CalibratedBayes,andInferential ParadigmforOf7icialStatisticsintheEra ofBigData RodLittle Overview • Design-basedversusmodel-basedsurvey inference • CalibratedBayes • SomethoughtsonBayesandadaptive design Ross-Royall Symposium talk 2 Survey estimation • Design-basedinference:populationvaluesare 7ixed,inferenceisbasedonprobability distributionofsampleselection.Obviouslythis assumesthatwehaveaprobabilitysample(or “quasi-randomization”,wherewepretendthat wehaveone) • Model-basedinference:surveyvariablesare assumedtocomefromastatisticalmodel • Probabilitysamplingisnotthebasisfor inference,butisusefulformakingthesample selectionignorable.(seee.g.Gelmanetal., 2003;Little2004) Ross-Royall Symposium talk 3 Design vs model-based survey inference • Twomainvariantsofmodel-basedinference: – Superpopulationmodels:Frequentistinference basedonrepeatedsamplesfroma “superpopulation”model(Royall) – Bayes:addpriordistributionforparameters; inferenceabout7initepopulationquantitiesor parametersbasedonposteriordistribution • Afascinatingpartofthemoregeneraldebate aboutfrequentistversusBayesianinferencein statisticsatlarge: – Design-basedinferenceisinherentlyfrequentist – Purestformofmodel-basedinferenceisBayes Ross-Royall Symposium talk 4 Limitations of design-based approach • Inferenceisbasedonprobabilitysampling,buttrue probabilitysamplesareharderandhardertocome by: – Noncontact,nonresponseisincreasing – Face-to-faceinterviewsincreasinglyexpensive – Can’tdo“bigdata”(e.g.internet,administrativedata) fromthedesign-basedperspective • Theoryisbasicallyasymptotic--limitedtoolsfor smallsamples,e.g.smallareaestimation Ross-Royall Symposium talk 5 Design-Based Approach Has Implicit Models • Althoughnotexplicitlymodel-based,modelsare neededtomotivatethechoiceofestimator – E.g.theHorvitz-Thompson(HT)estimatorassumesan yi / π i implicitHTmodelthatare“exchangeable”(iid conditionalonparameters) – Ifimplicitmodelsareunreasonable,thentheresulting inferencescanbeverypoorinmoderatesamples(Basu’s elephantbeinganextremecase) • Modelsarisemoreexplicitlyinthe“modelassisted”paradigm(GREG) Ross-Royall Symposium talk 6 “Quasi”design-based inference • Keyfeatureofdesign-basedapproachisweights, inverselyproportionaltoprobofinclusion • Weightsforselection,nonresponse,poststrati7ication • Modelingtheinclusionpropensities,usingfrequentist orBayesianmethods,leadstoweightsthatareless variable,potentiallyincreasingprecision • Inferenceremainsessentiallydesign-based–inmy view;afullBayesiananalysisinvolvesmodelsforthe surveyvariables • Needtermstocodifythisdistinction:maybeweight modelingandpredictionmodeling Ross-Royall Symposium talk 7 Model-based approaches • Inmodel-based,ormodel-dependent,approaches, modelsarethebasisfortheentireinference:estimator, standarderror,intervalestimation • Twomainvariants: – Superpopulationmodeling – Bayesian(fullprobability)modeling • Commonthemeistopredictnon-sampledand nonrespondingportionofthepopulation,conditionalon thesampleandmodel • Superpopulationmodelsaresuper,butBayesisbetter! Ross-Royall Symposium talk 8 Parametric models Usuallypriordistributionisspeci7iedviaparametricmodels: p(Y | Z ) = ∫ p(Y | Z ,θ ) p(θ | Z )dθ p(Y | Z ,θ ) = parametric model, as in superpopulation approach p(θ | Z ) = prior distribution for θ Inference about θ is then obtained from its posterior distribution, computed via Bayes’ Theorem: p(θ | Yinc , Z ) =∝ p(θ | Z ) × L(θ | Yinc , Z ) L(θ | Yinc , Z ) = Likelihood function That is: Posterior = Prior x Likelihood… Posterior for θ leads to inference about population quantities by posterior predictive distribution Ross-Royall Symposium talk 9 The model-based perspective- pros • Flexible,uni7iedapproachforallsurveyproblems – Modelsfornonresponse,responseandmatchingerrors, smallareamodels,combiningdatasources,bigdata – Causalinferencerequiresmodels • Bayesianapproachisnotasymptotic,providesbetter small-sampleinferences • Probabilitysamplingisjusti7iedasmakingsampling mechanismignorable,improvingrobustness – Rubin’stheoryonignorableselection/nonresponseisthe rightframeworkforassessingnon-probabilitysamples Ross-Royall Symposium talk 10 The model-based perspective- cons • Explicitdependenceonthechoiceofmodel,which hassubjectiveelements(butassumptionsare explicit) • Badmodelsprovidebadanswers–justi7iable concernsabouttheeffectofmodelmisspeci7ication • Modelsareneededforallsurveyvariables–need tounderstandthedata,andpotentialformore complexcomputations • Infrastructure:needpersonneltrainedinstatistical modeling Ross-Royall Symposium talk 11 The current “status quo” -- designmodel compromise • Design-basedforlargesamples,descriptivestatistics – Butmaybemodelassisted,e.g.regressioncalibration: N N i =1 i =1 TˆGREG = ∑ yˆi + ∑ I i ( yi − yˆi ) / π i , yˆi = model prediction – modelestimatesadjustedtoprotectagainstmisspeci7ication, (e.g.Särndal,SwenssonandWretman1992). • Model-basedforsmallareaestimation, nonresponse,timeseries,… • Attemptstocapitalizeonbestfeaturesofboth paradigms…but…attheexpenseof“inferential schizophrenia”(Little2012)? Ross-Royall Symposium talk 12 Example: when is an area “small”? n o m e t e r Design-based inference ----------------------------------- n0 = “Point of inferential schizophrenia” Model-based inference How do I choose n0? If n0 = 35, should my entire statistical philosophy and inference be different when n=34 and n=36? n=36, CI: [ n=34, CI: [ ] (wider since based on direct estimate) ] (narrower since based on model) Ross-Royall Symposium talk 13 Multilevel (hierarchical Bayes) models n o m e t e r µ%a = wa yπ a + (1 − wa )µˆ a Model estimate Direct estimate 1 wa 0 Sample size n Bayesian multilevel model estimates borrow strength increasingly from model as n decreases Ross-Royall Symposium talk 14 Calibrated Bayes • FrequentistsshouldbeBayesian – Bayesisoptimalunderacorrectlyspeci7iedmodel • Bayesiansshouldbefrequentist – Weneverknowthemodel(andallmodelsarewrong) – Inferencesshouldberobusttomisspeci7ication,havegood repeatedsamplingcharacteristics • CalibratedBayes(Box1980,Rubin1984,Little2006,2012, 2013) – InferencebasedonaBayesianmodel – Modelchosentoyieldinferencesthatarewell-calibratedin afrequentistsense – Aimforposteriorcredibilityintervalsthathave (approximately)nominalfrequentistcoverage Ross-Royall Symposium talk 15 Calibrated Bayes models for surveys should incorporate sample design features • The“Calibrated”partofCalibratedBayesimplies: • Generallyweakpriorsthataredominatedbythe likelihood(“objectiveBayes”) • Modelsthatincorporatesamplingdesignfeatures: – Capturedesignweightsandstratifyingvariablesas covariatesinthepredictionmodel(e.g.Gelman2007) – Clusteringviahierarchicalrandomeffectsmodels Ross-Royall Symposium talk 16 Full model for Y and I p(Y , I | Z ,θ , φ ) = p ( Y | Z , θ ) p ( I | Y , Z , φ ) Model for Population Model for Inclusion • Fullposteriordistributionofparameters(hard): p(θ ,φ | Yobs , Z , I ) ∝ p(θ ,φ | Z ) L(θ ,φ | Yobs , Z , I ) • Posteriordistributionignoringtheinclusionmechanism (easier): p(θ | Yobs , Z ) ∝ p(θ | Z ) L(θ | Yobs , Z ) • Whenthefullposteriorreducestothissimplerposterior, theinclusionmechanismiscalledignorableforBayesian inference(Rubin1976) Ross-Royall Symposium talk 17 Conditions when inclusion mechanism can be ignored • Twogeneralandsimplesuf7icientconditionsforignoringthe data-collectionmechanismare: Inclusion at Random (IAR): p( I | Y , Z ,φ ) = p( I | Y , Z , φ ) for all Y . obs Bayesian Distinctness: p(θ , φ | Z ) = p(θ | Z ) p(φ | Z ) • Ignorabilityisspeci7ictothesurveyvariableY,unlike probabilitysampling,whichguaranteesignorabilityforany outcome • Inadaptivedesign,canincludeparadataorsurveydata Yobs fromearlierwaves Ross-Royall Symposium talk 18 Bayes and responsive design • PredictiveBayesmodelinghasmorepotential forgainsinef7iciencythanBayesianweight modeling – Needtomodelsurveyvariables! – Speci7ically,modelrelationshipofsurveyvariables withweights(ascovariates) Ross-Royall Symposium talk 19 Example: subsampling callbacks • ElliottandLittle(2000JASA)assessedsubsampling callbacksforNationalComorbidityStudy(NCS) • “Ouranalysissuggeststhatrandomlydroppinga subsetoflatecallbackswillsaveresourceswhenever (a)thepercall-backorperinterviewcostisincreasing, or(b)theprobabil-ityofasuccessfulinterviewattempt isdecreasing…Ingeneral,itappearsthatsurveyswith constantormodestlyincreasingcallbackcosts,suchas the1991NCS,yieldtrivialsavings,whereassurveys thatchangemodefrompostaltotelephoneorface-tofaceinterview,suchastheU.S.CensusBureau'sACS, yieldsubstantialsavings.” Ross-Royall Symposium talk 20 Example: subsampling callbacks • “…ourapproachyieldsconservativeestimatesof ef7iciencygainsfromsubsampling,inthesensethat calculationshaveassumeddesign-basedinference forpopulationmeans,withweightsincludedto compensatefordifferentialprobabilitiesof selection.Ifmodelingassumptionsaremadeaboutthe distributionsofoutcomesacrosscallbackstrata, thendifferentsubsamplingschemesmightbeoptimal” ElliottandLittle(2000) Ross-Royall Symposium talk 21 Example: weighting for nonresponse corr 2 ( X , Y ) Low High bias ---,var --- bias ---, var ⇓ corr ( X , R) High bias ---, var ↑ bias ⇓, var ⇓ 2 Low Too often weighting adjustments put us here … Modeling of relationship between weights and the outcomes is needed to get us out of this square! Ross-Royall Symposium talk We need good predictors of Y – but we focus on predictors of R… 22 Example: Penalized Spline of Propensity Prediction (PSPP) • PSPP (Little & An 2004, Zhang & Little 2009, 2011). • Regressionimputationthatis – Non-parametric (spline) on the propensity to respond – Parametriconothercovariates • Exploits the key property of the propensity score that conditional on the propensity score and assuming missing at random, missingness of Y does not depend on other covariates • This property leads to a model-based version of double robustness (as in GREG). • Does very well in simulation studies Ross-Royall Symposium talk 23 Penalized Spline of Propensity model Estimate: Y*=logit (Pr(R=1|X1,…,Xp )) Impute using the regression model: (Y | Y * , X 1 ,..., X p ; β ) ~ N ( s(Y * ) + g (Y * , X 2 ,..., X p ; β ), σ 2 ) § Nonparametric part § Needs to be correctly specified § We choose penalized spline § Parametric part § Misspecification does not lead to bias § Increases precision § X1 excluded to prevent multicollinearity Ross-Royall Symposium talk 24 Missing Not at Random Models • Dif7icultproblem,sinceinformationto7it non-MARislimitedandhighlydependenton assumptions • Sensitivityanalysisispreferredapproach– thoughthisformofanalysisisnotappealing toconsumersofstatistics,whowantclear answers Ross-Royall Symposium talk 25 An MNAR model: Proxy Pattern-Mixture Analysis xi = x( zi ) = best predictor of yi given covariates zi (estimated on respondents, and scaled to same variance as yi ) [ yi , xi | ri = r ] ~ G ( µ ( r ) , Σ( r ) ) Pr(ri = 1| xi , yi ) = g ( yi* (λ ) ) , yi* (λ ) = xi + λ yi MAR: λ = 0, MNAR: λ ≠ 0 (Andridge and Little 2011) [yi indep ri | yi* (λ )], which identifies the model for given λ g () is