Proceedings of the 29th Conference on Decision and Control Honolulu, Hawall December 1990 TP-11 = 5:20 Investment-Consumption Models w i t h T r a n s a c t i o n C o s t s and Markov-Chain Parameters T h a l e i a Zariphopoulou Department of M a t h e m a t i c a l S c i e n c e s Worcester P o l y t e c h n i c I n s t i t u t e W o r c e s t e r , MA 01609 Abstract T h i s paper c o n s i d e r s an i n f i n i t e h o r i z o n i n v e s t ment-consumption model i n which a s i n g l e a g e n t consumes and d i s t r i b u t e s h i s w e a l t h i n two a s s e t s , a bond and a s t o c k . The problem of m a x i m i z a t i o n o f t h e t o t a l u t i l i t y from consumption i s t r e a t e d . S t a t e (amount a l l o c a t e d i n a s s e t s ) and c o n t r o l ( c o n s u m p t i o n , r a t e s o f It i s shown t h a t t h e trading) constraints are present. v a l u e f u n c t i o n i s t h e u n i q u e v i s c o s i t y s o l u t i o n of a s y s t e m o f v a r i a t i o n a l i n e q u a l i t i e s w i t h g r a d i e n t constraints. 1. INTRODUCTION I n t h i s p a p e r we examine a g e n e r a l i n v e s t m e n t and consumption d e c i s i o n problem f o r a s i n g l e a g e n t . The i n v e s t o r consumes a t a n o n n e g a t i v e r a t e and h e d i s t r i b u t e s h i s c u r r e n t w e a l t h between two a s s e t s c o n t i n u o u s l y i n time. One a s s e t i s a bond, i . e . a r i s k l e s s s e c u r i t y w i t h i n s t a n t a n e o u s r a t e o f r e t u r n r. The o t h e r a s s e t i s a s t o c k , which r a t e o f r e t u r n is a continuous zt t i m e Markov c h a i n . I n o u r v e r s i o n o f t h e model t h e i n v e s t o r cannot borrow money t o f i n a n c e h i s i n v e s t m e n t i n bond and h e cannot s h o r t - s e l l t h e s t o c k . I n o t h e r words, t h e amount o f money a l l o c a t e d i n bond and s t o c k must s t a y n o n n e g a t i v e . When t h e i n v e s t o r makes a t r a n s a c t i o n , h e p a y s t r a n s a c t i o n f e e s which a r e assumed t o b e p r o p o r t i o n a l t o t h e amount t r a n s a c t e d . The c o n t r o l o b j e c t i v e i s t o maximize, i n a n i n f i n i t e h o r i z o n , t h e e x p e c t e d d i s c o u n t e d u t i l i t y which comes o n l y from consumption. Due t o t h e presence of t h e t r a n s a c t i o n f e e s , t h i s is a s i n g u l a r c o n t r o l problem. 11. The F i n a n c i a l Model w i t h T r a n s a c t i o n F e e s dyt where 0. r s a l e s o f stock r e s p e c t i v e l y . u ( z s : O ~ s i t ) and of the stock s a t i s f i e s = z(t)Ptdt (2) P 0 = p. z i s a f i n i t e s t a t e continuous time Markov chain d e f i n e d on some u n d e r l y i n g p r o b a b i l - The r a t e of r e t u r n i t y space (Q,F,P) w i t h jumping r a t e qzz, from s t a t e z t o s t a t e z’. The s t a t e s p a c e i s d e n o t e d by 2. The a s s o c