Download this supplementary material

Nano Res (2010) 3: 110–116
95
Electronic Supplementary Material
Synthesis and Characterization of WS2 Inorganic Nanotubes with
Encapsulated/Intercalated CsI
Sung You Hong1, Ronit Popovitz-Biro2, Gerard Tobias3, Belén Ballesteros3, Benjamin G. Davis1, Malcolm
L. H. Green3, and Reshef Tenne4 ()
1
Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
Electron Microscopy Unit, Weizmann Institute of Science, Rehovot 76100, Israel
3
Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
4
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
2
Supporting information to DOI 10.1007/s12274-010-1018-0
Figure S-1 (100) lattice CsI filled inside a WS2 inorganic nanotube: (a) HRTEM image, (b) fast Fourier transform (FFT)
pattern of the HRTEM image
Address correspondence to [email protected]
96
Nano Res
Figure S-2 (110) lattice CsI filled inside a WS2 inorganic nanotube: (a) HRTEM image, (b) fast Fourier transform (FFT)
pattern of the HRTEM image
Nano Res (2010) 3: 110–116
Figure S-3 Elemental analysis of CsI filled WS2 nanotubes: (a) EDS and (b) EELS measurements for CsI filled WS2
nanotubes. For details see below
97
98
Nano Res
EELS experimental details:
[1] Conditions
Beam energy, 300 keV; convergence angle, 1 mrad; collection angle, 6.5 mrad.
[2] Composition information
Element
Atomic ratio (/I)
Content (%)
I
1.00 ± 0.000
53.44 ± 6.8
Cs
0.87 ± 0.130
46.56 ± 6.0
Element
Signal (counts)
Range (eV)
I
9700 ± 1144
0.0–697.0
Cs
8800 ± 680
0.0–766.0
[3] Signal extraction
[4] Cross-section parameters
Element
Edge type
Cross-section
Cross-section model
I
M
4969 ± 495
Hartree-Slater
Cs
M
2680 ± 268
Hartree-Slater
Element
Fitting range (eV)
Model
Red. Chi2
I
555.5–609.5
Power-law
0.18
Cs
648.0–711.0
Power-law
0.20
[5] Background removal