DLD603/D Rev. 0, Dec-2002 ECLinPS Plus™ Device Data PUBLICATION ORDERING INFORMATION GLOBAL Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: [email protected] JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031 Phone: 81-3-5740-2700 Email: [email protected] N. American Technical Support: 800-282-9855 Toll Free USA/Canada For additional information, please contact your local Sales Representative ECLinPS Plus™ Device Data ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. ON Semiconductor Website: http://onsemi.com DLD603/D 12/02 DLD603 REV 0 ECLinPS Plus Device Data Advanced ECL in Picoseconds DLD603/D Rev. 0, Dec-2002 Formerly BR1513/D SCILLC, 2002 Previous Edition 2001 “All Rights Reserved” ECLinPS, ECLinPS Lite, and ECLinPS Plus are trademarks of Semiconductor Components Industries, LLC. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: [email protected] JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 Email: [email protected] ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative. N. American Technical Support: 800-282-9855 Toll Free USA/Canada http://onsemi.com 2 Table of Contents Numeric Data Sheet Listing and Selection Guide Chapter 2: ECLinPS Plus Translators Page Data Sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 Page Numeric Data Sheet Listing . . . . . . . . . . . . . . . . . . . . . . . . . 5 ECLinPS Plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 ECLinPS Plus Translators . . . . . . . . . . . . . . . . . . . . . . . 6 Low Voltage ECLinPS Plus . . . . . . . . . . . . . . . . . . . . . . . 6 Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Clock/Data Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Clock/Data Dividers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Flip-Flop/Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Line Receivers/Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Translators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 3: Low Voltage ECLinPS Plus Data Sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 Chapter 4: Case Outlines and Package Dimensions Device Nomenclatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 Case Outlines and Package Dimensions . . . . . . . . . . . 385 Chapter 5: Index Alphanumeric Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 Chapter 1: ECLinPS Plus Data Sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 http://onsemi.com 3 http://onsemi.com 4 Numeric Data Sheet Listing Chapter 1: ECLinPS Plus Data Sheets Device Function Page MC10EP01, MC100EP01 . . . . . . 3.3V / 5V ECL 4- Input OR/NOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 MC10EP05, MC100EP05 . . . . . . 3.3V / 5V ECL 2-Input Differential AND/NAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 MC10EP08, MC100EP08 . . . . . . 3.3V / 5V ECL 2-Input Differential XOR/XNOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 MC10EP11, MC100EP11 . . . . . . 3.3V / 5V ECL 1:2 Differential Fanout Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 MC100EP14 . . . . . . . . . . . . . . . . . 3.3V / 5V 1:5 Differential ECL/PECL/HSTL Clock Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 MC10EP16, MC100EP16 . . . . . . 3.3V / 5V ECL Differential Receiver/Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 MC100EP16F . . . . . . . . . . . . . . . . 3.3V / 5V ECL Differential Receiver/Driver With Reduced Output Swing . . . . . . . . . . . . . 45 MC10EP16T, MC100EP16T . . . 3.3V / 5V ECL Differential Receiver/Driver with Internal Termination . . . . . . . . . . . . . . . . 50 MC10EP16VA, MC100EP16VA . 3.3V / 5V ECL Differential Receiver/Driver with High Gain . . . . . . . . . . . . . . . . . . . . . . . . 56 MC100EP16VB . . . . . . . . . . . . . . 3.3V / 5V ECL Differential Receiver/Driver with High and Low Gain . . . . . . . . . . . . . . . . 62 MC100EP16VC . . . . . . . . . . . . . . 3.3V / 5V ECL Differential Receiver/Driver with High Gain and Enable Output . . . . . . . 67 MC100EP16VS . . . . . . . . . . . . . . 3.3V / 5V ECL Differential Receiver/Driver with Variable Output Swing . . . . . . . . . . . . . 74 MC100EP16VT . . . . . . . . . . . . . . 3.3V / 5V ECL Differential Receiver/Driver with Variable Output Swing and Internal Input Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 MC10EP17, MC100EP17 . . . . . . 3.3V / 5V ECL Quad Differential Driver/Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 MC10EP29, MC100EP29 . . . . . . 3.3V / 5V ECL Dual Differential Data and Clock D Flip-Flop With Set and Reset . . . . . 96 MC10EP31, MC100EP31 . . . . . . 3.3V / 5V ECL D Flip-Flop with Set and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 MC10EP32, MC100EP32 . . . . . . 3.3V / 5V ECL 2 Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 MC10EP33, MC100EP33 . . . . . . 3.3V / 5V ECL 4 Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 MC10EP35, MC100EP35 . . . . . . 3.3V / 5V ECL JK Flip-Flop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 MC100EP40 . . . . . . . . . . . . . . . . . 3.3V / 5V ECL Differential Phase- Frequency Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 MC10EP51, MC100EP51 . . . . . . 3.3V / 5V ECL D Flip- Flop with Reset and Differential Clock . . . . . . . . . . . . . . . . . . . . . . . . 134 MC10EP52, MC100EP52 . . . . . . 3.3V / 5V ECL Differential Data and Clock D Flip-Flop . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 MC10EP56, MC100EP56 . . . . . . 3.3V / 5V ECL Dual Differential 2:1 Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 MC10EP57, MC100EP57 . . . . . . 3.3V / 5V ECL 4:1 Differential Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 MC10EP58, MC100EP58 . . . . . . 3.3V / 5V ECL 2:1 Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 MC10EP89 . . . . . . . . . . . . . . . . . . 3.3V / 5V ECL Coaxial Cable Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 MC10EP90, MC100EP90 . . . . . . - 3.3V / -5V Triple ECL Input to LVPECL/PECL Output Translator . . . . . . . . . . . . . . . . . . . . 172 MC10EP016, MC100EP016 . . . 3.3V / 5V ECL 8-Bit Synchronous Binary Up Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 MC100EP016A . . . . . . . . . . . . . . 3.3V ECL 8-Bit Synchronous Binary Up Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 MC10EP101, MC100EP101 . . . 3.3V / 5V ECL Quad 4-Input OR/NOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 MC10EP105, MC100EP105 . . . 3.3V / 5V ECL Quad 2-Input Differential AND/NAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 MC10EP116, MC100EP116 . . . . 3.3V / 5V Hex Differential Line Receiver/Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 MC10EP131, MC100EP131 . . . 3.3V / 5V ECL Quad D Flip-Flop with Set, Reset, and Differential Clock . . . . . . . . . . . 216 MC10EP139, MC100EP139 . . . 3.3V / 5V ECL 2/4, 4/5/6 Clock Generation Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 MC100EP140 . . . . . . . . . . . . . . . . 3.3V ECL Phase- Frequency Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 MC10EP142, MC100EP142 . . . 3.3V / 5V ECL 9-Bit Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 MC10EP195, MC100EP195 . . . 3.3V / 5V ECL Programmable Delay Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 MC100EP196 . . . . . . . . . . . . . . . . 3.3V ECL Programmable Delay Chip with FTUNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 MC10EP445, MC100EP445 . . . 3.3V / 5V ECL 8-Bit Serial/Parallel Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 MC10EP446, MC100EP446 . . . 3.3V / 5V ECL 8-Bit Differential Parallel/Serial Converter . . . . . . . . . . . . . . . . . . . . . . . . . 281 MC10EP451, MC100EP451 . . . 3.3V / 5V ECL 6-Bit Differential Register with Master Reset . . . . . . . . . . . . . . . . . . . . . . 297 MC100EP809 . . . . . . . . . . . . . . . . 3.3V 1:9 Differential HSTL/PECL in, HSTL out Clock Driver with LVTTL Clock Select and Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 http://onsemi.com 5 Numeric Data Sheet Listing (continued) Chapter 2: ECLinPS Plus Translator Data Sheets Device Function Page MC10EPT20, MC100EPT20 . . . 3.3V LVTTL/LVCMOS to Differential LVPECL Translator . . . . . . . . . . . . . . . . . . . . . . . . . 310 MC100EPT21 . . . . . . . . . . . . . . . . 3.3V Differential LVPECL to LVTTL Translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 MC100EPT22 . . . . . . . . . . . . . . . . 3.3V Dual LVTTL/LVCMOS to Differential LVPECL Translator . . . . . . . . . . . . . . . . . . . . 318 MC100EPT23 . . . . . . . . . . . . . . . . 3.3V Dual Differential LVPECL to LVTTL Translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 MC100EPT24 . . . . . . . . . . . . . . . . 3.3V LVTTL/LVCMOS to Differential LVECL Translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 MC100EPT25 . . . . . . . . . . . . . . . . -3.3V / -5V Differential ECL to +3.3V LVTTL Translator . . . . . . . . . . . . . . . . . . . . . . . . . 330 MC100EPT26 . . . . . . . . . . . . . . . . 3.3V 1:2 Fanout Differential LVPECL to LVTTL Translator . . . . . . . . . . . . . . . . . . . . . . . . . 334 MC100EPT622 . . . . . . . . . . . . . . 3.3V LVTTL/LVCMOS to LVPECL Translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 Chapter 3: Low Voltage ECLinPS Plus Data Sheets Device Function Page MC10LVEP11, MC100LVEP11 . 2.5V / 3.3V ECL 1:2 Differential Fanout Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 MC100LVEP14 . . . . . . . . . . . . . . 2.5V / 3.3V 1:5 Differential ECL/PECL/HSTL Clock Driver . . . . . . . . . . . . . . . . . . . . . . . . . 350 MC10LVEP16, MC100LVEP16 . 2.5V / 3.3V ECL Differential Receiver/Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 MC100LVEP34 . . . . . . . . . . . . . . 2.5V / 3.3V ECL 2, 4, 8 Clock Generation Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 MC100LVEP111 . . . . . . . . . . . . . . 2.5V / 3.3V 1:10 Differential ECL/PECL/HSTL Clock Driver . . . . . . . . . . . . . . . . . . . . . . . 369 MC100LVEP210 . . . . . . . . . . . . . 2.5V / 3.3V 1:5 Dual Differential ECL/PECL/HSTL Clock Driver . . . . . . . . . . . . . . . . . . . . . . 374 MC100EP210S . . . . . . . . . . . . . . 2.5V 1:5 Dual Differential LVDS Compatible Clock Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 http://onsemi.com 6 Selection Guide Gates Function Device 3.3V / 5V ECL 4- Input OR/NOR 3.3V / 5V ECL 2-Input Differential AND/NAND 3.3V / 5V ECL 2-Input Differential XOR/XNOR 3.3V / 5V ECL Quad 4-Input OR/NOR 3.3V / 5V ECL Quad 2-Input Differential AND/NAND MC10EP01, MC100EP01 MC10EP05, MC100EP05 MC10EP08, MC100EP08 MC10EP101, MC100EP101 MC10EP105, MC100EP105 Page 10 16 22 197 203 Clock/Data Buffers Function Device 2.5V / 3.3V ECL 1:2 Differential Fanout Buffer 3.3V / 5V ECL 1:2 Differential Fanout Buffer 2.5V / 3.3V 1:5 Differential ECL/PECL/HSTL Clock Driver 3.3V / 5V 1:5 Differential ECL/PECL/HSTL Clock Driver 2.5V / 3.3V 1:10 Differential ECL/PECL/HSTL Clock Driver 2.5V / 3.3V 1:5 Dual Differential ECL/PECL/HSTL Clock Driver 2.5V 1:5 Dual Differential LVDS Compatible Clock Driver 3.3V 1:9 Differential HSTL/PECL in, HSTL out Clock Driver with LVTTL Clock Select and Enable MC10LVEP11, MC100LVEP11 MC10EP11, MC100EP11 MC100LVEP14 MC100EP14 MC100LVEP111 MC100LVEP210 MC100EP210S MC100EP809 Page 344 28 350 34 369 374 379 303 Clock/Data Dividers Function Device 3.3V / 5V ECL 2 Divider 3.3V / 5V ECL 4 Divider 2.5V / 3.3V ECL 2, 4, 8 Clock Generation Chip 3.3V / 5V ECL 2/4, 4/5/6 Clock Generation Chip MC10EP32, MC100EP32 MC10EP33, MC100EP33 MC100LVEP34 MC10EP139, MC100EP139 Page 109 116 362 222 Flip-Flops/Registers Function Device 3.3V / 5V ECL Dual Differential Data and Clock D Flip-Flop with Set and Reset 3.3V / 5V ECL D Flip-Flop with Set and Reset 3.3V / 5V ECL JK Flip-Flop 3.3V / 5V ECL D Flip- Flop with Reset and Differential Clock 3.3V / 5V ECL Differential Data and Clock D Flip-Flop 3.3V / 5V ECL Quad D Flip-Flop with Set, Reset, and Differential Clock 3.3V / 5V ECL 8-Bit Serial/Parallel Converter 3.3V / 5V ECL 8-Bit Differential Parallel/Serial Converter 3.3V / 5V ECL 6-Bit Differential Register with Master Reset MC10EP29, MC100EP29 MC10EP31, MC100EP31 MC10EP35, MC100EP35 MC10EP51, MC100EP51 MC10EP52, MC100EP52 MC10EP131, MC100EP131 MC10EP445, MC100EP445 MC10EP446, MC100EP446 MC10EP451, MC100EP451 Page 96 103 123 134 140 216 266 281 297 Multiplexers Function Device 3.3V / 5V ECL Dual Differential 2:1 Multiplexer 3.3V / 5V ECL 4:1 Differential Multiplexer 3.3V / 5V ECL 2:1 Multiplexer MC10EP56, MC100EP56 MC10EP57, MC100EP57 MC10EP58, MC100EP58 http://onsemi.com 7 Page 146 153 160 Selection Guide (continued) Counters Function Device 3.3V / 5V ECL 8-Bit Synchronous Binary Up Counter 3.3V ECL 8-Bit Synchronous Binary Up Counter MC10EP016, MC100EP016 MC100EP016A Page 178 188 Shift Registers Function Device 3.3V / 5V ECL 9-Bit Shift Register MC10EP142, MC100EP142 Page 234 Line Receivers/Drivers Function Device 2.5V / 3.3V ECL Differential Receiver/Driver 3.3V / 5V ECL Differential Receiver/Driver 3.3V / 5V ECL Differential Receiver/Driver with Reduced Output Swing 3.3V / 5V ECL Differential Receiver/Driver with Internal Termination 3.3V / 5V ECL Differential Receiver/Driver with High Gain 3.3V / 5V ECL Differential Receiver/Driver with High and Low Gain 3.3V / 5V ECL Differential Receiver/Driver with High Gain and Enable Output 3.3V / 5V ECL Differential Receiver/Driver with Variable Output Swing 3.3V / 5V ECL Differential Receiver/Driver with Variable Output Swing and Internal Input Termination 3.3V / 5V ECL Quad Differential Driver/Receiver 3.3V / 5V Hex Differential Line Receiver/Driver MC10LVEP16, MC100LVEP16 MC10EP16, MC100EP16 MC100EP16F MC10EP16T, MC100EP16T MC10EP16VA, MC100EP16VA MC100EP16VB MC100EP16VC MC100EP16VS MC100EP16VT MC10EP17, MC100EP17 MC10EP116, MC100EP116 Page 356 39 45 50 56 62 67 74 82 90 209 Translators Function Device 3.3V LVTTL/LVCMOS to Differential LVPECL Translator 3.3V Differential LVPECL to LVTTL Translator 3.3V Dual LVTTL/LVCMOS to Differential LVPECL Translator 3.3V Dual Differential LVPECL to LVTTL Translator 3.3V LVTTL/LVCMOS to Differential LVECL Translator -3.3V / -5V Differential ECL to +3.3V LVTTL Translator 3.3V 1:2 Fanout Differential LVPECL to LVTTL Translator - 3.3V / -5V Triple ECL Input to LVPECL/PECL Output Translator 3.3V LVTTL/LVCMOS to LVPECL Translator MC10EPT20, MC100EPT20 MC100EPT21 MC100EPT22 MC100EPT23 MC100EPT24 MC100EPT25 MC100EPT26 MC10EP90, MC100EP90 MC100EPT622 Page 310 314 318 322 326 330 334 172 338 Miscellaneous Function Device 3.3V / 5V ECL Differential Phase- Frequency Detector 3.3V / 5V ECL Coaxial Cable Driver 3.3V ECL Phase- Frequency Detector 3.3V / 5V ECL Programmable Delay Chip 3.3V / 5V ECL Programmable Delay Chip with FTUNE MC100EP40 MC10EP89 MC100EP140 MC10EP195, MC100EP195 MC100EP196 http://onsemi.com 8 Page 129 166 229 242 255 CHAPTER 1 ECLinPS Plus Data Sheets http://onsemi.com 9 MC10EP01, MC100EP01 3.3V / 5VECL 4− Input OR/NOR The MC10EP01 is a 4- input OR/NOR gate. The device is functionally equivalent to the EL01 device, LVEL01, and E101 (a quad version). With AC performance much faster than the LVEL01 device, the EP01 is ideal for applications requiring the fastest AC performance available. The 100 Series contains temperature compensation. • 230 ps Typical Propagation Delay • Maximum Frequency > 3 GHz Typical • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V • • http://onsemi.com MARKING DIAGRAMS* 8 8 8 HEP01 ALYW 1 with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State SO-8 D SUFFIX CASE 751 1 1 8 8 8 1 TSSOP-8 DT SUFFIX CASE 948R KEP01 ALYW KP01 ALYW HP01 ALYW 1 1 H = MC10 K = MC100 A = Assembly Location L = Wafer Lot Y = Year W = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Package Shipping MC10EP01D SO-8 98 Units/Rail MC10EP01DR2 SO-8 2500 Tape & Reel MC100EP01D SO-8 98 Units/Rail MC100EP01DR2 SO-8 2500 Tape & Reel MC10EP01DT TSSOP-8 100 Units/Rail MC10EP01DTR2 TSSOP-8 2500 Tape & Reel MC100EP01DT TSSOP-8 100 Units/Rail MC100EP01DTR2 TSSOP-8 Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 4 10 2500 Tape & Reel Publication Order Number: MC10EP01/D MC10EP01, MC100EP01 PIN DESCRIPTION D0 D1 D2 D3 1 8 2 7 3 6 4 5 VCC Q PIN FUNCTION D0-D3 ECL Data Inputs Q, Q ECL Data Outputs VCC VEE Positive Supply Negative Supply TRUTH TABLE Q VEE Figure 1. 8-Lead Pinout (Top View) and Logic Diagram D0* D1* D2* D3* Q Q L H X X X H L X H X X H L X X H X H L X X X H H L H H H H H H L L L L L *Pins will default LOW when left open. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Level 1 Oxygen Index: 28 to 34 UL 94 V-0 @ 0.125 in Transistor Count 115 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Parameter Symbol Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode Input Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 8 SOIC 41 to 44 °C/W JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 8 TSSOP 41 to 44 °C/W Tsol Wave Solder <2 to 3 sec @ 248°C 265 °C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 11 VI VCC VI VEE MC10EP01, MC100EP01 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 24 31 20 24 31 20 24 31 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 4) 2165 2240 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single-Ended) 1365 1690 1430 1755 1490 1815 mV IIH Input HIGH Current 150 A IIL Input LOW Current 150 150 0.5 0.5 A 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 to VCC - 2.0 V. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 5) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 24 31 20 24 31 20 24 31 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 6) 3865 3940 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 6) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV IIH Input HIGH Current 150 A IIL Input LOW Current 150 150 0.5 0.5 A 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 5. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 6. All loading with 50 to VCC - 2.0 V. 10EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 7) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 24 31 20 24 31 20 24 31 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 8) -1 135 -1060 -885 -1070 -945 -820 -1010 -885 -760 mV VOL Output LOW Voltage (Note 8) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV VIH Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV IIH Input HIGH Current 150 A IIL Input LOW Current 150 0.5 150 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 7. Input and output parameters vary 1:1 with VCC. 8. All loading with 50 to VCC - 2.0 V. http://onsemi.com 12 MC10EP01, MC100EP01 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 9) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 15 24 32 17 26 36 19 28 38 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 10) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 10) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV IIH Input HIGH Current 150 A IIL Input LOW Current 150 150 0.5 0.5 A 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 10. All loading with 50 to VCC - 2.0 V. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 11) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 15 24 32 17 26 36 19 28 38 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 12) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 12) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV IIH Input HIGH Current 150 A IIL Input LOW Current 150 150 0.5 0.5 A 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 11. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 12. All loading with 50 to VCC - 2.0 V. 100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 13) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 15 24 32 17 26 36 19 28 38 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 14) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 14) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV IIH Input HIGH Current 150 A IIL Input LOW Current 150 0.5 150 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 13. Input and output parameters vary 1:1 with VCC. 14. All loading with 50 to VCC - 2.0 V. http://onsemi.com 13 MC10EP01, MC100EP01 AC CHARACTERISTICS VCC = 3.0 V to 5.5 V; VEE = 0 V or VCC = 0 V; VEE = -3.0 V to -5.5 V (Note 15) -40 °C Symbol Min Characteristic fmax Maximum Frequency (See Figure 2. Fmax/JITTER) tPLH, tPHL Propagation Delay tJITTER Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) tr tf Output Rise/Fall Times (20% - 80%) 25°C Typ Max Min >3 D to Q, Q Q, Q 150 70 Typ 85°C Max Min Typ >3 260 330 0.2 <1 120 170 150 80 >3 270 330 0.2 <1 130 180 200 100 8 700 7 600 6 500 5 400 4 300 3 200 2 ÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉ 1 0 1000 2000 3000 4000 FREQUENCY (MHz) Figure 2. Fmax/Jitter http://onsemi.com 14 5000 6000 GHz 350 ps 0.2 <1 ps 150 200 ps ÉÉ ÉÉ (JITTER) 0 JITTEROUT (ps) (RMS) VOUTpp (mV) 800 Unit 300 15. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC - 2.0 V. 100 Max MC10EP01, MC100EP01 Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 15 MC10EP05, MC100EP05 3.3V / 5VECL 2−Input Differential AND/NAND The MC10/100EP05 is a 2-input differential AND/NAND gate. The device is functionally equivalent to the EL05 and LVEL05 devices. With AC performance much faster than the LVEL05 device, the EP05 is ideal for applications requiring the fastest AC performance available. The 100 Series contains temperature compensation. • 220 ps Typical Propagation Delay • Maximum Frequency > 3 GHz Typical • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V • http://onsemi.com MARKING DIAGRAMS* 8 8 8 1 SO-8 D SUFFIX CASE 751 with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State Safety Clamp on Inputs • • • Q Output Will Default LOW with Inputs Open or at VEE HEP05 ALYW 1 KEP05 ALYW 1 8 8 8 1 TSSOP-8 DT SUFFIX CASE 948R HP05 ALYW KP05 ALYW 1 1 H = MC10 K = MC100 A = Assembly Location L = Wafer Lot Y = Year W = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Package Shipping MC10EP05D Device SO-8 98 Units/Rail MC10EP05DR2 SO-8 2500 Tape & Reel MC100EP05D SO-8 98 Units/Rail MC100EP05DR2 SO-8 2500 Tape & Reel MC10EP05DT TSSOP-8 100 Units/Rail MC10EP05DTR2 TSSOP-8 2500 Tape & Reel MC100EP05DT TSSOP-8 100 Units/Rail MC100EP05DTR2 TSSOP-8 Semiconductor Components Industries, LLC, 2001 April, 2001 - Rev. 4 16 2500 Tape & Reel Publication Order Number: MC10EP05/D MC10EP05, MC100EP05 PIN DESCRIPTION D0 D0 D1 1 8 2 7 6 3 VCC Q PIN FUNCTION D0*, D1*, D0**, D1** ECL Data Inputs Q, Q ECL Data Outputs VCC Positive Supply VEE Negative Supply * Pins will default LOW when left open. ** Pins will default to VCC/2 when left open. Q TRUTH TABLE D1 4 5 VEE Figure 1. 8-Lead Pinout (Top View) and Logic Diagram D0 D1 D0 D1 Q Q L L H H L H L H H H L L H L H L L L L H H H H L ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection 37.5 k Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Level 1 Flammability Rating Oxygen Index UL-94 code V-0 A 1/8” 28 to 34 Transistor Count 137 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, refer to Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 SOIC 41 to 44 °C/W θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 TSSOP 41 to 44 °C/W Tsol Wave Solder <2 to 3 sec @ 248°C 265 °C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 17 VI VCC VI VEE MC10EP05, MC100EP05 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 24 29 20 24 29 20 24 29 mA Output HIGH Voltage (Note 4) 2165 2240 2415 2230 2355 2480 2290 2415 2540 mV VOL VIH Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV Input HIGH Voltage (Single Ended) 2090 2415 2155 2480 2215 2540 mV VIL VIHCMR Input LOW Voltage (Single Ended) 1365 1690 1460 1755 1490 1815 mV Input HIGH Voltage Common Mode Range (Differential) (Note 5) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 µA IEE VOH Power Supply Current 150 150 D 0.5 0.5 0.5 µA D -150 -150 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 ohms to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Input LOW Current 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 24 29 20 24 29 20 24 29 mA Output HIGH Voltage (Note 7) 3865 3940 4115 3930 4055 4180 3990 4115 4240 mV VOL VIH Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV Input HIGH Voltage (Single Ended) 3790 4115 3855 4180 3915 4240 mV VIL VIHCMR Input LOW Voltage (Single Ended) 3065 3390 3130 3455 3190 3515 mV Input HIGH Voltage Common Mode Range (Differential) (Note 8) 2.0 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 µA IEE VOH Power Supply Current 150 Input LOW Current D D 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 ohms to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 9) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 24 29 20 24 29 20 24 29 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 10) -1 135 -1060 -885 -1070 -945 -820 -1010 -885 -760 mV VOL VIH Output LOW Voltage (Note 10) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV Input HIGH Voltage (Single Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL VIHCMR Input LOW Voltage (Single Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV 0.0 V IIH IIL Input HIGH Current 150 µA Input HIGH Voltage Common Mode Range (Differential) (Note 11) Input LOW Current VEE+2.0 0.0 VEE+2.0 150 D D 0.5 -150 0.0 VEE+2.0 150 0.5 -150 0.5 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 ohms to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 18 MC10EP05, MC100EP05 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 15 25 32 17 27 36 19 28 38 mA Output HIGH Voltage (Note 13) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL VIH Output LOW Voltage (Note 13) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV Input HIGH Voltage (Single Ended) 2075 2420 2075 2420 2075 2420 mV VIL VIHCMR Input LOW Voltage (Single Ended) 1355 1675 1355 1675 1355 1675 mV Input HIGH Voltage Common Mode Range (Differential) (Note 14) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 µA IEE VOH Power Supply Current 150 150 D 0.5 0.5 0.5 µA D -150 -150 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 ohms to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Input LOW Current 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 15 25 32 17 27 36 19 28 38 mA Output HIGH Voltage (Note 16) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL VIH Output LOW Voltage (Note 16) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV Input HIGH Voltage (Single Ended) 3775 4120 3775 4120 3775 4120 mV VIL VIHCMR Input LOW Voltage (Single Ended) 3055 3375 3055 3375 3055 3375 mV Input HIGH Voltage Common Mode Range (Differential) (Note 17) 2.0 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 µA IEE VOH Power Supply Current 150 Input LOW Current D D 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 ohms to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 18) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 15 25 32 17 27 36 19 28 38 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 19) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL VIH Output LOW Voltage (Note 19) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV Input HIGH Voltage (Single Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL VIHCMR Input LOW Voltage (Single Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV 0.0 V IIH IIL Input HIGH Current 150 µA Input HIGH Voltage Common Mode Range (Differential) (Note 20) Input LOW Current VEE+2.0 0.0 VEE+2.0 150 D D 0.5 -150 0.0 VEE+2.0 150 0.5 -150 0.5 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 ohms to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 19 MC10EP05, MC100EP05 AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21) -40 °C Symbol Characteristic Min fmax Maximum Frequency (See Figure 2. Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tJITTER Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) VPP Input Voltage Swing (Differential) Typ 25°C Max Min >3 Max Min >3 0.2 <1 800 1200 170 >3 270 0.2 <1 800 1200 210 Unit GHz ps 0.2 <1 ps 150 800 1200 mV tr Output Rise/Fall Times Q 70 120 170 80 130 180 100 tf (20% - 80%) 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. 150 200 ps 150 220 900 9 800 8 700 7 600 6 500 5 JITTEROUT ps (RMS) 260 Max 320 150 210 Typ 260 VOUTpp (mV) 160 Typ 85°C ÉÉ ÉÉ ÉÉ ÉÉÉÉÉÉÉÉ ÇÇÇÇÇÇÇÇÇÇÇ ÉÉÉÉÉÉÉÉ ÇÇÇÇÇÇÇÇÇÇÇ 400 4 TBD 300 3 200 2 (JITTER) 1 100 TBD 0 0 1000 2000 3000 4000 FREQUENCY (MHz) Figure 2. Fmax/Jitter http://onsemi.com 20 5000 6000 MC10EP05, MC100EP05 Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 21 MC10EP08, MC100EP08 3.3V / 5VECL 2−Input Differential XOR/XNOR The MC10/100EP08 is a differential XOR/XNOR gate. The EP08 is ideal for applications requiring the fastest AC performance available. The 100 Series contains temperature compensation. http://onsemi.com • 250 ps Typical Propagation Delay • Maximum Frequency > 3 GHz Typical • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V • MARKING DIAGRAMS* 8 8 with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State 8 1 SO-8 D SUFFIX CASE 751 • • Safety Clamp on Inputs • Q Output Will Default LOW with Inputs Open or at VEE HEP08 ALYW 1 1 8 8 1 TSSOP-8 DT SUFFIX CASE 948R KEP08 ALYW 8 HP08 ALYW KP08 ALYW 1 1 H = MC10 K = MC100 A = Assembly Location L = Wafer Lot Y = Year W = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Package MC10EP08D SO-8 98 Units/Rail MC10EP08DR2 SO-8 2500 Tape & Reel MC100EP08D SO-8 98 Units/Rail MC100EP08DR2 SO-8 2500 Tape & Reel MC10EP08DT TSSOP-8 100 Units/Rail MC10EP08DTR2 TSSOP-8 2500 Tape & Reel MC100EP08DT TSSOP-8 100 Units/Rail MC100EP08DTR2 TSSOP-8 Semiconductor Components Industries, LLC, 2001 April, 2001 - Rev. 3 22 Shipping 2500 Tape & Reel Publication Order Number: MC10EP08/D MC10EP08, MC100EP08 D0 1 8 2 D0 7 PIN DESCRIPTION VCC Q PIN FUNCTION D0, D1, D0, D1 ECL Data Inputs Q, Q ECL Data Outputs VCC Positive Supply VEE Negative Supply TRUTH TABLE 3 D1 6 4 D1 5 Q VEE D0* D1* D0** D1** Q Q L L H H L H L H H H L L H L H L L H H L H L L H * Pins will default LOW when left open. ** Pins will default to VCC/2 when left open. Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection 37.5 k Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1.) Level 1 Flammability Rating Oxygen Index UL-94 code V-0 A 1/8” 28 to 34 Transistor Count 135 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2.) Symbol Parameter Condition 1 VCC VEE PECL Mode Power Supply NECL Mode Power Supply VEE = 0 V VCC = 0 V VI Input PECL Mode In ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V Iout Output Current Continuous Surge TA Tstg θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM θJC θJA Thermal Resistance (Junction to Case) θJC Tsol Condition 2 Rating Units 6 V -6 V 6 -6 V V 50 100 mA mA Operating Temperature Range -40 to +85 °C Storage Temperature Range -65 to +150 °C 8 SOIC 8 SOIC 190 130 °C/W °C/W std bd 8 SOIC 41 to 44 °C/W Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W Thermal Resistance (Junction to Case) std bd 8 TSSOP 41 to 44 °C/W Wave Solder <2 to 3 sec @ 248°C 265 °C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 23 VI VCC VI VEE MC10EP08, MC100EP08 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 36 20 30 38 20 32 38 mA Output HIGH Voltage (Note 4.) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL VIH Output LOW Voltage (Note 4.) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV Input HIGH Voltage (Single Ended) 2090 2415 2155 2480 2215 2540 mV VIL VIHCMR Input LOW Voltage (Single Ended) 1365 1690 1430 1755 1490 1815 mV Input HIGH Voltage Common Mode Range (Differential) (Note 5.) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 µA IEE VOH Power Supply Current 150 Input LOW Current D D 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 ohms to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6.) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 20 28 36 20 30 38 20 32 38 mA Output HIGH Voltage (Note 7.) 3865 3940 4115 3930 4055 4180 3990 4115 4240 mV VOL VIH Output LOW Voltage (Note 7.) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV Input HIGH Voltage (Single Ended) 3790 4115 3855 4180 3915 4240 mV VIL VIHCMR Input LOW Voltage (Single Ended) 3065 3390 3130 3455 3190 3515 mV Input HIGH Voltage Common Mode Range (Differential) (Note 8.) 2.0 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 µA 150 Input LOW Current D D 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 ohms to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 9.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 36 20 30 38 20 32 38 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 10.) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL VIH Output LOW Voltage (Note 10.) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV Input HIGH Voltage (Single Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL VIHCMR Input LOW Voltage (Single Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV 0.0 V IIH IIL Input HIGH Current 150 µA Input HIGH Voltage Common Mode Range (Differential) (Note 11.) Input LOW Current VEE+2.0 0.0 VEE+2.0 150 D D 0.5 -150 0.0 VEE+2.0 150 0.5 -150 0.5 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 ohms to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 24 MC10EP08, MC100EP08 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 36 20 30 38 20 32 40 mA Output HIGH Voltage (Note 13.) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL VIH Output LOW Voltage (Note 13.) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV Input HIGH Voltage (Single Ended) 2075 2420 2075 2420 2075 2420 mV VIL VIHCMR Input LOW Voltage (Single Ended) 1355 1675 1355 1675 1355 1675 mV Input HIGH Voltage Common Mode Range (Differential) (Note 14.) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 µA IEE VOH Power Supply Current 150 Input LOW Current D D 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 ohms to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 36 20 30 38 20 32 40 mA Output HIGH Voltage (Note 16.) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL VIH Output LOW Voltage (Note 16.) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV Input HIGH Voltage (Single Ended) 3775 4120 3775 4120 3775 4120 mV VIL VIHCMR Input LOW Voltage (Single Ended) 3055 3375 3055 3375 3055 3375 mV Input HIGH Voltage Common Mode Range (Differential) (Note 17.) 2.0 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 µA IEE VOH Power Supply Current 150 Input LOW Current D D 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 ohms to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 18.) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 20 28 36 20 30 38 20 32 40 mA Output HIGH Voltage (Note 19.) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL VIH Output LOW Voltage (Note 19.) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV Input HIGH Voltage (Single Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL VIHCMR Input LOW Voltage (Single Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV 0.0 V IIH IIL Input HIGH Current 150 µA Input HIGH Voltage Common Mode Range (Differential) (Note 20.) Input LOW Current VEE+2.0 0.0 VEE+2.0 150 D D 0.5 -150 0.0 VEE+2.0 150 0.5 -150 0.5 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 ohms to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 25 MC10EP08, MC100EP08 AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21.) -40 °C Symbol Characteristic Min fmax Maximum Frequency (See Figure 2. Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tJITTER Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) VPP Input Voltage Swing (Differential) Typ 25°C Max Min >3 Typ 85°C Max Min >3 Typ Max >3 Unit GHz ps 170 320 0.2 <1 ps 150 800 1200 mV tr Output Rise/Fall Times Q, Q 70 120 170 80 130 180 100 tf (20% - 80%) 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. 150 200 ps 150 220 280 0.2 <1 800 1200 180 150 250 300 0.2 <1 800 1200 200 900 9 800 8 700 7 600 6 500 5 400 4 300 3 ÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉ ÉÉ ÉÉ 200 2 100 1 (JITTER) 0 0 1000 2000 JITTEROUT ps (RMS) 270 VOUTpp (mV) D, D to Q, Q 3000 4000 FREQUENCY (MHz) Figure 2. Fmax/Jitter http://onsemi.com 26 5000 6000 MC10EP08, MC100EP08 Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 27 MC10EP11, MC100EP11 3.3V / 5VECL 1:2 Differential Fanout Buffer The MC10/100EP11 is a differential 1:2 fanout buffer. The device is pin and functionally equivalent to the LVEL11 device. With AC performance much faster than the LVEL11 device, the EP11 is ideal for applications requiring the fastest AC performance available. The 100 Series contains temperature compensation. • 220 ps Typical Propagation Delay • Maximum Frequency > 3 GHz Typical • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V • http://onsemi.com MARKING DIAGRAMS* 8 8 8 with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State • • Safety Clamp on Inputs • Q Outputs Will Default LOW with Inputs Open or at VEE 1 SO-8 D SUFFIX CASE 751 HEP11 ALYW KEP11 ALYW 1 1 8 8 8 1 TSSOP-8 DT SUFFIX CASE 948R HP11 ALYW 1 H = MC10 K = MC100 A = Assembly Location KP11 ALYW 1 L = Wafer Lot Y = Year W = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Semiconductor Components Industries, LLC, 2001 April, 2001 - Rev. 4 28 Package Shipping MC10EP11D SO-8 98 Units/Rail MC10EP11DR2 SO-8 2500 Tape & Reel MC100EP11D SO-8 98 Units/Rail MC100EP11DR2 SO-8 2500 Tape & Reel MC10EP11DT TSSOP-8 100 Units/Rail MC10EP11DTR2 TSSOP-8 2500 Tape & Reel MC100EP11DT TSSOP-8 100 Units/Rail MC100EP11DTR2 TSSOP-8 2500 Tape & Reel Publication Order Number: MC10EP11/D MC10EP11, MC100EP11 Q0 Q0 1 8 2 PIN DESCRIPTION VCC 7 D PIN FUNCTION D*, D** ECL Data Inputs Q0, Q0, Q1, Q1 ECL Data Outputs VCC Positive Supply VEE Negative Supply * Pins will default LOW when left open. ** Pins will default to VCC/2 when left open. Q1 3 6 D Q1 4 5 VEE Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection 37.5 k Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1.) Level 1 Flammability Rating Oxygen Index UL-94 code V-0 A 1/8” 28 to 34 Transistor Count 73 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2.) Symbol Rating Units VCC PECL Mode Power Supply Parameter VEE = 0 V Condition 1 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 SOIC 41 to 44 °C/W θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 TSSOP 41 to 44 °C/W Tsol Wave Solder <2 to 3 sec @ 248°C 265 °C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 29 Condition 2 VI VCC VI VEE MC10EP11, MC100EP11 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 29 37 20 30 39 22 31 40 mA Output HIGH Voltage (Note 4.) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL VIH Output LOW Voltage (Note 4.) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV Input HIGH Voltage (Single Ended) 2090 2415 2155 2480 2215 2540 mV VIL VIHCMR Input LOW Voltage (Single Ended) 1365 1690 1430 1755 1490 1815 mV Input HIGH Voltage Common Mode Range (Differential) (Note 5.) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 µA IEE VOH Power Supply Current 150 Input LOW Current D D 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 ohms to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6.) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 20 29 37 20 30 39 22 31 40 mA Output HIGH Voltage (Note 7.) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL VIH Output LOW Voltage (Note 7.) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV Input HIGH Voltage (Single Ended) 3790 4115 3855 4180 3915 4240 mV VIL VIHCMR Input LOW Voltage (Single Ended) 3065 3390 3130 3455 3190 3515 mV Input HIGH Voltage Common Mode Range (Differential) (Note 8.) 2.0 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 µA 150 Input LOW Current D D 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 ohms to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 9.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 29 37 20 30 39 22 31 40 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 10.) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL VIH Output LOW Voltage (Note 10.) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV Input HIGH Voltage (Single Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL VIHCMR Input LOW Voltage (Single Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV 0.0 V IIH IIL Input HIGH Current 150 µA Input HIGH Voltage Common Mode Range (Differential) (Note 11.) Input LOW Current VEE+2.0 0.0 VEE+2.0 150 D D 0.5 -150 0.0 VEE+2.0 150 0.5 -150 0.5 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 ohms to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 30 MC10EP11, MC100EP11 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 26 35 44 26 35 44 26 35 44 mA Output HIGH Voltage (Note 13.) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL VIH Output LOW Voltage (Note 13.) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV Input HIGH Voltage (Single Ended) 2075 2420 2075 2420 2075 2420 mV VIL VIHCMR Input LOW Voltage (Single Ended) 1355 1675 1355 1675 1355 1675 mV Input HIGH Voltage Common Mode Range (Differential) (Note 14.) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 µA IEE VOH Power Supply Current 150 Input LOW Current D D 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 ohms to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15.) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 26 35 44 26 35 44 26 35 44 mA Output HIGH Voltage (Note 16.) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL VIH Output LOW Voltage (Note 16.) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV Input HIGH Voltage (Single Ended) 3775 4120 3775 4120 3775 4120 mV VIL VIHCMR Input LOW Voltage (Single Ended) 3055 3375 3055 3375 3055 3375 mV Input HIGH Voltage Common Mode Range (Differential) (Note 17.) 2.0 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 µA 150 Input LOW Current D D 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 ohms to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 18.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 26 35 44 26 35 44 26 35 44 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 19.) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL VIH Output LOW Voltage (Note 19.) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV Input HIGH Voltage (Single Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL VIHCMR Input LOW Voltage (Single Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV 0.0 V IIH IIL Input HIGH Current 150 µA Input HIGH Voltage Common Mode Range (Differential) (Note 19.) Input LOW Current VEE+2.0 0.0 VEE+2.0 150 D D 0.5 -150 0.0 VEE+2.0 150 0.5 -150 0.5 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 ohms to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 31 MC10EP11, MC100EP11 AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21.) -40 °C Symbol Characteristic Min fmax Maximum Frequency (See Figure 2. Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tSKEW Within Device Skew (Note 22.) tJITTER Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) VPP Input Voltage Swing (Differential) Typ 25°C Max Min >3 Typ 85°C Max Min >3 Typ Max >3 Unit GHz ps CLK to Q, Q 140 Q0, Q1 150 200 250 10 160 220 270 15 15 .2 <1 800 1200 150 180 240 300 20 20 25 ps .2 <1 .2 <1 ps 800 1200 800 1200 mV 150 900 9 800 8 700 7 600 6 500 5 400 4 300 3 200 2 ÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉ ÉÉ ÉÉ ÉÉ 100 1 (JITTER) 0 0 1000 2000 3000 4000 FREQUENCY (MHz) Figure 2. Fmax/Jitter http://onsemi.com 32 JITTEROUT ps (RMS) VOUTpp (mV) tr Output Rise/Fall Times Q, Q 70 120 170 80 130 180 100 150 200 ps tf (20% - 80%) 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. 22. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. 5000 6000 MC10EP11, MC100EP11 Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 33 MC100EP14 3.3V / 5V1:5 Differential ECL/PECL/HSTL Clock Driver The MC100EP14 is a low skew 1- to- 5 differential driver, designed with clock distribution in mind, accepting two clock sources into an input multiplexer. The ECL/PECL input signals can be either differential or single- ended (if the VBB output is used). HSTL inputs can be used when the LVEP14 is operating under PECL conditions. The EP14 specifically guarantees low output- to- output skew. Optimal design, layout, and processing minimize skew within a device and from device to device. To ensure that the tight skew specification is realized, both sides of any differential output need to be terminated even if only one output is being used. If an output pair is unused, both outputs may be left open (unterminated) without affecting skew. The common enable (EN) is synchronous, outputs are enabled/ disabled in the LOW state. This avoids a runt clock pulse when the device is enabled/disabled as can happen with an asynchronous control. The internal flip flop is clocked on the falling edge of the input clock, therefore all associated specification limits are referenced to the negative edge of the clock input. The MC100EP14, as with most other ECL devices, can be operated from a positive VCC supply in PECL mode. This allows the EP14 to be used for high performance clock distribution in 5.0 V systems. Designers can take advantage of the EP14’s performance to distribute low skew clocks across the backplane or the board. • • • • • • • • 400 ps Typical Propagation Delay http://onsemi.com MARKING DIAGRAM* 20 20 100 1 EP14 TSSOP-20 DT SUFFIX CASE 948E A L Y W ALYW 1 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D 100 ps Device-to-Device Skew 25 ps Within Device Skew Maximum Frequency > 2 GHz Typical The 100 Series Contains Temperature Compensation ORDERING INFORMATION PECL and HSTL Mode: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State Semiconductor Components Industries, LLC, 2001 June, 2001 - Rev. 2 Device 34 Package Shipping MC100EP14DT TSSOP 75 Units/Tray MC100EP14DTR2 TSSOP 2500 Tape & Reel Publication Order Number: MC100EP14/D MC100EP14 VCC EN VCC CLK1 CLK1 VBB CLK0 CLK0 CLK_SEL VEE 20 19 18 17 16 15 14 13 12 11 1 0 D Q 1 2 3 4 5 6 7 8 9 10 Q0 Q0 Q1 Q1 Q2 Q2 Q3 Q3 Q4 Q4 Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 20-Lead Pinout (Top View) and Logic Diagram PIN DESCRIPTION PIN FUNCTION FUNCTION TABLE CLK0*, CLK0** ECL/PECL/HSTL CLK Input CLK1*, CLK1** ECL/PECL/HSTL CLK Input Q0:4, Q0:4 ECL/PECL Outputs CLK_SEL* ECL/PECL Active Clock Select Input EN* ECL Sync Enable VBB Reference Voltage Output VCC Positive Supply VEE Negative Supply CLK0 CLK1 CLK_SEL EN Q L H X X X X X L H X L L H H X L L L L H L H L H L* * On next negative transition of CLK0 or CLK1 * Pins will default low when left open. ** Pins will default to VCC/2 when left open. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection 37.5 k Human Body Model Machine Model Charged Device Model Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Oxygen Index > 2 kV > 100 V > 2 kV Level 1 UL-94 code V-0 A 1/8” 28 to 34 Transistor Count 357 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 35 MC100EP14 MAXIMUM RATINGS (Note 2) Parameter Symbol Condition 1 Condition 2 Rating Units 6 V -6 V 6 -6 V V 50 100 mA mA ± 0.5 mA -40 to +85 °C VCC VEE PECL Mode Power Supply NECL Mode Power Supply VEE = 0 V VCC = 0 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V Iout Output Current Continuous Surge IBB TA VBB Sink/Source Operating Temperature Range Tstg θJA Storage Temperature Range -65 to +150 °C 20 TSSOP 20 TSSOP 140 100 °C/W °C/W 20 TSSOP 23 to 41 °C/W 265 °C Thermal Resistance (Junction to Ambient) VI VCC VI VEE 0 LFPM 500 LFPM θJC Thermal Resistance (Junction to Case) std bd Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 55 65 75 58 68 78 62 72 82 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 4) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL VIH Output LOW Voltage (Note 4) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV Input HIGH Voltage (Single Ended) 2075 2420 2075 2420 2075 2420 mV VIL VBB Input LOW Voltage (Single Ended) 1355 1675 1355 1675 1355 1675 mV Output Voltage Reference 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 3.3 1.2 3.3 1.2 3.3 V IIH IIL Input HIGH Current 150 µA Input LOW Current 1875 1.2 1875 150 D D 0.5 -150 1875 150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 ohms to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 55 65 75 58 68 78 62 72 82 mA Output HIGH Voltage (Note 7) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL VIH Output LOW Voltage (Note 7) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV Input HIGH Voltage (Single Ended) 3775 4120 3775 4120 3775 4120 mV VIL VBB Input LOW Voltage (Single Ended) 3055 3375 3055 3375 3055 3375 mV Output Voltage Reference 3475 3675 3475 3675 3475 3675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) 5.0 1.2 5.0 1.2 5.0 V IIH IIL Input HIGH Current 150 µA Input LOW Current 3575 1.2 150 D D 0.5 -150 3575 150 0.5 -150 0.5 -150 3575 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 ohms to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 36 MC100EP14 100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 9) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 55 65 75 58 68 78 62 72 82 mA Output HIGH Voltage (Note 10) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 10) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV VBB Output Reference Voltage -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11) 0.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current IEE Power Supply Current VOH -1425 VEE+1.2 0.0 -1425 VEE+1.2 150 CLK CLK 0.5 -150 0.0 -1425 VEE+1.2 150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 ohms to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 12) -40 °C Symbol Characteristic fmaxLVPECL /HSTL Maximum Frequency (See Figure 2. Fmax/JITTER) tPLH tPHL Propagation Delay to Output Differential tskew Within-Device Skew Device-to-Device Skew (Note 13) ts th Setup Time to CLK Hold Time tJITTER Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) VPP Minimum Input Swing tr/tf Output Rise/Fall Time (20%-80%) Min Typ Max Min >2 275 EN to CLK EN to CLK 25°C 100 200 Typ 85°C Max Min >2 330 400 25 100 35 125 50 140 275 100 200 0.2 <1 150 800 1200 140 180 240 37 Max >2 375 450 30 150 45 175 50 140 400 100 200 0.2 <1 150 800 1200 145 200 270 Unit GHz 475 600 ps 40 175 50 200 ps 50 140 ps 0.2 <1 ps 150 800 1200 mV 150 225 300 ps 12. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. 13. Skew is measured between outputs under identical transitions. http://onsemi.com Typ 900 9 800 8 700 7 600 6 500 5 400 4 300 3 200 2 ÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉ ÉÉ ÉÉ (JITTER) 100 1 0 0 1000 2000 3000 4000 FREQUENCY (MHz) Figure 2. Fmax/Jitter Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 38 JITTEROUT ps (RMS) VOUTpp (mV) MC100EP14 MC10EP16, MC100EP16 3.3V / 5VECL Differential Receiver/Driver The EP16 is a world-class differential receiver/driver. The device is functionally equivalent to the EL16 and LVEL16 devices with higher performance capabilities. With output transition times significantly faster than the EL16 and LVEL16, the EP16 is ideally suited for interfacing with high frequency sources. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. Under open input conditions (pulled to VEE) internal input clamps will force the Q output LOW. The 100 Series contains temperature compensation. • 220 ps Typical Propagation Delay • Maximum Frequency > 4 GHz Typical • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V • http://onsemi.com MARKING DIAGRAMS* 8 8 8 HEP16 ALYW 1 SO-8 D SUFFIX CASE 751 1 1 8 8 1 TSSOP-8 DT SUFFIX CASE 948R with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State 8 KP16 ALYW HP16 ALYW 1 1 H = MC10 K = MC100 A = Assembly Location • • Safety Clamp on Inputs • Q Output Will Default LOW with Inputs Open or at VEE • VBB Output KEP16 ALYW L = Wafer Lot Y = Year W = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Package Shipping MC10EP16D Device SO-8 98 Units/Rail MC10EP16DR2 SO-8 2500 Tape & Reel MC100EP16D SO-8 98 Units/Rail MC100EP16DR2 SO-8 2500 Tape & Reel MC10EP16DT TSSOP-8 100 Units/Rail MC10EP16DTR2 TSSOP-8 2500 Tape & Reel MC100EP16DT TSSOP-8 100 Units/Rail MC100EP16DTR2 TSSOP-8 Semiconductor Components Industries, LLC, 2001 April, 2001 - Rev. 3 39 2500 Tape & Reel Publication Order Number: MC10EP16/D MC10EP16, MC100EP16 NC 1 8 VCC D 2 7 Q D 3 6 Q VBB 4 5 PIN DESCRIPTION PIN FUNCTION D*, D** Q, Q VBB VCC VEE NC ECL Data Inputs ECL Data Outputs Reference Voltage Output Positive Supply Negative Supply No Connect * Pins will default LOW when left open. ** Pins will default to VCC/2 when left open. VEE Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection 37.5 k Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1.) Level 1 Flammability Rating Oxygen Index UL-94 code V-0 A 1/8” 28 to 34 Transistor Count 167 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2.) Symbol Parameter Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI Input PECL Mode In ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 SOIC 41 to 44 °C/W θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 TSSOP 41 to 44 °C/W 265 °C Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 40 VI VCC VI VEE MC10EP16, MC100EP16 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 24 31 20 24 31 20 24 32 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 4.) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL VIH Output LOW Voltage (Note 4.) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV Input HIGH Voltage (Single Ended) 2090 2415 2155 2480 2215 2540 mV VIL VBB Input LOW Voltage (Single Ended) 1365 1690 1430 1755 1490 1815 mV Output Voltage Reference 1790 1990 1855 2055 1915 2115 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5.) 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 µA 1890 2.0 1955 150 Input LOW Current D D 2015 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 ohms to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 24 31 20 24 31 20 24 32 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 7.) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL VIH Output LOW Voltage (Note 7.) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV Input HIGH Voltage (Single Ended) 3790 4115 3855 4180 3915 4240 mV VIL VBB Input LOW Voltage (Single Ended) 3065 3390 3130 3455 3190 3515 mV Output Voltage Reference 3490 3690 3555 3755 3615 3815 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8.) 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 µA 3590 2.0 3655 150 Input LOW Current D D 3715 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 ohms to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 9.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 24 31 20 24 31 20 24 32 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 10.) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL VIH Output LOW Voltage (Note 10.) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV Input HIGH Voltage (Single Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL VBB Input LOW Voltage (Single Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV Output Voltage Reference -1510 -1310 -1445 -1245 -1385 -1 185 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11.) 0.0 V IIH IIL Input HIGH Current 150 µA Input LOW Current -1410 VEE+2.0 0.0 150 D D 0.5 -150 -1345 VEE+2.0 0.0 150 0.5 -150 -1285 VEE+2.0 0.5 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 ohms to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 41 MC10EP16, MC100EP16 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 17 25 36 17 25 36 22 26 38 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 13.) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL VIH Output LOW Voltage (Note 13.) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV Input HIGH Voltage (Single Ended) 2075 2420 2075 2420 2075 2420 mV VIL VBB Input LOW Voltage (Single Ended) 1355 1675 1355 1675 1355 1675 mV Output Voltage Reference 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14.) 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 µA 1875 2.0 1875 150 Input LOW Current D D 1875 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 ohms to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 17 25 36 17 25 36 22 26 38 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 16.) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL VIH Output LOW Voltage (Note 16.) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV Input HIGH Voltage (Single Ended) 3775 4120 3775 4120 3775 4120 mV VIL VBB Input LOW Voltage (Single Ended) 3055 3375 3055 3375 3055 3375 mV Output Voltage Reference 3475 3675 3475 3675 3475 3675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 17.) 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 µA 3575 2.0 3575 150 Input LOW Current D D 3575 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 ohms to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 18.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 17 25 36 17 25 36 22 26 38 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 19.) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL VIH Output LOW Voltage (Note 19.) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV Input HIGH Voltage (Single Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL VBB Input LOW Voltage (Single Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV Output Voltage Reference -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 20.) 0.0 V IIH IIL Input HIGH Current 150 µA Input LOW Current -1425 VEE+2.0 0.0 150 D D 0.5 -150 -1425 VEE+2.0 0.0 150 0.5 -150 -1425 VEE+2.0 0.5 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 ohms to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 42 MC10EP16, MC100EP16 AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21.) -40 °C Symbol Characteristic fmax Maximum Frequency (See Figure 2. Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tSKEW Min Typ 25°C Max Min >4 150 Max Min >4 220 280 Duty Cycle Skew (Note 22.) 5.0 tJITTER Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) VPP Input Voltage Swing (Differential) tr tf Output Rise/Fall Times (20% - 80%) Q, Q Typ 85°C 150 Typ Max >4 220 280 20 5.0 0.2 <1 150 800 1200 70 120 170 160 Unit GHz 240 300 ps 20 5.0 20 ps 0.2 <1 0.2 <1 ps 150 800 1200 150 800 1200 mV 80 130 180 100 150 200 ps 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. 22. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. 800 VOUTpp (mV) 700 Measured Simulated 600 7 6 500 5 400 4 300 3 ÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉ É É 200 2 100 1 (JITTER) 0 0 1000 2000 JITTEROUT ps (RMS) 8 3000 4000 FREQUENCY (MHz) Figure 2. Fmax/Jitter http://onsemi.com 43 5000 6000 MC10EP16, MC100EP16 Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 44 MC100EP16F 3.3V / 5VECL Differential Receiver/Driver With Reduced Output Swing The MC100EP16F is a differential receiver/driver. The device is functionally equivalent to the EP16 device with higher performance capabilities. With reduced output swings, rise/fall transition times are significantly faster than on the EP16. The EP16F is ideally suited for interfacing with high frequency sources. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. • • • • • http://onsemi.com MARKING DIAGRAMS* 8 SO-8 D SUFFIX CASE 751 8 1 KEP60 ALYW 1 100 ps Typical Rise and Fall Time 8 Max Frequency >4 GHz Typical TSSOP-8 DT SUFFIX CASE 948R 8 1 The 100 Series Contains Temperature Compensation PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0V with VEE = -3.0 V to -5.5 V Open Input Default State HKP60 ALYW 1 A = Assembly Location L = Wafer Lot Y = Year W = Work Week • • Safety Clamp on Inputs *For additional information, see Application Note AND8002/D ORDERING INFORMATION Semiconductor Components Industries, LLC, 2001 April, 2001 - Rev. 1 45 Device Package Shipping MC100EP16FD SO-8 98 Units/Rail MC100EP16FDR2 SO-8 2500 Tape & Reel MC100EP16FDT TSSOP-8 100 Units/Rail MC100EP16FDTR2 TSSOP-8 2500 Tape & Reel Publication Order Number: MC100EP16F/D MC100EP16F NC D D 1 8 2 7 3 6 PIN DESCRIPTION VCC Q Q PIN FUNCTION D*, D** ECL Data Inputs Q, Q ECL Data Outputs VBB Reference Voltage Output VCC Positive Supply VEE Negative Supply NC No Connect * Pins will default LOW when left open. ** Pins will default to VCC/2 when left open. VBB 4 5 VEE Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection 37.5 k Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1.) Level 1 Flammability Rating Oxygen Index UL-94 code V-0 A 1/8” 28 to 34 Transistor Count 139 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2.) Parameter Symbol Condition 1 VCC PECL Mode Power Supply VEE = 0 V VEE NECL Mode Power Supply VCC = 0 V VI PECL C Mode ode Input u Voltage o age VEE = 0 V VCC = 0 V NECL Mode Input Voltage Condition 2 VI VCC VI VEE Continuous Surge Rating Units 6 V -6 V 6 V -6 V 50 100 mA mA ± 0.5 mA Iout Output Current IBB VBB Sink/Source TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 SOIC 41 to 44 ± 5% °C/W θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 TSSOP 41 to 44 ± 5% °C/W 265 °C Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 46 MC100EP16F DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 23 28 35 25 31 38 26 33 40 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 4.) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 4.) 1575 1690 1775 1575 1690 1775 1575 1690 1775 mV VIH Input HIGH Voltage (Single Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single Ended) (Note 5.) 1490 1675 1490 1675 1490 1675 mV VBB Output Voltage Reference 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 6.) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 µA IIL Input LOW Current 1875 2.0 1875 150 D D 0.5 -150 1875 150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 ohms to VCC-2.0 volts. 5. Not recommended for single ended operation when using an EP16F to drive another EP16F. VOL has reduced output swing and may not meet the VIL specification over temperature. 6. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 7.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 23 28 35 25 31 38 26 33 40 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 8.) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 8.) 3275 3390 3475 3275 3390 3475 3275 3390 3475 mV VIH Input HIGH Voltage (Single Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single Ended) (Note 9.) 3190 3375 3190 3375 3190 3375 mV VBB Output Voltage Reference 3475 3675 3475 3675 3475 3675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 10.) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current 3575 2.0 150 D D 0.5 -150 3575 150 0.5 -150 0.5 -150 3575 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 7. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 8. All loading with 50 ohms to VCC-2.0 volts. 9. Not recommended for single ended operation when using an EP16F to drive another EP16F. VOL has reduced output swing and may not meet the VIL specification over temperature. 10. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 47 MC100EP16F DC CHARACTERISTICS, NECL VCC = 0V; VEE = -5.5V to -3.0V (Note 11.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 23 28 35 25 31 38 26 33 40 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 12.) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 12.) -1725 -1610 -1525 -1725 -1610 -1525 -1725 -1610 -1525 mV VIH Input HIGH Voltage (Single Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single Ended) (Note 13.) -1810 -1625 -1810 -1625 -1810 -1625 mV VBB Output Voltage Reference -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14.) 0.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current -1425 VEE+2.0 0.0 -1425 VEE+2.0 150 D D 0.5 -150 0.0 -1425 VEE+2.0 150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 11. Input and output parameters vary 1:1 with VCC. 12. All loading with 50 ohms to VCC-2.0 volts. 13. Not recommended for single ended operation when using an EP16F to drive another EP16F. VOL has reduced output swing and may not meet the VIL specification over temperature. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. AC CHARACTERISTICS VCC = 0V; VEE = -3.0V to -5.5V or VCC = 3.0V to 5.5V; VEE = 0V (Note 15.) -40 °C Symbol Characteristic fmax Maximum Toggle Frequency (See Figure 2. Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tSKEW Min Typ 25°C Max Min >4 170 Typ 85°C Max Min >4 210 250 Duty Cycle Skew 5.0 tJITTER Cycle-to-Cycle Jitter (RMS) (See Figure 2. Fmax/JITTER) VPP Input Voltage Swing (Differential) Max >4 220 260 20 5.0 0.2 <1 800 1200 GHz 300 ps 20 5.0 20 ps 0.2 <1 0.2 <1 ps 800 1200 150 800 1200 mV tr Output Rise/Fall Times Q 70 85 110 80 100 120 90 tf (20% - 80%) 15. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. 110 130 ps http://onsemi.com 48 150 200 Unit 250 150 180 Typ MC100EP16F 800 VOUTpp (mV) 700 Measured 7 Simulated 600 6 500 5 400 4 300 3 ÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉ 200 2 100 1 É É (JITTER) 0 0 1000 2000 3000 4000 5000 6000 FREQUENCY (MHz) Figure 2. Fmax/JITTER Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 49 JITTEROUT ps (RMS) 8 MC10EP16T, MC100EP16T 3.3V / 5VECL Differential Receiver/Driver with Internal Termination The EP16T is a world-class differential receiver/driver. The device is functionally equivalent to the EP16 with internal termination resistors. A 50 resistor is connected from the D input to the VT pin and from the D input to the VT pin. Tie the VT and VT pins to VTT supply (VCC - 2 V) for parallel termination or connect VT and VT pins for 100 input series termination. Special considerations are required for differential inputs under No Signal conditions to prevent instability. The 100 Series contains temperature compensation. • 220 ps Typical Propagation Delay • Maximum Frequency > 3 GHz Typical • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V • • with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Internal 50 Termination Resistors http://onsemi.com MARKING DIAGRAMS* 8 8 8 1 SO-8 D SUFFIX CASE 751 HEP61 ALYW 1 1 8 8 1 TSSOP-8 DT SUFFIX CASE 948R KEP61 ALYW 8 HP61 ALYW 1 H = MC10 K = MC100 A = Assembly Location KP61 ALYW 1 L = Wafer Lot Y = Year W = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Package Shipping MC10EP16TD Device SO-8 98 Units/Rail MC10EP16TDR2 SO-8 2500 Tape & Reel MC100EP16TD SO-8 98 Units/Rail MC100EP16TDR2 SO-8 2500 Tape & Reel MC10EP16TDT TSSOP-8 100 Units/Rail MC10EP16TDTR2 TSSOP-8 2500 Tape & Reel MC100EP16TDT TSSOP-8 100 Units/Rail MC100EP16TDTR2 TSSOP-8 Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 3 50 2500 Tape & Reel Publication Order Number: MC10EP16T/D MC10EP16T, MC100EP16T VT 1 8 VCC 50 D D PIN DESCRIPTION 2 7 3 Q PIN FUNCTION 6 Q D, D Q, Q VCC VEE VT VT ECL Data Inputs ECL Data Outputs Positive Supply Negative Supply 50 Termination Resistor to D 50 Termination Resistor to D 5 VEE 50 VT 4 Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor N/A Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Level 1 Oxygen Index: 28 to 34 UL-94 V-0 @ 0.125 in Transistor Count 167 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Parameter Symbol Condition 1 Condition 2 Rating Units 6 V -6 V 6 -6 V V 50 100 mA mA VCC PECL Mode Power Supply VEE = 0 V VEE NECL Mode Power Supply VCC = 0 V VI Input PECL Mode In ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V Iout Output Current Continuous Surge IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W θJC Thermal Resistance (Junction-to-Case) std bd 8 SOIC 41 to 44 °C/W θJA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W θJC Thermal Resistance (Junction-to-Case) std bd 8 TSSOP 41 to 44 °C/W 265 °C Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 51 VI VCC VI VEE MC10EP16T, MC100EP16T 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 16 23 31 16 23 31 16 23 31 mA Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL VIH Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV VIL VIHCMR Input LOW Voltage (Single-Ended) 1365 1690 1430 1755 1490 1815 mV Input HIGH Voltage Common Mode Range (Differential) (Note 5) 2.0 3.3 2.0 3.3 2.0 3.3 V RT IIH Internal Termination Resistor 43 57 43 57 43 Input HIGH Current 50 150 150 57 150 µA IIL Input LOW Current -150 -150 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 16 23 31 16 23 31 16 23 31 mA Output HIGH Voltage (Note 7) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL VIH Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL VIHCMR Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV Input HIGH Voltage Common Mode Range (Differential) (Note 8) 2.0 5.0 2.0 5.0 2.0 5.0 V RT IIH Internal Termination Resistor 43 57 43 57 43 Input HIGH Current 50 150 150 57 150 µA IIL Input LOW Current -150 -150 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 9) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 16 23 31 16 23 31 16 23 31 mA Output HIGH Voltage (Note 10) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL VIH Output LOW Voltage (Note 10) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL VIHCMR Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV 0.0 V RT IIH Internal Termination Resistor Input HIGH Voltage Common Mode Range (Differential) (Note 11) VEE+2.0 0.0 43 57 Input HIGH Current 150 VEE+2.0 43 50 0.0 57 150 VEE+2.0 43 57 150 µA IIL Input LOW Current -150 -150 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 52 MC10EP16T, MC100EP16T 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 18 25 35 20 27 37 22 29 39 mA Output HIGH Voltage (Note 13) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL VIH Output LOW Voltage (Note 13) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL VIHCMR Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV Input HIGH Voltage Common Mode Range (Differential) (Note 14) 2.0 3.3 2.0 3.3 2.0 3.3 V RT IIH Internal Termination Resistor 43 57 43 57 43 Input HIGH Current 50 150 150 57 150 µA IIL Input LOW Current -150 -150 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 18 25 35 20 27 37 22 29 39 mA Output HIGH Voltage (Note 16) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL VIH Output LOW Voltage (Note 16) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL VIHCMR Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV Input HIGH Voltage Common Mode Range (Differential) (Note 17) 2.0 5.0 2.0 5.0 2.0 5.0 V RT IIH Internal Termination Resistor 43 57 43 57 43 Input HIGH Current 50 150 150 57 150 µA IIL Input LOW Current -150 -150 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 18) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 18 25 35 20 27 37 22 29 39 mA Output HIGH Voltage (Note 19) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL VIH Output LOW Voltage (Note 19) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL VIHCMR Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV 0.0 V RT IIH Internal Termination Resistor Input HIGH Voltage Common Mode Range (Differential) (Note 20) VEE+2.0 0.0 43 57 Input HIGH Current 150 VEE+2.0 43 50 0.0 57 150 VEE+2.0 43 57 150 µA IIL Input LOW Current -150 -150 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 53 MC10EP16T, MC100EP16T AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21) -40 °C Symbol Characteristic Min fmax Maximum Frequency (See Figure 2 Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tSKEW Typ 25°C Max Min >3 150 Typ Max Min >3 230 300 Duty Cycle Skew (Note 22) 5.0 tJITTER Cycle-to-Cycle Jitter (See Figure 2 Fmax/JITTER) VPP Input Voltage Swing (Differential) tr tf Output Rise/Fall Times (20% - 80%) Q, Q 85°C 150 Typ Max >3 240 300 20 5.0 0.2 <1 150 800 1200 70 120 170 200 Unit GHz 275 350 ps 20 5.0 20 ps 0.2 <1 0.2 <1 ps 150 800 1200 150 800 1200 mV 80 130 180 100 140 200 ps 900 9 800 8 700 7 600 6 500 5 JITTEROUT ps (RMS) VOUTpp (mV) 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. 22. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. ÉÉ ÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 400 4 300 3 200 2 (JITTER) 100 1 0 0 500 1000 1500 2000 2500 FREQUENCY (MHz) Figure 2. Fmax/Jitter http://onsemi.com 54 3000 3500 4000 MC10EP16T, MC100EP16T Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 55 MC10EP16VA, MC100EP16VA 3.3V / 5VECL Differential Receiver/Driver with High Gain The EP16VA is a world-class differential receiver/driver. The device is functionally equivalent to the EP16 and LVEP16 devices but with high gain output. QHG and QHG outputs have a DC gain several times larger than the DC gain of an EP16. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. Under open input conditions (pulled to VEE) internal input clamps will force the QHG output LOW. Special considerations are required for differential inputs under No Signal conditions to prevent instability. The 100 Series contains temperature compensation. • • • • • • http://onsemi.com MARKING DIAGRAMS* 1 SO-8 D SUFFIX CASE 751 Gain > 200 20 mV Minimum Input Voltage Swing HEP64 ALYW 8 PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State KP64 ALYW HP64 ALYW 1 1 1 H = MC10 K = MC100 A = Assembly Location Maximum Frequency > 3 GHz Typical KEP64 ALYW 1 1 8 8 TSSOP-8 DT SUFFIX CASE 948R 270 ps Typical Propagation Delay 8 8 8 L = Wafer Lot Y = Year W = Work Week *For additional information, see Application Note AND8002/D • • VBB Output ORDERING INFORMATION Package Shipping MC10EP16VAD Device SO-8 98 Units/Rail MC10EP16VADR2 SO-8 2500 Tape & Reel MC100EP16VAD SO-8 98 Units/Rail MC100EP16VADR2 SO-8 2500 Tape & Reel MC10EP16VADT TSSOP-8 100 Units/Rail MC10EP16VADTR2 TSSOP-8 2500 Tape & Reel MC100EP16VADT TSSOP-8 100 Units/Rail MC100EP16VADTR2 TSSOP-8 2500 Tape & Reel Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 4 56 Publication Order Number: MC10EP16VA/D MC10EP16VA, MC100EP16VA NC 1 VCC 8 PIN DESCRIPTION D D VBB 2 7 QHG QHG 6 3 4 5 PIN FUNCTION D*, D* ECL Data Inputs QHG, QHG ECL High Gain Data Outputs VBB Reference Voltage Output VCC Positive Supply VEE Negative Supply NC No Connect * Pins will default LOW when left open. VEE Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Level 1 Oxygen Index: 28 to 34 UL-94 V-0 @ 0.125 in Transistor Count 167 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Parameter Symbol Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE VI NECL Mode Power Supply -6 V PECL C Mode ode Input u Voltage o age VCC = 0 V VEE = 0 V 6 V NECL Mode Input Voltage VCC = 0 V Output Current Iout IBB VBB Sink/Source TA Operating Temperature Range Tstg Storage Temperature Range θJA Thermal Resistance (Junction-to-Ambient) θJC Thermal Resistance (Junction-to-Case) θJA Thermal Resistance (Junction-to-Ambient) θJC Thermal Resistance (Junction-to-Case) VI VCC VI VEE -6 V Continuous 50 mA Surge 100 mA ± 0.5 mA -40 to +85 °C -65 to +150 °C 190 °C/W 8 SOIC 130 °C/W 8 SOIC 41 to 44 °C/W 8 TSSOP 185 °C/W 8 TSSOP 140 °C/W 8 TSSOP 41 to 44 °C/W 265 °C 0 LFPM 8 SOIC 500 LFPM std bd 0 LFPM 500 LFPM std bd Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 57 MC10EP16VA, MC100EP16VA 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 31 22 30 38 24 32 40 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 4) 2165 2240 2415 2230 2355 2480 2290 2415 2540 mV VOL VIH Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV VIL VBB Input LOW Voltage (Single-Ended) 1365 1690 1460 1755 1490 1815 mV Output Voltage Reference 1750 1950 1825 2025 1850 2050 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 µA Input LOW Current 1850 2.0 1925 150 1950 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 31 22 30 38 24 32 40 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 7) 3865 3940 4115 3930 4055 4180 3990 4115 4240 mV VOL VIH Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL VBB Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV Output Voltage Reference 3450 3650 3525 3725 3550 3750 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 µA Input LOW Current 3550 2.0 3625 150 3650 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 9) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 31 22 30 38 24 32 40 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 10) -1 135 -1060 -885 -1070 -945 -820 -1010 -885 -760 mV VOL VIH Output LOW Voltage (Note 10) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL VBB Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV Output Voltage Reference -1550 -1350 -1475 -1275 -1450 -1250 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11) 0.0 V IIH IIL Input HIGH Current 150 µA Input LOW Current -1450 VEE+2.0 0.0 VEE+2.0 150 0.5 -1375 0.0 VEE+2.0 150 0.5 -1350 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 58 MC10EP16VA, MC100EP16VA 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 36 22 30 38 24 32 40 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 13) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL VIH Output LOW Voltage (Note 13) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL VBB Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV Output Voltage Reference 1550 1950 1725 1925 1700 1900 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14) 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 µA Input LOW Current 1850 2.0 1825 150 1800 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 36 22 30 38 24 32 40 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 16) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL VIH Output LOW Voltage (Note 16) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL VBB Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV Output Voltage Reference 3450 3650 3425 3625 3400 3600 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 17) 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 µA Input LOW Current 3550 2.0 3525 150 3500 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 18) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 36 22 30 38 24 32 40 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 19) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL VIH Output LOW Voltage (Note 19) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL VBB Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV Output Voltage Reference -1550 -1350 -1575 -1375 -1600 -1400 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 20) 0.0 V IIH IIL Input HIGH Current 150 µA Input LOW Current -1450 VEE+2.0 0.0 VEE+2.0 150 0.5 -1475 0.0 VEE+2.0 150 0.5 -1500 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 59 MC10EP16VA, MC100EP16VA AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21) -40 °C Symbol Characteristic fmax Maximum Frequency (See Figure 2 Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tSKEW Min Typ 25°C Max Min Typ >3 200 Max Min >3 260 320 Duty Cycle Skew (Note 22) 5.0 tJITTER Cycle-to-Cycle Jitter (See Figure 2 Fmax/JITTER) VPP Input Voltage Swing (Differential) (See Figure 3) tr tf Output Rise/Fall Times (20% - 80%) Q, Q 85°C 220 Typ Max >3 270 340 20 5.0 0.2 <1 20 800 1200 70 110 170 250 Unit GHz 320 390 ps 20 5.0 20 ps 0.2 <1 0.2 <1 ps 20 800 1200 20 800 1200 mV 80 110 180 80 120 200 ps 900 9 800 8 700 7 600 6 500 5 400 4 300 3 200 2 ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉ ÉÉ (JITTER) 1 100 0 0 1000 2000 3000 4000 5000 FREQUENCY (MHz) Figure 2. Fmax/Jitter 800 700 VOUTpp (mV) 600 500 400 300 200 100 0 20 15 10 5 VINpp (mV) Figure 3. Gain vs. Input Voltage (50 MHz) http://onsemi.com 60 JITTEROUT ps (RMS) VOUTpp (mV) 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. 22. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. 0 MC10EP16VA, MC100EP16VA Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 61 MC100EP16VB 3.3V / 5VECL Differential Receiver/Driver with High and Low Gain The EP16VB is a world-class differential receiver/driver. The device is functionally equivalent to the EP16 and LVEP16 devices but with both high and low gain outputs. QHG and QHG outputs have a DC gain several times larger than the DC gain of an EP16. Q output is provided for feedback purposes. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. Special considerations are required for differential inputs under No Signal conditions to prevent instability. The 100 Series contains temperature compensation. • • • • • • http://onsemi.com MARKING DIAGRAMS* 8 8 1 SO-8 D SUFFIX CASE 751 KEP65 ALYW 1 8 8 1 300 ps Typical Propagation Delay KP65 ALYW TSSOP-8 DT SUFFIX CASE 948R Gain > 200 Maximum Frequency > 3 GHz Typical PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V VBB Output K A L Y W 1 = MC100 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 1 62 Device Package Shipping MC100EP16VBD SO- 8 98 Units/Rail MC100EP16VBDR2 SO- 8 2500 Tape & Reel MC100EP16VBDT TSSOP- 8 100 Units/Rail MC100EP16VBDTR2 TSSOP- 8 2500 Tape & Reel Publication Order Number: MC100EP16VB/D MC100EP16VB Q 1 VCC 8 PIN DESCRIPTION D D VBB 2 7 QHG QHG 6 3 4 5 PIN FUNCTION D*, D* ECL Data Inputs Q ECL Data Output QHG, QHG ECL High Gain Data Outputs VBB Reference Voltage Output VCC Positive Supply VEE Negative Supply * Pins will default LOW when left open. VEE Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of DryPack (Note 1) Flammability Rating Level 1 Oxygen Index: 28 to 34 UL-94 V-0 @ 0.125 in Transistor Count 167 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Parameter Symbol Condition 1 Rating Units 6 V -6 V 6 V -6 V Continuous 50 mA Surge 100 mA ± 0.5 mA -40 to +85 °C VCC PECL Mode Power Supply VEE = 0 V VEE NECL Mode Power Supply VCC = 0 V VI PECL C Mode ode Input u Voltage o age NECL Mode Input Voltage VEE = 0 V VCC = 0 V Output Current Iout IBB VBB Sink/Source TA Operating Temperature Range Tstg Storage Temperature Range θJA Thermal Resistance (Junction-to-Ambient) θJC Thermal Resistance (Junction-to-Case) θJA Thermal Resistance (Junction-to-Ambient) θJC Thermal Resistance (Junction-to-Case) Condition 2 VI VCC VI VEE -65 to +150 °C 190 °C/W 8 SOIC 130 °C/W 8 SOIC 41 to 44 °C/W 8 TSSOP 185 °C/W 8 TSSOP 140 °C/W 8 TSSOP 41 to 44 °C/W 265 °C 0 LFPM 8 SOIC 500 LFPM std bd 0 LFPM 500 LFPM std bd Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 63 MC100EP16VB 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 24 34 44 26 36 46 28 38 48 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 4) 2125 2250 2375 2100 2230 2350 2100 2220 2350 mV VOL VIH Output LOW Voltage (Note 4) 1305 1430 1555 1305 1400 1555 1305 1380 1555 mV Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL VBB Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV Output Voltage Reference 1760 1960 1720 1920 1690 1890 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 µA Input LOW Current 1860 2.0 1820 150 1790 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 24 34 44 26 36 46 28 38 48 mA Output HIGH Voltage (Note 7) 3825 3950 4075 3800 3930 4050 3800 3920 4050 mV VOL VIH Output LOW Voltage (Note 7) 3005 3130 3255 3005 3100 3255 3005 3080 3255 mV Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL VBB Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV Output Voltage Reference 3460 3660 3420 3620 3390 3590 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 µA Input LOW Current 3560 2.0 3520 150 3490 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 9) Symbol Characteristic Min -40 °C Typ Max Min 25°C Typ Max Min 85°C Typ Max Unit 24 34 44 26 36 46 28 38 48 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 10) -1 175 -1050 -925 -1200 -1070 -950 -1200 -1080 -950 mV VOL VIH Output LOW Voltage (Note 10) -1995 -1870 -1745 -1995 -1900 -1745 -1995 -1920 -1745 mV Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL VBB Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV Output Voltage Reference -1540 -1340 -1580 -1380 -1610 -1410 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11) 0.0 V IIH IIL Input HIGH Current 150 µA Input LOW Current -1440 VEE+2.0 0.0 VEE+2.0 150 0.5 -1480 0.0 VEE+2.0 150 0.5 -1510 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 64 MC100EP16VB AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 12) -40 °C Symbol Characteristic Min fmax Maximum Frequency (See Figure 2 Fmax/JITTER) tPLH, tPHL Propagation Delay (Differential) Q (Differential) QHG, QHG (Single-Ended) Q (Single-Ended) QHG, QHG tSKEW Typ 25°C Max Min >3 200 200 250 250 85°C Typ Max Min Typ >3 275 280 325 330 350 350 400 400 Duty Cycle Skew (Note 13) 5.0 tJITTER Cycle-to-Cycle Jitter (See Figure 2 Fmax/JITTER) VPP Input Voltage Swing tr tf Output Rise/Fall Times (20% - 80%) 250 250 300 300 Max >3 300 300 350 350 400 400 450 450 20 5.0 0.2 <1 275 275 325 325 Unit GHz 310 320 360 370 425 425 475 475 ps 20 5.0 20 ps 0.2 <1 0.2 <1 ps (Differential) HG (Differential) Q 25 150 800 800 1200 1200 25 150 800 800 1200 1200 25 150 800 800 1200 1200 mV Q QHG, QHG 200 70 270 130 400 220 220 80 300 150 420 240 250 100 310 170 450 270 ps 900 9 800 8 700 7 600 6 500 5 JITTEROUT ps (RMS) VOUTpp (mV) 12. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. 13. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. ÉÉ ÉÉ ÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 400 4 300 3 200 2 100 1 0 0 500 1000 1500 2000 2500 3000 3500 4000 FREQUENCY (MHz) 9 800 8 700 7 600 6 500 5 400 4 300 3 200 2 100 1 JITTEROUT ps (RMS) VOUTpp (mV) Figure 2. Fmax/Jitter for QHG, QHG Output 900 ÉÉ ÉÉÉÉ ÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉ 0 0 500 1000 1500 2000 2500 3000 FREQUENCY (MHz) Figure 3. Fmax/Jitter for Q Output http://onsemi.com 65 3500 4000 MC100EP16VB Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 4. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 66 MC100EP16VC 3.3V / 5VECL Differential Receiver/Driver with High Gain and Enable Output The EP16VC is a world-class differential receiver/driver. The device is functionally equivalent to the EP16 and LVEP16 devices but with high gain and enable output. The EP16VC provides an EN input which is synchronized with the data input (D) signal in a way that provides glitchless gating of the QHG and QHG outputs. When the EN signal is LOW, the input is passed to the outputs and the data output equals the data input. When the data input is HIGH and EN goes HIGH, it will force the QHG LOW and the QHG HIGH on the next negative transition of the data input. If the data input is LOW when the EN goes HIGH, the next data transition to a HIGH is ignored and QHG remains LOW and QHG remains HIGH. The next positive transition of the data input is not passed on to the data outputs under these conditions. The QHG and QHG outputs remain in their disabled state as long as the EN input is held HIGH. The EN input has no influence on the Q output and the data input is passed on (inverted) to this output whether EN is HIGH or LOW. This configuration is ideal for crystal oscillator applications where the oscillator can be free running and gated on and off synchronously without adding extra counts to the output. