Nano Res (2010) 3: 110–116 95 Electronic Supplementary Material Synthesis and Characterization of WS2 Inorganic Nanotubes with Encapsulated/Intercalated CsI Sung You Hong1, Ronit Popovitz-Biro2, Gerard Tobias3, Belén Ballesteros3, Benjamin G. Davis1, Malcolm L. H. Green3, and Reshef Tenne4 () 1 Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK Electron Microscopy Unit, Weizmann Institute of Science, Rehovot 76100, Israel 3 Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK 4 Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel 2 Supporting information to DOI 10.1007/s12274-010-1018-0 Figure S-1 (100) lattice CsI filled inside a WS2 inorganic nanotube: (a) HRTEM image, (b) fast Fourier transform (FFT) pattern of the HRTEM image Address correspondence to [email protected] 96 Nano Res Figure S-2 (110) lattice CsI filled inside a WS2 inorganic nanotube: (a) HRTEM image, (b) fast Fourier transform (FFT) pattern of the HRTEM image Nano Res (2010) 3: 110–116 Figure S-3 Elemental analysis of CsI filled WS2 nanotubes: (a) EDS and (b) EELS measurements for CsI filled WS2 nanotubes. For details see below 97 98 Nano Res EELS experimental details: [1] Conditions Beam energy, 300 keV; convergence angle, 1 mrad; collection angle, 6.5 mrad. [2] Composition information Element Atomic ratio (/I) Content (%) I 1.00 ± 0.000 53.44 ± 6.8 Cs 0.87 ± 0.130 46.56 ± 6.0 Element Signal (counts) Range (eV) I 9700 ± 1144 0.0–697.0 Cs 8800 ± 680 0.0–766.0 [3] Signal extraction [4] Cross-section parameters Element Edge type Cross-section Cross-section model I M 4969 ± 495 Hartree-Slater Cs M 2680 ± 268 Hartree-Slater Element Fitting range (eV) Model Red. Chi2 I 555.5–609.5 Power-law 0.18 Cs 648.0–711.0 Power-law 0.20 [5] Background removal
© Copyright 2026 Paperzz