan β )α w h2 α h cos + − α h 4 sin α sin α sin α h h w 2 ( ) w 2 X tan + β α 2 CL w h wL + X CL w + X CL tan β + − cos α w 4 sin α w sin α w V = [eq99] (25) 2 αh (w + 2 X CL tan β )α w h + sin α − cos α h 4 sin sin α α h h w ( ∂U T ∂X CL ∂U T ∂X CL Hence substituting [eq95], [eq96], [eq97], and [eq98] into [eq94] yields: ) ∂U T ∂X CL dU T =− ∂V dV ∂X CL Now from [eq93], we can derive (w + 2 X CL tan β )2 αw - see Figure 5, 6, 7 [eq97] sin α − cos α w h w (w + 2 X CL tan β )α w h2 α h - see Figure 5, 6, 7 [eq98] = Amh × CLw = − cos α h 4 sin α h sin α h sin α w Vmw = Amw × h = Vmh - see Figure 5 To simplify [eq7] for our purpose, as Ala , Asl and V are functions of XCL, we can obtain the burst [eq100] ∂U : ∂X CL h X CL + w + X CL tan β β cos hα h α w ∂ γ θ = − 2 cos γ la (2 X CL tan β ) la c 2 ∂X CL sin α h sin α w + (w + 2 X CL tan β ) α w − cos α w sin α 4 sin α w w h + w + 2 X CL tan β hα h α w cos β = γ la (2 tan β ) − 2γ la cos θ c αw 2(w + 2 X CL tan β ) sin α h sin α w + (2 tan β ) − cos α w 4 sin α w sin α w w 2 X CL 1 + + tan β h h cos β 2 tan 2 γ α α β γ ∂U T = hw la h w − la cos θ c w sin α h sin α w αw ∂X CL w X 2 w tan β CL + sin α h + h tan β sin α − cos α w w w Now from [eq99], we can derive [eq101] ∂V : ∂X CL 2 h wL + X CL w + X CL 2 tan β + (w + 2 X CL tan β ) α w − cos α w sin α α 4 sin ∂V ∂ w w = ∂X CL ∂X CL (2 X CL tan β )α w h2 α h + 4 sin α sin α − cos α h sin α h h w Mistake in Chen et al (2008) eq (17) h w + 2 X CL tan β + 2(w + 2 X CL tan β ) (2 tan β ) α w − cos α w 4 sin α w ∂V sin α w = ∂X CL (2 tan β )α w h2 αh cos + − α h sin α w 4 sin α h sin α h 2 X CL tan β 2 X CL α w 1 + tan β + tan β − cos α w 1 + sin α w w w sin α w ∂V = hw ∂X CL h α w tan β α h + − cos α h 2w sin α w sin α h sin α h Page 27 of 33 [eq102] Page 28 of 33 Substituting [eq101] and [eq102] into [eq100] yields: Pburst = − Pburst dU T =− dV w 2 X CL 1 tan β + + h 2γ α α tan β 2γ cos β h hw la h w − la cos θ c w sin α h sin α w w α 2 X β tan w CL w + β α + tan − cos w sin α h h sin α w w 2 X CL tan β 2 X CL α w 1 + − cos α w tan β + tan β 1 + α w sin α w w sin w hw h α w tan β α h − cos α h + α α α 2 w sin sin sin w h h 2γ la α hα w tan β w sin α sin α h w = − 2γ 1 w 2 X CL tan β w 2 X CL α w + + tan β + tan β − cos α w − la cos θc + h sin α w h h sin α w w cos β h 2 X CL tan β × 1 + tan β + w sin αw h α w tan β 2 X CL α w tan β − cos α w + 1 + w sin α w 2 w sin α w sin α h αh − cos α h sin α h If we consider the pressure when XCL and α h both approach 0, [eq103] then reduces to: (Note: Also See Alternative) Pburst w 1 + + cos h β 2γ α tan β 2γ la tan β cos θ c = − la w − × 1 + sin α w sin α w α w β tan w w w + − cos α w sin α h sin α w w Pburst = − 2γ la w Pburst = − 2γ la w Pburst = − 2γ la w Pburst = − 2γ la w −1 [eq103] (26) Similar to Chen et al (2008) eq (18) Pburst αw − cos α w α sin w α sin β 1 w sin β w α w w − cos θ c + + − cos α w sin α w cos β cos β h sin α w cos β h sin α w cos β α sin β w + − cos α w cos β sin α w cos β sin α w α sin β α w sin β w w w − cos θ c 1 + cos β + − cos α w sin α w h sin α w h sin α w multiplied with cos β cos β cos β + sin β α w − cos α w sin α w sin α w α w sin β αw w sin β − cos θ c − cos θ c cos β + − cos α w h sin α w sin α w sin α w sin β α w cos β + − cos α w sin α w sin α w α w sin β − cos θ c sin α w w − cos θ c h sin β α w cos β + − cos α w sin sin α α w w α sin β cos θ c − w 2γ la w sin α w =− − cos θ c + w h sin β α w − cos β + − cos α w sin α w sin α w [eq104] (27) Mistake in Chen et al (2008) eq (20) Page 29 of 33 Page 30 of 33 −1 Should the aspect ratio of w/h approaches 0 (h >> w), the equation then reduces to Pburst α sin β cos θ c − w 2γ sin α w = la w αw sin β cos β + − cos α w sin α w sin α w [eq105] (28) Alternative If we consider the case as α h approaches 0, [eq103] then reduces to: Pburst 2γ 1 w 2 X CL tan β = − − la cos θ c + + tan β + αw β cos sin w h h Restriction: Special Note (see Figure 9): As [eq104] (and subsequently [eq105]) is derived based on the hidden assumption that β = α w , applying β = α w to [eq104] yields: Pburst β sin β cos θ c − w 2γ sin β = − la − cosθ c + w h sin β β − cos β + − cos β sin β sin β Pburst 2γ la w cos θ c − β =− − cos θ c + w h β − cos β + − cos β sin β w 2 X CL α w tan β − cos α w + h h sin α w 2 X CL tan β 2 X CL α w tan β + tan β × 1 + − cos α w 1 + α w sin w sin α w w −1 Pburst [eq106] Pburst Pburst Pburst 2γ la w cos θ c − β =− − cos θ c + w h β − sin β 2γ w cos θ c = − la − cos θ c − − 1 sin β w h β 2γ la w cos θ c = − 1 sin β cos θ c + w h β 2γ la w sin β = cos θ c − sin β + β w h [eq107] [eq108] (29) [eq107] and [eq108] differs from to Chen et al (2008) eq (20) Should the aspect ratio of w/h approaches 0 (h >> w), [eq107] equation then reduces to cos θ c − 1 sin β β 2γ la sin β = cos θ c − sin β w β Pburst = Pburst 2γ la w [eq109] [eq110] (30) [eq109] and [eq110] differs from Man et al (1998) eq (13) Page 31 of 33 Page 32 of 33 Special Consideration of Meniscus Angle Conditions (a) Stage 1 αw θc θc αw α w = 90° − θ c (b) Stage 2 θc αw θc α w = 90° − θ c αw αw β θc (c) Stage 3 θc αw α w + (θ C − β ) = αw = π 2 π 2 − (θ C − β ) Figure 10 Geometry of meniscus angle for various stages Applying the Meniscus angle of Stage 1 from Figure 10 into [eq19] and [eq20] yields h [eq111] (18) Rh = 2 cosθ C w Rw = [eq112] (19) 2 cosθ C Applying the Meniscus angle of Stage 1 from Figure 10 into [eq49] yields 2γ w PStage1 α →0 = la + 1 cosθ c h w h [eq113] (21) Applying the Meniscus angle of Stage 2 from Figure 10 into [eq72] yields PStage 2 α h →0 = 2γ la w − 1 cosθ c w h [eq114] (23) Page 33 of 33
© Copyright 2026 Paperzz