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. The 100 Series contains temperature compensation. • • • • • 310 ps Typical Prop Delay Q, 380 ps Typical Prop Delay QHG, QHG Gain > 200 Maximum Frequency > 3 GHz Typical PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State • • QHG Output Will Default LOW with D Inputs Open or at VEE • VBB Output http://onsemi.com MARKING DIAGRAMS* 8 8 KEP66 ALYW 1 SO-8 D SUFFIX CASE 751 1 8 8 KP66 ALYW 1 TSSOP-8 DT SUFFIX CASE 948R 1 K = MC100 A = Assembly Location L = Wafer Lot Y = Year W = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Package Shipping MC100EP16VCD SO-8 98 Units/Rail MC100EP16VCDR2 SO-8 2500 Tape & Reel MC100EP16VCDT TSSOP-8 100 Units/Rail MC100EP16VCDTR2 TSSOP-8 2500 Tape & Reel Semiconductor Components Industries, LLC, 2002 September, 2002- Rev. 1 67 Publication Order Number: MC100EP16VC/D MC100EP16VC Q D VBB 1 8 2 7 6 3 LEN VBB EN Q PIN DESCRIPTION QHG QHG OE LATCH 4 VCC 5 D VEE PIN FUNCTION D* ECL Data Input Q ECL Data Output QHG, QHG ECL High Gain Data Outputs EN* ECL Enable Input VBB Reference Voltage Output VCC Positive Supply VEE Negative Supply * Pins will default LOW when left open. Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Level 1 Oxygen Index: 28 to 34 UL 94 V-0 @ 0.125 in Transistor Count 167 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Parameter Symbol Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode Input Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 8 SOIC 41 to 44 °C/W JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 8 TSSOP 41 to 44 °C/W Tsol Wave Solder <2 to 3 sec @ 248°C 265 °C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 68 VI VCC VI VEE MC100EP16VC 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) Symbol IEE Characteristic Power Supply Current Min -40 °C Typ Max Min 25°C Typ Max Min 85°C Typ Max 25 36 45 30 40 50 32 42 52 Unit mA VOH VOL Output HIGH Voltage (Note 4) 2105 2230 2355 2105 2230 2355 2105 2230 2355 mV Output LOW Voltage (Note 4) 1305 1430 1555 1305 1430 1555 1305 1430 1555 mV VIH VIL Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV VBB VIHCMR Output Voltage Reference 1725 1925 1700 1900 1675 1875 mV 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 A Input HIGH Voltage Common Mode Range (Differential) (Note 5) 1825 2.0 1800 150 Input LOW Current D 1775 150 0.5 0.5 A 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Typ Max Min 25°C Typ Max Min 85°C Typ Max Symbol IEE VOH Characteristic Power Supply Current Min 25 36 45 30 40 50 32 42 52 Unit mA Output HIGH Voltage (Note 7) 3805 3930 4055 3805 3930 4055 3805 3930 4055 mV VOL VIH Output LOW Voltage (Note 7) 3005 3130 3255 3005 3130 3255 3005 3130 3255 mV Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL VBB Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV Output Voltage Reference 3425 3625 3400 3600 3375 3575 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 A 3525 2.0 3500 150 Input LOW Current D 3475 150 0.5 0.5 A 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 9) Min -40 °C Typ Max Min 25°C Typ Max Min 85°C Typ Max 25 36 45 30 40 50 32 42 52 Unit mA Output HIGH Voltage (Note 10) -1 195 -1070 -945 -1 195 -1070 -945 -1 195 -1070 -945 mV Output LOW Voltage (Note 10) -1995 -1870 -1745 -1995 -1870 -1745 -1995 -1870 -1745 mV VIH VIL Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV VBB VIHCMR Output Voltage Reference -1575 -1375 -1600 -1400 -1625 -1425 mV 0.0 V IIH IIL Input HIGH Current 150 A Symbol IEE Characteristic Power Supply Current VOH VOL Input HIGH Voltage Common Mode Range (Differential) (Note 11) Input LOW Current -1475 VEE+2.0 0.0 VEE+2.0 150 D 0.5 -1500 0.0 VEE+2.0 150 0.50 -1525 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 69 MC100EP16VC AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 12) -40 °C Symbol Min Characteristic Typ 25°C Max Min >3 Typ 85°C Max Min >3 Typ Max fmax Maximum Frequency (See Figure 2 Fmax/JITTER) tPLH, tPHL Propagation Delay (Differential) Q (Differential) QHG, QHG (Single-Ended) Q (Single-Ended) QHG, QHG 200 250 250 300 280 360 330 410 tS Setup Time EN = L to D EN =H to D 50 100 tH Hold Time EN = L to D EN =H to D 100 50 tSKEW Duty Cycle Skew (Note 13) 5.0 20 5.0 20 5.0 20 ps tJITTER Cycle-to-Cycle Jitter (See Figure 2 Fmax/JITTER) 0.2 <1 0.2 <1 0.2 <1 ps VPP Input Voltage Swing tr tf Output Rise/Fall Times (20% - 80%) 350 450 400 500 250 300 300 350 310 380 360 430 15 60 50 100 50 15 100 50 >3 Unit 400 500 450 550 GHz 275 325 325 375 340 430 390 480 425 525 475 575 ps 5 40 50 100 18 10 ps 40 20 100 50 5 20 ps (Differential) HG (Differential) Q 25 150 800 800 1200 1200 25 150 800 800 1200 1200 25 150 800 800 1200 1200 mV Q QHG, QHG 200 70 300 130 400 220 250 80 350 150 450 240 250 100 350 170 500 270 ps 12. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. 13. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. http://onsemi.com 70 MC100EP16VC 900 9 800 8 700 7 600 6 500 5 JITTEROUT ps (RMS) VOUTpp (mV) Single-Ended Input ÉÉ ÉÉÉÉ ÉÉ ÉÉÉÉ ÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉ 400 4 300 3 200 2 100 1 0 0 500 1000 1500 2000 2500 3000 3500 4000 FREQUENCY (MHz) 900 9 800 8 700 7 600 6 500 5 JITTEROUT ps (RMS) VOUTpp (mV) Figure 2. Fmax/Jitter for QHG, QHG Output ÉÉÉÉÉÉÉ ÉÉ ÉÉÉÉÉÉÉ ÉÉ ÉÉÉÉÉÉÉ ÉÉ ÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉ 400 4 300 3 200 2 100 1 0 0 500 1000 1500 2000 2500 3000 FREQUENCY (MHz) Figure 3. Fmax/Jitter for Q Output http://onsemi.com 71 3500 4000 MC100EP16VC 900 9 800 8 700 7 600 6 500 5 JITTEROUT ps (RMS) VOUTpp (mV) Differential Inputs ÉÉ ÉÉ ÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 400 4 300 3 200 2 100 1 0 0 500 1000 1500 2000 2500 3000 FREQUENCY (MHz) 900 9 800 8 700 7 600 6 500 5 JITTEROUT ps (RMS) VOUTpp (mV) Figure 4. Fmax/Jitter for QHG, QHG Output ÉÉÉÉÉ ÉÉ ÉÉÉÉÉ ÉÉ ÉÉÉÉÉ ÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉ 400 4 300 3 200 2 100 1 0 0 500 1000 1500 2000 FREQUENCY (MHz) Figure 5. Fmax/Jitter for Q Output http://onsemi.com 72 2500 3000 MC100EP16VC Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 6. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 73 MC100EP16VS 3.3V / 5VECL Differential Receiver/Driver with Variable Output Swing The MC100EP16VS is a differential receiver with variable output amplitude. The device is functionally equivalent to the 100EP16 with an input pin that controls the amplitude of the outputs. The VCTRL input pin controls the output amplitude of the EP16VS and is referenced to VCC. (See Figure 5.) The operational range of the VCTRL input is from ≤ VBB (max output amplitude) to VCC (min output amplitude). (See Figure 4.) A variable resistor between the VCC and VBB pins, with the wiper driving VCTRL, can control the output amplitude. Typical application circuits and a VCTRL Voltage vs. Output Amplitude graph are described in this data sheet. When left open, the VCTRL pin will be internally pulled down to VEE and operate as a standard EP16, with 100% output amplitude. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. • • • • • • • http://onsemi.com MARKING DIAGRAMS* 8 SO-8 D SUFFIX CASE 751 8 1 1 8 TSSOP-8 DT SUFFIX CASE 948R 8 1 KP62 ALYW 1 10 220 ps Propagation Delay Maximum Frequency > 4 GHz Typical (See Graph) The 100 Series Contains Temperature Compensation PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State Q Output Will Default LOW with Inputs Open or at VEE KEP62 ALYW 1 K A L Y W QFN-10 MP SUFFIX CASE 485C 10 1 KP62 ALYW = MC100 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Semiconductor Components Industries, LLC, 2002 January, 2002 - Rev. 2 74 Device Package Shipping MC100EP16VSD SO-8 98 Units/Rail MC100EP16VSDR2 SO-8 2500 Tape & Reel MC100EP16VSDT TSSOP 100 Units/Rail MC100EP16VSDTR2 TSSOP 2500 Tape & Reel MC100EP16VSMP QFN 124 Units/Rail MC100EP16VSMPR2 QFN 3000 Tape & Reel Publication Order Number: MC100EP16VS/D MC100EP16VS VCTRL D D VBB 1 8 2 VCC 7 3 1 10 VCC D 2 9 Q D 3 8 Q VBB 4 7 VEE NC 5 6 NC Q 6 4 VCTRL Q 5 VEE Figure 1. 8-Lead Pinout (Top View) and Logic Diagram Figure 2. 10-Lead QFN Pinout (Top View) PIN DESCRIPTION PIN FUNCTION 8 LD 10 LD D*, D** ECL Data Inputs 2, 3 2, 3 Q, Q ECL Data Outputs 6, 7 8, 9 VCTRL* Output Swing Control 1 1 VBB Reference Voltage Output 4 4 VCC Positive Supply 8 10 VEE Negative Supply 5 7 NC No Connect 5, 6 * Pins will default LOW when left open. ** Pins will default to VCC/2 when left open. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection 37.5 k Human Body Model Machine Model Charged Device Model Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Oxygen Index > 4 kV > 200 V > 2 kV Level 1 UL-94 code V-0 A 1/8″ 28 to 34 Transistor Count 140 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 75 MC100EP16VS MAXIMUM RATINGS (Note 2) Symbol Rating Units VCC PECL Mode Power Supply Parameter VEE = 0 V Condition 1 Condition 2 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W θJC Thermal Resistance (Junction-to-Case) std bd 8 SOIC 41 to 44 °C/W θJA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W θJC Thermal Resistance (Junction-to-Case) std bd 8 TSSOP 41 to 44 ± 5% °C/W Tsol Wave Solder < 2 to 3 sec @ 248°C 265 °C θJA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 10 QFN 10 QFN 40 20 °C/W °C/W 10 QFN 3.3 °C/W VI ≤ VCC VI ≥ VEE θJC Thermal Resistance (Junction-to-Case) std bd 2. Maximum Ratings are those values beyond which device damage may occur. DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic IEE Power Supply Current VOH Output HIGH Voltage (Max Swing) (Note 4) VCC ≥ VCTRL ≥ VEE VOL Output LOW Voltage (Max Swing) (Note 4) VCTRL ≤ VBB Min Typ 30 36 2155 Max Min Typ 38 42 31 2405 2155 1605 1355 85°C Max Typ 40 44 32 2405 2155 1490 See Fig.3 2105 2230 1520 1605 1355 See Fig.3 Max Unit 48 mA 2405 mV 2355 2095 2420 2075 1675 1490 2005 1805 2220 2345 2065 2420 2075 1675 1490 2005 1805 D, D Input HIGH Voltage (Single-Ended) 2075 VIL D, D Input LOW Voltage (Single-Ended) 1490 VBB Output Voltage Reference 1805 VCTRL Input Voltage (VCTRL) VEE VCC VEE VCC VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 2.0 2.9 2.0 2.9 IIH Input HIGH Current IIL Input LOW Current 1905 150 0.5 -150 1905 1605 2190 2315 2420 mV 1675 mV 2005 mV VEE VCC mV 2.0 2.9 V 150 µA 150 0.5 -150 1520 See Fig.3 VIH D D Min mV 1355 VCC ≥ VCTRL > VBB VCTRL = VCC (Min Swing) 25°C 0.5 -150 1905 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 Ω to VCC-2.0 volts. VOH does not change with VCTRL. VOL changes with VCTRL. VCTRL is referenced to VCC. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 76 MC100EP16VS DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic IEE Power Supply Current VOH Output HIGH Voltage (Note 7) VCC > VCTRL > VEE VOL Output LOW Voltage (Max Swing) (Note 7) VCTRL ≤ VBB 85°C Min Typ Max Min Typ Max Min Typ Max Unit 30 36 42 31 38 44 32 40 48 mA 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV 3055 3190 3305 3055 3220 3305 3055 3220 3305 mV VCC ≥ VCTRL > VBB VCTRL = VCC (Min Swing) 25°C See Fig.3 3805 3930 See Fig.3 4055 3795 3920 See Fig.3 4045 3765 3890 4015 VIH D, D Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL D, D Input LOW Voltage (Single-Ended) 3190 3375 3190 3375 3190 3375 mV VCTRL Input Voltage (VCTRL) VEE VCC VEE VCC VEE VCC mV VBB Output Voltage Reference 3505 3705 3505 3705 3505 3705 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) 4.6 2.0 4.6 2.0 4.6 V IIH Input HIGH Current 150 µA IIL Input LOW Current 3605 2.0 3605 150 D D 3605 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 Ω to VCC-2.0 volts. VOH does not change with VCTRL. VOL changes with VCTRL. VCTRL is referenced to VCC. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 9) -40 °C Symbol Characteristic IEE Power Supply Current VOH Output HIGH Voltage (Note 10) VCC > VCTRL > VEE VOL Output LOW Voltage (Max Swing) (Note 10) VCTRL ≤ VBB 25°C Min Typ Max Min Typ Max Min Typ Max Unit 30 36 42 31 38 44 32 40 48 mA -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV -1945 -1810 -1695 -1945 -1780 -1695 -1945 -1780 -1695 mV VCC ≥ VCTRL > VBB See Fig.3 VCTRL = VCC (Min Swing) -1 195 VIH D, D Input HIGH Voltage (Single- Ended) -1225 VIL D, D Input LOW Voltage (Single- Ended) -1810 VBB Output Voltage Reference -1525 VCTRL Input Voltage (VCTRL) VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11) IIH Input HIGH Current IIL Input LOW Current -1070 -1425 VEE VEE+2.0 See Fig.3 -945 -1205 -880 -1225 -1625 -1810 -1325 -1525 VCC VEE -0.4 0.5 -150 -1080 -1425 VEE+2.0 150 D D 85°C See Fig.3 -955 -1235 -880 -1225 -1625 -1810 -1325 -1525 VCC VEE -0.4 -1425 VEE+2.0 150 0.5 -150 -1 110 0.5 -150 -985 -880 mV -1625 mV -1325 mV VCC mV -0.4 V 150 µA µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 Ω to VCC-2.0 volts. VOH does not change with VCTRL. VOL changes with VCTRL. VCTRL is referenced to VCC. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 77 MC100EP16VS AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 12) -40 °C Symbol Characteristic Min Typ 25°C Max Min >4 fmax Maximum Toggle Frequency (See Figure 7. Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential Max Swing Min Swing tSKEW Max Min >4 Typ Max >4 Unit GHz ps 220 150 280 210 Duty Cycle Skew (Note 13) 5.0 tJITTER Cycle-to-Cycle Jitter (See Figure 7. Fmax/JITTER) VPP Input Voltage Swing (Differential) (Note 14) tr tf Output Rise/Fall Times (20% - 80%) Max Swing Q Min Swing Typ 85°C 150 90 150 90 220 150 280 210 20 5.0 0.2 <1 150 800 1200 70 30 120 80 170 130 160 100 240 160 300 220 20 5.0 20 ps 0.2 <1 0.2 <1 ps 150 800 1200 150 800 1200 mV 80 20 130 70 180 120 100 20 150 70 200 120 ps 12. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to VCC-2.0 V. 13. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. 14. VPP(min) is minimum input swing for which AC parameters are guaranteed. 100 90 80 VSWING (%) 70 60 50 40 30 20 10 0 0.0 0.5 1.0 VOLTS (V) Figure 3. VCC - VCTRL (pin #1) http://onsemi.com 78 1.5 2.0 VPK- PK MC100EP16VS VOH Min Swing Max Swing VOL 0.0 0.5 1.0 1.3 1.5 2.0 VOLTS (V) Figure 4. VCC - VCTRL VCTRL + 1 8 VCC (10) VCTRL D 2 VSWING (pk-pk) 7 Q (9) D 3 6 Q (8) VBB 4 5 VEE (7) 50 50 VCC-2 V Figure 5. Voltage Source Implementation for 8 Ld Package 10 Ld Package Pins in ( ) http://onsemi.com 79 MC100EP16VS +5 V 1 8 VCC (10) VCTRL D 2 VSWING (pk-pk) 7 Q (9) D 3 6 Q (8) VBB 4 470 470 5 VEE (7) 1000 10 900 9 800 2.00 V Below VCC 8 700 7 1.25 V Below VCC 600 6 1.00 V Below VCC 500 5 0.75 V Below VCC 400 4 300 3 ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 200 0.25 V Below VCC 100 (JITTER) 2 1 0 0 500 1000 1500 2000 2500 FREQUENCY (MHz) Figure 7. Fmax/Jitter http://onsemi.com 80 3000 3500 4000 JITTEROUT ps (RMS) VOUTpp (mV) Figure 6. Alternative Implementation for 8 Ld Package 10 Ld Package Pins in ( ) É É MC100EP16VS Q D Driver Device Receiver Device D Q 50 Ω 50 Ω VTT VTT = VCC - 2.0 V Figure 8. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 81 MC100EP16VT 3.3V / 5VECL Differential Receiver/Driver with Variable Output Swing and Internal Input Termination The MC100EP16VT is a differential receiver functionally equivalent to the 100EP16 with input pins controlling the amplitude of the outputs (pin 1) and providing an internal termination network (pin 4). The VCTRL input pin controls the output amplitude of the EP16VT and is referenced to VCC. (See Figure 4.) The operational range of the VCTRL input is from VBB (a supply at VCC-1.42 V, maximum output amplitude) to VCC (minimum output amplitude). VBB is an externally supplied voltage equal to VCC-1.42 V (See Figures 2 and 3). A variable resistor between VCC and VBB, with the wiper driving VCTRL, can control the output amplitude. Typical application circuits and a VCTRL Voltage vs. Output Amplitude graph are described in this data sheet. When left open, the VCTRL pin will be internally pulled down to VEE and operate as a standard EP16, with 100% output amplitude. The VTT input pin offers an internal termination network for a 50 ohm line impedance environment, shown in Figure 1. For further reference, see Application Note AND8020, Termination of ECL Logic Devices. Input considerations are required for D and D under no signal conditions to prevent instability. Special considerations are required for differential inputs under No Signal conditions to prevent instability. • • • • • http://onsemi.com MARKING DIAGRAMS* 8 SO-8 D SUFFIX CASE 751 8 1 KEP63 ALYW 1 8 TSSOP-8 DT SUFFIX CASE 948R 8 1 KP63 ALYW 1 K A L Y W = MC100 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D 220 ps Propagation Delay Maximum Frequency > 4 GHz Typical (See Graph) The 100 Series Contains Temperature Compensation PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State ORDERING INFORMATION • • 50 Internal Termination Resistor Device Package Shipping MC100EP16VTD SO-8 98 Units/Rail MC100EP16VTDR2 SO-8 2500 Tape & Reel MC100EP16VTDT TSSOP-8 100 Units/Rail MC100EP16VTDTR2 TSSOP-8 Semiconductor Components Industries, LLC, 2001 April, 2001 - Rev. 1 82 2500 Tape & Reel Publication Order Number: MC100EP16VT/D MC100EP16VT VCTRL D 1 8 2 7 PIN DESCRIPTION VCC Q 50 D 3 6 Q 50 VTT 4 5 VEE PIN FUNCTION D, D ECL Data Inputs Q, Q ECL Data Outputs VCTRL* Output Swing Control VTT Termination Supply VCC Positive Supply VEE Negative Supply * Pin will default LOW when left open. Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1.) Level 1 Flammability Rating Oxygen Index UL-94 code V-0 A 1/8” 28 to 34 Transistor Count 140 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2.) Symbol Parameter Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 SOIC 41 to 44 °C/W θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 TSSOP 41 to 44 ± 5% °C/W 265 °C Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 83 VI VCC VI VEE MC100EP16VT DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3.) -40 °C Symbol Characteristic IEE Power Supply Current VOH Output HIGH Voltage (Max Swing) (Note 4.) VCC VCTRL VEE VOL Output LOW Voltage (Max Swing) (Note 4.) VCTRL VBB 85°C Min Typ Max Min Typ Max Min Typ Max Unit 30 36 42 31 38 44 32 40 48 mA 2405 2155 2405 2155 2405 mV 1605 1355 1605 1355 2155 mV 1355 VCC VCTRL > VBB VCTRL = VCC (Min Swing) 25°C 1490 See Fig.2 2105 2230 1520 See Fig.2 2355 2095 2220 1520 1605 See Fig.2 2345 2065 2190 2315 VIH D, D Input HIGH Voltage (Single Ended) 2075 2420 2075 2420 2075 2420 mV VIL D, D Input LOW Voltage (Single Ended) 1490 1675 1490 1675 1490 1675 mV VCTRL Input Voltage (VCTRL) VEE VCC VEE VCC VEE VCC mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5.) 2.0 2.9 2.0 2.9 2.0 2.9 V IIH Input HIGH Current 150 µA (VTT Open) 150 150 IIL Input LOW Current (VTT Open) -150 -150 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 ohms to VCC-2.0 volts. VOH does not change with VCTRL. VOL changes with VCTRL. VCTRL is referenced to VCC. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6.) -40 °C Symbol Characteristic IEE Power Supply Current VOH Output HIGH Voltage (Note 7.) VCC > VCTRL > VEE VOL Output LOW Voltage (Max Swing) (Note 7.) VCTRL VBB 85°C Min Typ Max Min Typ Max Min Typ Max Unit 30 36 42 31 38 44 32 40 48 mA 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV 3055 3190 3305 3055 3220 3305 3055 3220 3305 mV VCC VCTRL > VBB VCTRL = VCC (Min Swing) 25°C See Fig.2 3805 3930 See Fig.2 4055 3795 3920 See Fig.2 4045 3765 3890 4015 VIH D, D Input HIGH Voltage (Single Ended) 3775 4120 3775 4120 3775 4120 mV VIL D, D Input LOW Voltage (Single Ended) 3190 3375 3190 3375 3190 3375 mV VCTRL Input Voltage (VCTRL) VEE VCC VEE VCC VEE VCC mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8.) 2.0 4.6 2.0 4.6 2.0 4.6 V IIH Input HIGH Current 150 µA (VTT Open) 150 150 IIL Input LOW Current (VTT Open) -150 -150 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 ohms to VCC-2.0 volts. VOH does not change with VCTRL. VOL changes with VCTRL. VCTRL is referenced to VCC. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 84 MC100EP16VT DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 9.) -40 °C Symbol Characteristic IEE Power Supply Current VOH Output HIGH Voltage (Note 10.) VCC > VCTRL > VEE VOL Output LOW Voltage (Max Swing) (Note 10.) VCTRL VBB 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 30 36 42 31 38 44 32 40 48 mA -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV -1945 -1810 -1695 -1945 -1780 -1695 -1945 -1780 -1695 mV VCC VCTRL > VBB See Fig.2 VCTRL = VCC (Min Swing) -1 195 VIH D, D Input HIGH Voltage (Single Ended) VIL D, D Input LOW Voltage (Single Ended) VCTRL Input Voltage (VCTRL) VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11.) IIH Input HIGH Current See Fig.2 -1070 -945 -1205 -1225 -880 -1810 -1625 VEE VCC VEE+2.0 -955 -1235 -1225 -880 -1225 -880 mV -1810 -1625 -1810 -1625 mV VEE VCC VEE VCC mV -0.4 V 150 µA -0.4 (VTT Open) -1080 See Fig.2 VEE+2.0 -0.4 150 -1 110 VEE+2.0 150 -985 IIL Input LOW Current (VTT Open) -150 -150 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 ohms to VCC-2.0 volts. VOH does not change with VCTRL. VOL changes with VCTRL. VCTRL is referenced to VCC. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 12.) -40 °C Symbol Characteristic Min fmax Maximum Toggle Frequency (See Figure 8. Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential Max Swing Min Swing tSKEW Typ 25°C Max Min >4 85°C Max Min >4 Typ Max >4 Unit GHz ps 300 250 350 300 Duty Cycle Skew (Note 13.) 5.0 tJITTER Cycle-to-Cycle Jitter (See Figure 8. Fmax/JITTER) VPP Input Voltage Swing (Differential) (Note 14.) tr, tf Output Rise/Fall Times (20% - 80%) Max Swing Q Min Swing Typ 250 200 250 200 300 250 350 300 20 5.0 0.2 <1 150 800 1200 70 30 120 80 170 130 250 200 300 250 350 300 20 5.0 20 ps 0.2 <1 0.2 <1 ps 150 800 1200 150 800 1200 mV 80 20 130 70 180 120 100 20 150 70 200 120 ps 12. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. 13. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. 14. VPP(min) is minimum input swing for which AC parameters are guaranteed. http://onsemi.com 85 MC100EP16VT 100 90 OUTPUT SWING (%) 80 70 60 50 40 30 20 10 0 0.0 0.5 1.0 VOLTS (V) 1.42 VBB 1.5 2.0 VPK- PK Figure 2. VCC - VCTRL (pin #1) VOH Min Swing Max Swing VOL 0.0 0.5 1.0 VOLTS (V) Figure 3. VCC - VCTRL http://onsemi.com 86 1.42 VBB 1.5 2.0 MC100EP16VT VCTRL + 1 8 VCC VCTRL 2 D 7 Q* 50 D *See Figure 9. 3 6 Q* 5 VEE 50 VTT 4 Figure 4. Voltage Source Implementation, VCTRL Pin 1 VCC 1 8 VCC VCTRL VBB D 2 7 Q* 50 D *See Figure 9. 3 6 Q* 5 VEE 50 VEE VTT 4 Figure 5. Alternative Implementations, VCTRL Pin 1 VCTRL + 1 8 VCC VCTRL D 2 7 Q* 50 D *See Figure 9. 3 6 Q* 5 VEE 50 VCC-2 V 4 VTT Figure 6. Standard Termination Method, VTT Pin 4 http://onsemi.com 87 MC100EP16VT VCTRL + 1 8 VCC VCTRL D 2 7 Q* 50 D *See Figure 9. 3 6 Q* 5 VEE 50 VCC RT 5.0 V 112 3.3 V 46 4 VTT RT VEE 1000 10 900 9 VOUTpp (mV) 800 2.00 V Below VCC 8 700 7 1.25 V Below VCC 600 6 1.00 V Below VCC 500 5 0.75 V Below VCC 400 4 300 3 ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 200 0.25 V Below VCC 100 (JITTER) 2 1 0 0 500 1000 1500 2000 2500 FREQUENCY (MHz) Figure 8. Fmax/Jitter http://onsemi.com 88 3000 3500 4000 JITTEROUT ps (RMS) Figure 7. Alternate “Y” Termination Method, VTT Pin 4 É É É MC100EP16VT Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 9. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 89 MC10EP17, MC100EP17 3.3V / 5VECL Quad Differential Driver/Receiver The MC10/100EP17 is a 4-bit differential line receiver based on the EP16 device. The >3.0 GHz maximum frequency provided by the high frequency outputs makes the device ideal for buffering of very high speed oscillators. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. The design incorporates two stages of gain, internal to the device, making it an excellent choice for use in high bandwidth amplifier applications. Inputs of unused gates can be left open and will not affect the operation of the rest of the device. All VCC and VEE pins must be externally connected to power supply to guarantee proper operation. The 100 Series contains temperature compensation. • 220 ps Typical Propagation Delay • Maximum Frequency >3.0 GHz Typical • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V • http://onsemi.com MARKING DIAGRAMS* 20 20 XXXX EP17 ALYW 1 TSSOP-20 DT SUFFIX CASE 948E 1 20 20 MCXXXEP17 AWLYYWW 1 SO-20 DW SUFFIX CASE 751D with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State XXXX XXX A L, WL Y, YY W, WW • • Safety Clamp on Inputs • Q Output Will Default LOW with Inputs Open or at VEE • VBB Output 1 = MC10 or 100 = 10 or 100 = Assembly Location = Assembly Lot = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 4 90 Package Shipping MC10EP17DT TSSOP-20 75 Units/Rail MC10EP17DTR2 TSSOP-20 2500 Tape & Reel MC100EP17DT TSSOP-20 MC100EP17DTR2 TSSOP-20 2500 Tape & Reel 75 Units/Rail MC10EP17DW SO-20 38 Units/Rail MC10EP17DWR2 SO-20 1000 Tape & Reel MC100EP17DW SO-20 38 Units/Rail MC100EP17DWR2 SO-20 1000 Tape & Reel Publication Order Number: MC10EP17/D MC10EP17, MC100EP17 VCC Q0 Q0 Q1 Q1 Q2 Q2 Q3 Q3 VEE 20 19 18 17 16 15 14 13 12 11 PIN DESCRIPTION PIN FUNCTION D[0:3]*, D[0:3]* ECL Differential Data Inputs Q[0:3], Q[0:3] ECL Differential Data Outputs VBB VCC Reference Voltage Output VEE Negative Supply Positive Supply * Pins will default LOW when left open. 1 2 3 4 5 6 7 8 9 10 VCC D0 D0 D1 D1 D2 D2 D3 D3 VBB Figure 1. 20-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model > 2 kV > 100 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Level 1 Oxygen Index: 28 to 34 UL94 V-0 @ 0.125 in Transistor Count 259 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Parameter Symbol Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 20 TSSOP 20 TSSOP 140 100 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 20 TSSOP 23 to 41 °C/W JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 20 SOIC 20 SOIC 90 60 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 20 SOIC 30 to 35 °C/W 265 °C Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 91 VI VCC VI VEE MC10EP17, MC100EP17 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) Symbol IEE Characteristic Power Supply Current Min -40 °C Typ Max Min 25°C Typ Max Min 85°C Typ Max 42 50 65 44 52 66 46 54 68 Unit mA VOH VOL Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH VIL Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV Input LOW Voltage (Single-Ended) 365 1690 1430 1755 1490 1815 mV VBB VIHCMR Output Voltage Reference 1790 1990 1855 2055 1915 2115 mV 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 A Input HIGH Voltage Common Mode Range (Differential) (Note 5) Input LOW Current 1890 2.0 1955 150 2015 150 0.5 0.5 A 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) Symbol IEE Characteristic Power Supply Current Min -40 °C Typ Max Min 25°C Typ Max Min 85°C Typ Max 42 50 65 44 52 66 46 54 68 Unit mA VOH VOL Output HIGH Voltage (Note 7) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH VIL Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV VBB VIHCMR Output Voltage Reference 3490 3690 3555 3755 3615 3815 mV 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 A Input HIGH Voltage Common Mode Range (Differential) (Note 8) Input LOW Current 3590 2.0 3655 150 3715 150 0.5 0.5 A 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 9) Min -40 °C Typ Max Min 25°C Typ Max Min 85°C Typ Max 42 50 65 44 52 66 46 54 68 Unit mA Output HIGH Voltage (Note 10) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV Output LOW Voltage (Note 10) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV VIH VIL Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV VBB VIHCMR Output Voltage Reference -1510 -1310 -1445 -1245 -1385 -1 185 mV 0.0 V IIH IIL Input HIGH Current 150 A Symbol IEE Characteristic Power Supply Current VOH VOL Input HIGH Voltage Common Mode Range (Differential) (Note 11) Input LOW Current -1410 VEE+2.0 0.0 VEE+2.0 150 0.5 -1345 0.0 VEE+2.0 150 0.5 -1285 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 92 MC10EP17, MC100EP17 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12) Symbol IEE Characteristic Power Supply Current Min -40 °C Typ Max Min 25°C Typ Max Min 85°C Typ Max 47 55 63 50 58 66 54 62 70 Unit mA VOH VOL Output HIGH Voltage (Note 13) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV Output LOW Voltage (Note 13) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH VIL Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV VBB VIHCMR Output Voltage Reference 1775 1975 1775 1975 1775 1975 mV 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 A Input HIGH Voltage Common Mode Range (Differential) (Note 14) Input LOW Current 1875 2.0 1875 150 1875 150 0.5 0.5 A 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15) Symbol IEE Characteristic Power Supply Current Min -40 °C Typ Max Min 25°C Typ Max Min 85°C Typ Max 47 55 63 50 58 66 54 62 70 Unit mA VOH VOL Output HIGH Voltage (Note 16) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV Output LOW Voltage (Note 16) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH VIL Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV VBB VIHCMR Output Voltage Reference 3475 3675 3475 3675 3475 3675 mV 5.0 2.0 5.0 2.0 5.0 V Input HIGH Voltage Common Mode Range (Differential) (Note 17) 3575 2.0 3575 3575 IIH Input HIGH Current 150 150 150 A IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 18) Min -40 °C Typ Max Min 25°C Typ Max Min 85°C Typ Max 47 55 63 50 58 66 54 62 70 Unit mA Output HIGH Voltage (Note 19) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV Output LOW Voltage (Note 19) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH VIL Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV VBB VIHCMR Output Voltage Reference -1525 -1325 -1525 -1325 -1525 -1325 mV 0.0 V Symbol IEE Characteristic Power Supply Current VOH VOL Input HIGH Voltage Common Mode Range (Differential) (Note 20) -1425 VEE+2.0 0.0 -1425 VEE+2.0 0.0 -1425 VEE+2.0 IIH Input HIGH Current 150 150 150 A IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 93 MC10EP17, MC100EP17 AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21) -40 °C Symbol Min Characteristic fmax Maximum Frequency (See Figure 2 Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential 10 Series 100 Series tJITTER Cycle-to-Cycle Jitter (See Figure 2 Fmax/JITTER) VPP Input Voltage Swing (Differential) tr tf Output Rise/Fall Times (20% - 80%) Typ 25°C Max Min >3 Q, Q Typ 85°C Max Min Typ >3 >3 200 220 275 300 .2 <1 150 800 1200 100 160 220 150 180 220 250 300 320 .2 <1 150 800 1200 100 170 230 200 200 260 290 350 360 .2 <1 ps 150 800 1200 mV 120 190 250 ps 8 700 7 600 6 500 5 400 4 300 3 ÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉ ÉÉ ÉÉ 200 2 100 1 (JITTER) 0 2000 JITTEROUT ps (RMS) VOUTpp (mV) 800 1000 Unit GHz ps 125 150 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. 0 Max 3000 4000 FREQUENCY (MHz) Figure 2. Fmax/Jitter http://onsemi.com 94 5000 6000 MC10EP17, MC100EP17 Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 95 MC10EP29, MC100EP29 3.3V / 5VECL Dual Differential Data and Clock D Flip−Flop With Set and Reset The MC10/100EP29 is a dual master-slave flip-flop. The device features fully differential Data and Clock inputs as well as outputs. The MC10/100EP29 is functionally equivalent to the MC10/100EL29. Data enters the master latch when the clock is LOW and transfers to the slave upon a positive transition on the clock input. The differential inputs have special circuitry which ensures device stability under open input conditions. When both differential inputs are left open the D input will pull down to VEE and the D input will bias around VCC/2. The outputs will go to a defined state, however the state will be random based on how the flip flop powers up. Both flip flops feature asynchronous, overriding Set and Reset inputs. Note that the Set and Reset inputs cannot both be HIGH simultaneously. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. The 100 Series contains temperature compensation. • Maximum Frequency > 3 GHz Typical • 500 ps Typical Propagation Delays • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V http://onsemi.com MARKING DIAGRAM* 20 20 xxx EP29 ALYW 1 TSSOP-20 DT SUFFIX CASE 948E xxx A L Y W 1 = MC10 or 100 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION with VEE = 0 V Device • NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State • • Safety Clamp on Inputs Package Shipping MC10EP29DT TSSOP-20 75 Units/Rail MC10EP29DTR2 TSSOP-20 2500 Tape & Reel MC100EP29DT TSSOP-20 75 Units/Rail MC100EP29DTR2 TSSOP-20 Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 2 96 2500 Tape & Reel Publication Order Number: MC10EP29/D MC10EP29, MC100EP29 VCC 20 R0 S0 Q0 Q0 Q1 Q1 S1 R1 19 18 17 16 15 14 13 12 Q S R S Q Q D 1 2 D0 D0 R Q CLK CLK 3 VEE 11 4 5 6 D 7 9 8 10 VBB CLK0 CLK0 CLK1 CLK1 D1 D1 Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. VCC Figure 4. 20-Lead Pinout (Top View) and Logic Diagram PIN DESCRIPTION TRUTH TABLE PIN FUNCTION D0*, D0*; D1*, D1* ECL Differential Data Inputs R0*, R1* ECL Reset Inputs CLK0*, CLK0* ECL Differential Clock Inputs CLK1*, CLK1* ECL Differential Clock Inputs S0*, S1* ECL Set Inputs Q0, Q0; Q1, Q1 ECL Differential Data Outputs VBB Reference Voltage Output VCC Positive Supply VEE Negative Supply R S D CLK Q Q L L H L H L L L H H L H X X X Z Z X X X L H L H Undef H L H L Undef Z = LOW to HIGH Transition X = Don’t Care * Pins will default LOW when left open. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Oxygen Index: 28 to 34 Transistor Count > 2 kV > 200 V > 2 kV Level 1 UL 94 V-0 @ 0.125 in 383 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 97 MC10EP29, MC100EP29 MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 20 TSSOP 20 TSSOP 140 100 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 20 TSSOP 23 to 41 °C/W 265 °C VI VCC VI VEE Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 35 46 55 37 48 57 40 49 60 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV 1690 1460 1755 1490 1815 mV 1990 1855 2055 1915 2115 mV 3.3 2.0 3.3 2.0 3.3 V 150 A VIL Input LOW Voltage (Single-Ended) 1365 VBB Output Voltage Reference 1790 VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) IIH Input HIGH Current IIL Input LOW Current 1890 2.0 150 0.5 1955 150 0.5 0.5 2015 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 98 MC10EP29, MC100EP29 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 35 46 55 37 48 57 40 49 60 mA Output HIGH Voltage (Note 7) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV VBB Output Voltage Reference 3490 3690 3555 3755 3615 3815 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 A IEE Power Supply Current VOH 3590 2.0 3655 150 3715 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 9) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 35 46 55 37 48 57 40 49 60 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 10) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL Output LOW Voltage (Note 10) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV VIH Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV VBB Output Voltage Reference -1510 -1310 -1445 -1245 -1385 -1 185 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11) 0.0 V IIH Input HIGH Current 150 A -1410 VEE+2.0 0.0 150 -1345 VEE+2.0 0.0 150 -1285 VEE+2.0 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 99 MC10EP29, MC100EP29 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 35 46 55 37 48 57 40 49 60 mA Output HIGH Voltage (Note 13) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 13) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV VBB Output Voltage Reference 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A IEE Power Supply Current VOH 1875 2.0 1875 150 1875 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 35 46 55 37 48 57 40 49 60 mA VOH Output HIGH Voltage (Note 16) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 16) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV VBB Output Voltage Reference 3475 3675 3475 3675 3475 3675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 17) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 A 3575 2.0 150 3575 150 3575 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 100 MC10EP29, MC100EP29 100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 18) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 35 46 55 37 48 57 40 49 60 mA Output HIGH Voltage (Note 19) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 19) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV VBB Output Voltage Reference -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 20) 0.0 V IIH Input HIGH Current 150 A IEE Power Supply Current VOH -1425 VEE+2.0 0.0 -1425 VEE+2.0 0.0 150 -1425 VEE+2.0 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21) -40 °C Symbol Characteristic Min fmax Maximum Frequency (See Figure 5 Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tS tH Typ 300 275 300 380 380 400 Setup Time Hold Time 100 100 tRR/tRR2 Set/Reset Recovery tPW Minimum Pulse Width Set, Reset Cycle-to-Cycle Jitter (See Figure 5 Fmax/JITTER) VPP Input Voltage Swing (Note 22) tr tf Output Rise/Fall Times (20% - 80%) Max Min > 3.0 CLK S R tJITTER 25°C Q, Q Typ 85°C Max 350 300 325 420 400 420 20 20 100 100 150 80 500 300 450 475 500 .2 <1 150 800 1200 100 180 250 http://onsemi.com Typ Max > 3.0 500 500 525 Unit GHz 400 350 375 470 450 470 20 20 100 100 20 20 ps 150 80 150 80 ps 500 300 500 300 ps .2 <1 150 800 1200 150 210 300 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. 22. VPP(min) is the minimum input swing for which AC parameters are guaranteed. 101 Min > 3.0 550 550 575 ps .2 <1 ps 150 800 1200 mV 175 230 325 ps 900 9 800 8 700 7 600 6 500 5 400 4 300 3 ÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉ ÉÉ 200 2 (JITTER) 100 1 0 0 1000 2000 3000 4000 5000 FREQUENCY (MHz) Figure 5. Fmax/Jitter Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 6. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 102 JITTEROUT ps (RMS) VOUTpp (mV) MC10EP29, MC100EP29 MC10EP31, MC100EP31 3.3V / 5VECL D Flip−Flop with Set and Reset The MC10/100EP31 is a D flip-flop with set and reset. The device is pin and functionally equivalent to the EL31 and LVEL31 devices. With AC performance much faster than the EL31 and LVEL31 devices, the EP31 is ideal for applications requiring the fastest AC performance available. Both set and reset inputs are asynchronous, level triggered signals. Data enters the master portion of the flip-flop when CLK is low and is transferred to the slave, and thus the outputs, upon a positive transition of the CLK. The 100 Series contains temperature compensation. • 340 ps Typical Propagation Delay • Maximum Frequency > 3 GHz Typical • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V • http://onsemi.com MARKING DIAGRAMS* HEP31 ALYW 1 SO-8 D SUFFIX CASE 751 with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State 8 8 8 1 1 8 8 1 • • Q Output Will Default LOW with Inputs Open or at VEE TSSOP-8 DT SUFFIX CASE 948R KEP31 ALYW 8 HP31 ALYW 1 KP31 ALYW 1 H = MC10 K = MC100 A = Assembly Location L = Wafer Lot Y = Year W = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Package Shipping MC10EP31D Device SO-8 98 Units/Rail MC10EP31DR2 SO-8 2500 Tape & Reel MC100EP31D SO-8 98 Units/Rail MC100EP31DR2 SO-8 2500 Tape & Reel MC10EP31DT TSSOP-8 100 Units/Rail MC10EP31DTR2 TSSOP-8 2500 Tape & Reel MC100EP31DT TSSOP-8 100 Units/Rail MC100EP31DTR2 TSSOP-8 Semiconductor Components Industries, LLC, 2001 April, 2001 - Rev. 5 103 2500 Tape & Reel Publication Order Number: MC10EP31/D MC10EP31, MC100EP31 PIN DESCRIPTION SET 1 8 VCC S D 2 7 D Q Flip Flop CLK 3 6 Q PIN FUNCTION CLK* ECL Clock Inputs Reset* ECL Asynchronous Reset Set* ECL Asynchronous Set D* ECL Data Input Q, Q ECL Data Outputs VCC Positive Supply VEE Negative Supply * Pins will default LOW when left open. R TRUTH TABLE RESET 4 5 VEE Figure 1. 8-Lead Pinout (Top View) and Logic Diagram D SET RESET CLK Q L H X X X L L H L H L L L H H Z Z X X X L H H L UNDEF Z = LOW to HIGH Transition ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1.) Level 1 Flammability Rating Oxygen Index UL-94 code V-0 A 1/8” 28 to 34 Transistor Count 75 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2.) Symbol Rating Units VCC PECL Mode Power Supply Parameter VEE = 0 V Condition 1 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 SOIC 41 to 44 °C/W θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 TSSOP 41 to 44 °C/W Tsol Wave Solder <2 to 3 sec @ 248°C 265 °C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 104 Condition 2 VI VCC VI VEE MC10EP31, MC100EP31 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 26 34 44 26 35 45 28 37 47 mA Output HIGH Voltage (Note 4.) 2165 2240 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4.) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single Ended) 1365 1690 1430 1755 1490 1815 mV IIH Input HIGH Current 150 µA IIL Input LOW Current IEE Power Supply Current VOH 150 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 ohms to VCC-2.0 volts. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 5.) -40 °C Symbol Characteristic Min 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 26 34 44 26 35 45 28 37 47 mA VOH Output HIGH Voltage (Note 6.) 3865 3940 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 6.) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single Ended) 3065 3390 3130 3455 3190 3515 mV IIH Input HIGH Current 150 µA IIL Input LOW Current 150 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 5. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 6. All loading with 50 ohms to VCC-2.0 volts. 10EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 7.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 26 34 44 26 35 45 28 37 47 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 8.) -1 135 -1060 -885 -1070 -945 -820 -1010 -885 -760 mV VOL Output LOW Voltage (Note 8.) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV VIH Input HIGH Voltage (Single Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV IIH Input HIGH Current 150 µA IIL Input LOW Current 150 0.5 150 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 7. Input and output parameters vary 1:1 with VCC. 8. All loading with 50 ohms to VCC-2.0 volts. http://onsemi.com 105 MC10EP31, MC100EP31 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 9.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 26 34 44 26 35 45 28 37 47 mA Output HIGH Voltage (Note 10.) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 10.) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single Ended) 1355 1675 1355 1675 1355 1675 mV IIH Input HIGH Current 150 µA IIL Input LOW Current IEE Power Supply Current VOH 150 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 10. All loading with 50 ohms to VCC-2.0 volts. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 11.) -40 °C Symbol Characteristic Min 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 26 34 44 26 35 45 28 37 47 mA VOH Output HIGH Voltage (Note 12.) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 12.) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single Ended) 3055 3375 3055 3375 3055 3375 mV IIH Input HIGH Current 150 µA IIL Input LOW Current 150 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 11. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 12. All loading with 50 ohms to VCC-2.0 volts. 100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 13.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 26 34 44 26 35 45 28 37 47 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 14.) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 14.) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV IIH Input HIGH Current 150 µA IIL Input LOW Current 150 0.5 150 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 13. Input and output parameters vary 1:1 with VCC. 14. All loading with 50 ohms to VCC-2.0 volts. http://onsemi.com 106 MC10EP31, MC100EP31 AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 15.) -40 °C Symbol Characteristic fmax Maximum Frequency (See Figure 2. Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential Min Typ 25°C Max Min >3 Typ 85°C Max Min Typ >3 Max >3 Unit GHz ps CLK to Q, Q S, R to Q, Q 250 300 330 380 400 450 270 330 340 400 410 470 300 360 370 430 440 500 tRR Set/Reset Recovery 225 225 225 ps tS tH Setup Time Hold Time 100 150 100 150 100 150 ps tPW Minimum Pulse width ps SET, RESET tJITTER Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) tr tf Output Rise/Fall Times (20% - 80%) Q, Q 550 50 450 550 0.2 <1 120 180 60 450 550 0.2 <1 130 200 450 70 0.2 <1 ps 150 220 ps 1100 11 1000 10 900 9 800 8 700 7 600 6 500 5 400 4 300 3 200 2 JITTEROUT ps (RMS) VOUTpp (mV) 15. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. ÉÉ ÉÉ ÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉ 100 1 (JITTER) 0 0 1000 2000 3000 4000 FREQUENCY (MHz) Figure 2. Fmax/Jitter http://onsemi.com 107 5000 6000 MC10EP31, MC100EP31 Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 108 MC10EP32, MC100EP32 3.3V / 5VECL 2 Divider The MC10/100EP32 is an integrated 2 divider with differential CLK inputs. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. The reset pin is asynchronous and is asserted on the rising edge. Upon power-up, the internal flip-flops will attain a random state; the reset allows for the synchronization of multiple EP32’s in a system. The 100 Series contains temperature compensation. • 350 ps Typical Propagation Delay • Maximum Frequency > 4 GHz Typical (See Graph) • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V • with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State http://onsemi.com MARKING DIAGRAMS* 8 1 SO-8 D SUFFIX CASE 751 HEP32 ALYW 1 1 TSSOP-8 DT SUFFIX CASE 948R KEP32 ALYW 1 8 8 • • Safety Clamp on Inputs • Q Output Will Default LOW with Inputs Open or at VEE 8 8 8 HP32 ALYW 1 KP32 ALYW 1 H = MC10 K = MC100 A = Assembly Location L = Wafer Lot Y = Year W = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Package MC10EP32D SO-8 98 Units/Rail MC10EP32DR2 SO-8 2500 Tape & Reel MC100EP32D SO-8 98 Units/Rail MC100EP32DR2 SO-8 2500 Tape & Reel MC10EP32DT TSSOP-8 100 Units/Rail MC10EP32DTR2 TSSOP-8 2500 Tape & Reel MC100EP32DT TSSOP-8 100 Units/Rail MC100EP32DTR2 TSSOP-8 Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 5 109 Shipping 2500 Tape & Reel Publication Order Number: MC10EP32/D MC10EP32, MC100EP32 PIN DESCRIPTION RESET 1 8 VCC R CLK 2 7 Q 2 CLK 3 6 PIN FUNCTION CLK*, CLK* ECL Clock Inputs Reset* ECL Asynchronous Reset VBB Reference Voltage Output Q, Q ECL Data Outputs VCC VEE Positive Supply Negative Supply * Pins will default LOW when left open. Q TRUTH TABLE VBB 4 5 CLK CLK RESET Q Q X Z X Z Z L L F H F VEE Figure 1. 8-Lead Pinout (Top View) and Logic Diagram Z = LOW to HIGH Transition Z = HIGH to LOW Transition F = Divide by 2 Function CLK tRR RESET Q Figure 2. Timing Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Oxygen Index: 28 to 34 Transistor Count > 4 kV > 200 V > 2 kV Level 1 UL-94 V-0 @ 0.125 in 78 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 110 MC10EP32, MC100EP32 MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 8 SOIC 41 to 44 °C/W JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 8 TSSOP 41 to 44 °C/W 265 °C VI VCC VI VEE Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 23 30 37 23 30 37 23 30 37 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single-Ended) 1365 1690 1430 1755 1490 1815 mV VBB Output Voltage Reference 1790 1990 1855 2055 1915 2115 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A 1890 2.0 150 1955 150 2015 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 111 MC10EP32, MC100EP32 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 23 30 37 23 30 37 23 30 37 mA Output HIGH Voltage (Note 7) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV VBB Output Voltage Reference 3490 3690 3555 3755 3615 3815 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 A Symbol Characteristic IEE Power Supply Current VOH 3590 2.0 3655 150 3715 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 9) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 23 30 37 23 30 37 23 30 37 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 10) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL Output LOW Voltage (Note 10) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV VIH Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV VBB Output Voltage Reference -1510 -1310 -1445 -1245 -1385 -1 185 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11) 0.0 V IIH Input HIGH Current 150 A -1410 VEE+2.0 0.0 150 -1345 VEE+2.0 0.0 150 -1285 VEE+2.0 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 112 MC10EP32, MC100EP32 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12) -40 °C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 23 30 37 23 30 37 26 33 40 mA Output HIGH Voltage (Note 13) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 13) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV VBB Output Voltage Reference 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A Symbol Characteristic IEE Power Supply Current VOH 1875 2.0 1875 150 1875 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15) -40 °C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 23 30 37 23 30 37 26 33 40 mA Output HIGH Voltage (Note 16) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 16) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV VBB Output Voltage Reference 3475 3675 3475 3675 3475 3675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 17) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 A Symbol Characteristic IEE Power Supply Current VOH 3575 2.0 150 3575 150 3575 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 113 MC10EP32, MC100EP32 100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 18) -40 °C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 23 30 37 23 30 37 26 33 40 mA Output HIGH Voltage (Note 19) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 19) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV VBB Output Voltage Reference -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 20) 0.0 V IIH Input HIGH Current 150 A Symbol Characteristic IEE Power Supply Current VOH -1425 VEE+2.0 0.0 -1425 VEE+2.0 150 0.0 -1425 VEE+2.0 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21) -40 °C Symbol VOPP Min Characteristic Output Voltage Amplitude (See Figure 3) fin < 3.5 GHz fin < 4.0 GHz tPLH, tPHL Propagation Delay to Output Differential 10 Series 100 Series tRR Set/Reset Recovery tPW Minimum Pulse width tJITTER Cycle-to-Cycle Jitter VPP Input Voltage Swing (Differential) tr tf Output Rise/Fall Times (20% - 80%) Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit mV 700 500 700 500 700 500 ps CLK to Q, Q RESET to Q, Q RESET to Q, Q RESET Q, Q 250 220 320 330 290 400 200 420 390 480 270 250 320 350 300 400 175 200 550 475 0.2 <1 150 800 50 100 450 390 480 320 320 375 400 380 450 175 200 175 ps 550 475 550 475 ps 0.2 <1 0.2 <1 ps 1200 150 800 1200 150 800 1200 mV 150 70 120 170 70 130 200 ps 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. http://onsemi.com 114 480 460 525 MC10EP32, MC100EP32 900 VOPP, OUTPUT VOLTAGE (mV) 800 700 600 500 400 300 200 100 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 fin, INPUT FREQUENCY (MHz) Figure 3. Input Frequency (fin) versus Output Voltage (VOPP) Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 115 MC10EP33, MC100EP33 3.3V / 5VECL 4 Divider The MC10/100EP33 is an integrated 4 divider. The differential clock inputs. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. The reset pin is asynchronous and is asserted on the rising edge. Upon power-up, the internal flip-flops will attain a random state; the reset allows for the synchronization of multiple EP33’s in a system. The 100 Series contains temperature compensation. • 320 ps Propagation Delay • Maximum Frequency > 4 GHz Typical • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V • http://onsemi.com MARKING DIAGRAMS* 8 HEP33 ALYW 1 SO-8 D SUFFIX CASE 751 1 1 • • Safety Clamp on Inputs • Q Output Will Default LOW with Inputs Open or at VEE • VBB Output TSSOP-8 DT SUFFIX CASE 948R KEP33 ALYW 1 8 8 with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State 8 8 8 KP33 ALYW HP33 ALYW 1 1 H = MC10 K = MC100 A = Assembly Location L = Wafer Lot Y = Year W = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Package Shipping MC10EP33D Device SO-8 98 Units/Rail MC10EP33DR2 SO-8 2500 Tape & Reel MC100EP33D SO-8 98 Units/Rail MC100EP33DR2 SO-8 2500 Tape & Reel MC10EP33DT TSSOP-8 100 Units/Rail MC10EP33DTR2 TSSOP-8 2500 Tape & Reel MC100EP33DT TSSOP-8 100 Units/Rail MC100EP33DTR2 TSSOP-8 Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 5 116 2500 Tape & Reel Publication Order Number: MC10EP33/D MC10EP33, MC100EP33 PIN DESCRIPTION FUNCTION PIN RESET 1 8 VCC R CLK 2 7 Q 4 CLK 3 6 Q CLK*, CLK* ECL Clock Inputs Reset* ECL Asynchronous Reset VBB Reference Voltage Output Q, Q ECL Data Outputs VCC Positive Supply VEE Negative Supply * Pins will default LOW when left open. TRUTH TABLE VBB 4 5 VEE Figure 1. 8-Lead Pinout (Top View) and Logic Diagram CLK CLK RESET Q Q X Z X Z Z L L F H F Z = LOW to HIGH Transition Z = HIGH to LOW Transition F = Divide by 4 Function CLK tRR RESET Q Figure 2. Timing Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection NA Human Body Model Machine Model Charged Device Model Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Oxygen Index: 28 to 34 Transistor Count > 4 kV > 200 V > 2 kV Level 1 UL-94 V-0 @ 0.125 in 91 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 117 MC10EP33, MC100EP33 MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 8 SOIC 41 to 44 °C/W JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 8 TSSOP 41 to 44 °C/W 265 °C VI VCC VI VEE Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 18 26 34 18 26 34 18 26 34 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single-Ended) 1365 1690 1430 1755 1490 1815 mV VBB Output Voltage Reference 1790 1990 1855 2055 1915 2115 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A 1890 2.0 150 1955 150 2015 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 118 MC10EP33, MC100EP33 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 18 26 34 18 26 34 18 26 34 mA Output HIGH Voltage (Note 7) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV VBB Output Voltage Reference 3490 3690 3555 3755 3615 3815 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 A Symbol Characteristic IEE Power Supply Current VOH 3590 2.0 3655 150 3715 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 9) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 18 26 34 18 26 34 18 26 34 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 10) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL Output LOW Voltage (Note 10) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV VIH Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV VBB Output Voltage Reference -1510 -1310 -1445 -1245 -1385 -1 185 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11) 0.0 V IIH Input HIGH Current 150 A -1410 VEE+2.0 0.0 150 -1345 VEE+2.0 0.0 150 -1285 VEE+2.0 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 119 MC10EP33, MC100EP33 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12) -40 °C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 23 28 33 24 30 36 25 31 37 mA Output HIGH Voltage (Note 13) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 13) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV VBB Output Voltage Reference 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A Symbol Characteristic IEE Power Supply Current VOH 1875 2.0 1875 150 1875 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 23 28 33 24 30 36 25 31 37 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 16) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 16) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV VBB Output Voltage Reference 3475 3675 3475 3675 3475 3675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 17) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 A 3575 2.0 150 3575 150 3575 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 120 MC10EP33, MC100EP33 100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 18) -40 °C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 23 28 33 24 30 36 25 31 37 mA Output HIGH Voltage (Note 19) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 19) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV VBB Output Voltage Reference -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 20) 0.0 V IIH Input HIGH Current 150 A Symbol Characteristic IEE Power Supply Current VOH -1425 VEE+2.0 0.0 -1425 VEE+2.0 150 0.0 -1425 VEE+2.0 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21) -40 °C Symbol VOPP Min Characteristic Output Voltage Amplitude (See Figure 3) fin < 4.0 GHz fin < 4.5 GHz tPLH, tPHL Propagation Delay to Output Differential CLK/Q RESET/Q tRR Set/Rest Recovery tPW Minimum Pulse width tJITTER Cycle-to-Cycle Jitter VPP Input Voltage Swing (Differential) tr tf Output Rise/Fall Times (20% - 80%) RESET Q, Q Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit mV 700 600 300 370 380 420 150 700 600 440 470 300 370 380 420 100 200 550 480 0.2 <1 150 800 90 170 700 600 440 470 320 400 400 450 100 200 100 ps 550 480 550 480 ps 0.2 <1 0.2 <1 ps 1200 150 800 1200 150 800 1200 mV 200 100 180 250 120 200 280 ps 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. http://onsemi.com 121 460 500 ps MC10EP33, MC100EP33 900 VOPP, OUTPUT VOLTAGE (mV) 800 700 600 500 400 300 200 100 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 fin, INPUT FREQUENCY (MHz) Figure 3. Input Frequency (fin) versus Output Voltage (VOPP) Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 122 MC10EP35, MC100EP35 3.3V / 5VECL JK Flip−Flop The MC10/100EP35 is a higher speed/low voltage version of the EL35 JK flip-flop. The J/K data enters the master portion of the flip-flop when the clock is LOW and is transferred to the slave, and thus the outputs, upon a positive transition of the clock. The reset pin is asynchronous and is activated with a logic HIGH. The 100 Series contains temperature compensation. http://onsemi.com • 410 ps Propagation Delay • Maximum Frequency > 3 GHz Typical • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V • MARKING DIAGRAMS* with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State 8 8 8 HEP35 ALYW 1 • • Q Output Will Default LOW with Inputs Open or at VEE SO-8 D SUFFIX CASE 751 1 1 8 8 8 KP35 ALYW HP35 ALYW 1 TSSOP-8 DT SUFFIX CASE 948R KEP35 ALYW 1 1 H = MC10 K = MC100 A = Assembly Location L = Wafer Lot Y = Year W = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Package Shipping MC10EP35D SO-8 98 Units/Rail MC10EP35DR2 SO-8 2500 Tape & Reel MC100EP35D SO-8 98 Units/Rail MC100EP35DR2 SO-8 2500 Tape & Reel MC10EP35DT TSSOP-8 100 Units/Rail MC10EP35DTR2 TSSOP-8 2500 Tape & Reel MC100EP35DT TSSOP-8 100 Units/Rail MC100EP35DTR2 TSSOP-8 Semiconductor Components Industries, LLC, 2001 April, 2001 - Rev. 3 123 2500 Tape & Reel Publication Order Number: MC10EP35/D MC10EP35, MC100EP35 PIN DESCRIPTION J K 1 8 J 2 7 K VCC Q Flip Flop CLK 3 6 PIN FUNCTION CLK* ECL Clock Inputs J*, K* ECL Signal Inputs RESET* ECL Asynchronous Reset Q, Q ECL Data Outputs VCC Positive Supply VEE Negative Supply * Pins will default LOW when left open. Q TRUTH TABLE R RESET 4 5 VEE Figure 1. 8-Lead Pinout (Top View) and Logic Diagram J K RESET CLK Qn+1 L L H H X L H L H X L L L L H Z Z Z Z X Qn L H Qn L Z = LOW to HIGH Transition ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1.) Level 1 Flammability Rating Oxygen Index UL-94 code V-0 A 1/8” 28 to 34 Transistor Count 77 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2.) Parameter Symbol Condition 1 Condition 2 Rating Units 6 V -6 V 6 -6 V V 50 100 mA mA -40 to +85 °C VCC PECL Mode Power Supply VEE = 0 V VEE NECL Mode Power Supply VCC = 0 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage Iout Output Current VEE = 0 V VCC = 0 V Continuous Surge TA Operating Temperature Range Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 SOIC 41 to 44 °C/W θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 TSSOP 41 to 44 °C/W 265 °C Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 124 VI VCC VI VEE MC10EP35, MC100EP35 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 30 40 50 30 40 50 30 40 50 mA Output HIGH Voltage (Note 4.) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4.) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single Ended) 1365 1690 1460 1755 1490 1815 mV IIH Input HIGH Current 150 µA IIL Input LOW Current IEE Power Supply Current VOH 150 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 ohms to VCC-2.0 volts. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 5.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 30 40 50 30 40 50 30 40 50 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 6.) 3865 3940 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 6.) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single Ended) 3065 3390 3130 3455 3190 3515 mV IIH Input HIGH Current 150 µA IIL Input LOW Current 150 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 5. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 6. All loading with 50 ohms to VCC-2.0 volts. 10EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 7.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 30 40 50 30 40 50 30 40 50 mA Output HIGH Voltage (Note 8.) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL Output LOW Voltage (Note 8.) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV VIH Input HIGH Voltage (Single Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV IIH Input HIGH Current 150 µA IIL Input LOW Current IEE Power Supply Current VOH 150 0.5 150 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 7. Input and output parameters vary 1:1 with VCC. 8. All loading with 50 ohms to VCC-2.0 volts. http://onsemi.com 125 MC10EP35, MC100EP35 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 9.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 30 40 50 30 40 50 30 40 50 mA Output HIGH Voltage (Note 10.) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 10.) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single Ended) 1355 1675 1355 1675 1355 1675 mV IIH Input HIGH Current 150 µA IIL Input LOW Current IEE Power Supply Current VOH 150 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 10. All loading with 50 ohms to VCC-2.0 volts. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 11.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 30 40 50 30 40 50 30 40 50 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 12.) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 12.) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single Ended) 3055 3375 3055 3375 3055 3375 mV IIH Input HIGH Current 150 µA IIL Input LOW Current 150 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 11. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 12. All loading with 50 ohms to VCC-2.0 volts. 100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 13.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 30 40 50 30 40 50 30 40 50 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 14.) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 14.) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV IIH Input HIGH Current 150 µA IIL Input LOW Current 150 0.5 150 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 13. Input and output parameters vary 1:1 with VCC. 14. All loading with 50 ohms to VCC-2.0 volts. http://onsemi.com 126 MC10EP35, MC100EP35 AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 15.) -40 °C Symbol Characteristic fmax Maximum Frequency (See Figure 2. Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tRR Min Typ 25°C Max Min >3 Typ 85°C Max Min Typ >3 >3 400 Reset Recovery 150 tS tH Setup Time Hold Time tPW Minimum Pulse width R, CLK to Q, Q GHz tJITTER Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) tr tf Output Rise/Fall Times (20% - 80%) 480 330 410 80 150 150 150 50 50 550 400 490 340 420 500 90 150 100 ps 150 150 50 50 150 150 80 80 ps 550 400 550 400 ps RESET Q, Q 70 0.2 <1 120 170 80 0.2 <1 130 180 100 0.2 <1 ps 150 200 ps 900 9 800 8 700 7 600 6 500 5 400 4 300 3 ÉÉ ÉÉ 2 200 ÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉ (JITTER) 100 1 0 1000 2000 3000 FREQUENCY (MHz) Figure 2. Fmax/Jitter http://onsemi.com 127 JITTEROUT ps (RMS) 15. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. VOUTpp (mV) Unit ps 320 0 Max 4000 5000 MC10EP35, MC100EP35 Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 128 MC100EP40 3.3V / 5VECL Differential Phase− Frequency Detector The MC100EP40 is a three- state phase- frequency detector intended for phase-locked loop applications which require a minimum amount of phase and frequency difference at lock. Advanced design significantly reduces the dead zone of the detector. For proper operation, the input edge rate of the R and V inputs should be less than 5 ns. The device is designed to work with a 3.3 V / 5 V power supply. When Reference (R) and Feedback (FB) inputs are unequal in frequency and/or phase the differential UP (U) and DOWN (D) outputs will provide pulse streams which when subtracted and integrated provide an error voltage for control of a VCO. When Reference (R) and Feedback (FB) inputs are 80 ps or less in phase difference, the Phase Lock Detect pin will indicate lock by a high state (VOH). The VTX (VTR, VTR, VTFB, VTFB) pins offer an internal termination network for 50 line impedance environment shown in Figure 2. An external sinking supply of VCC-2 V is required on VTX pin(s). If you short the two differential VTR and VTR (or VTFB and VTFB) together, you provide a 100 termination resistance that is compatible with LVDS signal receiver termination. For more information on termination of logic devices, see AND8020. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. For more information on Phase Lock Loop operation, refer to AND8040. Special considerations are required for differential inputs under No Signal conditions to prevent instability. • • • • • • • • • Maximum Frequency > 2 GHz Typical Fully Differential Advanced High Band Output Swing of 400 mV Theoretical Gain = 1.11 Trise 97 ps Typical, Ffall 70 ps Typical The 100 Series Contains Temperature Compensation PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V 50 Internal Termination Resistor Semiconductor Components Industries, LLC, 2002 October, 2002 - Rev. 7 http://onsemi.com MARKING DIAGRAM 20 20 100 EP40 ALYW 1 TSSOP-20 DT SUFFIX CASE 948E A L Y W 1 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device MC100EP40DT Package Shipping TSSOP-20 75 Units/Rail MC100EP40DTR2 TSSOP-20 129 2500 Tape & Reel Publication Order Number: MC100EP40/D MC100EP40 VCC PLD VCC 20 1 19 2 18 3 D D U U VCC NC VEE 17 16 15 14 13 12 11 4 VEE VTFB VTFB FB 5 6 7 FB R R 9 8 PIN DESCRIPTION 10 VTR VTR VBB Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 20-Lead Pinout (Top View) PIN FUNCTION U, U ECL Up Differential Outputs D, D ECL Down Differential Outputs FB, FB ECL Feedback Differential Inputs R, R ECL Reference Differential Inputs PLD ECL Phase Lock Detect Function VTR ECL Internal Termination for R VTR ECL Internal Termination for R VTFB ECL Internal Termination for FB VTFB ECL Internal Termination for FB VBB Reference Voltage Output VCC Positive Supply VEE Negative Supply NC No Connect VTR 50 U C A A R R U U A C S 50 U FF Reset A R VTR C Reset D B D VTFB Reset 50 (V) FB FB R B D FF S B 50 Reset B D D VTFB VBB Figure 2. Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor N/A Internal Input Pullup Resistor N/A ESD Protection Human Body Model Machine Model Charged Device Model Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Oxygen Index: 28 to 34 Transistor Count > 4 kV > 400 V > 2 kV Level 1 UL 94 V-0 @ 0.125 in 699 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 130 D D MC100EP40 MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode Input Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 20 TSSOP 20 TSSOP 140 100 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 20 TSSOP 23 to 41 °C/W Tsol Wave Solder <2 to 3 sec @ 248°C 265 °C VI VCC VI VEE 2. Maximum Ratings are those values beyond which device damage may occur. 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 100 128 160 100 130 160 110 140 170 mA U, U, B, B 2225 2350 2475 2275 2400 2525 2300 2425 2550 mV 1775 1355 1900 1480 2025 1605 1800 1355 1925 1480 2050 1605 1825 1355 1950 1480 2075 1605 mV PLD Characteristic IEE Power Supply Current VOH Output HIGH Voltage (Note 4) VOL Output LOW Voltage (Note 4) VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV VBB Output Voltage Reference 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A IIL Input LOW Current 1875 2.0 150 -150 1875 150 -150 -150 1875 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 131 MC100EP40 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Power Supply Current (Note 7) 100 128 160 100 130 160 110 140 170 mA VOH Output HIGH Voltage (Note 8) 3925 4050 4175 3975 4100 4225 4000 4125 4250 mV VOL Output LOW Voltage (Note 8) 3475 3055 3600 3180 3725 3305 3500 3055 3625 3180 3750 3305 3525 3055 3650 3180 3775 3305 mV VIH Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV VBB Output Voltage Reference 3475 3675 3475 3675 3475 3675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 9) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 A IIL Input LOW Current U, U, B, B PLD 3575 2.0 3575 150 -150 3575 150 -150 A -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 7. For (VCC - VEE) >3.3 V, 5 to 10 in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC-V EE operation at 3.3 V. 8. All loading with 50 to VCC-2.0 volts. 9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 10) -40 °C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Power Supply Current (Note 11) 100 128 160 100 130 160 110 140 170 mA VOH Output HIGH Voltage (Note 12) -1075 -950 -825 -1025 -900 -775 -1000 -875 -750 mV VOL Output LOW Voltage (Note 12) U, U, B, B PLD -1525 -1945 -1400 -1820 -1275 -1695 -1500 -1945 -1375 -1820 -1250 -1945 -1475 -1945 -1350 -1820 -1225 -1945 VIH Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV VBB Output Voltage Reference -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 13) 0.0 V IIH Input HIGH Current 150 A IIL Input LOW Current Symbol Characteristic mV -1425 VEE+2.0 0.0 VEE+2.0 150 -150 -1425 0.0 VEE+2.0 150 -150 -1425 -150 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 10. Input and output parameters vary 1:1 with VCC. 11. For (VCC - VEE) >3.3 V, 5 to 10 in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC-V EE operation at 3.3 V. 12. All loading with 50 to VCC-2.0 volts. 13. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 132 MC100EP40 AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 14) -40 °C Symbol Min Characteristic fmax Maximum Frequency (See Figure 3. Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tJITTER Cycle-to-Cycle Jitter (See Figure 3. Fmax/JITTER) VPP Input Voltage Swing (Differential) tr tf Output Rise/Fall Times (20% - 80%) 25°C Typ Max Min >2 FB to D/U R to D/U Q, Q 400 Typ 85°C Max Min Typ >2 525 700 0.2 <1 150 800 1200 60 85 130 410 >2 550 750 0.2 <1 150 800 1200 75 110 150 450 ps 0.2 <1 ps 150 800 1200 mV 80 120 160 ps 700 7 600 6 500 5 400 4 300 3 200 2 ÏÏ ÏÏ 1 (JITTER) 0 500 1000 1500 2000 2500 3000 3500 FREQUENCY (MHz) Figure 3. Fmax/Jitter Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 133 JITTEROUT ps (RMS) VOUTpp (mV) 8 0 GHz 775 800 ÏÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏÏ Unit 575 14. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. 100 Max MC10EP51, MC100EP51 3.3V / 5VECL D Flip− Flop with Reset and Differential Clock The MC10/100EP51 is a differential clock D flip-flop with reset. The device is functionally equivalent to the EL51 and LVEL51 devices. The reset input is an asynchronous, level triggered signal. Data enters the master portion of the flip-flop when the clock is LOW and is transferred to the slave, and thus the outputs, upon a positive transition of the clock. The differential clock inputs of the EP51 allow the device to be used as a negative edge triggered flip-flop. The differential input employs clamp circuitry to maintain stability under open input conditions. When left open, the CLK input will be pulled down to VEE and the CLK input will be biased at VCC/2. The 100 Series contains temperature compensation. • 350 ps Typical Propagation Delay • Maximum Frequency > 3 GHz Typical • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V • http://onsemi.com MARKING DIAGRAMS* 8 8 8 HEP51 ALYW 1 SO-8 D SUFFIX CASE 751 1 1 8 8 1 TSSOP-8 DT SUFFIX CASE 948R with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State 8 KP51 ALYW HP51 ALYW 1 1 H = MC10 K = MC100 A = Assembly Location • • Safety Clamp on Inputs KEP51 ALYW L = Wafer Lot Y = Year W = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Package Shipping MC10EP51D SO-8 98 Units/Rail MC10EP51DR2 SO-8 2500 Tape & Reel MC100EP51D SO-8 98 Units/Rail MC100EP51DR2 SO-8 2500 Tape & Reel MC10EP51DT TSSOP-8 100 Units/Rail MC10EP51DTR2 TSSOP-8 2500 Tape & Reel MC100EP51DT TSSOP-8 100 Units/Rail MC100EP51DTR2 TSSOP-8 Semiconductor Components Industries, LLC, 2001 April, 2001 - Rev. 3 134 2500 Tape & Reel Publication Order Number: MC10EP51/D MC10EP51, MC100EP51 PIN DESCRIPTION RESET 1 8 PIN VCC R D 2 7 D Q Flip-Flop CLK 3 6 Q FUNCTION CLK*, CLK* ECL Clock Inputs Reset* ECL Asynchronous Reset D* ECL Data Input Q, Q ECL Data Outputs VCC VEE Positive Supply Negative Supply * Pins will default LOW when left open. TRUTH TABLE CLK 4 5 Figure 1. 8-Lead Pinout (Top View) and Logic Diagram Q L H L CLK Z Z X R L L H D L H X VEE Z = LOW to HIGH Transition ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model > 2 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1.) Level 1 Flammability Rating Oxygen Index UL-94 code V-0 A 1/8” 28 to 34 Transistor Count 165 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2.) Symbol Parameter Condition 1 Condition 2 Rating Units 6 V -6 V 6 -6 V V 50 100 mA mA VCC PECL Mode Power Supply VEE = 0 V VEE NECL Mode Power Supply VCC = 0 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V Iout Output Current Continuous Surge TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 SOIC 41 to 44 °C/W θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 TSSOP 41 to 44 °C/W 265 °C Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 135 VI VCC VI VEE MC10EP51, MC100EP51 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 26 34 44 26 35 45 28 37 47 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 4.) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL VIH Output LOW Voltage (Note 4.) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV Input HIGH Voltage (Single Ended) 2090 2415 2155 2480 2215 2540 mV VIL VIHCMR Input LOW Voltage (Single Ended) 1365 1690 1430 1755 1490 1815 mV Input HIGH Voltage Common Mode Range (Differential) (Note 5.) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 µA Input LOW Current 150 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 ohms to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 26 34 44 26 35 45 28 37 47 mA Output HIGH Voltage (Note 7.) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL VIH Output LOW Voltage (Note 7.) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV Input HIGH Voltage (Single Ended) 3790 4115 3855 4180 3915 4240 mV VIL VIHCMR Input LOW Voltage (Single Ended) 3065 3390 3130 3455 3190 3515 mV Input HIGH Voltage Common Mode Range (Differential) (Note 8.) 2.0 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 µA IEE VOH Power Supply Current Input LOW Current 150 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 ohms to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 9.) -40 °C Symbol Characteristic Min 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 26 34 44 26 35 45 28 37 47 mA Output HIGH Voltage (Note 10.) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL VIH Output LOW Voltage (Note 10.) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV Input HIGH Voltage (Single Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL VIHCMR Input LOW Voltage (Single Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV 0.0 V IIH IIL Input HIGH Current 150 µA Input HIGH Voltage Common Mode Range (Differential) (Note 11.) Input LOW Current VEE+2.0 0.0 VEE+2.0 150 0.5 0.0 VEE+2.0 150 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 ohms to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 136 MC10EP51, MC100EP51 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 26 34 44 26 35 45 28 37 47 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 13.) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL VIH Output LOW Voltage (Note 13.) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV Input HIGH Voltage (Single Ended) 2075 2420 2075 2420 2075 2420 mV VIL VIHCMR Input LOW Voltage (Single Ended) 1355 1675 1355 1675 1355 1675 mV Input HIGH Voltage Common Mode Range (Differential) (Note 14.) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 µA Input LOW Current 150 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 ohms to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 26 34 44 26 35 45 28 37 47 mA Output HIGH Voltage (Note 16.) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL VIH Output LOW Voltage (Note 16.) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV Input HIGH Voltage (Single Ended) 3775 4120 3775 4120 3775 4120 mV VIL VIHCMR Input LOW Voltage (Single Ended) 3055 3375 3055 3375 3055 3375 mV Input HIGH Voltage Common Mode Range (Differential) (Note 17.) 2.0 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 µA IEE VOH Power Supply Current Input LOW Current 150 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 ohms to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 18.) -40 °C Symbol Characteristic Min 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 26 34 44 26 35 45 28 37 47 mA Output HIGH Voltage (Note 19.) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL VIH Output LOW Voltage (Note 19.) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV Input HIGH Voltage (Single Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL VIHCMR Input LOW Voltage (Single Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV 0.0 V IIH IIL Input HIGH Current 150 µA Input HIGH Voltage Common Mode Range (Differential) (Note 20.) Input LOW Current VEE+2.0 0.0 VEE+2.0 150 0.5 0.0 VEE+2.0 150 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 ohms to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 137 MC10EP51, MC100EP51 AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21.) -40 °C Symbol Characteristic Min Typ 25°C Max Min >3 Typ 85°C Max Min >3 Typ Max fmax Maximum Frequency (See Figure 2. Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential CLK, CLK to Q, Q 10 100 250 275 300 340 350 425 270 300 320 375 370 450 300 350 350 425 420 500 RESET to Q, Q 300 380 450 325 400 475 350 425 500 Reset Recovery 150 150 tS tH Setup Time Hold Time 100 100 100 100 tPW Minimum Pulse Width 500 150 ps 80 40 100 100 ps 440 500 ps RESET 500 Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) 440 .2 <1 .2 <1 tr Output Rise/Fall Times Q, Q tf (20% - 80%) 70 120 170 80 130 180 100 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. 1100 11 Measured Simulated VOUTpp (mV) 900 10 9 800 8 700 7 600 6 500 5 ÉÉ ÉÉ 400 4 300 3 ÉÉÉÉÉ ÉÉÉÉÉ 200 2 100 0 1000 JITTEROUT ps (RMS) 1000 0 GHz ps tRR tJITTER >3 Unit 1 (JITTER) 2000 3000 4000 FREQUENCY (MHz) Figure 2. Fmax/Jitter http://onsemi.com 138 5000 6000 440 .2 <1 150 200 ps ps MC10EP51, MC100EP51 Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 139 MC10EP52, MC100EP52 3.3V / 5VECL Differential Data and Clock D Flip−Flop The MC10EP/100EP52 is a differential data, differential clock D flip- flop. The device is pin and functionally equivalent to the EL52 device. Data enters the master portion of the flip-flop when the clock is LOW and is transferred to the slave, and thus the outputs, upon a positive transition of the clock. The differential clock inputs of the EP52 allow the device to also be used as a negative edge triggered device. The EP52 employs input clamping circuitry so that under open input conditions (pulled down to VEE) the outputs of the device will remain stable. The 100 Series contains temperature compensation. • • • • • • • 330 ps Typical Propagation Delay http://onsemi.com MARKING DIAGRAMS* 8 8 8 HEP52 ALYW 1 SO-8 D SUFFIX CASE 751 1 KEP52 ALYW 1 Maximum Frequency > 4 GHz Typical 8 PECL Mode: VCC = 3.0 V to 5.5 V with VEE = 0 V 8 8 NECL Mode: VCC = 0 V with VEE = -3.0 V to -5.5 V 1 TSSOP-8 DT SUFFIX CASE 948R Open Input Default State Safety Clamp on Inputs KP52 ALYW HP52 ALYW 1 1 Q Output Will Default LOW with Inputs Open or at VEE H = MC10 K = MC100 A = Assembly Location L = Wafer Lot Y = Year W = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Semiconductor Components Industries, LLC, 2001 April, 2001 - Rev. 2 140 Package Shipping MC10EP52D SO-8 98 Units/Rail MC10EP52DR2 SO-8 2500 Tape & Reel MC100EP52D SO-8 98 Units/Rail MC100EP52DR2 SO-8 2500 Tape & Reel MC10EP52DT TSSOP-8 100 Units/Rail MC10EP52DTR2 TSSOP-8 2500 Tape & Reel MC100EP52DT TSSOP-8 100 Units/Rail MC100EP52DTR2 TSSOP-8 2500 Tape & Reel Publication Order Number: MC10EP52/D MC10EP52, MC100EP52 PIN DESCRIPTION D D 1 8 D 2 7 VCC Q Flip-Flop CLK 3 6 Q FUNCTION PIN CLK*, CLK* ECL Clock Inputs D*, D* ECL Data Input Q, Q ECL Data Outputs VCC Positive Supply VEE Negative Supply * Pins will default LOW when left open. TRUTH TABLE CLK 4 5 VEE Figure 4. 8-Lead Pinout (Top View) and Logic Diagram D CLK Q L H Z Z L H Z = LOW to HIGH Transition ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1.) Level 1 Flammability Rating Oxygen Index UL-94 code V-0 A 1/8” 28 to 34 Transistor Count 155 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2.) Parameter Symbol Condition 1 Condition 2 Rating Units 6 V -6 V 6 -6 V V 50 100 mA mA ± 0.5 mA -40 to +85 °C VCC PECL Mode Power Supply VEE = 0 V VEE NECL Mode Power Supply VCC = 0 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V Iout Output Current Continuous Surge IBB VBB Sink/Source TA Operating Temperature Range Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 SOIC 41 to 44 °C/W θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 TSSOP 41 to 44 °C/W 265 °C Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 141 VI VCC VI VEE MC10EP52, MC100EP52 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 26 34 44 26 35 45 28 37 47 mA Output HIGH Voltage (Note 4.) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL VIH Output LOW Voltage (Note 4.) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV Input HIGH Voltage (Single Ended) 2090 2415 2155 2480 2215 2540 mV VIL VIHCMR Input LOW Voltage (Single Ended) 1365 1690 1430 1755 1490 1815 mV Input HIGH Voltage Common Mode Range (Differential) (Note 5.) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 µA IEE VOH Power Supply Current Input LOW Current 150 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 ohms to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6.) -40 °C Symbol Characteristic Min 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 26 34 44 26 35 45 28 37 47 mA Output HIGH Voltage (Note 7.) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL VIH Output LOW Voltage (Note 7.) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV Input HIGH Voltage (Single Ended) 3790 4115 3855 4180 3915 4240 mV VIL VIHCMR Input LOW Voltage (Single Ended) 3065 3390 3130 3455 3190 3515 mV Input HIGH Voltage Common Mode Range (Differential) (Note 8.) 2.0 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 µA Input LOW Current 150 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 ohms to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 9.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 26 34 44 26 35 45 28 37 47 mA Output HIGH Voltage (Note 10.) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV Output LOW Voltage (Note 10.) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV Input HIGH Voltage (Single Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL VIHCMR Input LOW Voltage (Single Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV 0.0 V IIH IIL Input HIGH Current 150 µA IEE VOH Power Supply Current VOL VIH Input HIGH Voltage Common Mode Range (Differential) (Note 11.) Input LOW Current VEE+2.0 0.0 VEE+2.0 150 0.5 0.0 VEE+2.0 150 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 ohms to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 142 MC10EP52, MC100EP52 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 26 34 44 26 35 45 28 37 47 mA Output HIGH Voltage (Note 13.) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV Output LOW Voltage (Note 13.) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single Ended) 1355 1675 1355 1675 1355 1675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14.) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 µA IIL Input LOW Current IEE Power Supply Current VOH VOL 150 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 ohms to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 26 34 44 26 35 45 28 37 47 mA Output HIGH Voltage (Note 16.) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV Output LOW Voltage (Note 16.) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single Ended) 3055 3375 3055 3375 3055 3375 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 17.) 2.0 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current IEE Power Supply Current VOH VOL 150 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 ohms to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 18.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 26 34 44 26 35 45 28 37 47 mA Output HIGH Voltage (Note 19.) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV Output LOW Voltage (Note 19.) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 20.) 0.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current IEE Power Supply Current VOH VOL VEE+2.0 0.0 VEE+2.0 150 0.5 0.0 VEE+2.0 150 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 ohms to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 143 MC10EP52, MC100EP52 AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21.) -40 °C Symbol Characteristic Min fmax Maximum Toggle Frequency (See Figure 5. Fmax/Jitter) tPLH, tPHL Propagation Delay to Output Differential 25°C Typ Max Min >4 Typ 85°C Max Min >4 Typ Max >4 Unit GHz ps CLK, CLK->Q, Q tS tH Setup Time Hold Time tJITTER Cycle-to-Cycle Jitter (See Figure 5. Fmax/Jitter) VPP Input Voltage Swing (Diff.) 250 300 350 280 50 0 330 380 310 50 0 1200 ps 150 800 1200 mV tr Output Rise/Fall Times tf (20% - 80%) Q, Q 70 110 170 80 120 180 90 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. 130 200 150 .2 <1 800 1200 ps 1000 10 900 9 800 8 700 7 600 6 500 5 400 4 300 3 ÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉ ÉÉ ÉÉ ÉÉ 200 100 2 1 (JITTER) 0 0 1000 2000 3000 4000 FREQUENCY (MHz) Figure 5. Fmax/Jitter http://onsemi.com 144 ps JITTEROUT ps (RMS) 800 50 0 <1 VOUTpp (mV) <1 410 .2 150 .2 360 5000 6000 MC10EP52, MC100EP52 Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 6. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 145 MC10EP56, MC100EP56 3.3V / 5VECL Dual Differential 2:1 Multiplexer The MC10/100EP56 is a dual, fully differential 2:1 multiplexer. The differential data path makes the device ideal for multiplexing low skew clock or other skew sensitive signals. Multiple VBB pins are provided. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. The device features both individual and common select inputs to address both data path and random logic applications. The 100 Series contains temperature compensation. • 360 ps Typical Propagation Delays • Maximum Frequency > 3 GHz Typical • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V • • • • • • http://onsemi.com MARKING DIAGRAMS* 20 20 xxxx EP56 ALYW 1 TSSOP-20 DT SUFFIX CASE 948E 1 20 20 with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State MC100EP56 AWLYYWW 1 SO-20 DW SUFFIX CASE 751D 1 Safety Clamp on Inputs Separate and Common Select Q Output Will Default LOW with Inputs Open or at VEE VBB Outputs xxx A L, WL Y, YY W, WW = = = = = MC10 or 100 Assembly Location Wafer Lot Year Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 10 146 Package Shipping MC10EP56DT TSSOP-20 75 Units/Rail MC10EP56DTR2 TSSOP-20 2500 Tape & Reel MC100EP56DT TSSOP-20 75 Units/Rail MC100EP56DTR2 TSSOP-20 2500 Tape & Reel MC100EP56DW SO-20 38 Units/Rail MC100EP56DWR2 SO-20 1000 Tape & Reel Publication Order Number: MC10EP56/D MC10EP56, MC100EP56 Q0 Q0 SEL0 20 19 18 17 1 1 D0a COM_SEL VCC PIN DESCRIPTION SEL1 VCC Q1 Q1 VEE D0a* - D1a* 16 15 14 13 12 11 D0a* - D1a* ECL Input Data a Invert D0b* - D1b* ECL Input Data b D0b* - D1b* ECL Input Data b Invert 0 2 3 1 4 D0a VBBO D0b 5 D0b 6 0 7 8 9 D1a D1a VBB1 D1b 10 D1b PIN FUNCTION ECL Input Data a SEL0* - SEL1* ECL Indiv. Select Input COM_SEL* ECL Common Select Input VBB0,VBB1 Q0 - Q1 ECL True Outputs Q0 - Q1 ECL Inverted Outputs VCC VEE Positive Supply Output Reference Voltage Negative Supply * Pins will default LOW when left open. TRUTH TABLE Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. SEL0 SEL1 COM_SEL Q0, Q0 Q1, Q1 X L L H H X L H H L H L L L L a b b a a a b a a b Figure 1. 20-Lead Package (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Oxygen Index: 28 to 34 Transistor Count > 2 kV > 200 V > 2 kV Level 1 UL 94 V-0 @ 0.125 in 140 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 147 MC10EP56, MC100EP56 MAXIMUM RATINGS (Note 2) Rating Units VCC PECL Mode Power Supply Parameter VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 20 TSSOP 20 TSSOP 140 100 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 20 TSSOP 23 to 41 °C/W JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 20 SOIC 20 SOIC 90 60 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 20 SOIC 33 to 35 °C/W 265 °C Symbol Condition 1 Condition 2 VI VCC VI VEE Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 50 61 75 50 63 75 55 65 78 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single-Ended) 1365 1690 1460 1755 1490 1815 mV VBB Output Voltage Reference 1790 1990 1855 2055 1915 2115 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A 1890 2.0 150 1955 150 2015 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 148 MC10EP56, MC100EP56 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 50 61 75 50 63 75 55 65 78 mA Output HIGH Voltage (Note 7) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV VBB Output Voltage Reference 3490 3690 3555 3755 3615 3815 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 A IEE Power Supply Current VOH 3590 2.0 3655 150 3715 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 9) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 50 61 75 50 63 75 55 65 78 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 10) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL Output LOW Voltage (Note 10) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV VIH Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV VBB Output Voltage Reference -1510 -1310 -1445 -1245 -1385 -1 185 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11) 0.0 V IIH Input HIGH Current 150 A -1410 VEE+2.0 0.0 150 -1345 VEE+2.0 0.0 150 -1285 VEE+2.0 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 149 MC10EP56, MC100EP56 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 50 61 75 50 63 77 55 66 80 mA Output HIGH Voltage (Note 13) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 13) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV VBB Output Voltage Reference 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A IEE Power Supply Current VOH 1875 2.0 1875 150 1875 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 50 61 75 50 63 77 55 66 80 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 16) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 16) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV VBB Output Voltage Reference 3475 3675 3475 3675 3475 3675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 17) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 A 3575 2.0 150 3575 150 3575 IIL Input LOW Current 0.5 0.5 0.50 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 150 MC10EP56, MC100EP56 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 18) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 50 61 75 50 63 77 55 66 80 mA Output HIGH Voltage (Note 19) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 19) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV VBB Output Voltage Reference -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 20) 0.0 V IIH Input HIGH Current 150 A IEE Power Supply Current VOH -1425 VEE+2.0 0.0 -1425 VEE+2.0 150 0.0 -1425 VEE+2.0 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21) -40 °C Symbol Characteristic fmax Maximum Frequency (See Figure 2 Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential Min Typ 25°C Max Min >3 Typ 85°C Max Min >3 Typ Max >3 Unit GHz ps D to Q, Q SEL to Q, Q COM_SEL to Q, Q 250 250 250 340 340 350 450 450 450 270 270 270 360 340 360 470 470 470 300 300 300 400 400 400 500 500 500 tSKEW Within-Device Skew (Note 22) Device to Device Skew 50 100 200 50 100 200 50 100 200 ps tJITTER Cycle-to-Cycle Jitter (See Figure 2 Fmax/JITTER) 0.2 <1 0.2 <1 0.2 <1 ps VPP Input Voltage Swing (Differential) 150 800 1200 150 800 1200 150 800 1200 mV tr tf Output Rise/Fall Times (20% - 80%) 70 120 170 80 130 180 100 150 230 ps Q, Q 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. 22. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. http://onsemi.com 151 1000 10 900 9 800 8 700 7 600 6 500 5 400 4 300 3 ÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉ 200 2 (JITTER) 100 1 ÉÉ ÉÉ 0 0 1000 2000 3000 4000 5000 6000 FREQUENCY (MHz) Figure 2. Fmax/Jitter Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 152 JITTEROUT ps (RMS) VOUTpp (mV) MC10EP56, MC100EP56 MC10EP57, MC100EP57 3.3V / 5VECL 4:1 Differential Multiplexer The MC10/100EP57 is a fully differential 4:1 multiplexer. By leaving the SEL1 line open (pulled LOW via the input pulldown resistors) the device can also be used as a differential 2:1 multiplexer with SEL0 input selecting between D0 and D1. The fully differential architecture of the EP57 makes it ideal for use in low skew applications such as clock distribution. The SEL1 is the most significant select line. The binary number applied to the select inputs will select the same numbered data input (i.e., 00 selects D0). Multiple VBB outputs are provided. The VBB pin, an internally generated voltage supply, is available to this device only. For single- ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. The 100 Series contains temperature compensation. http://onsemi.com MARKING DIAGRAM 20 20 xxx EP57 ALYW 1 TSSOP-20 DT SUFFIX CASE 948E xxx A L Y W • 375 ps Typical Propagation Delays • Maximum Frequency > 2 GHz Typical • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V 1 = MC10 or 100 = Assembly Location = Wafer Lot = Year = Work Week with VEE = 0 V • NECL Mode Operating Range: VCC = 0 V • • • • • *For additional information, see Application Note AND8002/D with VEE = -3.0 V to -5.5 V Open Input Default State Safety Clamp on Inputs Q Output will default LOW with inputs open or at VEE ORDERING INFORMATION VBB Outputs Useful as Either 4:1 or 2:1 Multiplexer Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 8 Device 153 Package Shipping MC10EP57DT TSSOP- 20 75 Units/Rail MC10EP57DTR2 TSSOP- 20 2500 Tape & Reel MC100EP57DT TSSOP- 20 75 Units/Rail MC100EP57DTR2 TSSOP- 20 2500 Tape & Reel Publication Order Number: MC10EP57/D MC10EP57, MC100EP57 VCC SEL1 SEL0 VCC Q Q VCC 20 19 18 17 16 15 14 13 12 11 VBB1 VBB2 VEE 4:1 1 2 3 4 5 6 7 8 9 10 VCC D0 D0 D1 D1 D2 D2 D3 D3 VEE Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 20-Lead Package (Top View) and Logic Diagram PIN DESCRIPTION FUNCTION TABLE FUNCTION PIN D0-3*, D0-3* ECL Diff. Data Inputs SEL0*, 1* ECL Mux Select Inputs VBB1, VBB2 ECL Reference Output Voltage Q, Q ECL Data Outputs VCC Positive Supply VEE Negative Supply SEL1 SEL0 DATA OUT L L H H L H L H D0, D0 D1, D1 D2, D2 D3, D3 * Pins will default LOW when left open. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Oxygen Index: 28 to 34 Transistor Count > 4 kV > 100 V > 2 kV Level 1 UL 94 V-0 @ 0.125 in 584 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 154 MC10EP57, MC100EP57 MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 20 TSSOP 20 TSSOP 140 100 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 20 TSSOP 23 to 41 °C/W 265 °C VI VCC VI VEE Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 40 52 65 40 52 65 40 52 65 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single-Ended) 1365 1690 1460 1755 1490 1815 mV VBB Output Voltage Reference 1735 1935 1800 2000 1860 2060 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A 1835 2.0 150 1900 150 1960 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 155 MC10EP57, MC100EP57 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 40 52 65 40 52 65 40 52 65 mA Output HIGH Voltage (Note 7) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV VBB Output Voltage Reference 3435 3635 3500 3700 3560 3760 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 A IEE Power Supply Current VOH 3535 2.0 3600 150 3660 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 9) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 40 52 65 40 52 65 40 52 65 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 10) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL Output LOW Voltage (Note 10) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV VIH Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV VBB Output Voltage Reference -1565 -1365 -1500 -1300 -1440 -1240 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11) 0.0 V IIH Input HIGH Current 150 A -1465 VEE+2.0 0.0 150 -1400 VEE+2.0 0.0 150 -1340 VEE+2.0 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 156 MC10EP57, MC100EP57 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 40 52 65 40 52 65 40 52 65 mA Output HIGH Voltage (Note 13) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 13) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV VBB Output Voltage Reference 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A IEE Power Supply Current VOH 1875 2.0 1875 150 1875 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 40 52 65 40 52 65 40 52 65 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 16) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 16) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV VBB Output Voltage Reference 3475 3675 3475 3675 3475 3675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 17) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 A 3575 2.0 150 3575 150 3575 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 157 MC10EP57, MC100EP57 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 18) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 40 52 65 40 52 65 40 52 65 mA Output HIGH Voltage (Note 19) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 19) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV VBB Output Voltage Reference -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 20) 0.0 V IIH Input HIGH Current 150 A IEE Power Supply Current VOH -1425 VEE+2.0 0.0 -1425 VEE+2.0 150 0.0 -1425 VEE+2.0 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21) -40 °C Symbol Characteristic fmax Maximum Frequency (See Figure 2. Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential Min Device to Device Skew (Note 22) tJITTER Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) VPP Input Voltage Swing (Differential) tr tf Output Rise/Fall Times (20% - 80%) Max Min >3 Typ 85°C Max Min >3 Typ Max >3 Unit GHz ps D to Q, Q COM_SEL, SEL to Q, Q tSKEW Typ 25°C 250 300 350 400 450 500 275 320 375 420 200 Q, Q 0.2 <1 150 800 1200 70 120 170 475 520 320 320 420 450 200 520 575 200 ps 0.2 <1 ps 0.2 <1 150 800 1200 150 800 1200 mV 70 140 200 70 150 220 ps 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. 22. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. http://onsemi.com 158 10 900 9 800 8 700 7 600 6 500 5 400 4 VOUTpp (mV) 1000 300 ÉÉ ÉÉ 3 ÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉ 2 200 100 0 0 1000 2000 1 (JITTER) 3000 4000 5000 6000 FREQUENCY (MHz) Figure 2. Fmax/Jitter Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 159 JITTEROUT ps (RMS) MC10EP57, MC100EP57 MC10EP58, MC100EP58 3.3V / 5VECL 2:1 Multiplexer The MC10/100EP58 is a 2:1 multiplexer. The device is pin and functionally equivalent to the EL58 and LVEL58 devices. The 100 Series contains temperature compensation. • 310 ps Typical Propagation Delay • Maximum Frequency > 3 GHz Typical • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V • http://onsemi.com MARKING DIAGRAMS* with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State • • Q Output Will Default LOW with Inputs Open or at VEE 8 8 8 HEP58 ALYW 1 SO-8 D SUFFIX CASE 751 1 1 8 8 8 HP58 ALYW 1 TSSOP-8 DT SUFFIX CASE 948R KEP58 ALYW 1 KP58 ALYW 1 H = MC10 K = MC100 A = Assembly Location L = Wafer Lot Y = Year W = Work Week ORDERING INFORMATION Device Semiconductor Components Industries, LLC, 2001 June, 2001 - Rev. 4 160 Package Shipping MC10EP58D SO-8 98 Units/Rail MC10EP58DR2 SO-8 2500 Tape & Reel MC100EP58D SO-8 98 Units/Rail MC100EP58DR2 SO-8 2500 Tape & Reel MC10EP58DT TSSOP-8 100 Units/Rail MC10EP58DTR2 TSSOP-8 2500 Tape & Reel MC100EP58DT TSSOP-8 100 Units/Rail MC100EP58DTR2 TSSOP-8 2500 Tape & Reel Publication Order Number: MC10EP58/D MC10EP58, MC100EP58 PIN DESCRIPTION NC Da 1 8 2 7 1 VCC 3 6 0 FUNCTION Da*, Db* ECL Data Inputs SEL* ECL Select Inputs Q, Q ECL Data Outputs VCC Positive Supply VEE Negative Supply NC No Connect Q MUX Db PIN Q * Pins will default LOW when left open. SEL 4 5 VEE TRUTH TABLE SEL Data H L a b Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1.) Level 1 Flammability Rating Oxygen Index UL-94 code V-0 A 1/8” 28 to 34 Transistor Count 41 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2.) Symbol Parameter Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI Input PECL Mode In ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 SOIC 41 to 44 °C/W θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 TSSOP 41 to 44 °C/W 265 °C Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 161 VI VCC VI VEE MC10EP58, MC100EP58 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 37 20 30 39 22 31 40 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 4.) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4.) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single Ended) 1365 1690 1460 1755 1490 1815 mV IIH Input HIGH Current 150 µA 150 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 ohms to VCC-2.0 volts. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 5.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 37 20 30 39 22 31 40 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 6.) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 6.) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single Ended) 3065 3390 3130 3455 3190 3515 mV IIH Input HIGH Current 150 µA 150 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 5. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 6. All loading with 50 ohms to VCC-2.0 volts. 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 7.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 37 20 30 39 22 31 40 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 8.) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL Output LOW Voltage (Note 8.) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV VIH Input HIGH Voltage (Single Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV IIH Input HIGH Current 150 µA 150 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 7. Input and output parameters vary 1:1 with VCC. 8. All loading with 50 ohms to VCC-2.0 volts. http://onsemi.com 162 MC10EP58, MC100EP58 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 9.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 37 20 31 39 25 33 42 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 10.) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 10.) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single Ended) 1355 1675 1355 1675 1355 1675 mV IIH Input HIGH Current 150 µA 150 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 10. All loading with 50 ohms to VCC-2.0 volts. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 11.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 37 20 31 39 25 33 42 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 12.) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 12.) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single Ended) 3055 3375 3055 3375 3055 3375 mV IIH Input HIGH Current 150 µA 150 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 11. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 12. All loading with 50 ohms to VCC-2.0 volts. 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 13.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 37 20 31 39 25 33 42 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 14.) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 14.) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV IIH Input HIGH Current 150 µA 150 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 13. Input and output parameters vary 1:1 with VCC. 14. All loading with 50 ohms to VCC-2.0 volts. http://onsemi.com 163 MC10EP58, MC100EP58 AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 15.) -40 °C Symbol Characteristic Min fmax Maximum Frequency (See Figure 2. Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tJITTER Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) VPP Input Voltage Swing (Differential) 25°C Typ Max Min >3 Typ 85°C Max Min >3 Typ Max >3 Unit GHz ps 200 0.2 <2 ps 150 800 1200 mV tr Output Rise/Fall Times Q, Q 70 120 170 80 130 180 100 tf (20% - 80%) 15. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. 150 200 ps 150 280 380 0.2 <2 800 1200 210 150 310 410 0.2 <2 800 1200 220 1000 10 900 9 800 8 700 7 600 6 500 5 400 4 300 3 200 2 ÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉ 100 ÉÉ ÉÉ ÉÉ (JITTER) 1 0 0 1000 2000 3000 4000 FREQUENCY (MHz) Figure 2. Fmax/Jitter http://onsemi.com 164 JITTEROUT ps (RMS) 420 VOUTpp (mV) 340 D to Q,Q SEL to Q,Q 5000 6000 MC10EP58, MC100EP58 Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 165 MC10EP89 3.3V / 5VECL Coaxial Cable Driver The MC10EP89 is a differential fanout gate specifically designed to drive coaxial cables. The device is especially useful in digital video broadcasting applications; for this application, since the system is polarity free, each output can be used as an independent driver. The driver produces swings 70% larger than a standard ECL output. When driving a coaxial cable, proper termination is required at both ends of the line to minimize signal loss. The 1.6 V (5 V) and 1.4 V (3.3 V) swing allow for termination at both ends of the cable, while maintaining a 800 mV (5 V) and 700 mV (3.3 V) swing at the receiving end of the cable. Because of the larger output swings, the device cannot be terminated into the standard VCC-2.0 V. All of the DC parameters are tested with a 50 Ω to VCC-3.0 V load. The driver accepts a standard differential ECL input and can run off of the digital video broadcast standard -5.0 V supply. • • • • • http://onsemi.com MARKING DIAGRAMS* 8 SO-8 D SUFFIX CASE 751 8 1 1 8 310 ps Typical Propagation Delay TSSOP-8 DT SUFFIX CASE 948R 8 Maximum Frequency > 2 GHz Typical HEP89 ALYW 1 HP89 ALYW 1 1.6 V (5 V) and 1.4 V (3.3 V) VOUTpp Swing PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State • • Safety Clamp on Inputs • Q Output Will Default LOW with Inputs Open or at VEE A = Assembly Location L = Wafer Lot Y = Year W = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 5 166 Package Shipping MC10EP89D SO-8 98 Units/Rail MC10EP89DR2 SO-8 2500 Tape & Reel MC10EP89DT TSSOP-8 100 Units/Rail MC10EP89DTR2 TSSOP-8 2500 Tape & Reel Publication Order Number: MC10EP89/D MC10EP89 Q0 Q0 1 8 2 7 PIN DESCRIPTION VCC D PIN FUNCTION D*, D* ECL Data Inputs Q0, Q1, Q0, Q1 ECL Data Outputs VCC VEE Positive Supply Negative Supply * Pins will default LOW when left open. Q1 3 6 D Q1 4 5 VEE Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Level 1 Oxygen Index: 28 to 34 UL-94 V-0 @ 0.125 in Transistor Count 152 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W θJC Thermal Resistance (Junction-to-Case) std bd 8 SOIC 41 to 44 °C/W θJA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W θJC Thermal Resistance (Junction-to-Case) std bd 8 TSSOP 41 to 44 °C/W 265 °C Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 167 VI VCC VI VEE MC10EP89 DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 22 28 34 24 32 38 28 34 40 mA VOH Output HIGH Voltage (Note 4) 2080 2180 2280 2150 2250 2350 2225 2325 2425 mV VOL Output LOW Voltage (Note 4) 620 720 820 630 730 830 670 770 870 mV VIH Input HIGH Voltage (Single-Ended) 2070 2410 2170 2490 2240 2580 mV VIL Input LOW Voltage (Single-Ended) 1350 1800 1350 1820 1350 1855 mV 2.0 3.3 2.0 3.3 2.0 3.3 V 150 µA VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) IIH Input HIGH Current 150 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. 4. All loading with 50 to VCC-3.0 volts. 5. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 27 34 41 30 37 44 32 39 46 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 7) 3780 3880 3980 3850 3950 4050 3925 4025 4125 mV VOL Output LOW Voltage (Note 7) 2075 2225 2375 2060 2210 2360 2090 2240 2390 mV VIH Input HIGH Voltage (Single-Ended) 3770 4110 3870 4190 3940 4280 mV VIL Input LOW Voltage (Single-Ended) 3050 3500 3050 3520 3050 3555 mV 2.0 5.0 2.0 5.0 2.0 5.0 V 150 µA VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) IIH Input HIGH Current 150 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. 7. All loading with 50 to VCC-3.0 volts. 8. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 168 MC10EP89 DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -3.3 V (Note 9) -40 °C Symbol Characteristic Min 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 22 28 34 24 32 38 28 34 40 mA VOH Output HIGH Voltage (Note 10) -1220 -1 120 -1020 -1 150 -1050 -950 -1075 -975 -875 mV VOL Output LOW Voltage (Note 10) -2680 -2580 -2480 -2670 -2570 -2470 -2630 -2530 -2430 mV VIH Input HIGH Voltage (Single-Ended) -1230 -890 -1 130 -810 -1060 -720 mV VIL Input LOW Voltage (Single-Ended) -1950 -1500 -1950 -1480 -1950 -1445 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11) 0.0 V IIH Input HIGH Current 150 µA -1.3 0.0 -1.3 0.0 150 -1.3 150 IIL Input LOW Current D 0.5 0.5 0.5 µA NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 to VCC-3.0 volts. 11. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. DC CHARACTERISTICS, NECL VCC = 0V, VEE = -5.2 (Note 12) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 25 32 39 28 35 42 31 38 45 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 13) -1220 -1 120 -1020 -1 150 -1050 -950 -1075 -975 -875 mV VOL Output LOW Voltage (Note 13) -2950 -2800 -2650 -2950 -2850 -2650 -2950 -2800 -2650 mV VIH Input HIGH Voltage (Single-Ended) -1230 -890 -1 130 -810 -1060 -720 mV VIL Input LOW Voltage (Single-Ended) -1950 -1500 -1950 -1480 -1950 -1445 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14) 0.0 V IIH Input HIGH Current 150 µA -3.2 0.0 150 -3.2 0.0 150 -3.2 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. 13. All loading with 50 to VCC-3.0 volts. 14. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 169 MC10EP89 AC CHARACTERISTICS VCC = 0V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 15) -40 °C Symbol Characteristic fmax Maximum Toggle (See Figure 2 Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tSKEW Min 25°C Typ Max Min >2 220 Typ Max Min Typ >2 280 340 Within Device Skew Q, Q Device to Device Skew (Note 16) 5.0 tJITTER Cycle-to-Cycle Jitter (See Figure 2 Fmax/JITTER) VPP Input Voltage Swing (Differential) tr tf Output Rise/Fall Times (20% - 80%) Q, Q 85°C 250 >2 310 370 20 120 5.0 .5 <1 150 800 1200 175 250 325 270 ps 20 120 5.0 20 120 ps .5 <1 .5 <1 ps 150 800 1200 150 800 1200 mV 200 275 350 225 295 375 ps 9 1400 7 1200 6 3.3 V 1000 5 800 4 600 3 ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉ ÉÉ ÉÉ 400 2 (JITTER) 200 1 0 2000 3000 FREQUENCY (MHz) Figure 2. Fmax/Jitter http://onsemi.com 170 JITTEROUT ps (RMS) VOUTpp (mV) 8 5V 1000 GHz 390 1800 0 Unit 330 15. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-3.0 V. 16. Skew is measured between outputs under identical transitions. 1600 Max 4000 5000 MC10EP89 DC BLOCKING CAPACITORS 75 Ω 75 Ω COAX 0.1 µF 75Ω EP89 75 Ω 150 Ω 150 Ω 75 Ω COAX 0.1 µF VEE Cable Driver Termination Configuration Q D Receiver Device Driver Device D Q 50 50 V TT V TT = V CC - 3.0 V Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) Figure 3. Termination Configurations http://onsemi.com 171 75 Ω MC10EP90, MC100EP90 − 3.3V / −5VTriple ECL Input to LVPECL/PECL Output Translator The MC10/100EP90 is a TRIPLE ECL TO LVPECL/PECL translator. The device receives differential LVECL or ECL signals and translates them to differential LVPECL or PECL output signals. A VBB output is provided for interfacing with Single- Ended LVECL or ECL signals at the input. If a Single- Ended input is to be used the VBB output should be connected to the D input. The active signal would then drive the D input. When used the VBB output should be bypassed to ground by a 0.01 F capacitor. The VBB output is designed to act as the switching reference for the EP90 under Single- Ended input switching conditions, as a result this pin can only source/sink up to 0.5 mA of current. To accomplish the level translation the EP90 requires three power rails. The VCC supply should be connected to the positive supply, and the VEE connected to the negative supply. The 100 Series contains temperature compensation. http://onsemi.com MARKING DIAGRAM* 20 1 1 xxx A L Y W • 260 ps Typical Propagation Delay • Maximum Frequency > 3 GHz Typical • Voltage Supplies VCC = 3.0 V to 5.5 V, VEE = -3.0 V to -5.5 V, • • • • • GND = 0 V Open Input Default State XXXX EP90 ALYW TSSOP-20 DT SUFFIX CASE 948E 20 = MC10 or 100 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D Safety Clamp on Inputs Fully Differential Design Q Output Will Default LOW with Inputs Open or at VEE VBB Output ORDERING INFORMATION Device Package MC10EP90DT TSSOP-20 75 Units/Rail MC10EP90DTR2 TSSOP-20 2500 Tape & Reel MC100EP90DT TSSOP-20 75 Units/Rail MC100EP90DTR2 TSSOP-20 Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 3 172 Shipping 2500 Tape & Reel Publication Order Number: MC10EP90/D MC10EP90, MC100EP90 VCC Q0 Q0 GND Q1 Q1 GND Q2 Q2 VCC 20 19 18 17 16 15 14 13 12 11 PIN DESCRIPTION PIN FUNCTION Q(0:2), Q(0:2) Differential LVPECL or PECL Outputs D(0:2)*, D(0:2)* Differential LVECL or ECL Inputs LVPECL/ PECL LVPECL/ PECL ECL LVPECL/ PECL ECL ECL VCC Positive Supply GND Ground VEE Negative Supply VBB Output Reference Supply * Pins will default LOW when left open. FUNCTION TABLE 1 2 3 4 5 6 7 8 9 10 VCC D0 D0 VBB D1 D1 VBB D2 D2 VEE Warning: All VCC, VEE and GND pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 20-Lead TSSOP (Top View) and Logic Diagram Function VCC GND VEE -5V ECL to 5V PECL 5V 0V -5 V -5V ECL to 3.3V PECL 3.3 V 0V -5 V -3.3V ECL to 5V PECL 5V 0V -3.3 V -3.3V ECL to 3.3V PECL 3.3 V 0V -3.3 V ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model > 2 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Level 1 Oxygen Index: 28 to 34 UL 94 V-0 @ 0.125 in Transistor Count 350 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, refer to Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 Condition 2 Rating Units 6 V -6 V 6 -6 V V 50 100 mA mA ± 0.5 mA -40 to +85 °C VCC PECL Mode Power Supply GND = 0 V VEE NECL Mode Power Supply GND = 0 V VI PECL Mode Input Voltage NECL Mode Input Voltage GND = 0 V GND = 0 V Iout Output Current Continuous Surge IBB VBB Sink/Source TA Operating Temperature Range Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 20 TSSOP 20 TSSOP 140 100 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 20 TSSOP 23 to 41 °C/W Tsol Wave Solder <2 to 3 sec @ 248°C 265 °C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 173 VI VCC VI VEE MC10EP90, MC100EP90 10EP DC CHARACTERISTICS VCC = 3.3 V, VEE = -5.5 V to -3.0 V; GND = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current 5 13 20 5 13 20 5 13 20 mA ICC Positive Power Supply Current 43 55 67 43 55 67 43 55 67 mA VOH Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV VBB Output Voltage Reference -1510 -1310 -1445 -1245 -1385 -1 185 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 0.0 V IIH Input HIGH Current 150 A -1410 VEE+2.0 0.0 -1345 VEE+2.0 150 0.0 -1285 VEE+2.0 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. 4. All loading with 50 to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS VCC = 5.0 V, VEE = -5.5 V to -3.0 V; GND = 0 V (Note 6) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current 5 13 20 5 13 20 5 13 20 mA ICC Positive Power Supply Current 43 55 67 43 55 67 43 55 67 mA VOH Output HIGH Voltage (Note 7) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single-Ended) -1935 -1690 -1870 -1545 -1810 -1485 mV VBB Output Voltage Reference -1510 -1310 -1445 -1245 -1385 -1 185 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) 0.0 V IIH Input HIGH Current 150 A -1410 VEE+2.0 0.0 150 -1345 VEE+2.0 0.0 150 -1285 VEE+2.0 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. 7. All loading with 50 to VCC - 2.0 volts. 8. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 174 MC10EP90, MC100EP90 100EP DC CHARACTERISTICS VCC = 3.3 V, VEE = -5.5 V to -3.0 V; GND = 0 V (Note 9) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current 5 13 20 5 13 20 5 13 20 mA ICC Positive Power Supply Current 45 58 70 50 62 75 53 65 78 mA VOH Output HIGH Voltage (Note 10) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 10) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV VBB Output Voltage Reference -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11) 0.0 V IIH Input HIGH Current 150 A -1425 VEE+2.0 0.0 -1425 VEE+2.0 150 0.0 -1425 VEE+2.0 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: 100EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS VCC = 5.0 V, VEE = -5.5 V to -3.0 V; GND = 0 V (Note 12) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current 5 13 20 5 13 20 5 13 20 mA ICC Positive Power Supply Current 45 58 70 50 62 75 53 65 78 mA VOH Output HIGH Voltage (Note 13) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 13) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV VBB Output Voltage Reference -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14) 0.0 V IIH Input HIGH Current 150 A -1425 VEE+2.0 0.0 150 -1425 VEE+2.0 0.0 150 -1425 VEE+2.0 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: 100EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. 13. All loading with 50 to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC.. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 175 MC10EP90, MC100EP90 AC CHARACTERISTICS VEE = -3.0 V to -5.5 V; VCC = 3.0 V to 5.5 V; GND = 0 V (Note 15) -40 °C Symbol Min Characteristic fmax Maximum Frequency (See Figure 2 Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tSKEW Duty Cycle Skew (Note 16) Typ 25°C Max Min >3 170 tJITTER Cycle-to-Cycle Jitter (See Figure 2 Fmax/JITTER) VPP Input Voltage Swing (Differential) tr tf Output Rise/Fall Times (20% - 80%) 310 5.0 20 200 Min Typ 0.2 <1 150 800 1200 70 120 170 Max >3 260 340 5.0 20 80 140 Q, Q Max >3 240 Within Device Skew Q, Q Device to Device Skew (Note 16) Typ 85°C 230 300 370 ps 5.0 20 ps 80 140 0.2 <1 150 800 1200 80 130 180 Unit GHz 80 140 0.2 <1 ps 150 800 1200 mV 100 150 230 ps 900 9 800 8 700 7 600 6 500 5 400 4 300 3 200 2 ÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉ ÉÉ ÉÉ 100 (JITTER) 1 0 0 1000 2000 3000 FREQUENCY (MHz) Figure 2. Fmax/Jitter http://onsemi.com 176 JITTEROUT ps (RMS) VOUTpp (mV) 15. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. 16. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. 4000 5000 MC10EP90, MC100EP90 Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 177 MC10EP016, MC100EP016 3.3V / 5VECL 8−Bit Synchronous Binary Up Counter The MC10/100EP016 is a high-speed synchronous, presettable, cascadeable 8-bit binary counter. Architecture and operation are the same as the MC10E016 in the ECLinPS family. The counter features internal feedback to TC gated by the TCLD (Terminal Count Load) pin. When TCLD is LOW (or left open, in which case it is pulled LOW by the internal pulldowns), the TC feedback is disabled, and counting proceeds continuously, with TC going LOW to indicate an all-one state. When TCLD is HIGH, the TC feedback causes the counter to automatically reload upon TC = LOW, thus functioning as a programmable counter. The Qn outputs do not need to be terminated for the count function to operate properly. To minimize noise and power, unused Q outputs should be left unterminated. COUT and COUT provide differential outputs from a single, non-cascaded counter or divider application. COUT and COUT should not be used in cascade configuration. Only TC should be used for a counter or divider cascade chain output. A differential clock input has also been added to improve performance. The 100 Series contains temperature compensation. • 500 ps Typical Propagation Delay • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V • • • • • • • • • • with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State http://onsemi.com MARKING DIAGRAM* MCxxx EP016 AWLYYWW LQFP-32 FA SUFFIX CASE 873A 32 1 xxx A WL YY WW = 10 OR 100 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Safety Clamp on Inputs Package Shipping MC10EP016FA LQFP-32 250 Units/Tray MC10EP016FAR2 LQFP-32 2000 Tape & Reel 8-Bit MC100EP016FA LQFP-32 Differential Clock Input MC100EP016FAR2 LQFP-32 2000 Tape & Reel Internal TC Feedback (Gated) Addition of COUT and COUT 250 Units/Tray VBB Output Fully Synchronous Counting and TC Generation Asynchronous Master Reset Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 10 178 Publication Order Number: MC10EP016/D MC10EP016, MC100EP016 VBB CLK CLK P0 24 23 22 21 P1 P2 P3 P4 20 19 18 17 PIN DESCRIPTION 25 PE 16 P5 PIN FUNCTION P0-P7* ECL Parallel Data (Preset) Inputs CE 26 15 P6 Q0-Q7 ECL Data Outputs MR 27 14 P7 CE* ECL Count Enable Control Input VEE 28 Q0 29 MC10EP016 MC100EP016 13 VCC 12 TC PE* ECL Parallel Load Enable Control Input MR* ECL Master Reset CLK*, CLK* ECL Differential Clock TC ECL Terminal Count Output Q1 30 11 COUT Q2 31 10 TCLD* COUT COUT, COUT VCC 32 9 1 2 3 4 5 6 7 VEE 8 ECL TC-Load Control Input ECL Differential Output VCC VEE Positive Supply Negative Supply VBB Reference Voltage Output * Pins will default LOW when left open. VCC Q3 Q4 Q5 Q6 Q7 TCLD VCC Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 32-Lead LQFP Pinout (Top View) FUNCTION TABLES CE PE X L L H X X L H H H X X TCLD MR X L H X X X CLK L L L L L H Z Z Z Z ZZ X FUNCTION Load Parallel (Pn to Qn) Continuous Count Count; Load Parallel on TC = LOW Hold Masters Respond, Slaves Hold Reset (Qn : = LOW, TC : = HIGH) ZZ = Clock Pulse (High-to-Low) Z = Clock Pulse (Low-to-High) FUNCTION TABLE Function PE CE MR TCLD CLK P7-P4 P3 P2 P1 P0 Q7-Q4 Q3 Q2 Q1 Q0 TC COUT COUT Load Count L H H H H X L L L L L L L L L X L L L L Z Z Z Z Z H X X X X H X X X X H X X X X L X X X X L X X X X H H H H L H H H H L H H H H L L L H H L L H L H L H H H L H H H H L H L L L H L Load Hold L H H X H H L L L X X X Z Z Z H X X H X X H X X L X X L X X H H H H H H H H H L L L L L L H H H H H H L L L Load on Terminal Count H H H H H H L L L L L L L L L L L L H H H H H H Z Z Z Z Z Z H H H H H H L L L L L L H H H H H H H H H H H H L L L L L L H H H H H H H H H L L H H H H H H L L H H H H L H L H L H L H H L H H H H H L H H H L L H L L L Reset X X H X X X X X X X L L L L L H H L http://onsemi.com 179 MC10EP016, MC100EP016 Q1 Q0 Q7 PE TCLD Q0M MASTER Q0M SLAVE CE Q0 CE CE Q Q1 0 Q2 Q3 Q4 Q5 Q 6 BIT 1 BIT 0 P0 P1 BIT 7 P7 MR CLK BITS 2-6 CLK TC 5 VBB VEE COUT COUT Note that this diagram is provided for understanding of logic operation only. It should not be used for propagation delays as many gate functions are achieved internally without incurring a full gate delay. Figure 2. 8-BIT Binary Counter Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model Moisture Sensitivity (Note 1) Flammability Rating > 2 kV > 100 V > 2 kV Level 2 Oxygen Index: 28 to 34 Transistor Count UL 94 V-0 @ 0.125 in 897 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 180 MC10EP016, MC100EP016 MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 VCC VEE PECL Mode Power Supply NECL Mode Power Supply VEE = 0 V VCC = 0 V VI Input PECL Mode In ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V Iout Output Current Continuous Surge IBB TA VBB Sink/Source Operating Temperature Range Tstg θJA Storage Temperature Range Thermal Resistance (Junction-to-Ambient) Condition 2 θJC Thermal Resistance (Junction-to-Case) std bd Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. Units 6 V -6 V 6 -6 V V 50 100 mA mA ± 0.5 mA -40 to +85 °C VI VCC VI VEE 0 LFPM 500 LFPM Rating -65 to +150 °C 32 LQFP 32 LQFP 80 55 °C/W °C/W 32 LQFP 12 to 17 °C/W 265 °C 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Typ Max Unit IEE VOH Power Supply Current 120 160 200 120 160 200 120 160 200 mA Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL VIH Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV VIL VBB Input LOW Voltage (Single-Ended) 1365 1690 1460 1755 1490 1815 mV Output Voltage Reference 1790 1990 1855 2055 1915 2115 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 µA Input LOW Current Min Typ Max Min Typ Max Min 1890 2.0 1955 150 0.5 2015 150 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current (Note 7) 120 160 200 120 160 200 120 160 200 mA Output HIGH Voltage (Note 8) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL VIH Output LOW Voltage (Note 8) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL VBB Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV Output Voltage Reference 3490 3690 3555 3755 3615 3815 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 9) 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 µA Input LOW Current 3590 2.0 150 0.5 3655 150 0.5 0.5 3715 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. Required 500 lfpm air flow when using +5 V power supply. For (VCC - VEE) >3.3 V, 5 to 10 in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC-V EE operation at 3.3 V. 8. All loading with 50 to VCC-2.0 volts. 9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 181 MC10EP016, MC100EP016 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 10) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE VOH Power Supply Current (Note 11) 120 160 200 120 160 200 120 160 200 mA Output HIGH Voltage (Note 12) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL VIH Output LOW Voltage (Note 12) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL VBB Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV Output Voltage Reference -1510 -1310 -1445 -1245 -1385 -1 185 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 13) 0.0 V -1410 VEE+2.0 0.0 -1345 VEE+2.0 0.0 -1285 VEE+2.0 IIH Input HIGH Current 150 150 150 µA IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 10. Input and output parameters vary 1:1 with VCC. 11. Required 500 lfpm air flow when using -5 V power supply. For (VCC - VEE) >3.3 V, 5 to 10 in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC-V EE operation at 3.3 V. 12. All loading with 50 to VCC-2.0 volts. 13. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 14) Symbol Characteristic Min -40 °C Typ Max Min 25°C Typ Max Min 85°C Typ Max Unit IEE VOH Power Supply Current 120 160 200 120 160 200 120 160 200 mA Output HIGH Voltage (Note 15) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL VIH Output LOW Voltage (Note 15) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL VBB Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV Output Voltage Reference 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 16) 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 µA Input LOW Current 1875 2.0 1875 150 0.5 1875 150 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 14. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 15. All loading with 50 to VCC-2.0 volts. 16. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 17) -40 °C Symbol Characteristic 25°C 85°C Typ Max Unit IEE VOH Power Supply Current (Note 18) 120 160 200 120 160 200 120 160 200 mA Output HIGH Voltage (Note 19) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL VIH Output LOW Voltage (Note 19) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL VBB Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV Output Voltage Reference 3475 3675 3475 3675 3475 3675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 20) 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 µA Input LOW Current Min Typ Max Min Typ Max Min 3575 2.0 150 0.5 3575 150 0.5 0.5 3575 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 17. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 18. Required 500 lfpm air flow when using +5 V power supply. For (VCC - VEE) >3.3 V, 5 to 10 in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC-V EE operation at 3.3 V. 19. All loading with 50 to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 182 MC10EP016, MC100EP016 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 21) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 120 160 200 120 160 200 120 160 200 mA IEE VOH Power Supply Current (Note 22) Output HIGH Voltage (Note 23) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL VIH Output LOW Voltage (Note 23) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL VBB Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV Output Voltage Reference -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 24) 0.0 V IIH IIL Input HIGH Current 150 µA -1425 VEE+2.0 0.0 -1425 VEE+2.0 0.0 150 Input LOW Current 0.5 -1425 VEE+2.0 150 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 21. Input and output parameters vary 1:1 with VCC. 22. Required 500 lfpm air flow when using -5 V power supply. For (VCC - VEE) >3.3 V, 5 to 10 in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC-V EE operation at 3.3 V. 23. All loading with 50 to VCC-2.0 volts. 24. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. AC CHARACTERISTICS VEE = -3.0 V to -5.5 V; VCC = 0 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 25) -40 °C Symbol fCOUNT Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit Maximum Frequency >1 > 800 Q, TC COUT/COUT tPLH tPHL Propagation Delay (10) (10) (10) (10) (10) (10) (100) (100) (100) (100) (100) (100) tS >1 > 800 350 400 400 350 450 400 400 450 400 450 450 500 500 500 500 450 550 500 550 590 550 590 600 640 -50 300 300 300 100 500 500 500 -50 300 300 300 100 500 500 500 300 300 350 250 400 300 350 400 350 400 400 450 460 400 420 350 470 400 500 550 500 550 550 600 Setup Time Pn CE PE TCLD 100 500 500 500 tH Hold Time Pn CE PE TCLD 100 500 500 500 tJITTER Clock Random Jitter (RMS >1000 Waveforms) tRR Reset Recovery Time 200 80 200 80 200 80 ps tPW Minimum Pulse Width CLK, MR 550 300 550 300 550 300 ps 150 250 8.5 400 450 400 400 450 450 480 520 480 520 530 570 560 580 550 510 600 560 630 670 630 670 680 720 -50 300 300 300 100 500 500 500 -50 300 300 300 ps -50 300 300 300 100 500 500 500 -50 300 300 300 ps 2.5 650 600 600 550 700 650 700 750 700 750 800 850 GHz MHz CLK to Q MR to Q CLK to TC MR to TC CLK to COUT MR to COUT CLK to Q MR to Q CLK to TC MR to TC CLK to COUT MR to COUT 2.6 600 500 550 450 650 550 650 700 650 700 750 800 >1 > 800 8.0 tr Output Rise/Fall Times 120 210 320 120 220 320 tf 20% - 80% 25. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. http://onsemi.com 183 2.5 700 700 700 600 800 700 780 820 780 820 880 920 8.0 450 ps ps ps MC10EP016, MC100EP016 Applications Information Cascading Multiple EP016 Devices For applications which call for larger than 8-bit counters multiple EP016s can be tied together to achieve very wide bit width counters. The active low terminal count (TC) output and count enable input (CE) greatly facilitate the cascading of EP016 devices. Two EP016s can be cascaded without the need for external gating, however for counters wider than 16 bits external OR gates are necessary for cascade implementations. Figure 3 below pictorially illustrates the cascading of 4 EP016s to build a 32-bit high frequency counter. Note the EP01 gates used to OR the terminal count outputs of the lower order EP016s to control the counting operation of the higher order bits. When the terminal count of the preceding device (or devices) goes low (the counter reaches an all 1s state) the more significant EP016 is set in its count mode and will count one binary digit upon the next positive clock transition. In addition, the preceding devices will also count one bit thus sending their terminal count outputs back to a high state disabling the count operation of the more significant counters and placing them back into hold modes. Therefore, for an EP016 in the chain to count, all of the lower order terminal count outputs must be in the low state. The bit width of the counter can be increased or decreased by simply adding or subtracting EP016 devices from Figure 3 and maintaining the logic pattern illustrated in the same figure. The maximum frequency of operation for a cascaded counter chain is set by the propagation delay of the TC output, the necessary setup time of the CE input, and the propagation delay through the OR gate controlling it (for 16- bit counters the limitation is only the TC propagation delay and the CE setup time). Figure 3 shows EP01 gates used to control the count enable inputs, however, if the frequency of operation is slow enough, a LVECL OR gate can be used. Using the worst case guarantees for these parameters. LOAD Q0 to Q7 LO CE PE EP016 LSB CLK CLK TC Q0 to Q7 PE CE PE CE EP016 CLK CLK CE EP016 CLK CLK TC PE EP016 MSB CLK CLK TC TC EP01 EP01 P0 to P7 Q0 to Q7 Q0 to Q7 P0 to P7 P0 to P7 P0 to P7 CLK CLK Figure 3. 32-Bit Cascaded EP016 Counter TCLD pin (load on terminal count) when asserted reloads the data present at the parallel input pin (Pn’s) upon reaching terminal count (an all 1s state on the outputs). Because this feedback is built internal to the chip, the programmable division operation will run at very nearly the same frequency as the maximum counting frequency of the device. Figure 4 below illustrates the input conditions necessary for utilizing the EP016 as a programmable divider set up to divide by 113. Note that this assumes the trace delay between the TC outputs and the CE inputs are negligible. If this is not the case estimates of these delays need to be added to the calculations. Programmable Divider The EP016 has been designed with a control pin which makes it ideal for use as an 8-bit programmable divider. The http://onsemi.com 184 MC10EP016, MC100EP016 Applications Information (continued) H L L P7 P6 P5 H PE L CE H L H H H H P4 P3 P2 P1 P0 Table 1. Preset Values for Various Divide Ratios Ratio P7 P6 P5 P4 P3 P2 P1 P0 2 3 4 5 • • 112 113 114 • • 254 255 256 H H H H • • H H H • • L L L H H H H • • L L L • • L L L H H H H • • L L L • • L L L H H H H • • H L L • • L L L H H H H • • L H H • • L L L H H H L • • L H H • • L L L H L L H • • L H H • • H L L L H L H • • L H L • • L H L TC TCLD COUT CLK CLK Q7 Q6 Q5 COUT Q4 Q3 Q2 Q1 Q0 Figure 4. Mod 2 to 256 Programmable Divider To determine what value to load into the device to accomplish the desired division, the designer simply subtracts the binary equivalent of the desired divide ratio from the binary value for 256. As an example for a divide ratio of 113: Pn’s = 256 - 113 = 8F16 = 1000 1111 where: P0 = LSB and P7 = MSB Forcing this input condition as per the setup in Figure 4 will result in the waveforms of Figure 5. Note that the TC output is used as the divide output and the pulse duration is equal to a full clock period. For even divide ratios, twice the desired divide ratio can be loaded into the EP016 and the TC output can feed the clock input of a toggle flip flop to create a signal divided as desired with a 50% duty cycle. Load 1001 0000 Preset Data Inputs Divide de A single EP016 can be used to divide by any ratio from 2 to 256 inclusive. If divide ratios of greater than 256 are needed multiple EP016s can be cascaded in a manner similar to that already discussed. When EP016s are cascaded to build larger dividers the TCLD pin will no longer provide a means for loading on terminal count. Because one does not want to reload the counters until all of the devices in the chain have reached terminal count, external gating of the TC pins must be used for multiple EP016 divider chains. 1001 0001 1111 1100 ••• 1111 1101 1111 1110 1111 1111 CLK ••• PE ••• TC DIVIDE BY 113 Figure 5. Divide by 113 EP016 Programmable Divider Waveforms http://onsemi.com 185 Load MC10EP016, MC100EP016 Applications Information (continued) EP01 Q0 to Q7 LO CE PE EP016 LSB CLK CLK TC Q0 to Q7 CE Q0 to Q7 PE CE EP016 CLK CLK PE CE EP016 CLK CLK TC PE EP016 MSB CLK CLK TC EP01 P0 to P7 Q0 to Q7 TC EP01 P0 to P7 P0 to P7 P0 to P7 CLK CLK Figure 6. 32-Bit Cascaded EP016 Programmable Divider Maximizing EP016 Count Frequency Figure 6 shows a typical block diagram of a 32-bit divider chain. Once again to maximize the frequency of operation EP01 OR gates were used. For lower frequency applications a slower OR gate could replace the EP01. Note that for a 16-bit divider the OR function feeding the PE (program enable) input CANNOT be replaced by a wire OR tie as the TC output of the least significant EP016 must also feed the CE input of the most significant EP016. If the two TC outputs were OR tied the cascaded count operation would not operate properly. Because in the cascaded form the PE feedback is external and requires external gating, the maximum frequency of operation will be significantly less than the same operation in a single device. The EP016 device produces 9 fast transitioning single-ended outputs, thus VCC noise can become significant in situations where all of the outputs switch simultaneously in the same direction. This VCC noise can negatively impact the maximum frequency of operation of the device. Since the device does not need to have the Q outputs terminated to count properly, it is recommended that if the outputs are not going to be used in the rest of the system they should be left unterminated. In addition, if only a subset of the Q outputs are used in the system only those outputs should be terminated. Not terminating the unused outputs will not only cut down the VCC noise generated but will also save in total system power dissipation. Following these guidelines will allow designers to either be more aggressive in their designs or provide them with an extra margin to the published data book specifications. http://onsemi.com 186 MC10EP016, MC100EP016 Q D Receiver Device Driver Device Q D 50 50 VTT VTT = VCC - 2.0 V Figure 7. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 187 MC100EP016A 3.3 VECL 8−Bit Synchronous Binary Up Counter The MC100EP016A is a high-speed synchronous, presettable, cascadeable 8-bit binary counter. Architecture and operation are the same as the ECLinPS family MC100E016 with higher operating speed. The counter features internal feedback to TC gated by the TCLD (Terminal Count Load) pin. When TCLD is LOW (or left open, in which case it is pulled LOW by the internal pulldowns), the TC feedback is disabled, and counting proceeds continuously, with TC going LOW to indicate an all-one state. When TCLD is HIGH, the TC feedback causes the counter to automatically reload upon TC = LOW, thus functioning as a programmable counter. The Qn outputs do not need to be terminated for the count function to operate properly. To minimize noise and power, unused Q outputs should be left unterminated. COUT and COUT provide differential outputs from a single, non-cascaded counter or divider application. COUT and COUT should not be used in cascade configuration. Only TC should be used for a counter or divider cascade chain output. A differential clock input has also been added to improve performance. The 100 Series contains temperature compensation. • 550 ps Typical Propagation Delay • Operation Frequency > 1.3 GHz is 30% Faster than MC100EP016 • PECL Mode Operating Range: VCC = 3.0 V to 3.6 V with VEE = 0 V MARKING DIAGRAM* LQFP-32 FA SUFFIX CASE 873A 1 A WL YY WW = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION MC100EP016AFA with VEE = -3.0 V to -3.6 V Open Input Default State MC100 EP016A AWLYYWW 32 Device • NECL Mode Operating Range: VCC = 0 V • • • • • • • • • http://onsemi.com Package Shipping LQFP-32 250 Units/Tray MC100EP016AFAR2 LQFP-32 2000/Tape & Reel Safety Clamp on Clock Inputs Internal TC Feedback (Gated) Addition of COUT and COUT 8-Bit Differential Clock Input VBB Output Fully Synchronous Counting and TC Generation Asynchronous Master Reset Semiconductor Components Industries, LLC, 2002 September 2002 - Rev. 3 188 Publication Order Number: MC100EP016A/D MC100EP016A VBB CLK CLK P0 24 23 22 21 P1 P2 P3 P4 20 19 18 17 PIN DESCRIPTION 25 PE 16 P5 PIN FUNCTION P0-P7* ECL Parallel Data (Preset) Inputs CE 26 15 P6 Q0-Q7 ECL Data Outputs MR 27 14 P7 CE* ECL Count Enable Control Input VEE 28 Q0 29 MC100EP016A 13 VCC 12 TC PE* ECL Parallel Load Enable Control Input MR* ECL Master Reset CLK*, CLK* ECL Differential Clock TC ECL Terminal Count Output Q1 30 11 COUT Q2 31 10 TCLD* COUT COUT, COUT VCC 32 9 1 2 3 4 5 6 7 VEE 8 ECL TC-Load Control Input ECL Differential Output VCC VEE Positive Supply Negative Supply VBB Reference Voltage Output * Pins will default LOW when left open. VCC Q3 Q4 Q5 Q6 Q7 TCLD VCC Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 32-Lead LQFP Pinout (Top View) FUNCTION TABLES CE PE X L L H X X L H H H X X TCLD MR X L H X X X CLK L L L L L H Z Z Z Z ZZ X FUNCTION Load Parallel (Pn to Qn) Continuous Count Count; Load Parallel on TC = LOW Hold Masters Respond, Slaves Hold Reset (Qn : = LOW, TC : = HIGH) ZZ = Clock Pulse (High-to-Low) Z = Clock Pulse (Low-to-High) FUNCTION TABLE Function PE CE MR TCLD CLK P7-P4 P3 P2 P1 P0 Q7-Q4 Q3 Q2 Q1 Q0 TC COUT COUT Load Count L H H H H X L L L L L L L L L X L L L L Z Z Z Z Z H X X X X H X X X X H X X X X L X X X X L X X X X H H H H L H H H H L H H H H L L L H H L L H L H L H H H L H H H H L H L L L H L Load Hold L H H X H H L L L X X X Z Z Z H X X H X X H X X L X X L X X H H H H H H H H H L L L L L L H H H H H H L L L Load on Terminal Count H H H H H H L L L L L L L L L L L L H H H H H H Z Z Z Z Z Z H H H H H H L L L L L L H H H H H H H H H H H H L L L L L L H H H H H H H H H L L H H H H H H L L H H H H L H L H L H L H H L H H H H H L H H H L L H L L L Reset X X H X X X X X X X L L L L L H H L http://onsemi.com 189 MC100EP016A Q1 Q0 Q7 PE TCLD Q0M MASTER Q0M SLAVE CE Q0 CE CE Q Q1 0 Q2 Q3 Q4 Q5 Q 6 BIT 1 BIT 0 P0 P1 BIT 7 P7 MR CLK BITS 2-6 CLK TC 5 VBB VEE COUT COUT Note that this diagram is provided for understanding of logic operation only. It should not be used for propagation delays as many gate functions are achieved internally without incurring a full gate delay. Figure 2. 8-BIT Binary Counter Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model Moisture Sensitivity (Note 1) Flammability Rating > 2 kV > 100 V > 2 kV Level 2 Oxygen Index: 28 to 34 Transistor Count UL 94 V-0 @ 0.125 in 1226 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 190 MC100EP016A MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 Condition 2 Rating Units VCC VEE PECL Mode Power Supply NECL Mode Power Supply VEE = 0 V VCC = 0 V 6 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB TA VBB Sink/Source Operating Temperature Range ± 0.5 mA Tstg JA Storage Temperature Range -65 to +150 -40 to +70 °C °C Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 32 LQFP 32 LQFP 74 61 °C/W °C/W JC Thermal Resistance (Junction to Case) std bd 32 LQFP 12 to 17 °C/W 265 °C VI VCC VI VEE Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) Symbol IEE Characteristic Power Supply Current Min -40 °C Typ Max Min 25°C Typ Max Min 70°C Typ Max 130 170 210 130 177 210 130 180 210 Unit mA VOH VOL Output HIGH Voltage (Note 4) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV Output LOW Voltage (Note 4) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH VIL Input HIGH Voltage (Single Ended) 2075 2420 2075 2420 2075 2420 mV Input LOW Voltage (Single Ended) 1355 1675 1355 1675 1355 1675 mV VBB VIHCMR Output Voltage Reference 1775 1975 1775 1975 1775 1975 mV 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 A Input HIGH Voltage Common Mode Range (Differential) (Note 5) Input LOW Current 1875 2.0 1875 150 1875 150 0.5 0.5 A 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -0.3 V. 4. All loading with 50 ohms to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -3.6 V to -3.0 V (Note 6) -40 °C 25°C 70°C Min Typ Max Min Typ Max Min Typ Max Unit 130 170 210 130 177 210 130 180 210 mA Output HIGH Voltage (Note 7) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL VIH Output LOW Voltage (Note 7) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV Input HIGH Voltage (Single Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL VBB Input LOW Voltage (Single Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV Output Voltage Reference -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) 0.0 V IIH IIL Input HIGH Current 150 A Symbol Characteristic IEE VOH Power Supply Current Input LOW Current -1425 VEE+2.0 0.0 VEE+2.0 150 0.5 -1425 0.0 VEE+2.0 150 0.5 -1425 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. 7. All loading with 50 ohms to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 191 MC100EP016A AC CHARACTERISTICS VEE = -3.0 V to -3.6 V; VCC = 0 V or VCC = 3.0 V to 3.6 V; VEE = 0 V (Note 9) -40 °C Symbol fCOUNT Min Characteristic Maximum Frequency Count & Division Modes Q, TC, COUT/COUT Typ 25°C Max Min Typ 70°C Max Min Typ Max Unit GHz 1.3 1.5 CLK to Q MR to Q CLK to TC MR to TC CLK to COUT/COUT MR to COUT/COUT 350 400 350 400 475 450 511 550 511 555 705 720 1.4 400 400 400 400 500 500 550 570 550 570 745 760 1.3 480 450 480 520 550 570 610 630 610 635 825 830 Propagation Delay tS Setup Time P0 P1 to P4 P5 to P7 CE PE TCLD 400 300 250 500 500 550 240 140 80 320 315 355 400 300 250 500 500 550 240 135 65 330 320 365 400 300 250 500 500 550 245 125 55 340 325 380 ps tH Hold Time P0 P1 to P4 P5 to P7 CE PE TCLD 100 50 150 600 625 525 -145 -160 -105 380 465 320 100 50 150 600 625 525 -155 -170 -1 10 410 500 325 100 50 150 600 625 525 -170 -180 -1 15 450 535 340 ps tJITTER Clock Random Jitter (RMS, 1000 Waveforms) tRR Reset Recovery Time 400 195 400 205 400 220 ps tPW Minimum Pulse Width CLK Minimum Pulse Width MR 550 550 365 380 550 550 365 380 550 550 370 380 ps tr, tf Output Rise/Fall Times 20% - 80% 90 180 100 190 125 215 8.5 320 2.5 700 750 700 750 900 900 1.1 tPLH tPHL 2.6 650 700 650 700 850 850 1.2 8.0 320 9. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. http://onsemi.com 192 2.5 780 820 780 820 1000 950 8.0 450 ps ps ps MC100EP016A Applications Information Cascading Multiple EP016A Devices For applications which call for larger than 8-bit counters multiple EP016As can be tied together to achieve very wide bit width counters. The active low terminal count (TC) output and count enable input (CE) greatly facilitate the cascading of EP016A devices. Two EP016As can be cascaded without the need for external gating, however for counters wider than 16 bits external OR gates are necessary for cascade implementations. Figure 3 below pictorially illustrates the cascading of 4 EP016As to build a 32-bit high frequency counter. Note the EP01 gates used to OR the terminal count outputs of the lower order EP016As to control the counting operation of the higher order bits. When the terminal count of the preceding device (or devices) goes low (the counter reaches an all 1s state) the more significant EP016A is set in its count mode and will count one binary digit upon the next positive clock transition. In addition, the preceding devices will also count one bit thus sending their terminal count outputs back to a high state disabling the count operation of the more significant counters and placing them back into hold modes. Therefore, for an EP016A in the chain to count, all of the lower order terminal count outputs must be in the low state. The bit width of the counter can be increased or decreased by simply adding or subtracting EP016A devices from Figure 3 and maintaining the logic pattern illustrated in the same figure. The maximum frequency of operation for a cascaded counter chain is set by the propagation delay of the TC output, the necessary setup time of the CE input, and the propagation delay through the OR gate controlling it (for 16- bit counters the limitation is only the TC propagation delay and the CE setup time). Figure 3 shows EP01 gates used to control the count enable inputs, however, if the frequency of operation is slow enough, a LVECL OR gate can be used. Using the worst case guarantees for these parameters. LOAD Q0 to Q7 LO CE PE EP016 LSB CLK CLK TC Q0 to Q7 CE CE PE EP016 CLK CLK CE PE EP016 CLK CLK TC PE EP016 MSB CLK CLK TC TC EP01 EP01 P0 to P7 Q0 to Q7 Q0 to Q7 P0 to P7 P0 to P7 P0 to P7 CLK CLK Figure 3. 32-Bit Cascaded EP016A Counter TCLD pin (load on terminal count) when asserted reloads the data present at the parallel input pin (Pn’s) upon reaching terminal count (an all 1s state on the outputs). Because this feedback is built internal to the chip, the programmable division operation will run at very nearly the same frequency as the maximum counting frequency of the device. Figure 4 below illustrates the input conditions necessary for utilizing the EP016A as a programmable divider set up to divide by 113. Note that this assumes the trace delay between the TC outputs and the CE inputs are negligible. If this is not the case estimates of these delays need to be added to the calculations. Programmable Divider The EP016A has been designed with a control pin which makes it ideal for use as an 8-bit programmable divider. The http://onsemi.com 193 MC100EP016A Applications Information (continued) H L L P7 P6 P5 H PE L CE H L H H H H P4 P3 P2 P1 P0 Table 1. Preset Values for Various Divide Ratios Ratio P7 P6 P5 P4 P3 P2 P1 P0 2 3 4 5 • • 112 113 114 • • 254 255 256 H H H H • • H H H • • L L L H H H H • • L L L • • L L L H H H H • • L L L • • L L L H H H H • • H L L • • L L L H H H H • • L H H • • L L L H H H L • • L H H • • L L L H L L H • • L H H • • H L L L H L H • • L H L • • L H L TC TCLD COUT CLK CLK Q7 Q6 Q5 COUT Q4 Q3 Q2 Q1 Q0 Figure 4. Mod 2 to 256 Programmable Divider To determine what value to load into the device to accomplish the desired division, the designer simply subtracts the binary equivalent of the desired divide ratio from the binary value for 256. As an example for a divide ratio of 113: Pn’s = 256 - 113 = 8F16 = 1000 1111 where: P0 = LSB and P7 = MSB Forcing this input condition as per the setup in Figure 4 will result in the waveforms of Figure 5. Note that the TC output is used as the divide output and the pulse duration is equal to a full clock period. For even divide ratios, twice the desired divide ratio can be loaded into the EP016A and the TC output can feed the clock input of a toggle flip flop to create a signal divided as desired with a 50% duty cycle. Load 1001 0000 Preset Data Inputs Divide de A single EP016A can be used to divide by any ratio from 2 to 256 inclusive. If divide ratios of greater than 256 are needed multiple EP016As can be cascaded in a manner similar to that already discussed. When EP016As are cascaded to build larger dividers the TCLD pin will no longer provide a means for loading on terminal count. Because one does not want to reload the counters until all of the devices in the chain have reached terminal count, external gating of the TC pins must be used for multiple EP016A divider chains. 1001 0001 1111 1100 ••• 1111 1101 1111 1110 1111 1111 CLK ••• PE ••• TC DIVIDE BY 113 Figure 5. Divide by 113 EP016A Programmable Divider Waveforms http://onsemi.com 194 Load MC100EP016A Applications Information (continued) EP01 Q0 to Q7 LO CE PE EP016 LSB CLK CLK TC Q0 to Q7 CE Q0 to Q7 PE CE EP016 CLK CLK PE CE EP016 CLK CLK TC PE EP016 MSB CLK CLK TC EP01 P0 to P7 Q0 to Q7 TC EP01 P0 to P7 P0 to P7 P0 to P7 CLK CLK Figure 6. 32-Bit Cascaded EP016A Programmable Divider Maximizing EP016A Count Frequency Figure 6 shows a typical block diagram of a 32-bit divider chain. Once again to maximize the frequency of operation EP01 OR gates were used. For lower frequency applications a slower OR gate could replace the EP01. Note that for a 16-bit divider the OR function feeding the PE (program enable) input CANNOT be replaced by a wire OR tie as the TC output of the least significant EP016A must also feed the CE input of the most significant EP016A. If the two TC outputs were OR tied the cascaded count operation would not operate properly. Because in the cascaded form the PE feedback is external and requires external gating, the maximum frequency of operation will be significantly less than the same operation in a single device. The EP016A device produces 9 fast transitioning single ended outputs, thus VCC noise can become significant in situations where all of the outputs switch simultaneously in the same direction. This VCC noise can negatively impact the maximum frequency of operation of the device. Since the device does not need to have the Q outputs terminated to count properly, it is recommended that if the outputs are not going to be used in the rest of the system they should be left unterminated. In addition, if only a subset of the Q outputs are used in the system only those outputs should be terminated. Not terminating the unused outputs will not only cut down the VCC noise generated but will also save in total system power dissipation. Following these guidelines will allow designers to either be more aggressive in their designs or provide them with an extra margin to the published data book specifications. http://onsemi.com 195 MC100EP016A Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 7. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 196 MC10EP101, MC100EP101 3.3V / 5VECL Quad 4−Input OR/NOR The MC10/100EP101 is a Quad 4-input OR/NOR gate. The device is functionally equivalent to the E101. With AC performance faster than the E101 device, the EP101 is ideal for applications requiring the fastest AC performance available. The 100 Series contains temperature compensation. http://onsemi.com MARKING DIAGRAM* • 250 ps Typical Propagation Delay • Maximum Frequency > 3 GHz Typical • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V • • with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State LQFP-32 FA SUFFIX CASE 873A MCXXX EP016 AWLYYWW 32 xxx A WL YY WW 1 =10 or 100 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Semiconductor Components Industries, LLC, 2002 May, 2002 - Rev. 6 197 Package Shipping MC10EP101FA LQFP-32 250 Units/Tray MC10EP101FAR2 LQFP-32 2000 Tape & Reel MC100EP101FA LQFP-32 250 Units/Tray MC100EP101FAR2 LQFP-32 2000 Tape & Reel Publication Order Number: MC10EP101/D MC10EP101, MC100EP101 D0d D1a D1b D1c D1d D2a D2b D2c 24 23 22 21 20 19 18 D0a D0b D0c 17 Q0 Q0 D0d D0c 25 16 D2d D0b 26 15 D3a D1a D0a 27 14 D3b D1b Q1 28 13 D1c VEE VCC Q1 Q0 29 12 D3c Q0 30 11 D3d VCC 31 10 VEE VCC 32 9 NC MC10EP101 MC100EP101 1 2 3 4 5 6 7 D1d D2a D2b Q2 D2c D2d Q2 8 D3a VCC Q1 Q1 Q2 Q2 Q3 Q3 D3b D3c Q3 VCC Q3 D3d Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. VEE Figure 1. 32-Lead LQFP Pinout (Top View) Figure 2. Logic Diagram PIN DESCRIPTION PIN FUNCTION D0a*-D3d* ECL Data Inputs Q0-Q3, Q0-Q3 ECL Data Outputs VCC Positive Supply VEE Negative Supply NC No Connect TRUTH TABLE * Pins will default LOW when left open. Dna Dnb Dnc Dnd Qn Qn L H X X X H L X H X X H L X X H X H L X X X H H L H H H H H H L L L L L ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model Moisture Sensitivity (Note 1) > 4 kV > 100 V > 2 kV Level 2 Flammability Rating Oxygen Index UL-94 code V-0 A 1/8″ 28 to 34 Transistor Count 173 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 198 MC10EP101, MC100EP101 MAXIMUM RATINGS (Note 2) Symbol Rating Units VCC PECL Mode Power Supply Parameter VEE = 0 V Condition 1 Condition 2 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 32 LQFP 32 LQFP 80 55 °C/W °C/W θJC Thermal Resistance (Junction-to-Case) std bd 32 LQFP 12 to 17 °C/W Tsol Wave Solder < 2 to 3 sec @ 248°C 265 °C VI ≤ VCC VI ≤ VEE 2. Maximum Ratings are those values beyond which device damage may occur. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 45 57 75 45 58 75 45 59 75 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single-Ended) 1365 1690 1460 1755 1490 1815 mV IIH Input HIGH Current 150 µA 150 150 IIL Input LOW Current -150 -150 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 Ω to VCC-2.0 volts. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 5) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 45 57 75 45 58 75 45 59 75 mA Output HIGH Voltage (Note 6) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 6) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV IIH Input HIGH Current 150 µA IEE Power Supply Current VOH 150 150 IIL Input LOW Current -150 -150 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 5. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 6. All loading with 50 Ω to VCC-2.0 volts. http://onsemi.com 199 MC10EP101, MC100EP101 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 7) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 45 57 75 45 58 75 45 59 75 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 8) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL Output LOW Voltage (Note 8) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV VIH Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV IIH Input HIGH Current 150 µA 150 150 IIL Input LOW Current -150 -150 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 7. Input and output parameters vary 1:1 with VCC. 8. All loading with 50 Ω to VCC-2.0 volts. 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 9) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 50 63 80 55 67 85 60 70 88 mA VOH Output HIGH Voltage (Note 10) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 10) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV IIH Input HIGH Current 150 µA IIL Input LOW Current 150 -150 150 -150 µA -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 10. All loading with 50 Ω to VCC-2.0 volts. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 11) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 50 63 80 55 67 85 60 70 88 mA Output HIGH Voltage (Note 12) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note12) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV IIH Input HIGH Current 150 µA IIL Input LOW Current IEE Power Supply Current VOH 150 -150 150 -150 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 11. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 12. All loading with 50 Ω to VCC-2.0 volts. http://onsemi.com 200 MC10EP101, MC100EP101 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 13) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 50 63 80 55 67 85 60 70 88 mA Output HIGH Voltage (Note 14) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 14) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV IIH Input HIGH Current 150 µA IEE Power Supply Current VOH 150 150 IIL Input LOW Current -150 -150 -150 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 13. Input and output parameters vary 1:1 with VCC. 14. All loading with 50 Ω to VCC-2.0 volts. AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 15) -40 °C Characteristic fmax Maximum Frequency (See Figure 3. Fmax/JITTER) tPLH, tPHL Propagation Delay tSKEW tJITTER Min Typ 25°C Max Min >3 D to Q, Q 10 100 Typ 85°C Max Min >3 325 380 Within Device Skew Q, Q Device to Device Skew (Note 16) 15 Cycle-to-Cycle Jitter (See Figure 3. Fmax/JITTER) 0.2 >3 125 180 150 200 250 300 370 400 50 200 20 <1 0.2 170 250 VOUTpp (mV) GHz 420 450 50 200 20 50 200 ps <1 0.2 <1 ps 190 250 ps 150 1000 10 900 9 800 8 700 7 600 6 500 5 400 4 300 3 ÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉ ÉÉ ÉÉ ÉÉ 2 (JITTER) 100 1 0 1000 Unit 300 320 tr Output Rise/Fall Times Q, Q 100 150 200 120 170 220 tf (20% - 80%) 15. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to VCC-2.0 V. 16. Skew is measured between outputs under identical transitions. 0 Max ps 225 280 200 Typ 2000 3000 FREQUENCY (MHz) Figure 3. Fmax/Jitter http://onsemi.com 201 JITTEROUT ps (RMS) Symbol 4000 5000 MC10EP101, MC100EP101 Q D Driver Device Receiver Device D Q 50 Ω 50 Ω VTT VTT = VCC - 2.0 V Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 202 MC10EP105, MC100EP105 3.3V / 5VECL Quad 2−Input Differential AND/NAND The MC10/100EP105 is a quad 2-input differential AND/NAND gate. Each gate is functionally equivalent to the EP05 and LVEL05 devices. With AC performance much faster than the LVEL05 device, the EP105 is ideal for applications requiring the fastest AC performance available. The 100 Series contains temperature compensation. http://onsemi.com MARKING DIAGRAM* • 275 ps Typical Propagation Delay • Maximum Frequency > 3 GHz Typical • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V • MCxxx EP105 with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State AWLYYWW LQFP-32 FA SUFFIX CASE 873A • • Safety Clamp on Inputs xxx A WL YY WW 32 1 = 10 or 100 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 8 203 Package Shipping MC10EP105FA LQFP-32 250 Units/Tray MC10EP105FAR2 LQFP-32 2000 Tape & Reel MC100EP105FA LQFP-32 250 Units/Tray MC100EP105FAR2 LQFP-32 2000 Tape & Reel Publication Order Number: MC10EP105/D MC10EP105, MC100EP105 D0b D1a D1a D1b D1b D2a D2a D2b 24 23 22 21 20 19 18 D0a 17 25 16 D2b D0a 26 15 D3a D1a D0a 27 14 D3a D1a D1b VEE 28 13 VCC Q0 29 12 D3b D2a D2a D2b D2b Q0 30 11 D3b VCC 31 10 VEE VCC 32 9 NC 1 2 3 4 5 6 7 8 Q0 D0b D0b MC10EP105 MC100EP105 Q0 D0a D0b Q1 Q1 D1b Q2 Q2 D3a Q3 D3a D3b Q3 D3b VCC Q1 Q1 Q2 Q2 Q3 Q3 VCC Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. VEE Figure 1. 32-Lead LQFP Pinout (Top View) Figure 2. Logic Diagram PIN DESCRIPTION PIN TRUTH TABLE FUNCTION Dna*, Dnb*, Dna*, Dnb* ECL Data Inputs Qn, Qn ECL Data Outputs VCC Positive Supply VEE NC Negative Supply No Connect Dna Dnb Dna L L H H L H L H H H L L Dnb Qn Qn H L H L L L L H H H H L * Pins will default LOW when left open. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model > 4 kV > 100 V > 2 kV Oxygen Index: 28 to 34 UL-94 V-0 @ 0.125 in Moisture Sensitivity (Note 1) Flammability Rating Level 2 Transistor Count 444 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 204 MC10EP105, MC100EP105 MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 Condition 2 Units VCC VEE PECL Mode Power Supply VI PECL Mode In Input ut Voltage NECL Mode Input Voltage Iout Output Current IBB TA VBB Sink/Source Operating Temperature Range Tstg θJA Storage Temperature Range Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 32 LQFP 32 LQFP 80 55 °C/W °C/W θJC Tsol Thermal Resistance (Junction-to-Case) std bd 32 LQFP 12 to 17 °C/W Wave Solder < 2 to 3 sec @ 248°C 265 °C NECL Mode Power Supply VEE = 0 V VCC = 0 V Rating 6 V -6 V 6 -6 V V 50 100 mA mA ± 0.5 mA -40 to +85 °C -65 to +150 °C VI ≤ VCC VI ≥ VEE VEE = 0 V VCC = 0 V Continuous Surge 2. Maximum Ratings are those values beyond which device damage may occur. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 45 58 75 45 59 75 45 60 75 mA Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV Input LOW Voltage (Single-Ended) 1365 1690 1460 1755 1490 1815 mV Input HIGH Voltage Common Mode Range (Differential) (Note 5) 2.0 3.3 2.0 3.3 2.0 3.3 V 150 µA IEE VOH Power Supply Current VOL VIH VIL VIHCMR IIH IIL Input HIGH Current Input LOW Current 150 0.5 150 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 Ω to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 45 58 75 45 59 75 45 60 75 mA Output HIGH Voltage (Note 7) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV Input HIGH Voltage Common Mode Range (Differential) (Note 8) 2.0 5.0 2.0 5.0 2.0 5.0 V 150 µA IEE VOH Power Supply Current VOL VIH VIL VIHCMR IIH IIL Input HIGH Current Input LOW Current 150 0.5 150 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 Ω to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 205 MC10EP105, MC100EP105 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 9) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 45 58 75 45 59 75 45 60 75 mA Output HIGH Voltage (Note 10) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL VIH Output LOW Voltage (Note 10) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL VIHCMR Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV 0.0 V IIH IIL Input HIGH Current 150 µA IEE VOH Power Supply Current Input HIGH Voltage Common Mode Range (Differential) (Note 11) Input LOW Current VEE+2.0 0.0 VEE+2.0 150 0.5 0.0 VEE+2.0 150 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 Ω to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 45 59 75 45 62 75 45 64 75 mA Output HIGH Voltage (Note 13) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL VIH Output LOW Voltage (Note 13) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL VIHCMR Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV Input HIGH Voltage Common Mode Range (Differential) (Note 14) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 µA Input LOW Current 150 0.5 150 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 Ω to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 45 59 75 45 62 75 45 64 75 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 16) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL VIH Output LOW Voltage (Note16) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL VIHCMR Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV Input HIGH Voltage Common Mode Range (Differential) (Note 17) 2.0 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 µA Input LOW Current 150 0.5 150 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 Ω to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 206 MC10EP105, MC100EP105 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 18) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 45 59 75 45 62 75 45 64 75 mA Output HIGH Voltage (Note 19) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV Output LOW Voltage (Note 19) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL VIHCMR Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV 0.0 V IIH IIL Input HIGH Current 150 µA IEE VOH Power Supply Current VOL VIH Input HIGH Voltage Common Mode Range (Differential) (Note 20) VEE+2.0 0.0 VEE+2.0 0.0 150 Input LOW Current 0.5 VEE+2.0 150 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 Ω to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21) -40 °C Symbol Characteristic fmax Maximum Frequency (See Figure 3 Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tSKEW Min Typ 25°C Max Min >3 85°C Max Min Typ >3 325 Within Device Skew Device to Device Skew (Note 22) 10 tJITTER Cycle-to-Cycle Jitter (See Figure 3 Fmax/JITTER) VPP Input Voltage Swing (Differential) 275 350 50 10 0.2 <1 800 1200 GHz 375 ps 50 15 50 ps 0.2 <1 0.2 <1 ps 800 1200 150 800 1200 mV tr Output Rise/Fall Times Q 100 150 200 120 170 220 tf (20% - 80%) 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to VCC-2.0 V. 22. Skew is measured between outputs under identical transitions. 150 200 250 ps 150 225 Unit 300 150 200 Max >3 1000 10 900 9 800 8 700 7 600 6 500 5 400 4 300 3 200 100 0 ÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉ ÉÉ ÉÉ ÉÉ 2 (JITTER) 0 1000 2000 3000 FREQUENCY (MHz) Figure 3. Fmax/Jitter http://onsemi.com 207 JITTEROUT ps (RMS) 250 VOUTpp (mV) 175 Typ 1 4000 5000 MC10EP105, MC100EP105 Q D Driver Device Receiver Device D Q 50 Ω 50 Ω VTT VTT = VCC - 2.0 V Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 208 MC10EP116, MC100EP116 3.3V / 5VHex Differential Line Receiver/Driver The MC10EP116/100EP116 is a 6-bit differential line receiver based on the EP16 device. The 3.0 GHz bandwidth provided by the high frequency outputs makes the device ideal for buffering of very high speed oscillators. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. The design incorporates two stages of gain, internal to the device, making it an excellent choice for use in high bandwidth amplifier applications. The differential inputs have internal clamp structures which will force the Q output of a gate in an open input condition to go to a LOW state. Thus, inputs of unused gates can be left open and will not affect the operation of the rest of the device. Note that the input clamp will take affect only if both inputs fall 2.5 V below VCC. The 100 Series contains temperature compensation. • 260 ps Typical Propagation Delay • Maximum Frequency > 3 GHz Typical • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V • • • Safety Clamp on Inputs • Q Output Will Default LOW with Inputs Open or at VEE • VBB Output September, 2002 - Rev. 8 MARKING DIAGRAM* MCxxx EP116 LQFP-32 FA SUFFIX CASE 873A AWLYYWW 32 1 xxx A WL YY WW = 10 or 100 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State Semiconductor Components Industries, LLC, 2002 http://onsemi.com 209 ORDERING INFORMATION Device Package Shipping MC10EP116FA LQFP-32 250 Units/Tray MC10EP116FAR2 LQFP-32 2000 Tape & Reel MC100EP116FA LQFP-32 250 Units/Tray MC100EP116FAR2 LQFP-32 2000 Tape & Reel Publication Order Number: MC10EP116/D MC10EP116, MC100EP116 D4 24 D5 23 D5 Q5 Q5 Q4 Q4 VCC 22 21 20 19 18 17 D0 Q0 D0 Q0 D4 25 16 VCC D3 26 15 Q3 D1 Q1 D3 27 14 Q3 D1 Q1 VEE 28 13 VCC D2 29 12 VCC D2 Q2 D2 30 11 Q2 D2 Q2 D1 31 10 Q2 D1 32 9 D3 Q3 D3 Q3 D4 Q4 D4 Q4 D5 Q5 D5 Q5 MC10EP116 MC100EP116 1 2 D0 3 4 5 6 7 VCC 8 D0 VBB Q0 Q0 Q1 Q1 VEE Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 32-Lead LQFP Pinout (Top View) PIN DESCRIPTION PIN FUNCTION D[0:5]*, D[0:5]* ECL Differential Data Inputs Q[0:5], Q[0:5] ECL Differential Data Outputs VBB Reference Voltage Output VCC Positive Supply VEE Negative Supply VBB VEE Figure 2. Logic Diagram * Pins will default LOW when left open. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model Moisture Sensitivity (Note 1) Flammability Rating > 2 kV > 100 V > 2 kV Level 2 Oxygen Index: 28 to 34 Transistor Count UL-94 V-0 @ 0.125 in 729 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 210 MC10EP116, MC100EP116 MAXIMUM RATINGS (Note 2) Symbol Rating Units VCC PECL Mode Power Supply Parameter VEE = 0 V Condition 1 Condition 2 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 32 LQFP 32 LQFP 80 55 °C/W °C/W θJC Thermal Resistance (Junction-to-Case) std bd 32 LQFP 12 to 17 °C/W 265 °C VI ≤ VCC VI ≥ VEE Tsol Wave Solder < 2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 60 75 90 60 80 95 60 85 95 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single-Ended) 1365 1690 1460 1755 1490 1815 mV VBB Output Voltage Reference 1790 1990 1855 2055 1915 2115 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 µA 1890 2.0 150 1955 150 2015 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 Ω to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 211 MC10EP116, MC100EP116 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 60 75 90 60 80 95 60 85 95 mA Output HIGH Voltage (Note 7) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV VBB Output Voltage Reference 3490 3690 3555 3755 3615 3815 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 µA IEE Power Supply Current VOH 3590 2.0 3655 150 3715 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 Ω to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 9) -40 °C Symbol Characteristic Min 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 60 75 90 60 80 95 60 85 95 mA VOH Output HIGH Voltage (Note 10) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL Output LOW Voltage (Note 10) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV VIH Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV VBB Output Voltage Reference -1510 -1310 -1445 -1245 -1385 -1 185 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11) 0.0 V IIH Input HIGH Current 150 µA -1410 VEE+2.0 0.0 150 -1345 VEE+2.0 0.0 150 -1285 VEE+2.0 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 Ω to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 212 MC10EP116, MC100EP116 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 60 75 90 60 80 95 60 85 95 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 13) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 13) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1490 1675 1490 1675 mV VBB Output Voltage Reference 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 µA 1875 2.0 1875 150 1875 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 Ω to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 60 75 90 60 80 95 60 85 95 mA Output HIGH Voltage (Note 16) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 16) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single-Ended) 3790 3375 3190 3375 3190 3375 mV VBB Output Voltage Reference 3475 3675 3475 3675 3475 3675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 17) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 µA IEE Power Supply Current VOH 3575 2.0 150 3575 150 3575 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 Ω to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 213 MC10EP116, MC100EP116 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 18) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 60 75 90 60 80 95 60 85 95 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 19) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 19) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV VBB Output Voltage Reference -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 20) 0.0 V IIH Input HIGH Current 150 µA -1425 VEE+2.0 0.0 -1425 VEE+2.0 150 0.0 -1425 VEE+2.0 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 Ω to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21) -40 °C Symbol Characteristic fmax Maximum Frequency (See Figure 3 Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tSKEW Duty Cycle Skew (Note 22) tSKEW Within Device Skew Device to Device Skew (Note 22) tJITTER Cycle-to-Cycle Jitter (See Figure 3 Fmax/JITTER) VPP Input Voltage Swing (Differential) tr tf Output Rise/Fall Times (20% - 80%) Min Typ 25°C Max Min >3 160 Typ Max Min >3 250 340 5.0 20 160 0.2 <1 150 800 1200 90 150 220 Typ Max >3 260 340 5.0 20 100 180 Q, Q 85°C 190 Unit GHz 300 380 ps 5.0 20 ps 100 190 ps 0.2 <1 ps 100 180 0.2 <1 150 800 1200 150 800 1200 mV 90 160 240 90 160 250 ps 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to VCC-2.0 V. 22. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. http://onsemi.com 214 900 9 800 8 700 7 600 6 500 5 400 4 300 3 ÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉ ÉÉ 200 2 100 1 (JITTER) 0 0 1000 2000 3000 4000 5000 FREQUENCY (MHz) Figure 3. Fmax/Jitter Q D Driver Device Receiver Device D Q 50 Ω 50 Ω VTT VTT = VCC - 2.0 V Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 215 JITTEROUT ps (RMS) VOUTpp (mV) MC10EP116, MC100EP116 MC10EP131, MC100EP131 3.3V / 5VECL Quad D Flip−Flop with Set, Reset, and Differential Clock The MC10/100EP131 is a Quad Master-slaved D flip-flop with common set and separate resets. The device is an expansion of the E131 with differential common clock and individual clock enables. With AC performance faster than the E131 device, the EP131 is ideal for applications requiring the fastest AC performance available. Each flip-flop may be clocked separately by holding Common Clock (CC) LOW and CC HIGH, then using the differential Clock Enable inputs for clocking (C0- 3, C0- 3). Common clocking is achieved by holding the differential inputs C0- 3 LOW and C0- 3 HIGH while using the differential Common Clock (CC) to clock all four flip-flops. When left floating open, any differential input will disable operation due to input pulldown resistors forcing an output default state. Individual asynchronous resets (R0- 3) and an asynchronous set (SET) are provided. Data enters the master when both CC and C0- 3 are LOW, and transfers to the slave when either CC or C0- 3 (or both) go HIGH. The 100 Series contains temperature compensation. • • • • • • • 460 ps Typical Propagation Delay http://onsemi.com MARKING DIAGRAM* MCXXX EP131 LQFP-32 FA SUFFIX CASE 873A AWLYYWW 32 1 XXX = 10 or 100 A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week *For additional information, see Application Note AND8002/D Maximum Frequency > 3 GHz Typical Differential Individual and Common Clocks Individual Asynchronous Resets Asynchronous Set ORDERING INFORMATION PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State Device • • Safety Clamp on Inputs • Q Output Will Default LOW with Inputs Open or at VEE Semiconductor Components Industries, LLC, 2002 May, 2002 - Rev. 6 216 Package Shipping MC10EP131FA LQFP-32 250 Units/Tray MC10EP131FAR2 LQFP-32 2000 Tape & Reel MC100EP131FA LQFP-32 250 Units/Tray MC100EP131FAR2 LQFP-32 2000 Tape & Reel Publication Order Number: MC10EP131/D MC10EP131, MC100EP131 Q3 Q3 Q2 Q2 Q1 Q1 Q0 Q0 S D D3 24 VCC 23 22 21 20 19 18 17 16 25 VCC C3 C3 C3 26 15 R0 C3 27 14 D0 VEE 28 13 VCC D2 D3 29 12 C0 R3 30 11 C0 C2 C2 SET 31 10 R1 D2 32 32-Lead LQFP Pinout (Top View) 9 1 2 3 4 5 6 7 ECL Separate Clock Inputs CC*, CC* ECL Common Clock Inputs Q Q2 Q Q1 Q Q1 Q Q0 Q Q0 R1 R C1 C1 D S R0 R0- 3* ECL Asynchronous Reset SET* ECL Asynchronous Set Q0- 3, Q0- 3 ECL Data Outputs VCC Positive Supply VEE Negative Supply R C0 C0 D0 D S VEE * Pins will default LOW when left open. Figure 2. Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model Moisture Sensitivity (Note 1) Flammability Rating Q2 R D1 C0- 3*, C0- 3* Q S D CC CC PIN DESCRIPTION FUNCTION Q3 R2 Figure 1. 32-Lead LQFP Pinout (Top View) ECL Data Inputs Q R R3 R2 C2 C2 CC CC C1 C1 D1 Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. PIN Q3 VEE SET 8 D0- 3* Q > 2 kV > 100 V > 2 kV Level 2 Oxygen Index: 28 to 34 Transistor Count UL 94 V-0 @ 0.125 in 935 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 217 MC10EP131, MC100EP131 MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 Condition 2 Rating Units 6 V -6 V 6 -6 V V 50 100 mA mA ± 0.5 mA VCC PECL Mode Power Supply VEE = 0 V VEE NECL Mode Power Supply VCC = 0 V VI Input PECL Mode In ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V Iout Output Current Continuous Surge IBB VBB Sink/Source TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 32 LQFP 32 LQFP 80 55 °C/W °C/W θJC Thermal Resistance (Junction-to-Case) std bd 32 LQFP 12 to 17 °C/W 265 °C VI ≤ VCC VI ≥ VEE Tsol Wave Solder > 2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 70 95 120 70 95 120 70 95 120 mA Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single-Ended) 1365 1690 1460 1755 1490 1815 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 µA IEE Power Supply Current VOH VOL 150 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 Ω to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 70 95 120 70 95 120 70 95 120 mA VOH Output HIGH Voltage (Note 7) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) 2.0 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 µA 150 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 Ω to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 218 MC10EP131, MC100EP131 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 9) -40 °C Symbol Characteristic Min 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 70 95 120 70 95 120 70 95 120 mA VOH Output HIGH Voltage (Note 10) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL Output LOW Voltage (Note 10) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV VIH Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11) 0.0 V IIH Input HIGH Current 150 µA VEE+2.0 0.0 VEE+2.0 150 0.0 VEE+2.0 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 Ω to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 70 95 120 75 97 120 80 105 130 mA Output HIGH Voltage (Note 13) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV Output LOW Voltage (Note 13) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 µA IEE Power Supply Current VOH VOL 150 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 Ω to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 70 95 120 75 97 120 80 105 130 mA VOH Output HIGH Voltage (Note 16) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 16) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 17) 2.0 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 µA 150 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 Ω to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 219 MC10EP131, MC100EP131 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 18) -40 °C Symbol Characteristic Min 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 70 95 120 75 97 120 80 105 130 mA VOH Output HIGH Voltage (Note 19) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 19) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 20) 0.0 V IIH Input HIGH Current 150 µA VEE+2.0 0.0 VEE+2.0 0.0 150 VEE+2.0 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 Ω to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21) -40 °C Symbol Characteristic Min fmax Maximum Frequency (See Figure 3. Frequency vs. VOUTpp and JITTER) tPLH, tPHL Propagation Delay to Output Differential tRR tS tH tPW Minimum Pulse Rate tJITTER Cycle-to-Cycle Jitter (See Figure 3. Frequency vs. VOUTpp and JITTER) C0- 3 CC R0- 3 SET Typ Max Min >3 320 320 320 300 450 450 430 430 Set/R0-3 Recovery 290 Setup Time Hold Time 120 550 400 SET, R0- 3 25°C Typ Max 460 500 480 460 210 290 80 120 550 400 520 520 520 550 <1 http://onsemi.com Typ Max >3 Unit GHz 450 450 450 400 560 560 560 530 210 350 280 ps 80 120 80 ps 550 400 0.2 580 600 580 580 <1 tr Output Rise/Fall Times Q, Q 110 180 250 125 200 275 tf (20% - 80%) 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to VCC-2.0 V. 220 Min >3 380 400 380 380 0.2 85°C 150 650 650 700 650 ps 0.2 <1 ps 230 300 ps 800 8 700 7 600 6 500 5 400 4 300 3 200 2 ÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉ ÉÉ ÉÉ 100 1 (JITTER) 0 0 1000 2000 JITTEROUT ps (RMS) VOUTpp (mV) MC10EP131, MC100EP131 3000 4000 5000 6000 FREQUENCY (MHz) Figure 3. Frequency vs. VOUTpp and JITTER Q D Driver Device Receiver Device D Q 50 Ω 50 Ω VTT VTT = VCC - 2.0 V Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 221 MC10EP139, MC100EP139 3.3V / 5VECL ÷2/4, ÷4/5/6 Clock Generation Chip The MC10/100EP139 is a low skew ÷2/4, ÷4/5/6 clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The device can be driven by either a differential or single- ended ECL or, if positive power supplies are used, LVPECL input signals. In addition, by using the VBB output, a sinusoidal source can be AC coupled into the device. If a single- ended input is to be used, the VBB output should be connected to the CLK input and bypassed to ground via a 0.01 F capacitor. The common enable (EN) is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. The internal enable flip- flop is clocked on the falling edge of the input clock, therefore, all associated specification limits are referenced to the negative edge of the clock input. Upon startup, the internal flip- flops will attain a random state; therefore, for systems which utilize multiple EP139s, the master reset (MR) input must be asserted to ensure synchronization. For systems which only use one EP139, the MR pin need not be exercised as the internal divider design ensures synchronization between the ÷2/4 and the ÷4/5/6 outputs of a single device. All VCC and VEE pins must be externally connected to power supply to guarantee proper operation. The 100 Series contains temperature compensation. http://onsemi.com MARKING DIAGRAMS* 20 20 TSSOP-20 DT SUFFIX CASE 948E • • • • • • 20 1 SO-20 DW SUFFIX CASE 751D 1 HEP KEP XXX A L,WL Y, YY W, WW = MC10EP = MC100EP = 10 or 100 = Assembly Location = Wafer Lot = Year = Work Week ORDERING INFORMATION Synchronous Enable/Disable Device Master Reset for Synchronization of Multiple Chips VBB Output September, 2002 - Rev. 3 MCXXXEP139 AWLYYWW *For additional information, see Application Note AND8002/D Safety Clamp on Inputs Semiconductor Components Industries, LLC, 2002 1 20 • Maximum Frequency >1.0 GHz Typical • 50 ps Output-to-Output Skew • PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State HEP or KEP 139 ALYW 1 222 Package Shipping MC10EP139DT TSSOP-20 75 Units/Rail MC10EP139DTR2 TSSOP-20 2500 Tape & Reel MC100EP139DT TSSOP-20 MC100EP139DTR2 TSSOP-20 2500 Tape & Reel 75 Units/Rail MC10EP139DW SO-20 38 Units/Rail MC10EP139DWR2 SO-20 1000 Tape & Reel MC100EP139DW SO-20 38 Units/Rail MC100EP139DWR2 SO-20 1000 Tape & Reel Publication Order Number: MC10EP139/D MC10EP139, MC100EP139 Q1 Q1 Q2 Q2 Q3 Q3 VEE 20 19 18 17 16 15 14 13 12 11 1 2 3 4 VCC EN CLK 5 6 CLK VBB 7 8 9 10 MR VCC DIVSELa Q0 DIVSELb1 Q0 DIVSELb0 VCC PIN DESCRIPTION FUNCTION PIN Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 20-Lead Pinout (Top View) CLK*, CLK* ECL Diff Clock Inputs EN* ECL Sync Enable MR* ECL Master Reset VBB Q0, Q1, Q0, Q1 ECL Diff ÷2/4 Outputs Q2, Q3, Q2, Q3 ECL Diff ÷4/5/6 Outputs ECL Reference Output DIVSELa* ECL Freq. Select Input 2/4 DIVSELb0* ECL Freq. Select Input 4/5/6 DIVSELb1* ECL Freq. Select Input 4/5/6 VCC VEE ECL Positive Supply * ECL Negative Supply Pins will default low when left open. DIVSELa Q0 CLK ÷2/4 CLK R Q0 Q1 Q1 Q2 EN ÷4/5/6 R MR DIVSELb0 DIVSELb1 Q2 Q3 Q3 VEE Figure 2. Logic Diagram FUNCTION TABLES CLK EN MR Z ZZ X L H X L L H FUNCTION Divide Hold Q0:3 Reset Q0:3 Z = Low-to-High Transition ZZ = High-to-Low Transition DIVSELa L H Q0:1 OUTPUTS Divide by 2 Divide by 4 DIVSELb0 DIVSELb1 L H L H L L H H Q2:3 OUTPUTS Divide by 4 Divide by 6 Divide by 5 Divide by 5 http://onsemi.com 223 MC10EP139, MC100EP139 CLK Q (÷2) Q (÷4) Q (÷5) Q (÷6) Figure 3. Timing Diagram CLK tRR RESET Q (÷n) Figure 4. Timing Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model > 2 kV > 100 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Level 1 Oxygen Index: 28 to 34 UL 94 V-0 @ 0.125 in Transistor Count 758 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Parameter Symbol Condition 1 Condition 2 Rating Units VCC VEE PECL Mode Power Supply NECL Mode Power Supply VEE = 0 V VCC = 0 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V Iout Output Current Continuous Surge IBB TA VBB Sink/Source Operating Temperature Range Tstg JA Storage Temperature Range -65 to +150 °C Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 20 TSSOP 20 TSSOP 140 100 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 20 TSSOP 23 to 41 °C/W JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 20 SOIC 20 SOIC 90 60 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 20 SOIC 33 to 35 °C/W 265 °C Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 224 VI VCC VI VEE 6 V -6 V 6 -6 V V 50 100 mA mA ± 0.5 mA -40 to +85 °C MC10EP139, MC100EP139 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 65 82 105 65 83 105 65 84 105 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL VIH Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV VIL VBB Input LOW Voltage (Single-Ended) 1365 1690 1460 1755 1490 1815 mV Output Voltage Reference 1790 1990 1855 2055 1915 2115 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 A Input LOW Current 1890 2.0 1955 150 2015 150 0.5 0.5 A 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 65 82 105 65 83 105 65 84 105 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 7) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL VIH Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL VBB Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV Output Voltage Reference 3490 3690 3555 3755 3615 3815 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 A Input LOW Current 3590 2.0 3655 150 3715 150 0.5 0.5 A 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 9) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 65 82 105 65 83 105 65 84 105 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 10) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL VIH Output LOW Voltage (Note 10) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL VBB Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV Output Voltage Reference -1510 -1310 -1445 -1245 -1385 -1 185 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11) 0.0 V IIH IIL Input HIGH Current 150 A Input LOW Current -1410 VEE+2.0 0.0 VEE+2.0 150 0.5 -1345 0.0 VEE+2.0 150 0.5 -1285 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 225 MC10EP139, MC100EP139 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 70 83 100 70 87 105 75 90 110 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 13) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL VIH Output LOW Voltage (Note 13) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL VBB Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV Output Voltage Reference 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14) 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 A Input LOW Current 1875 2.0 1875 150 1875 150 0.5 0.5 A 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 70 85 100 70 90 105 75 95 110 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 16) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL VIH Output LOW Voltage (Note 16) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL VBB Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV Output Voltage Reference 3475 3675 3475 3675 3475 3675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 17) 5.0 2.0 5.0 2.0 5.0 V 3575 2.0 3575 3575 IIH Input HIGH Current 150 150 150 A IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 18) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 70 85 100 70 90 105 75 95 110 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 19) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL VIH Output LOW Voltage (Note 19) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL VBB Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV Output Voltage Reference -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 20) 0.0 V -1425 VEE+2.0 0.0 -1425 VEE+2.0 0.0 -1425 VEE+2.0 IIH Input HIGH Current 150 150 150 A IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 226 MC10EP139, MC100EP139 AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21) -40 °C Symbol Characteristic Min 25°C Typ Max Min >1 Typ 85°C Max Min Max Maximum Frequency (See Figure 5 Fmax/JITTER) tPLH, tPHL Propagation Delay tRR Reset Recovery ts Setup Time th Hold Time tPW Minimum Pulse Width tSKEW Within Device Skew Q, Q Device-to-Device Skew (Note 22) 50 200 100 300 50 200 100 300 50 200 100 300 ps tJITTER Cycle-to-Cycle Jitter (See Figure 5 Fmax/JITTER) 0.2 <1 0.2 <1 0.2 <1 ps VPP Input Voltage Swing (Differential) 150 800 1200 150 800 1200 150 800 1200 mV tr tf Output Rise/Fall Times (20% - 80%) 110 180 250 125 190 275 150 215 300 ps 550 700 700 800 200 EN, CLK DIVSEL, CLK 600 700 750 850 100 200 200 400 120 180 CLK, EN CLK, DIVSEL 100 200 50 140 MR 550 450 Q, Q 800 900 >1 Unit fmax CLK, Q (Diff) MR, Q >1 Typ 900 1000 GHz 675 800 825 950 975 1100 ps 100 200 100 ps 200 400 120 180 200 400 120 180 ps 100 200 50 140 100 200 50 140 ps 550 450 550 450 ps 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. 22. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. 800 8 4 5 7 2 600 6 6 500 5 JITTEROUT ps (RMS) VOUTpp (mV) 700 ÉÉ ÉÉ ÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 400 4 300 3 200 2 (JITTER) 100 0 1100 1 1200 1300 1400 1500 1600 1700 FREQUENCY (MHz) Figure 5. Fmax/Jitter http://onsemi.com 227 1800 1900 2000 MC10EP139, MC100EP139 Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 6. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 228 MC100EP140 3.3VECL Phase− Frequency Detector The MC100EP140 is a three state phase frequency- detector intended for phase- locked loop applications which require a minimum amount of phase and frequency difference at lock. Since the part is designed with fully differential internal gates, the noise is reduced throughout the circuit, especially at high speeds. The basic operation of a Phase/Frequency Detector (PFD) is to “compare” an incoming signal (feedback) to a set reference signal. When the Reference (R) and Feedback (FB) inputs are unequal in frequency and/or phase, the differential UP (U) and DOWN (D) outputs will provide pulse streams which, when subtracted and integrated, provide an error voltage for control of a VCO. Detector states of operation are shown in the Figure 2 and the State Table. The device is packaged in a small outline, surface mount 8-lead SOIC package. The typical output amplitude of the EP140 is 400 mV, allowing faster switching time and greater bandwidth. For proper operation, the input edge rate of the R and FB inputs should be less than 5 ns. More information on Phase Lock Loop operation and application can be found in AND8040. The pinout is shown in Figure 1, the logic diagram in Figure 3, and the typical termination in Figure 5. • • • • • http://onsemi.com MARKING DIAGRAM 8 SO-8 D SUFFIX CASE 751 8 1 KP140 ALYW 1 KP = MC100EP A = Assembly Location L = Wafer Lot Y = Year W = Work Week 500 ps Typical Propagation Delay Maximum Frequency > 2.1 GHz Typical Fully Differential Internally Advanced High Band Output Swing of 400 mV ORDERING INFORMATION Transfer Gain: 1.0 mV/Degree at 1.4 GHz 1.2 mV/Degree at 1.0 GHz Rise and Fall Time: 100 ps Typical Device • • The 100 Series Contains Temperature Compensation • PECL Mode Operating Range: VCC = 3.0 V to 3.6 V Package Shipping MC100EP140D SO-8 98 Units/Rail MC100EP140DR2 SO-8 2500 Units/Reel with VEE = 0 V • NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -3.6 V • Open Input Default State Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 5 229 Publication Order Number: MC100EP140/D MC100EP140 VCC R FB VEE 8 7 6 5 1 2 3 4 U U D D PIN DESCRIPTION PIN FUNCTION D, D Differential Down Outputs U, U Differential Up Outputs R* ECL Reference Input FB* ECL Feedback Input VCC Positive Supply VEE Negative Supply * Pins will default LOW when left open. Figure 1. 8-Lead Pinout (Top View) STATE TABLE R R 1 FB PHASE DETECTOR STATE 2 Pump Down U= L D=H 3 Pump Up U=L D=L FB R L L L L H L H 1-2 H L L L 2 L L L L 2 L L L L 2-3 H L H L 3-2 H H L L 2 L L L L C A U U C U FF A R C Reset D VEE B D Reset FB R B D PUMP UP 2-3-2 A S U L U=H D=L U Reset FB 2-1 FB A R OUTPUT PUMP DOWN 2-1-2 2 Figure 2. Phase Detector Logic Model R INPUT D FF S Reset B D B D Figure 3. Logic Diagram http://onsemi.com 230 D D MC100EP140 ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor 37.5 k ESD Protection Human Body Model Machine Model Charged Device Model > 2 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Level 1 Oxygen Index: 28 to 34 UL-94 V-0 @ 0.125 in Transistor Count 457 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W θJC Thermal Resistance (Junction-to-Case) std bd 8 SOIC 41 to 44 °C/W 265 °C VI VCC VI VEE Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 55 70 85 60 74 90 63 78 93 mA VOH Output HIGH Voltage (Note 4) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 4) 1755 1880 2005 1755 1880 2005 1755 1880 2005 mV VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV IIH Input HIGH Current 150 µA 150 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -0.3 V. 4. All loading with 50 to VCC-2.0 volts. http://onsemi.com 231 MC100EP140 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -3.6 V to -3.0 V (Note 5) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 55 70 85 60 74 90 63 78 93 mA Output HIGH Voltage (Note 6) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 6) -1545 -1420 -1295 -1545 -1420 -1295 -1545 -1420 -1295 mV VIH Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV IIH Input HIGH Current 150 µA IEE Power Supply Current VOH 150 150 IIL Input LOW Current 0.5 0.5 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 5. Input and output parameters vary 1:1 with VCC. 6. All loading with 50 to VCC-2.0 volts. AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -3.6 V or VCC = 3.0 V to 3.6 V; VEE = 0 V (Note 7) -40 °C Symbol Characteristic fmax Maximum Frequency (See Figure 4 Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tJITTER Cycle-to-Cycle Jitter (See Figure 4 Fmax/JITTER) VPP Input Voltage Swing tr tf Output Rise/Fall Times (20% - 80%) Min Typ 25°C Max Min >2 R to U, FB to D FB to U, R to D 300 400 Q, Q Typ 85°C Max Min >2 450 600 6002 800 .2 <1 400 800 1200 50 90 180 325 450 Typ >2 475 650 625 850 .2 <1 400 800 1200 60 100 200 350 500 6 500 5 400 4 300 3 ps .2 <1 ps 400 800 1200 mV 70 120 220 ps ÏÏ ÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ 2 (JITTER) 100 1 0 0 400 800 1200 1600 FREQUENCY (MHz) Figure 4. Fmax/Jitter http://onsemi.com 232 2000 2400 GHz 650 900 JITTEROUT ps (RMS) VOUTpp (mV) 600 Unit 500 700 7. Measured using a 750 mV VPP pk-pk, 50% duty cycle, clock source. All loading with 50 to VCC-2.0 V. 200 Max MC100EP140 Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 5. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 233 MC10EP142, MC100EP142 3.3V / 5VECL 9−Bit Shift Register The MC10EP/100EP142 is a 9-bit shift register, designed with byte-parity applications in mind. The E142 performs serial/parallel in and serial/parallel out, shifting in one direction. The nine inputs D0 - D8 accept parallel input data, while S-IN accepts serial input data. The Qn outputs do not need to be terminated for the shift operation to function. To minimize noise and power, any Q output not used should be left unterminated. The SEL (Select) input pin is used to switch between the two modes of operation - SHIFT and LOAD. The shift direction is from bit 0 to bit 8. Input data is accepted by the registers a set-up time before the positive going edge of CLK0 or CLK1; shifting is also accomplished on the positive clock edge. A HIGH on the Master Reset pin (MR) asynchronously resets all the resisters to zero. The 100 Series contains temperature compensation. • • • • • • http://onsemi.com MARKING DIAGRAM* LQFP-32 FA SUFFIX CASE 873A MCxxx EP142 AWLYYWW 32 1 >3 GHz Minimum Shift Frequency xxx A WL YY WW 9-Bit for Byte-Parity Applications Asynchronous Master Reset Dual Clocks PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State = 10 or 100 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, refer to Application Note AND8002/D • • Safety Clamp on Inputs ORDERING INFORMATION Device Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 8 234 Package Shipping MC10EP142FA LQFP-32 250 Units/Tray MC10EP142FAR2 LQFP-32 2000/Tape & Reel MC100EP142FA LQFP-32 250 Units/Tray MC100EP142FAR2 LQFP-32 2000/Tape & Reel Publication Order Number: MC10EP142/D D7 D8 Q8 Q7 Q7 Q6 Q5 VCC MC10EP142, MC100EP142 24 23 22 21 20 19 18 17 PIN DESCRIPTION 25 16 PIN FUNCTION D6 VEE D0* - D8* ECL Parallel Data Inputs D5 26 15 Q4 S-IN*, S-IN** ECL Differential Serial Data Input D4 27 14 Q3 SEL* ECL Mode Select Input 13 VCC CLK0*, CLK1*, CLK0**, CLK1** ECL Differential Clock Inputs 12 Q2 MR* ECL Master Reset Q0 - Q8 ECL Data Outputs Q7 ECL Data Output VCC Positive Supply VEE 28 D3 29 D2 30 11 Q1 D1 31 10 Q0 VCC 32 9 MR 7 8 SEL 6 CLK1 5 CLK1 4 CLK0 3 CLK0 2 S-IN D0 1 S-IN MC10EP142 MC100EP142 VEE Negative Supply * Pins will default LOW when left open. ** Pins will default to VCC/2 when left open. Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 32-Lead LQFP Pinout (Top View) TRUTH TABLE Function* SEL S-IN MR CLK0 CLK1 Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Load L X L Z Z D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 Shift H L L Z Z L Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 H H L Z Z H Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 X X H Z Z L L L L L L L L L L Reset * All functions are accomplished on the positive edge of CLK0 or CLK1. http://onsemi.com 235 MC10EP142, MC100EP142 S-IN S-IN 1 D0 0 Q Q0 1 0 D Q Q1 D1 1 0 D Q Q2 D2 D3 1 0 D Q Q3 1 0 D Q Q4 D4 D5 1 0 D Q Q5 D Q Q6 D Q Q7 Q Q7 Q Q8 1 D8 D D6 0 D7 1 0 1 0 D SEL MR CLK0 VCC CLK0 VEE CLK1 CLK1 Figure 2. Logic Diagram http://onsemi.com 236 MC10EP142, MC100EP142 ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor 37.5 k ESD Protection Human Body Model Machine Model Charged Device Model > 2 kV > 100 V > 2 kV Moisture Sensitivity (Note 1) Level 2 Flammability Rating Oxygen Index: 28 to 34 UL-94 V-0 @ 0.125 in Transistor Count 405 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, refer to Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Parameter Symbol Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 8 V VEE NECL Mode Power Supply VCC = 0 V -8 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 32 LQFP 32 LQFP 80 55 °C/W °C/W θJC Thermal Resistance (Junction-to-Case) std bd 32 LQFP 12 to 17 °C/W 265 °C VI VCC VI VEE Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 105 125 145 105 125 145 105 125 145 mA VOH Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single-Ended) 1365 1690 1460 1755 1490 1815 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 µA IIL Input LOW Current CLK0, CLK1, D, S-IN CLK0, CLK1, D, S-IN 150 150 µA 0.5 -150 0.5 -150 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 237 MC10EP142, MC100EP142 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic Min 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current (Note 7) 105 125 145 105 125 145 105 125 145 mA VOH Output HIGH Voltage (Note 8) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 8) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 9) 2.0 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current CLK0, CLK1, D, S-IN CLK0, CLK1, D, S-IN 150 150 µA 0.5 -150 0.5 -150 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. Required 500 lfpm air flow when using +5 V power supply. For (VCC - VEE) >3.3 V, 5 to 10 in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC-V EE operation at 3.3 V. 8. All loading with 50 to VCC-2.0 volts. 9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 10) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Power Supply Current (Note 11) 105 125 145 105 125 145 105 125 145 mA VOH Output HIGH Voltage (Note 12) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL Output LOW Voltage (Note 12) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV VIH Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 13) 0.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current CLK0, CLK1, D, S-IN CLK0, CLK1, D, S-IN VEE+2.0 0.0 VEE+2.0 150 0.0 VEE+2.0 150 µA 0.5 -150 0.5 -150 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 10. Input and output parameters vary 1:1 with VCC. 11. Required 500 lfpm air flow when using -5 V power supply. For (VCC - VEE) >3.3 V, 5 to 10 in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC-V EE operation at 3.3 V. 12. All loading with 50 to VCC-2.0 volts. 13. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 238 MC10EP142, MC100EP142 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 14) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 105 125 145 105 130 150 105 130 150 mA VOH Output HIGH Voltage (Note 15) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 15) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 16) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 µA IIL Input LOW Current CLK0, CLK1, D, S-IN CLK0, CLK1, D, S-IN 150 150 µA 0.5 -150 0.5 -150 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 14. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 15. All loading with 50 to VCC-2.0 volts. 16. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 17) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Power Supply Current (Note 18) 105 125 145 105 130 150 105 130 150 mA VOH Output HIGH Voltage (Note 19) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 19) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 20) 2.0 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current CLK0, CLK1, D, S-IN CLK0, CLK1, D, S-IN 150 150 µA 0.5 -150 0.5 -150 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 17. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 18. Required 500 lfpm air flow when using +5 V power supply. For (VCC - VEE) >3.3 V, 5 to 10 in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC-V EE operation at 3.3 V. 19. All loading with 50 to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 239 MC10EP142, MC100EP142 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 21) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Power Supply Current (Note 22) 105 125 145 105 130 150 105 130 150 mA VOH Output HIGH Voltage (Note 23) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 23) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 24) 0.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current CLK0, CLK1, D, S-IN CLK0, CLK1, D, S-IN VEE+2.0 0.0 VEE+2.0 0.0 150 VEE+2.0 150 µA 0.5 -150 0.5 -150 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 21. Input and output parameters vary 1:1 with VCC. 22. Required 500 lfpm air flow when using -5 V power supply. For (VCC - VEE) >3.3 V, 5 to 10 in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC-V EE operation at 3.3 V. 23. All loading with 50 to VCC-2.0 volts. 24. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. AC CHARACTERISTICS VCC= 3.0 V to 5.5 V; VEE = 0.0 V or VCC = 0.0 V; VEE = -3.0 V to -5.5 V (Note 25) -40 °C Symbol Characteristic fSHIFT Max. Shift Frequency tPLH tPHL Propagation Delay to Output ts Setup Time th Min Typ 25°C Max Min Typ 3.0 > 3.4 550 550 675 675 85°C Max Min Typ Max GHz ps Clk MR 500 500 625 625 750 750 D SEL 50 100 -50 50 50 100 D SEL 100 50 50 -50 100 50 800 800 575 575 700 700 -50 50 50 100 -50 50 50 -50 100 50 50 -50 825 825 ps Hold Time tSKEW Within-Device Skew (Note 26) Duty Cycle Skew (Note 27) tJITTER Cycle-to-Cycle Jitter (See Figure 3 Fmax/JITTER) tr tf Rise/Fall Times (20 - 80%) Unit ps Q, Q 110 50 5.0 100 20 50 5.0 100 20 50 5.0 100 20 ps 1 2 1 2 1 2 ps 180 250 190 275 215 300 ps 125 150 25. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. 26. Within-device skew is defined as identical transitions on similar paths through a device. 27. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. http://onsemi.com 240 900 9 800 8 700 7 600 6 500 5 400 4 300 3 ÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉ ÉÉ ÉÉ 200 2 100 1 0 0 1000 2000 3000 4000 5000 6000 FREQUENCY (MHz) Figure 3. Fmax/Jitter Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 4. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 241 JITTEROUT ps (RMS) VOUTpp (mV) MC10EP142, MC100EP142 MC10EP195, MC100EP195 3.3V / 5VECL Programmable Delay Chip The MC10/100EP195 is a programmable delay chip (PDC) designed primarily for clock deskewing and timing adjustment. It provides variable delay of a differential NECL/PECL input transition. The delay section consists of a programmable matrix of gates and multiplexers as shown in the logic diagram, Figure 2. The delay increment of the EP195 has a digitally selectable resolution of about 10 ps and a range of up to 10.2 ns. The required delay is selected by the 10 data select inputs D[0:9] which are latched on chip by a high signal on the latch enable (LEN) control. The approximate delay values for varying tap numbers correlating to D0 (LSB) through D9 (MSB) are shown in Table 1 and Figure 3. Because the EP195 is designed using a chain of multiplexers it has a fixed minimum delay of 2.2 ns. An additional pin D10 is provided for cascading multiple PDCs for increased programmable range. The cascade logic allows full control of multiple PDCs. Select input pins D0- D10 may be threshold controlled by combinations of interconnects between VEF (pin 7) and VCF (pin 8) for CMOS, ECL, or TTL level signals. For CMOS input levels, leave VCF and VEF open. For ECL operation, short VCF and VEF (pins 7 and 8). For TTL level operation, connect a 1.5 V supply reference to VCF and leave open VEF pin. The 1.5 V reference voltage to VCF pin can be accomplished by placing a 1.5 k or 500 resistor between VCF and VEE for 3.3 V or 5.0 V power supplies, respectively. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. The 100 Series contains temperature compensation. • • • • • • • • • • http://onsemi.com MARKING DIAGRAM* MCXXX EP195 LQFP-32 FA SUFFIX CASE 873A AWLYYWW 32 1 XXX A WL YY WW = 10 OR 100 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Package Shipping Maximum Frequency > 2.5 GHz Typical MC10EP195FA LQFP-32 250 Units/Tray Programmable Range: 2.2 ns to 12.2 ns MC10EP195FAR2 LQFP-32 2000 Tape & Reel 10 ps Increments MC100EP195FA LQFP-32 250 Units/Tray MC100EP195FAR2 LQFP-32 2000 Tape & Reel PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State Safety Clamp on Inputs A Logic High on the EN Pin Will Force Q to Logic Low D[0:10] Can Accept Either ECL, CMOS, or TTL Inputs VBB Output Reference Voltage Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 9 242 Publication Order Number: MC10EP195/D MC10EP195, MC100EP195 VEE D0 VCC Q 24 23 22 PIN DESCRIPTION Q VCC VCC NC 21 20 19 18 17 PIN FUNCTION IN*, IN* ECL Signal Input D1 25 16 EN EN* ECL Input Enable D2 26 15 CASCADE D[0:10]* CMOS, ECL, or TTL Select Inputs D3 27 14 CASCADE VEE 28 D4 29 D5 Q, Q ECL Signal Output LEN* ECL Latch Enable 13 VCC SETMIN*† ECL Minimum Delay Set 12 SETMAX SETMAX* ECL Maximum Delay Set 30 11 SETMIN ECL Cascade Signal D6 31 10 CASCADE, CASCADE LEN D7 32 9 MC10EP195 MC100EP195 1 D8 2 3 4 5 D9 D10 IN 6 7 VEE 8 IN VBB VEF VCF Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. VBB VCC Positive Supply Output Reference Voltage VEE Negative Supply VCF CMOS, ECL, or TTL Input Select VEF ECL Reference Mode Connection NC No Connect * Pins will default LOW when left open. † SETMIN will override SETMAX if both are high. Figure 1. 32-Lead LQFP Pinout (Top View) TRUTH TABLE EN L Q = IN EN H Q Logic Low LEN L Pass Through D[0:10] LEN H Latch D[0:10] SETMIN L Normal Mode SETMIN H Min Delay Path SETMAX L Normal Mode SETMAX H Max Delay Path VCF VEF Pin*** ECL Mode VCF No Connect CMOS Mode VCF 1.5 V TTL Mode** ** For TTL Mode, connect appropriate resistor between VCF and VEE pin. *** Short VCF (pin 8) and VEF (pin 7). Resistor Value Power Supply 1.5 k 3.3 V 500 5.0 V DATA INPUT OPERATING VOLTAGE TABLE POWER SUPPLY (VCC, VEE) DATA SELECT INPUTS (D [0:10]) CMOS TTL PECL NECL PECL N/A NECL N/A N/A N/A http://onsemi.com 243 Q 1 *GD = (GATE DELAY) APPROXIMATELY 10 ps DELAY PER GATE (MINIMUM FIXED DELAY APPROX. 2.2 ns) D9 D8 1 512 1 GD* 1 D7 1 D6 1 D5 D4 10 BIT LATCH 1 1 Table 1. THEORETICAL DELAY VALUES 1 D3 D10 CASCADE CASCADE D2 1 Latch 1 D0 D10 1 D1 1 VEE VCF VEF SET MIN SET MAX VBB EN IN IN LEN 1 GD* 0 2 GD* 0 4 GD* 0 8 GD* 0 16 GD* 0 32 GD* 0 64 GD* 0 128 GD* 0 256 GD* 0 0 1 GD* 0 Q MC10EP195, MC100EP195 Figure 2. Logic Diagram http://onsemi.com 244 D(9:0) Value Delay Value Comment 0000000000 0 ps (SET MIN) 0000000001 10 ps 0000000010 20 ps 0000000011 30 ps 0000000100 40 ps 0000000101 50 ps 0000000110 60 ps 0000000111 70 ps 0000001000 80 ps 0000010000 160 ps 0000100000 320 ps 0001000000 640 ps 0010000000 1280 ps 0100000000 2560 ps 1000000000 5120 ps 1111111111 10230 ps XXXXXXXXXX 10240 ps (SET MAX) MC10EP195, MC100EP195 14000 13000 12000 85 °C 11000 25 °C VCC = 0 V VEE = -3.3 V 10000 - 40 °C DELAY ( ps) 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 0 100 200 300 400 500 600 700 800 Decimal Value of Select Inputs (D[9:0]) Figure 3. Measured Delay vs. Select Inputs ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model Moisture Sensitivity (Note 1) Flammability Rating > 2 kV > 100 V > 2 kV Level 2 Oxygen Index: 28 to 34 Transistor Count UL 94 V-0 @ 0.125 in 1217 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 245 900 1000 MC10EP195, MC100EP195 MAXIMUM RATINGS (Note 2) Symbol Rating Units VCC PECL Mode Power Supply Parameter VEE = 0 V Condition 1 Condition 2 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 32 LQFP 32 LQFP 80 55 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 32 LQFP 12 to 17 °C/W 265 °C VI ≤ VCC VI ≥ VEE Tsol Wave Solder < 2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 110 145 175 120 150 180 120 150 180 mA Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single-Ended) PECL CMOS TTL 2090 2415 2155 1815 2000 2480 2215 2540 1365 1690 1430 1755 1485 400 1490 1815 IEE Power Supply Current VOH VIL Input LOW Voltage (Single-Ended) PECL CMOS TTL mV mV VBB Output Voltage Reference 1790 1890 1990 1855 1955 2055 1915 2015 2115 mV VCF Input Select 1610 1710 1810 1620 1718 1820 1625 1725 1825 mV VEF Mode Connection 1920 2020 2120 1980 2080 2180 2030 2130 2230 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A IIL Input LOW Current 2.0 150 IN IN 0.5 -150 150 0.5 -150 0.5 -150 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 246 MC10EP195, MC100EP195 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic Min 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current (Note 7) 110 145 175 120 150 180 120 150 180 mA VOH Output HIGH Voltage (Note 8) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 8) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single-Ended) PECL CMOS TTL 3790 4115 3855 2750 2000 4180 3915 4240 3065 3390 3130 3455 2250 400 3190 3515 3690 3555 3755 3615 VIL Input LOW Voltage (Single-Ended) PECL CMOS TTL mV mV VBB Output Voltage Reference 3490 3590 VCF Input Select TBD mV VEF Mode Connection TBD mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 9) IIH Input HIGH Current IIL Input LOW Current 2.0 5.0 3655 2.0 5.0 150 IN IN 3715 2.0 150 0.5 -150 0.5 -150 3815 mV 5.0 V 150 A A 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. Required 500 lfpm air flow when using +5 V power supply. For (VCC - VEE) > 3.3 V, 5 to 10 in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC-V EE operation at ≤ 3.8 V. 8. All loading with 50 to VCC-2.0 volts. 