i a t e d g e n e r a t o r L o f t h e Markov c h a i n h a s t h e form L e t K = maxz. A n a t u r a l assumption is K 5 r. The xt and yt, i n v e s t e d a t time t . The c o n t r o l s (ii) Mt,Nt Ct 50 are a.e. in = F t 20. F -measurable, r i g h t continuous t 2 0 , where x t’Yt a r e t h e t r a j e c t o r i e s g i v e n by t h e s t a t e e q u a t i o n ( 3 ) u s i n g t h e c o n t r o l s (Ct,Mt,Nt). We d e n o t e by A t h e s e t of a d m i s s i b l e c o n t r o l s . The t o t a l e x p e c t e d d i s c o u n t e d u t i l i t y J coming from consumption i s g i v e n by r-m J(x,y,z,C,M.N) = E 1 e-’tU(Ct)dt ’0 w i t h (C,M,N) E A and z ( 0 ) = z , where t h e u t i l i t y f u n c t i o n U: [O,+-)+[O,+-) i s assume t o h a v e t h e following properties: i s s t r i c t l y i n c r e a s i n g , bounded, c o n c a v e , C1 = 0 , limU’(c)= 4 + m , l i m U’(c) C++m = 0. The d i s c o u n t f a c t o r B > 0 w e i g h t s consumption now v e r s u s consumption l a t e r , l a r g e 5 d e n o t i n g i n s t a n t gratification. Note t h a t t h e c o n t r o l s M and N a r e a c t i n g i m p l i c i t l y through the constraint ( i i i ) . The v a l u e f u n c t i o n U i s g i v e n by ie-’U(Ct)dt. u ( x , y , z ) = sup E A j0 / Our g o a l i s t o d e r i v e t h e Bellman e q u a t i o n a s s o c i a t e d w i t h t h i s s i n g u l a r c o n t r o l problem and t o c h a r a c t e r i z e u a s i t s unique s o l u t i o n . It t u r n s o u t t h a t t h e Bellman e q u a t i o n h e r e i s a s y s t e m o f variational inequalities. T r a n s a c t i o n c o s t s are a n e s s e n t i a l f e a t u r e o f some economic t h e o r i e s . I n [ Z ] , [3] C o n s t a n t i n i d e s assumes t h a t t h e t r a n s a c t i o n c o s t s d e p l e t e o n l y t h e r i s k l e s s a s s e t and t h a t t h e s t o c k p r i c e i s a l o g a r i t h m i c Brownian m o t i o n . H e shows t h a t i f a n o p t i m a l p o l i c y e x i s t s , i t i s c h a r a c t e r i z e d by two r e f l e c t i n g with X 5 7,s u c h t h a t t h e i n v e s t o r barriers lies in does n o t t r a d e a s l o n g a s t h e r a t i o y t / x [&,TI and t r a n s a c t s t o t h e c l o s e s t boundary of t h e r e g i o n of no t r a n s a c t i o n s [&,XI, whenever t h i s r a t i o C o n s t a n t i n i d e s ’ s work l i e s outside t h i s interval. was g e n e r a l i z e d by D a v i s and Norman [51 bond and s t o c k r e s p e c t i v e l y , a r e t h e s t a t e v a r i a b l e s and t h e y e v o l v e ( s e e 1171) a c c o r d i n g t o t h e e q u a t i o n s . CH2917-3/90/0000-2354$1.OO @ 1990 IEEE (Ct,Mt,Nt) l,x ZEZ amount o f w e a l t h (3) and n o n d e c r e a s i n g p r o c e s s e s . ( i i i ) xt L 0, yt 0 a.e. C = PO’ dP dNt are ahissible i f : ( i ) C t i s F - m e a s u r a b l e where U(0) P - f u n c t i o n and = rP:dt The p r i c e dMt The numbers A and LI r e p r e s e n t t