arbitrary, unspecified Sensitivity analysis for different choices of λ (e.g. 0,1,∞) If xi is a noisy measure of yi , it may be plausible to assume λ = ∞ leading to method for adjustment for predictors with measurement error (West and Little, Applied Statistics 2013) Ross-Royall Symposium talk 26 Indices of potential absolute bias (PAB) for a mean λ = ∞ leads to following measures of bias for mean of Y : • LetbetheestimatedcorrelationbetweenXandY, ρˆ > 0 basedonthesampledata. x • LetdenotethesamplemeanofXfromthe administrativedataandbethemeansofXandY xR , y R fromtherespondents. • De7inetheunadjustedpotentialabsolutebias(PABU)as PABU = x − xR / ρˆ • De7inetheadjustedpotentialabsolutebias(PABA)as PABA = x − xR (1 − ρˆ 2 ) / ρˆ Ross-Royall Symposium talk 27 Bayes and responsive design • Developpriorsbasedonprevioussurveys – Design-basedapproachignores(ortreats informally)informationfromprevioussurveys – Bayescanusepriorsurveysas“meta-data”to informdecisionsforcurrentsurvey – Priorscanaccommodatedown-weightingof previoussurveyinformation:e.g.“power”priors (ChenandIbrahim2000StatScience) – Bayesianpowercalculations–neglectedtopic, particularlyinsamplesurveycontext Ross-Royall Symposium talk 28 Bayesian updating • Bayesruleisnatural…thetheorem…forsequential decision-making: Dk = data at stage k p(θ | D0 , D1 ,...., Dk ) ∝ p(θ | D0 , D1 ,..., Dk −1 ) L(θ | Dk ) • Selectionisignorableforlikelihoodinference,ifdesign atanystagedependsondatabeforethatstage • Basisforsequentialtreatmentallocationinclinical trials–whichmodelstheoutcomes! • Relationshipbetweenoutcomesandpropensity(e.g. PSPP)canbemodeledandupdatedfrompriorstages Ross-Royall Symposium talk 29 Conclusion • IviewBayesianmodelingasanatural frameworkfordevelopingresponsivedesign andanalysis • Nofreelunch:modelsmakeassumptions • Butassumptionsareexplicitandcanbe evaluatedandcriticized. Ross-Royall Symposium talk 30 References 1 Box,G.E.P.(1980),SamplingandBayesinferenceinscienti7ic modelingandrobustness(withdiscussion),JRSSA,143,383-430. Joyce,P.M.,Malec,D.,Little,R.J.,Gilary,A.,Navarro,A.andAsiala, M.E.(2014).StatisticalModelingMethodologyfortheVotingRights ActSection203LanguageAssistanceDeterminations.JASA,109, 36-47. Gelman,A.(2007).Struggleswithsurveyweightingandregression modeling.Statist.Sci.,22,2,153-164(withdiscussionand rejoinder). Gelman,A.,Carlin,J.B.,Stern,H.S.andRubin,D.B.(2003),Bayesian DataAnalysis,2nd.edition.NewYork:CRCPress. Godambe,V.P.(1955).Auni7iedtheoryofsamplingfrom7inite populations.JRSSB,17,269-278. Horvitz,D.G.&Thompson,D.J.(1952).Ageneralizationofsampling withoutreplacementfroma7initeuniverse.JASA,47,663-685. Little,R.J.A.(2004).ToModelorNottoModel?CompetingModesof InferenceforFinitePopulationSampling.JASA,99,546-556. Ross-Royall Symposium talk 31 References 2 Little,R.J.A.(2006).CalibratedBayes:ABayes/frequentistroadmap. Am.Statist.,60,3,213-223 _____(2012).CalibratedBayes:analternativeinferentialparadigmfor of7icialstatistics(withdiscussionandrejoinder).JOS,28,3,309-372. _____(2013).SurveySampling:PastControversies,CurrentOrthodoxies, andFutureParadigms.InPast,PresentandFutureofStatisticalScience, COPSS50thAnniversaryVolume,X.Lin,D.L.Banks,C.Genest,G. Molenberghs,D.W.Scott,andJ.-L.Wang,eds.CRCPress. Rubin,DB(1984),Bayesianlyjusti7iableandrelevantfrequency calculationsfortheappliedstatistician,AnnalsStatist.12,1151-1172. Särndal,C.-E.,Swensson,B.&Wretman,J.H.(1992),ModelAssisted SurveySampling,SpringerVerlag:NewYork. Zheng,H.&Little,R.J.(2005).Inferenceforthepopulationtotalfrom probability-proportional-to-sizesamplesbasedonpredictionsfroma penalizedsplinenonparametricmodel.JOS,21,1-20. Ross-Royall Symposium talk 32
© Copyright 2025 Paperzz