h e p r o p o r t i o n a l t r a n s a c t i o n f e e s ; t h e y a r e assumed t o b e n o n n e g a t i v e and one o f them must a l w a y s b e p o s i t i v e . For s i m p l i c i t y w e assume h e r e t h a t a l l f i n a n c i a l c h a r g e s a r e p a i d from t h e h o l d i n g s i n bond. The i n v e s t o r c a n n o t borrow money o r s h o r t s e l l t h e s t o c k . The c o n t r o l p r o c e s s e s a r e t h e consumption r a t e Ct and t h e p r o c e s s e s Mt and N t which r e p r e s e n t t h e cwmctative purchases and U P; + xo = x , y o = y , z ( O ) = z We c o n s i d e r a market w i t h two a s s e t s : a bond and a s t o c k . The p r i c e Po of t h e bond i s g i v e n by dP: z(t)ytdt = 2354 D i f f e r e n t c r i t e r i a were used by T a k s a r , Klass and Assaf I161 and, u n d e r more g e n e r a l a s s u m p t i o n s by Fleming, Grossman, V i l a and Z a r i p h o p o u l o u [ 6 ] . S i n g l e - p e r i o d models w i t h f i x e d t r a n s a c t i o n c o s t s a r e d i s c u s s e d i n L e l a n d [ I l l , Mukherjee and Z a b e l [141, Brennan [l] , Goldsmith [ 8 ] , Levy [12] and Mayshar 1131. F i n a l l y , Kandel and Ross [lo] i n t r o d u c e q u a s i - f i x e d transaction costs. We now - c n s i d e r a s i m i l a r c o n t r o l problem i n which the c o n t r o l s , which r e p r e s e n t t h e r a t e s of t r a d i n g , a r e assumed t o b e a b s o l u t e l y c o n t i n u o u s p r o c e s s e s . More p r e c i s e l y , w e c o n s i d e r a market which o f f e r s a bond and a stock with p r i c e s evolving according t o equations (1) and ( 2 ) r e s p e c t i v e l y . The s t a t e v a r i a b l e s x t and yt, which are t h e amount of money i n v e s t e d i n bond and Q, i i ) U i s a v i s c o s i t y s u p e r s o l u t i o n of (5) i n i . e . f o r each Z E Z IV. Results I n t h e s e q u e l , we c h a r a c t e r i z e t h e v a l u e f u n c t i o n U as t h e u n i q u e c o n s t r a i n e d v i s c o s i t y s o l u t i o n of t h e a s s o c i a t e d Bellman e q u a t i o n . Some r e s u l t s a b o u t uL a r e f i r s t s t a t e d . Theorem 3 . 1 : The v a l u e f u n c t i o n v i s c o s i t y s o l u t i o n of is a constrained uL s t o c k , obey t h e s t a t e e q u a t i o n s = ( r x -2 dx t t ) d t - (l+h)m d t + mtdt dy, = z ( t ) y d t x 0 = xty0 = y,z(O) = + (l-u)ntdt - ntdt z (4) . (XrY)EEr ZEZ The c o n t r o l s of t h e i n v e s t o r a r e t h e consumption rate Ct and t h e rates of trading mt and n t . The s e t o f 4. admissible c o n t r o l s such t h a t ( i ) Ct is C (ii) c o n s i s t s of c o n t r o l s F F -measurable where .O t- are o(z :OLsLt), tFO. a.e. mt,nt = (c,m,n) F -measurable r i g h t c o n t i n u o u s and nonnegative processes. Ozmt,ntLL a . e . t 2 0 f o r some p o s i t i v e c o n s t a n t (iii) L. (iv) xg0, ytO a.e. to, (7) where xtyt are the s o l u t i o n s of ( 4 ) u s i n g t h e c o n t r o l s (C,m,n). The c o n t r o l o b j e c t i v e i s t o maximize t h e e x p e c t e d d i s c o u n t e d u t i l i t y from consumption o v e r t h e s e t o f admissible controls. For e a c h f i x e d L 0, t h e v a l u e f u n c t i o n i s g i v e n by UL ( x , y , z ) The p r o o f f o l l o w s a l o n g t h e r e s u l t s of Fleming, S e t h i , and Soner [ 7 ] . It i s e s s e n t i a l l y b a s e d on t h e dynamic programming p r i n c i p l e and Dynkin’s f o r m u l a . Theorem 3.2: The v a l u e f u n c t i o n uL i s t h e u n i q u e c o n s t r a i n e d v i s c o s i t y s o l u t i o n o f (6) i n t h e c l a s s of bounded and u n i f o r m l y c o n t i n u o u s f u n c t i o n s . P r o o f : W e show t h a t if U and v -are r e s p e c t i v e l y __ a v i s c o s i t y s u b s o l u t i o n o f (6) on fi and a - v i s c o s i t y s u p e r s o l u t i o n of (6) i n Q , t h e n u<v on 61- We a r g u e by c o n t r a d i c t i o n , i . e . w e assume t h a t e which i m p l i e s t h a t f o r s u f f i c i e n t l y small max s u p [ u ( x , z ) - V(X,Z) - 2 elx[ 1 > 0 > 0. (8) Z E Z XES2 We can f i n d p o i n t s = sup E j r e - ’ t L J ( C t ) d t , Z ~ E Z and FEE such t h a t 4. where U i s t h e u s u a l u t i l i t y f u n c t i o n and the discount f a c t o r . 111. B > 0 is I n t h e s e q u e l we o m i t z consider the auxiliary functioi . Next, for $:Ex61 +lR > 0 we g i v e n by E Preliminaries P r o p o s i t i o n 2.1: The v a l u e f u n c t i o n s U and uL are i n c r e a s i n g , concave and u n i f o r m l y c o n t i n u o u s f u n c t i o n s on fi = [0,+=1 x io,+). I n t h e s e q u e l w e w i l l need t h e f o l l o w i n g d e f i n i tion: D e f i n i t i o n 2.1: We c o n s i d e r a n o n l i n e a r p a r t i a l d i f f e r e n t i a l e q u a t i o n o f t h e form We show t h a t i f i t s maximum i s a c h i e v e d a t (X Y ) t h e n 0’ 0 Y E Q and 0 \Yo - xol 5 R E . (9) W e now c o n s i d e r t h e f u n c t i o n s F(X,z,u(X,z), where z EZ, (5) Du(X,z)) = 0 X = (x,y) au(x,z)) and with (x,y) E 5, Du(x,z) i s continuous, ax ay f o r each Z E Z . A c o n t i n u o u s f u n c t i o n u:$xZ+R is a c o n s t r a i n e d v i s c o s i t y s o l u t i o n of (5) i f i ) U i s a v i s c o s i t y s u b s o l u t i o n of ( 5 ) on 5 , i.e. f o r each ZEZ 0 P(X,z,u(X,z),r) I = (au(x,z), X = (x,Y)E; where and F:zxZxRxR2 + R r~D;~,~)u(X,z) We o b s e r v e t h a t U - 4 h a s a maximum a t X O ~ c and v - $ h a s a minimum a t Y E R . Applying t h e d e f i n i t i o n o f v i s c o s i t y s o l u t i o n a n d o u s i n g (9) w e g e t 2 2 2 CL B[U(X,z)-v(X,z)-O/X( 1 <BO, XE; and zcz. Sending 0 + 0 , c o n t r a d i c t s ( 8 ) . W e now s t a t e t h e mafn t h e o r e m s . Theorem 3.3: The v a l u e f u n c t i o n v i s c o s i t y s o l u t i o n of 2355 U is a constrained m i n [ ( l + X ) u -uy, - max -(l-u)u Ou-rxu -zyu +uy, - [-cu +U(c)l X Cu(z)l where Y (10) 0 = c>o The p r o o f i s b a s e d on t h e Dynamic Programming P r i n c i p l e and t h e g e n e r a l i z e d D y n k i n ' s f o r m u l a . The p r e s e n c e o f s i n g u l a r c o n t r o l s and t h e f a c t t h a t t h e Bellman e q u a t i o n i s a c t u a l l y a V a r i a t i o n a l I n e q u a l i t y make t h e p r o o f r a t h e r t e c h n i c a l . Theorem 3.4: The v a l u e f u n c t i o n U i s t h e u n i q u e c o n s t r a i n e d v i s c o s i t y s o l u t i o n of (10) i n t h e c l a s s o f bounded and u n i f o r m l y c o n t i n u o u s f u n c t i o n s . U are P r o o f : W e a r e g o i n g t o show t h a t i f U - a n d r e s p e c t i v e l y a s u b s o l u t i o n o f (10) on R Cnd a s u p e r s o l u t i o n o f (10) i n $2, t h e n U 5 on R . W e follow t h e s t r a t e g y of I s h i i [ 9 ] . L e t $ : S I + R b e d e f i n e d by $ ( x , y ) = C1x + C2y + k , where C1, C2 and k a r e (l-v)Cl< C2 positive constants satisfying Bk > r C l and X = (x,y) E + + max KC + U(c)]. [-cC1 crp R, P = (p,q)eRXR and 2 -(l-p)p+q, - max [-cp+U(c)l - U, = - Ue M +lR W e can f i n d p o i n t s ,Z 0 ,U (Y z 1 , P E ) . a (Po 6U - r x o p E - zoyoqE a H(Y o ,z o 'Ue (Y o ,z o ) , P E ) - max[-cp + U(c)]-fU (Y z ) e 0' o c,' E If Cl > 0. Sending BJ.0 In and u s i n g (13) we 5+1. C o n s t a n t i n i d e s , G.M., M u l t i p e r i o d Consumption and I n v e s t m e n t B e h a v i o r w i t h Convex T r a n s a c t i o n s Costs, Management S c i . 25 ( 1 9 7 9 ) , 1127-1137. 3. C o n s t a n t i n i d e s , G . M . , C a p i t a l Market E q u i l i b r i u m w i t h T r a n s a c t i o n C o s t s , J o u r n a l of P o l i t i c a l Economy 9 4 , No. 4 ( 1 9 8 6 ) , 842-862. 4. C r a n d a l l , M.G. and P.-L. L i o n s , V i s c o s i t y s o l u t i o n s o f H a m i l t o n - J a c o b i e q u a t i o n s , T r a n s . AMs 277 ( 1 9 8 3 ) , 1-42. 5. D a v i s , M.H.A. and A.R. Norman, P o r t f o l i o s e l e c t i o n w i t h t r a n s a c t i o n c o s t s , s u b m i t t e d t o Math of Operations Research, (1987). 6. Fleming, W.H., S. Grossman, J.-L. V i l a and T. Zariphopoulou, Optimal P o r t f o l i o r e b a l a n c i n g w i t h t r a n s a c t i o n c o s t s , s u b m i t t e d t o Econometrica. such t h a t 2 -eIx/ 1 and z EZ 0 We now l o o k a t 2. Bu-rxp-zyq- >.U. e XEQ PE = (p,,q,). Brennan, M . J . , The o p t i m a l number o f S e c u r i t i e s i n a Risky A s s e t P o r t f o l i o when t h e r e a r e f i x e d C o s t s o f T r a n s a c t i n g : Theory and some e m p i r i c a l r e s u l t s , J. F i n a n c i a l and Q u a n t i t a t i v e A n a l y s i s 1 0 , ( 1 9 7 5 ) , 483-496. given X E ~ Z,E Z . 0 max s u p [ u ( ~ , z ) - U (x,z) ZEZ and 4(1,1)). 1. We work a s i n Theorem 3 . 1 , we assume t h a t f o r s u f f i c i e n t l y s m a l l R > 0 , W e n e x t show t h a t - E References O ~ ( 0 , l ) . Then t h e r e for e x i s t s a p o s i t i v e constant > -x - (1-O)O H(X,z,U,,VUe) Z M ( 1 - 9 ) (xo,y0) = f o r some - Lu(z)l. + @U Y E we work a s i n Theorem 3.2 and w e c o n t r a d i c t ( 3 . 6 ) . t h e o t h e r c a s e s (14) y i e l d s C O Let 0 = by H(X,z,v,P)=min[(l+h)p-q, - d i f f e r e n t c a s e s d e p e n d i n g on t h e form o f H(Y Let H:?&X%xRxR Y0 Let = E a g a i n c o n t r a d i c t (11). F i n a l l y we s e n d (l+X)C, c P 0. (11) __ X ~ s 2 such t h a t F l e m i n g , W.H., S e t h i , S. and M. H . S o n e r , An o p t i m a l s t o c h a s t i c p l a n n i n g problem w i t h randomly f l u c t u a t i n g demand, SIAM J. C o n t r o l and O p t i m i z a t i o n 25, No. 6 ( 1 9 8 7 ) . G o l d s m i t h , D . , T r a n s a c t i o n C o s t s and t h e Theory o f P o r t f o l i o S e l e c t i o n , J . F i n a n c e 3 1 ( 1 9 7 6 ) , 1127 1139. I s h i i , H., A s i m p l e , d i r e c t proof of uniqueness f o r s o l u t i o n s of t h e H a m i l t o n - J a c o b i e q u a t i o n s o f E i k o n a l t y p e , P r o c e e d i n g s o f t h e American Mathem a t i c a l S o c i e t y , 1 0 0 , n o . 2 ( 1 9 8 7 ) , 247-251. 10. W e now c o n s i d e r t h e f u n c t i o n s Y-x - $(x) Y = ue(YO) - We o b s e r v e t h a t U, - IJJ 0 I $U)= NX,) - U 1% - h a s a minimum a t property we get F- -x 4(1,1)1 2 -oIxo/ 2 - 4(1,1)1 2 + AIX/ 2 h a s a maximum a t X0 and Yo. U s i n g t h e v i s c o s i t y Kandel, S . and S.A. Ross, Some I n t e r t e m p o r a l Models of Portfolio Selection with Transaction Costs, Working P a p e r no. 1 0 7 , U n i v e r s i t y o f Chicago, Grad. S c h o o l B u s . , C e n t e r R e s . S e c u r i t y P r i c e s , 1983. 11. L e l a n d , H . E . , On Consumption and P o r t f o l i o c h o i c e s w i t h T r a n s a c t i o n C o s t s , i n E s s a y s on Economic B e h a v i o r u n d e r U n c e r t a i n t y , M. B a l c h , D. McFadden, S . Wu e d s , Amsterdam, North-Holland ( 1 9 7 4 ) . 12. Levy, H . , E q u i l i b r i u m i n an I m p e r f e c t Market: A C o n s t r a i n t on t h e number of S e c u r i t i e s i n t h e P o r t - 13. Mayshar, J., T r a n s a c t i o n C o s t s i n a Model of C a p i t a l Market E q u i l i b r i u m , J.P.E. 87 (1979), 673-700. 14. Mukherjee, R. and E. Z a b e l , Consumption and P o r t f o l i o choices with Transaction Costs, i n Essays on Economic Behavior u n d e r U n c e r t a i n t y , M. Balch, D. McFadden, S . Wu e d s , Amsterdam, North-Holland (1974). 15. Soner, M.H., 1984. 16. T a k s a r , M . , Klass, M.J. and D. A s s a f , A. D i f f u s i o n Model f o r Optimal P o r t f o l i o S e l e c t i o n i n t h e p r e s e n c e of Brokerage F e e s , Dept. o f S t a t i s t i c s , F l o r i d a S t a t e U n i v e r s i t y (1986). 17. Zariphopoulou, 1988. Ph.D. T., T h e s i s , Brown U n i v e r s i t y , Ph.D. T h e s i s , Brown U n i v e r s i t y , 2357
© Copyright 2026 Paperzz