9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 10) -40 °C Symbol 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Power Supply Current (Note 11) 110 145 175 120 150 180 120 150 180 mA VOH Output HIGH Voltage (Note 12) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL Output LOW Voltage (Note 12) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV VIH Input HIGH Voltage (Single-Ended) NECL -1210 -885 -1 145 -820 -1085 -760 Input LOW Voltage (Single-Ended) NECL -1935 -1610 -1870 -1545 -1810 -1485 VBB Output Voltage Reference -1510 -1310 -1445 -1245 -1385 VCF Input Select VEF Mode Connection VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 13) IIH Input HIGH Current IIL Input LOW Current VIL Characteristic 25°C mV mV -1410 -1345 -1285 -1 185 TBD mV TBD VEE+2.0 0.0 VEE+2.0 150 IN IN 0.5 -150 mV 0.0 VEE+2.0 150 0.5 -150 mV 0.5 -150 0.0 V 150 A A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 10. Input and output parameters vary 1:1 with VCC. 11. Required 500 lfpm air flow when using +5 V power supply. For (VCC - VEE) > 3.3 V, 5 to 10 in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC-V EE operation at ≤ 3.8 V. 12. All loading with 50 to VCC-2.0 volts. 13. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 247 MC10EP195, MC100EP195 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 14) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 100 135 160 110 140 170 110 145 175 mA Output HIGH Voltage (Note 15) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL VIH Output LOW Voltage (Note 15) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV 2075 2420 2075 1815 2000 2420 2075 2420 1355 1675 1490 1675 1485 400 1490 1675 VIL Input HIGH Voltage (Single-Ended) PECL CMOS TTL Input LOW Voltage (Single-Ended) PECL CMOS TTL mV mV VBB VCF Output Voltage Reference 1775 1875 1975 1775 1875 1975 1775 1875 1975 mV Input Select 1610 1720 1825 1610 1720 1825 1610 1720 1825 mV VEF VIHCMR Mode Connection 1900 2000 2100 1900 2000 2100 1900 2000 2100 mV 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 A Input HIGH Voltage Common Mode Range (Differential) (Note 16) Input LOW Current 2.0 150 IN IN 0.5 -150 150 0.5 -150 A 0.5 -150 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 14. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 15. All loading with 50 to VCC-2.0 volts. 16. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 17) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current (Note 18) 100 135 160 110 140 170 110 145 175 mA Output HIGH Voltage (Note 19) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL VIH Output LOW Voltage (Note 19) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV 3775 4120 3775 2750 2000 4120 3775 4120 3790 3375 3190 3375 2250 400 3190 3375 3675 3475 3675 3475 VIL Input HIGH Voltage (Single-Ended) PECL CMOS TTL Input LOW Voltage (Single-Ended) PECL CMOS TTL VBB VCF Output Voltage Reference VEF VIHCMR Mode Connection IIH IIL Input HIGH Current mV mV 3475 3575 Input Select 3575 3675 TBD 2.0 5.0 2.0 150 IN IN 0.5 -150 mV 5.0 2.0 150 0.5 -150 mV mV TBD Input HIGH Voltage Common Mode Range (Differential) (Note 20) Input LOW Current 3575 0.5 -150 5.0 V 150 A A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 17. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 18. Required 500 lfpm air flow when using +5 V power supply. For (VCC - VEE) > 3.3 V, 5 to 10 in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC-V EE operation at ≤ 3.8 V. 19. All loading with 50 to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 248 MC10EP195, MC100EP195 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 21) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 100 135 160 110 140 170 110 145 175 mA IEE Power Supply Current (Note 22) VOH Output HIGH Voltage (Note 23) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 23) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single-Ended) NECL -1225 -880 -1225 -880 -1225 -880 Input LOW Voltage (Single-Ended) NECL -1945 -1625 -1945 -1625 -1945 -1625 VBB Output Voltage Reference -1525 -1325 -1525 -1325 -1525 VCF Input Select TBD mV VEF Mode Connection TBD mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 24) IIH Input HIGH Current IIL Input LOW Current VIL mV mV -1425 VEE+2.0 0.0 VEE+2.0 150 IN IN 0.5 -150 -1425 0.0 VEE+2.0 150 0.5 -150 -1425 0.5 -150 -1325 mV 0.0 V 150 A A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 21. Input and output parameters vary 1:1 with VCC. 22. Required 500 lfpm air flow when using +5 V power supply. For (VCC - VEE) > 3.3 V, 5 to 10 in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC-V EE operation at ≤ 3.8 V. 23. All loading with 50 to VCC-2.0 volts. 24. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 249 MC10EP195, MC100EP195 AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 25) -40 °C Symbol Characteristic Min Typ Max fmax Maximum Frequency (See Figure 4. Fmax/JITTER) tPLH tPHL Propagation Delay IN to Q; D(0-10) = 0 IN to Q; D(0-10) = 1023 EN to Q; D(0-10) = 0 D0 to CASCADE 1650 9500 1600 300 2050 11500 2150 420 tRANGE Programmable Range tPD (max) - tPD (min) 7850 9450 t 25°C Min 2.5 Typ 2450 13500 2600 500 1800 10000 1800 350 2200 12200 2300 450 8200 10000 Typ Max 2.5 Unit GHz 2600 14000 2800 550 1950 10800 2000 425 2350 13300 2500 525 8850 10950 2750 15800 3000 625 ps Step Delay (Note 26) ps 13 27 44 90 130 312 590 1100 2250 4500 14 30 47 97 140 335 650 1180 2400 4800 Linearity TBD tSKEW Duty Cycle Skew (Note 27) tPHL-t PLH TBD tR Min 2.5 Lin th Max ps D0 High D1 High D2 High D3 High D4 High D5 High D6 High D7 High D8 High D9 High ts 85°C 41 100 145 360 690 1300 2650 5300 ps Setup Time ps D to LEN D to IN (Note 28) EN to IN (Note 29) 200 300 300 0 140 150 200 300 300 0 160 170 200 300 300 0 180 180 LEN to D IN to EN (Note 30) 200 400 60 250 200 400 100 280 200 400 80 300 400 350 TBD 250 200 Hold Time ps Release Time ps EN to IN (Note 31) SET MAX to LEN SET MIN to LEN tjit Cycle-to-Cycle Jitter (See Figure 4. Fmax/JITTER) VPP Input Voltage Swing (Differential) tr tf Output Rise/Fall Time 20-80% (Q) 20-80% (CASCADE) 400 350 200 275 0.2 <1 150 800 1200 100 100 180 180 250 250 400 350 0.2 <1 150 800 1200 150 150 210 210 300 300 300 225 0.2 <1 ps 150 800 1200 mV 175 175 230 230 325 325 ps 25. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. 26. Specification limits represent the amount of delay added with the assertion of each individual delay control pin. The various combinations of asserted delay control inputs will typically realize D0 resolution steps across the specified programmable range. 27. Duty cycle skew guaranteed only for differential operation measured from the cross point of the input to the cross point of the output. 28. This setup time defines the amount of time prior to the input signal the delay tap of the device must be set. 29. This setup time is the minimum time that EN must be asserted prior to the next transition of IN/IN to prevent an output response greater than ±75 mV to that IN/IN transition. 30. This hold time is the minimum time that EN must remain asserted after a negative going IN or positive going IN to prevent an output response greater than ±75 mV to that IN/IN transition. 31. This release time is the minimum time that EN must be deasserted prior to the next IN/IN transition to ensure an output response that meets the specified IN to Q propagation delay and transition times. http://onsemi.com 250 900 9 800 8 700 7 600 6 500 5 400 4 300 3 JITTEROUT ps (RMS) VOUTpp (mV) MC10EP195, MC100EP195 ÉÉ ÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 200 2 (JITTER) 100 1 0 0 1000 2000 FREQUENCY (MHz) 3000 Figure 4. Fmax/Jitter Cascading Multiple EP195s To increase the programmable range of the EP195, internal cascade circuitry has been included. This circuitry allows for the cascading of multiple EP195s without the need for any external gating. Furthermore, this capability requires only one more address line per added E195. Obviously, cascading multiple programmable delay chips will result in a larger programmable range: however, this increase is at the expense of a longer minimum delay. Figure 5 illustrates the interconnect scheme for cascading two EP195s. As can be seen, this scheme can easily be expanded for larger EP195 chains. The D10 input of the EP195 is the cascade control pin. With the interconnect scheme of Figure 5 when D10 is asserted, it signals the need for a larger programmable range than is achievable with a single device. The A11 address can be added to generate a cascade output for the next EP195. For a 2- device configuration, A11 is not required. Need if Chip #3 is used ADDRESS BUS A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 VEE D3 D2 D7 D1 D6 D5 D4 VEE D3 D2 D1 D8 VEE D8 VEE D9 D0 D9 D0 D10 D10 VCC EP195 IN Q IN Q IN VCC EP195 Q INPUT OUTPUT NC EN CASCADE VCF CASCADE NC VCC VCC VCC VEF SETMAX VCC CHIP #1 SETMIN VBB VEE CASCADE CASCADE VCC SETMAX LEN VEE VCF SETMIN VEF VCC EN CHIP #2 VBB Q LEN IN Figure 5. Cascading Interconnect Architecture all of the latches of chip #2 will be reset and the device will be set at its minimum delay. Chip #1, on the other hand, will have both SET MIN and SET MAX deasserted so that its delay will be controlled entirely by the address bus A0—A9. If the delay needed is greater than can be achieved with 1023 gate delays An expansion of the latch section of the block diagram is pictured in Figure 6. Use of this diagram will simplify the explanation of how the cascade circuitry works. When D10 of chip #1 in Figure 5 is low the cascade output will also be low while the cascade bar output will be a logical high. In this condition the SET MIN pin of chip #2 will be asserted and thus http://onsemi.com 251 MC10EP195, MC100EP195 (1111111111 on the A0—A9 address bus) D10 will be asserted to signal the need to cascade the delay to the next EP195 device. When D10 is asserted, the SET MIN pin of chip #2 will be deasserted and SET MAX pin asserted resulting in the device delay to be the maximum delay. Figure 7 shows the delay time of two EP195 chips in cascade. To expand this cascading scheme to more devices, one simply needs to connect the D10 pin from the next chip to the address bus and CASCADE outputs to the next chip in the same manner as pictured in Figure 5. The only addition to the logic is the increase of one line to the address bus for cascade control of the second programmable delay chip. TO SELECT MULTIPLEXERS SET MIN BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 BIT 8 BIT 9 D0 Q0 D1 Q1 D2 Q2 D3 Q3 D4 Q4 D5 Q5 D6 Q6 D7 Q7 D8 Q8 D9 Q9 LEN LEN LEN LEN LEN LEN LEN LEN LEN LEN Set Reset Set Reset Set Reset Set Reset Set Reset Set Reset Set Reset Set Reset Set Reset Set Reset SET MAX Figure 6. Expansion of the Latch Section of the EP195 Block Diagram VARIABLE INPUT TO CHIP #1 AND SETMIN FOR CHIP #2 INPUT FOR CHIP #1 Total D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Delay Value Delay Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ps 4400 ps 1 10 ps 0 0 0 0 0 0 0 0 0 4410 ps 1 0 20 ps 0 0 0 0 0 0 0 0 4420 ps 0 1 1 30 ps 0 0 0 0 0 0 0 4430 ps 0 1 0 0 40 ps 0 0 0 0 0 0 4440 ps 0 0 1 0 1 50 ps 0 0 0 0 0 4450 ps 0 0 0 1 1 0 60 ps 0 0 0 0 4460 ps 0 0 0 0 1 1 1 70 ps 0 0 0 4470 ps 0 0 0 0 1 0 0 0 80 ps 0 0 4480 ps 0 0 0 0 1 0 0 0 0 160 ps 0 4560 ps 0 0 0 0 1 0 0 0 0 0 220 ps 4720 ps 0 0 0 0 1 0 0 0 0 0 0 640 ps 5040 ps 0 0 0 1 0 0 0 0 0 0 0 1280 ps 5680 ps 0 0 1 0 0 0 0 0 0 0 0 2560 ps 6960 ps 0 1 0 0 0 0 0 0 0 0 0 5120 ps 9520 ps 0 1 1 1 1 1 1 1 1 1 1 10230 ps 14630 ps Delay Value Delay Value VARIABLE INPUT TO CHIP #1 AND SETMAX FOR CHIP #2 INPUT FOR CHIP #1 Total D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 0 0 0 0 0 0 0 10240 ps 14640 ps 1 0 0 0 0 0 0 0 0 0 1 10250 ps 14650 ps 1 0 0 0 0 0 0 0 0 1 0 10260 ps 14660 ps 1 0 0 0 0 0 0 0 0 1 1 10270 ps 14670 ps 1 0 0 0 0 0 0 0 1 0 0 10280 ps 14680 ps 1 0 0 0 0 0 0 0 1 0 1 10290 ps 14690 ps 1 0 0 0 0 0 0 0 1 1 0 10300 ps 14700 ps 1 0 0 0 0 0 0 0 1 1 1 10310 ps 14710 ps 1 0 0 0 0 0 0 1 0 0 0 10320 ps 14720 ps 1 0 0 0 0 0 1 0 0 0 0 10400 ps 14800 ps 1 0 0 0 0 1 0 0 0 0 0 10560 ps 14960 ps 1 0 0 0 1 0 0 0 0 0 0 10880 ps 15280 ps 1 0 0 1 0 0 0 0 0 0 0 11520 ps 15920 ps 1 0 1 0 0 0 0 0 0 0 0 12800 ps 17200 ps 1 1 0 0 0 0 0 0 0 0 0 15360 ps 19760 ps 1 1 1 1 1 1 1 1 1 1 1 20470 ps 24870 ps Figure 7. Delay Value of Two EP195 Cascaded http://onsemi.com 252 MC10EP195, MC100EP195 Multi-Channel Deskewing The most practical application for EP195 is in multiple channel delay matching. Slight differences in impedance and cable length can create large timing skews within a high- speed system. To deskew multiple signal channels, each channel can be sent through each EP195 as shown in Figure 8. One signal channel can be used as reference and the other EP195s can be used to adjust the delay to eliminate the timing skews. Nearly any high- speed system can be fine- tuned (as small as 10 ps) to reduce the skew to extremely tight tolerances. EP195 IN IN Q Q #1 EP195 IN IN Q Q #2 EP195 IN IN Q Q #N Control Logic Digital Data Figure 8. Multiple Channel Deskewing Diagram Measure Unknown High Speed Device Delays EP195s provide a possible solution to measure the unknown delay of a device with a high degree of precision. By combining two EP195s and EP31 as shown in Figure 9, the delay can be measured. The first EP195 can be set to SETMIN and its output is used to drive the unknown delay device, which in turn drives the input of a D flip-flop of EP31. The second EP195 is triggered along with the first EP195 and its output provides a clock signal for EP31. The programmed delay of the second EP195 is varied to detect the output edge from the unknown delay device. If the programmed delay through the second EP195 is too long, the flip- flop output will be at logic high. On the other hand, if the programmed delay through the second EP195 is too short, the flip- flop output will be at a logic low. If the programmed delay is correctly fine- tuned in the second EP195, the flip- flop will bounce between logic high and logic low. The digital code in the second EP195 can be directly correlated into an accurate device delay. EP195 CLOCK IN IN CLOCK Q Q Unknown Delay Device #1 D Q EP31 CLK EP195 IN IN Q Q #2 Control Logic Figure 9. Multiple Channel Deskewing Diagram http://onsemi.com 253 Q MC10EP195, MC100EP195 Q D Driver Device Receiver Device D Q 50 50 VTT VTT = VCC - 2.0 V Figure 10. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 254 MC100EP196 3.3VECL Programmable Delay Chip with FTUNE The MC100EP196 is a programmable delay chip (PDC) designed primarily for clock deskewing and timing adjustment. It provides programmably variable delay of a differential ECL input signal. It has similar architecture to the EP195 with the added feature of further tuneability in delay using the FTUNE pin. The FTUNE input takes an analog voltage from VCC to VEE to fine tune the output delay from 0 to 60 ps. The delay section consists of a programmable matrix of gates and multiplexers as shown in the logic diagram, Figure 2. The delay increment of the EP196 has a digitally selectable resolution of about 10 ps and a range of up to 10 ns. The required delay is selected by the 10 programmable data select inputs D[0:9] which are latched on chip by a high signal on the latch enable (LEN) control. Delays are set by programming values of 0000000000 to 1111111111 on the D0 (LSB) through D9 (MSB) as shown in Table 1. Because the EP196 is designed using a chain of multiplexers, it has a fixed minimum delay of 2.4 ns. An additional pin, D10, is provided for cascading multiple PDCs for increased programmable range. The cascade logic allows full control of multiple PDCs. Select input pins, D0- D10, may be threshold controlled by combinations of interconnects between VEF (pin 7) and VCF (pin 8) for LVCMOS, ECL, or LVTTL level signals. LVTTL and LVCMOS operation is available in PECL mode only. For LVCMOS input levels, leave VCF and VEF open. For ECL operation, short VCF and VEF (pins 7 and 8). For LVTTL level operation, connect a 1.5 V supply reference to VCF and leave open VEF pin. The 1.5 V reference voltage to VCF pin can be accomplished by placing a 2.2 k resistor between VCF and VEE for 3.3 V power supply. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. The 100 Series contains temperature compensation. http://onsemi.com MARKING DIAGRAM* MC100 EP196 LQFP-32 FA SUFFIX CASE 873A AWLYYWW 32 1 A WL YY WW = Assembly Location = Wafer Lot = Year = Work Week *For additional information, refer to Application Note AND8002/D ORDERING INFORMATION Device Package Shipping MC100EP196FA LQFP-32 250 Units/Tray MC100EP196FAR2 LQFP-32 2000/Tape & Reel • Maximum Frequency > 1.2 GHz Typical • PECL Mode Operating Range: VCC = 3.0 V to 3.6 V with VEE = 0 V • NECL Mode Operating Range: VCC = 0 V • • • • • with VEE = -3.0 V to -3.6 V Open Input Default State Safety Clamp on Inputs A Logic High on the EN Pin Will Force Q to Logic Low D[0:10] Can Accept Either ECL, LVCMOS, or LVTTL Inputs VBB Output Reference Voltage Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 8 255 Publication Order Number: MC100EP196/D MC100EP196 VEE D0 VCC Q 24 23 22 21 20 19 18 17 FUNCTION IN*, IN* ECL Signal Input EN* ECL Input Enable 15 CASCADE D[0:10]* LVCMOS, ECL, or LVTTL Select Inputs 14 CASCADE 25 16 D2 26 D3 27 28 PIN EN D1 VEE PIN DESCRIPTION Q VCC VCC FTUNE Q, Q ECL Signal Output LEN* ECL Latch Enable Input 13 VCC SETMIN*† ECL Minimum Delay Set Input D4 29 12 SETMAX SETMAX* ECL Maximum Delay Set Input D5 30 11 SETMIN ECL Cascade Signal Output D6 31 10 CASCADE, CASCADE LEN 32 9 VBB VCC Output Reference Voltage D7 Positive Supply VEE Negative Supply VCF LVCMOS, ECL, or LVTTL Input Select Input VEF ECL Reference Mode Connection FTUNE* Fine Tuning Input MC100EP196 1 D8 2 3 4 5 D9 D10 IN 6 7 VEE 8 IN VBB VEF VCF Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. * Pins will default LOW (VEE) when left open. †SETMIN will override SETMAX if both pins are high. Figure 1. 32-Lead LQFP Pinout (Top View) TRUTH TABLE L* EN Q = IN EN H Q Logic Low LEN L* Pass Through D[0:10] LEN H Latch D[0:10] SETMIN L* Normal Mode SETMIN H Min Delay Path SETMAX L* Normal Mode SETMAX H Max Delay Path VCF VEF Pin** ECL Mode VCF No Connect LVCMOS Mode VCF 1.5 V 100 mV LVTTL Mode*** * Internal pulldown will provide logic low if pin left unconnected. ** Short VCF (pin 8) and VEF (pin 7). *** For LVTTL Mode, if no external voltage can be provided, the reference voltage can be provided by connecting the appropriate resistor between VCF and VEE pins. Power Supply Resistor Value 5% (Tolerance) 3.3 V 2.2 k DATA INPUT OPERATING VOLTAGE TABLE POWER SUPPLY (VCC, VEE) LVCMOS LVTTL PECL NECL PECL N/A NECL N/A N/A N/A DATA SELECT INPUTS (D [0:10]) http://onsemi.com 256 Q Table 1. Theoretical Delta Delay Values 1 0 Q MC100EP196 D7 1 D6 128 GD* 1 D4 10 BIT LATCH D5 64 GD* 1 32 GD* 1 1 Delay Value Comment 0000000000 0 ps (SET MIN) 0000000001 10 ps 0000000010 20 ps 0000000011 30 ps 0000000100 40 ps 0000000101 50 ps 0000000110 60 ps 0000000111 70 ps 1 Latch D0 D10 D1 CASCADE D2 CASCADE 8 GD* 1 4 GD* 1 2 GD* 1 VEE VCF VEF SET MIN SET MAX VBB EN LEN 1 GD* IN 0000001000 80 ps 0000010000 160 ps 0000100000 320 ps 0001000000 640 ps 0010000000 1280 ps 0100000000 2560 ps 1000000000 5120 ps 1111111111 10230 ps XXXXXXXXXX 10240 ps (SET MAX) Table 2. Typical FTUNE Delay Pin D3 16 GD* (FIXED MINIMUM DELAY APPROX. 2.4 ns) *GD = (GATE DELAY) APPROXIMATELY 10 ps DELAY PER GATE D9 D8 1 256 GD* 0 0 0 0 0 0 0 0 0 IN FTUNE D(9:0) Value 1 D10 512 1 GD* 0 1 GD* (does not include fixed minimum delay) Figure 2. Logic Diagram http://onsemi.com 257 Input Range Output Range VCC-V EE (V) 0 - 60 (ps) MC100EP196 ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model Moisture Sensitivity (Note 1) Flammability Rating > 2 kV > 100 V > 2 kV Level 2 Oxygen Index: 28 to 34 Transistor Count UL 94 V-0 @ 0.125 in″ 1237 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 258 MC100EP196 MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode Input Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 32 LQFP 32 LQFP 80 55 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 32 LQFP 12 to 17 °C/W Tsol Wave Solder < 2 to 3 sec @ 248°C 265 °C VI ≤ VCC VI ≥ VEE 2. Maximum Ratings are those values beyond which device damage may occur. DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Power Supply Current 100 125 160 110 130 170 110 135 175 mA VOH Output HIGH Voltage (Note 4) 2155 2300 2405 2155 2300 2405 2155 2300 2405 mV VOL Output LOW Voltage (Note 4) 1355 1520 1605 1355 1500 1605 1355 1485 1605 mV VIH Input HIGH Voltage (Single-Ended) PECL LVCMOS LVTTL 2075 2000 2000 2420 3300 3300 2075 2000 2000 2420 3300 3300 2075 2000 2000 2420 3300 3300 Input LOW Voltage (Single-Ended) PECL LVCMOS LVTTL 1355 0 0 1675 800 800 1355 0 0 1675 800 800 1355 0 0 1675 800 800 VBB Output Voltage Reference 1775 1875 1975 1775 1875 1975 1775 1875 1975 mV VCF LVTTL Mode Input Detect Voltage @ IVCF = 700 A 1.4 1.5 1.6 1.4 1.5 1.6 1.4 1.5 1.6 V VEF Reference Voltage for ECL Mode Connection 1900 1960 2050 1875 1953 2050 1850 1945 2050 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current (PECL) IN, IN, EN, LEN, SETMIN, SETMAX VIL mV mV 2.0 A 150 IIHH FTUNE Input High Current @ VCC 50 IIL Input LOW Current (PECL) IN, IN, EN, LEN, SETMIN, SETMAX 0.5 IILL FTUNE Input LOW Current @VEE -10 87 150 150 50 84 150 0.5 0 10 -10 150 50 82 150 A 0.5 0 10 -10 A 0 10 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -0.3 V. 4. All loading with 50 to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 259 MC100EP196 DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -3.3 V (Note 6) -40 °C Symbol Characteristic Min 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 100 125 160 110 130 170 110 135 175 mA VOH Output HIGH Voltage (Note 7) -1 145 -1000 -895 -1 145 -1000 -895 -1 145 -1000 -895 mV VOL Output LOW Voltage (Note 7) -1945 -1780 -1695 -1945 -1800 -1695 -1945 -1815 -1695 mV VIH Input HIGH Voltage (Single-Ended) NECL -1225 -880 -1225 -880 -1225 -880 Input LOW Voltage (Single-Ended) NECL -1945 -1625 -1945 -1625 -1945 -1625 VBB Output Voltage Reference -1525 -1425 -1325 -1525 -1425 -1325 -1525 -1425 -1325 mV VEF Reference Voltage for ECL Mode Connection -1400 -1340 -1250 -1425 -1347 -1250 -1450 -1355 -1250 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) 0 V IIH Input HIGH Current IN, IN, EN, LEN, SETMIN, SETMAX VIL mV mV VEE+2.0 VEE+2.0 0 VEE+2.0 A 150 IIHH FTUNE Input High Current @ VCC 50 IIL Input LOW Current IN, IN, EN, LEN, SETMIN, SETMAX 0.5 FTUNE Input LOW Current @ VEE -10 IILL 0 87 150 150 50 84 150 150 50 82 150 A A 0.5 0 10 -10 0.5 0 10 -10 0 10 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -0.3 V. 7. All loading with 50 to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 260 MC100EP196 AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -3.6 V or VCC = 3.0 V to 3.6 V; VEE = 0 V (Note 9) -40 °C Symbol Min Characteristic 25°C Typ Max Min Max Min 1.2 Typ Max fmax Maximum Frequency tPLH tPHL Propagation Delay IN to Q; D(0-9) = 0 IN to Q; D(0-9) = 1023 EN to Q; D(0-9) = 0 D10 to CASCADE 1810 9500 1780 350 2210 11496 2277 450 2610 13500 2780 550 1960 10000 1930 380 2360 12258 2430 477 2760 14000 2930 580 2180 10955 2150 420 2580 13454 2650 520 2980 15955 3150 620 tRANGE Programmable Range {D(0-9) = HI} - {D(0-9) = LO} 8600 9285 10000 9200 9897 10700 9900 10875 12000 90 245 530 1060 2160 4335 7 23 39 58 137 293 590 1158 2317 4647 100 260 560 1130 2290 4590 11 30 48 67 149 313 629 1237 2472 4955 90 270 600 1200 2450 4935 13 32 53 73 154 337 681 1353 2712 5440 t 1.2 Typ 85°C 1.2 ps ps ps 185 335 650 1265 2490 5010 200 370 710 1355 2680 5385 Mono Monotonicity (Note 11) 9 10 11 tSKEW Duty Cycle Skew (Note 12) |tPHL-t PLH| 20 22 27 th tR GHz Step Delay (Note 10) D0 High D1 High D2 High D3 High D4 High D5 High D6 High D7 High D8 High D9 High ts Unit 225 410 770 1520 3015 6015 ps ps Setup Time ps D to LEN D to IN (Note 13) EN to IN (Note 14) 150 100 150 -10 -130 -105 150 100 150 -70 -150 -120 150 100 150 -70 -165 -140 LEN to D IN to EN (Note 15) 225 450 170 275 200 450 70 305 200 450 60 325 EN to IN (Note 16) SET MAX to LEN SET MIN to LEN 150 400 300 -105 70 165 150 400 350 -120 110 180 150 400 350 -140 160 205 Hold Time ps Release Time ps tjit Random Clock Jitter @ 1.2 GHz, SETMAX Delay VPP Input Voltage Swing (Differential) tr tf Output Rise/Fall Time 20-80% (Q) 20-80% (CASCADE) 3 3 3 ps 150 800 1200 150 800 1200 150 800 1200 85 100 110 150 130 200 95 110 120 160 145 210 110 125 135 175 160 225 mV ps 9. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. 10. Specification limits represent the amount of delay added with the assertion of each individual delay control pin. The various combinations of asserted delay control inputs will typically realize D0 resolution steps across the specified programmable range. 11. The monotonicity indicates the increased delay value for each binary count increment on the control inputs D(0-9). 12. Duty cycle skew guaranteed only for differential operation measured from the cross point of the input to the cross point of the output. 13. This setup time defines the amount of time prior to the input signal the delay tap of the device must be set. 14. This setup time is the minimum time that EN must be asserted prior to the next transition of IN/IN to prevent an output response greater than VCC - 1425 mV to that IN/IN transition. 15. This hold time is the minimum time that EN must remain asserted after a negative going IN or positive going IN to prevent an output response greater than VCC - 1425 mV to that IN/IN transition. 16. This release time is the minimum time that EN must be deasserted prior to the next IN/IN transition to ensure an output response that meets the specified IN to Q propagation delay and transition times. http://onsemi.com 261 MC100EP196 Using the FTUNE Analog Input The analog FTUNE pin on the EP196 device is intended to add more delay in a tunable gate to enhance the 10 ps resolution capabilities of the fully digital EP196. The level of resolution obtained is dependent on the voltage applied to the FTUNE pin. To provide this further level of resolution, the FTUNE pin must be capable of adjusting the additional delay finer than the 10 ps digital resolution (See Logic Diagram). This requirement is easily achieved because a 60 ps additional delay can be obtained over the entire FTUNE voltage range (See Figure 3). This extra analog range ensures that the FTUNE pin will be capable even under worst case conditions of covering a digital resolution. Typically, the analog input will be driven by an external DAC to provide a digital control with very fine analog output steps. The final resolution of the device will be dependent on the width of the DAC chosen. To determine the voltage range necessary for the FTUNE input, Figure 3 should be used. There are numerous voltage ranges which can be used to cover a given delay range; users are given the flexibility to determine which one best fits their designs. 90 80 VCC = 0 V VEE = -3.3 V 25°C 70 -40 °C DELAY (ps) 60 50 40 30 20 85°C 10 0 -10 -3.3 -2.97 -2.64 -2.31 VEE -1.98 -1.65 -1.32 -0.99 -0.66 -0.33 FTUNE VOLTAGE (V) Figure 3. Typical EP196 Delay versus FTUNE Voltage http://onsemi.com 262 0 VCC MC100EP196 Cascading Multiple EP196s To increase the programmable range of the EP196, internal cascade circuitry has been included. This circuitry allows for the cascading of multiple EP196s without the need for any external gating. Furthermore, this capability requires only one more address line per added E196. Obviously, cascading multiple programmable delay chips will result in a larger programmable range; however, this increase is at the expense of a longer minimum delay. Figure 4 illustrates the interconnect scheme for cascading two EP196s. As can be seen, this scheme can easily be expanded for larger EP196 chains. The D10 input of the EP196 is the cascade control pin. With the interconnect scheme of Figure 4 when D10 is asserted, it signals the need for a larger programmable range than is achievable with a single device. The A11 address can be added to generate a cascade output for the next EP196. For a 2-device configuration, A11 is not required. ADDRESS BUS Need if Chip #3 is used A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 VEE D3 D2 D6 D5 D4 VEE D3 D2 D1 VEE D8 VEE D9 D0 D9 D0 D10 D10 VCC EP196 IN VCC EP196 Q IN Q IN Q OUTPUT IN CHIP #2 Q CHIP #1 FTUNE EN CASCADE EN LEN VEE CASCADE VCF VCC FTUNE VCF SETMAX VCC SETMIN VEF LEN VCC VEE VEF CASCADE VCC CASCADE VBB VCC VCC SETMAX VBB SETMIN INPUT D7 D1 D8 DAC Figure 4. Cascading Interconnect Architecture chip #2 will be deasserted and the SETMAX pin asserted, resulting in the device delay to be the maximum delay. Figure 6 shows the delay time of two EP196 chips in cascade. To expand this cascading scheme to more devices, one simply needs to connect the D10 pin from the next chip to the address bus and CASCADE outputs to the next chip in the same manner as pictured in Figure 4. The only addition to the logic is the increase of one line to the address bus for cascade control of the second programmable delay chip. Furthermore, to fully utilize EP196, the FTUNE pin can be used for additional delay and for finer resolution than 10 ps. As shown in Figure 3, an analog voltage input from DAC can adjust the FTUNE pin with an extra 60 ps of delay for each chip. An expansion of the latch section of the block diagram is pictured in Figure 5. Use of this diagram will simplify the explanation of how the cascade circuitry works. When D10 of chip #1 in Figure 4 is low, the cascade output will also be low while the cascade bar output will be a logical high. In this condition, the SETMIN pin of chip #2 will be asserted and thus all of the latches of chip #2 will be reset and the device will be set at its minimum delay. Chip #1, on the other hand, will have both SETMIN and SETMAX deasserted so that its delay will be controlled entirely by the address bus A0-A9. If the delay needed is greater than can be achieved with 1023 gate delays (1111111111 on the A0-A9 address bus), D10 will be asserted to signal the need to cascade the delay to the next EP196 device. When D10 is asserted, the SETMIN pin of http://onsemi.com 263 MC100EP196 TO SELECT MULTIPLEXERS SET MIN BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 BIT 8 BIT 9 D0 Q0 D1 Q1 D2 Q2 D3 Q3 D4 Q4 D5 Q5 D6 Q6 D7 Q7 D8 Q8 D9 Q9 LEN LEN LEN LEN LEN LEN LEN LEN LEN LEN Set Reset Set Reset Set Reset Set Reset Set Reset Set Reset Set Reset Set Reset Set Reset Set Reset SET MAX Figure 5. Expansion of the Latch Section of the EP196 Block Diagram VARIABLE INPUT TO CHIP #1 AND SETMIN FOR CHIP #2 INPUT FOR CHIP #1 Total D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Delay Value Delay Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ps 4400 ps 1 10 ps 0 0 0 0 0 0 0 0 0 4410 ps 1 0 20 ps 0 0 0 0 0 0 0 0 4420 ps 0 1 1 30 ps 0 0 0 0 0 0 0 4430 ps 0 1 0 0 40 ps 0 0 0 0 0 0 4440 ps 0 0 1 0 1 50 ps 0 0 0 0 0 4450 ps 0 0 0 1 1 0 60 ps 0 0 0 0 4460 ps 0 0 0 0 1 1 1 70 ps 0 0 0 4470 ps 0 0 0 0 1 0 0 0 80 ps 0 0 4480 ps 0 0 0 0 1 0 0 0 0 160 ps 0 4560 ps 0 0 0 0 1 0 0 0 0 0 320 ps 4720 ps 0 0 0 0 1 0 0 0 0 0 0 640 ps 5040 ps 0 0 0 1 0 0 0 0 0 0 0 1280 ps 5680 ps 0 0 1 0 0 0 0 0 0 0 0 2560 ps 6960 ps 0 1 0 0 0 0 0 0 0 0 0 5120 ps 9520 ps 0 1 1 1 1 1 1 1 1 1 1 10230 ps 14630 ps Delay Value Delay Value VARIABLE INPUT TO CHIP #1 AND SETMAX FOR CHIP #2 INPUT FOR CHIP #1 Total D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 0 0 0 0 0 0 0 10240 ps 14640 ps 1 0 0 0 0 0 0 0 0 0 1 10250 ps 14650 ps 1 0 0 0 0 0 0 0 0 1 0 10260 ps 14660 ps 1 0 0 0 0 0 0 0 0 1 1 10270 ps 14670 ps 1 0 0 0 0 0 0 0 1 0 0 10280 ps 14680 ps 1 0 0 0 0 0 0 0 1 0 1 10290 ps 14690 ps 1 0 0 0 0 0 0 0 1 1 0 10300 ps 14700 ps 1 0 0 0 0 0 0 0 1 1 1 10310 ps 14710 ps 1 0 0 0 0 0 0 1 0 0 0 10320 ps 14720 ps 1 0 0 0 0 0 1 0 0 0 0 10400 ps 14800 ps 1 0 0 0 0 1 0 0 0 0 0 10560 ps 14960 ps 1 0 0 0 1 0 0 0 0 0 0 10880 ps 15280 ps 1 0 0 1 0 0 0 0 0 0 0 11520 ps 15920 ps 1 0 1 0 0 0 0 0 0 0 0 12800 ps 17200 ps 1 1 0 0 0 0 0 0 0 0 0 15360 ps 19760 ps 1 1 1 1 1 1 1 1 1 1 1 20470 ps 24870 ps Figure 6. Cascaded Delay Value of Two EP196s http://onsemi.com 264 MC100EP196 Multi-Channel Deskewing The most practical application for EP196 is in multiple channel delay matching. Slight differences in impedance and cable length can create large timing skews within a high-speed system. To deskew multiple signal channels, each channel can be sent through each EP196 as shown in Figure 7. One signal channel can be used as reference and the other EP196s can be used to adjust the delay to eliminate the timing skews. Nearly any high-speed system can be fine tuned (as small as 10 ps) to reduce the skew to extremely tight tolerances using the available FTUNE pin. EP196 IN IN Q Q #1 EP196 IN IN Q Q #2 EP196 IN IN Q Q #N Control Logic Digital Data DAC Figure 7. Multiple Channel Deskewing Diagram Q D Driver Device Receiver Device D Q 50 50 VTT VTT = VCC - 2.0 V Figure 8. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 265 MC10EP445, MC100EP445 3.3V/5VECL 8−Bit Serial/Parallel Converter The MC10/100EP445 is an integrated 8–bit differential serial to parallel data converter with asynchronous data synchronization. The device has two modes of operation. CKSEL HIGH mode is designed to operate NRZ data rates of up to 3.3 Gb/s, while CKSEL LOW mode is designed to operate at twice the internal clock data rate of up to 5.0 Gb/s. The conversion sequence was chosen to convert the first serial bit to Q0, the second bit to Q1, etc. Two selectable differential serial inputs, which are selected by SINSEL, provide this device with loop-back testing capability. The MC10/100EP445 has a SYNC pin which, when held high for at least two consecutive clock cycles, will swallow one bit of data shifting the start of the conversion data from Dn to Dn+1. Each additional shift requires an additional pulse to be applied to the SYNC pin. Control pins are provided to reset and disable internal clock circuitry. Additionally, VBB pin is provided for single-ended input condition. The 100 Series contains temperature compensation. • • • • • • • • http://onsemi.com MARKING DIAGRAM* LQFP-32 FA SUFFIX CASE 873A 32 1 XXX A WL YY WW 300 ps Propagation Delay 5.0 Gb/s Typical Data Rate for CLKSEL LOW Mode Differential Clock and Serial Inputs MCXXX EP445 AWLYYWW = 10 OR 100 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D VBB Output for Single-Ended Input Applications Asynchronous Data Synchronization (SYNC) Asynchronous Master Reset (RESET) PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State ORDERING INFORMATION Device • • CLK ENABLE Immune to Runt Pulse Generation Semiconductor Components Industries, LLC, 2002 November, 2002 - Rev. 7 266 Package Shipping MC10EP445FA LQFP-32 250 Units/Tray MC10EP445FAR2 LQFP-32 2000/Tape & Reel MC100EP445FA LQFP-32 250 Units/Tray MC100EP445FAR2 LQFP-32 2000/Tape & Reel Publication Order Number: MC10EP445/D VCC Q2 Q1 VCC Q0 PCLK PCLK VCC MC10EP445, MC100EP445 PIN DESCRIPTION 24 23 22 21 20 19 18 17 PIN FUNCTION SINSEL 25 16 VEE SINA*, SINA* ECL Differential Serial Data Input A SINB 26 15 Q3 SINB*, SINB* ECL Differential Serial Data Input B SINSEL* ECL Serial Input Selector Pin SINB 27 VEE 28 VBB0 29 MC10EP445 MC100EP445 14 Q4 Q0-Q7 ECL Parallel Data Outputs 13 VCC CLK*, CLK* ECL Differential Clock Inputs 12 VCC PCLK, PCLK ECL Differential Parallel Clock Output SYNC* ECL Conversion Synchronizing Input CKSEL* ECL Clock Input Selector Pin CKEN* ECL Clock Enable Pin RESET* ECL Reset Pin VBB0, VBB1 VCC Output Reference Voltage VEE Negative Supply SINA 30 11 Q5 SINA 31 10 Q6 VCC 32 9 Q7 7 8 VCC CKSEL 6 VBB1 5 CLK 4 CLK 3 CKEN 2 SYNC RESET 1 Positive Supply * Pins will default logic LOW or differential logic LOW when left open. Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 32-Lead LQFP Pinout (Top View) TRUTH TABLE FUNCTION High PIN SINSEL CKSEL Low Select SINB Input Select SINA Input Q: PCLK = 8:1 CLK: Q = 1:1 Q: PCLK = 8:1 CLK: Q = 1:2 CLK CLK Q Q CKEN Synchronously Disable Internal Clock Circuitry Synchronously Enable Internal Clock Circuitry RESET Asynchronous Master Reset Synchronous Enable SYNC Asynchronously Applied to Swallow a Data Bit Normal Conversion Process http://onsemi.com 267 MC10EP445, MC100EP445 SINA VEE SINA SINB 1:2 DEMUX SINB 1:2 DEMUX 1:2 DEMUX SINSEL 1:2 DEMUX CKEN T C Q4 Q2 Q6 Q 1:2 DEMUX R T C Q0 Q R 1:2 DEMUX 1:2 DEMUX SYNC Q1 Q5 Q3 Q7 Control Logic DIV2 CLK PCLK DIV2 PCLK CLK CKSEL RESET Figure 2. Logic Diagram ATTRIBUTES Characteristics Internal Input Pulldown Resistor 75 k Internal Input Pull-up Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model Moisture Sensitivity (Note 1) Flammability Rating Value > 2 kV > 200 V > 2 kV Level 2 Oxygen Index: 28 to 34 Transistor Count UL 94 V-0 @ 0.125 in 993 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 268 MC10EP445, MC100EP445 MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 Condition 2 Rating Unit VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode Input Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 32 LQFP 32 LQFP 80 55 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 32 LQFP 12 to 17 °C/W Tsol Wave Solder < 2 to 3 sec @ 248°C 265 °C VI VCC VI VEE 2. Maximum Ratings are those values beyond which device damage may occur. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 95 119 143 98 122 146 100 125 150 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single-Ended) 1365 1690 1460 1755 1490 1815 mV VBB Output Voltage Reference 1790 1990 1855 2055 1915 2115 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A IIL Input LOW Current 1890 2.0 150 0.5 1955 150 0.5 0.5 2015 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 to VCC - 2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 269 MC10EP445, MC100EP445 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Power Supply Current (Note 7) 95 119 143 98 122 146 100 125 150 mA VOH Output HIGH Voltage (Note 8) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 8) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV VBB Output Voltage Reference 3490 3690 3555 3755 3615 3815 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 9) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 A IIL Input LOW Current 3590 2.0 3655 150 3715 150 0.5 0.5 A 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. Required 500 lfpm air flow when using +5 V power supply. For (VCC - VEE) >3.3 V, 5 to 10 in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC-V EE operation at 3.3 V. 8. All loading with 50 to VCC-2.0 volts. 9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 10) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Power Supply Current (Note 11) 95 119 143 98 122 146 100 125 150 mA VOH Output HIGH Voltage (Note 12) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL Output LOW Voltage (Note 12) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV VIH Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV VBB Output Voltage Reference -1510 -1310 -1445 -1245 -1385 -1 185 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 13) 0.0 V IIH Input HIGH Current 150 A IIL Input LOW Current -1410 VEE+2.0 0.0 VEE+2.0 150 0.5 -1345 0.0 VEE+2.0 150 0.5 -1285 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 10. Input and output parameters vary 1:1 with VCC. 11. Required 500 lfpm air flow when using -5 V power supply. For (VCC - VEE) >3.3 V, 5 to 10 in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC-V EE operation at 3.3 V. 12. All loading with 50 to VCC-2.0 volts. 13. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 270 MC10EP445, MC100EP445 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 14) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 95 119 143 98 122 146 100 125 150 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 15) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 15) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV VBB Output Voltage Reference 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 16) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A IIL Input LOW Current 1875 2.0 1875 150 0.5 1875 150 0.5 A 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 14. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 15. All loading with 50 to VCC-2.0 volts. 16. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 17) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Power Supply Current (Note 18) 95 119 143 98 122 146 100 125 150 mA VOH Output HIGH Voltage (Note 19) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 19) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV VBB Output Voltage Reference 3475 3675 3475 3675 3475 3675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 20) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 A IIL Input LOW Current 3575 2.0 150 0.5 3575 150 0.5 0.5 3575 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 17. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 18. Required 500 lfpm air flow when using +5 V power supply. For (VCC - VEE) >3.3 V, 5 to 10 in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC-V EE operation at 3.3 V. 19. All loading with 50 to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 271 MC10EP445, MC100EP445 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 21) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Power Supply Current (Note 22) 95 119 143 98 122 146 100 125 150 mA VOH Output HIGH Voltage (Note 23) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 23) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV VBB Output Voltage Reference -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 24) 0.0 V IIH Input HIGH Current 150 A -1425 VEE + 2.0 0.0 -1425 VEE + 2.0 150 0.0 -1425 VEE + 2.0 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 21. Input and output parameters vary 1:1 with VCC. 22. Required 500 lfpm air flow when using -5 V power supply. For (VCC - VEE) > 3.3 V, 5 to 10 in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC-V EE operation at 3.3 V. 23. All loading with 50 to VCC - 2.0 volts. 24. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 25) -40 °C Symbol Min Typ CKSEL = LOW CKSEL = HIGH 2.0 2.8 2.5 3.3 CLK to Q CLK TO PCLK 1230 1000 1450 1240 Characteristic 25°C Max Min Typ 2.0 2.8 2.5 3.3 1300 1050 1530 1310 85°C Max Min Typ 1.7 2.8 2.2 3.3 1400 1140 1650 1420 Max Unit fmax Maximum Input CLK Frequency (See Figure 12. Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential ts Setup Time SINA, B+ TO CLK+ (Figure 4) CKEN+ TO CLK- (Figure 5) -300 100 -400 50 -300 100 -400 50 -300 100 -400 50 ps th Hold Time CLK+ TO SINA, B- (Figure 4) CLK- TO CKEN (Figure 5) 650 45 550 -35 675 45 575 -35 725 45 625 -35 ps tRR/tRR2 Reset Recovery (Figure 3) 350 180 350 180 350 180 ps tPW Minimum Pulse Width tJITTER Cycle-to-Cycle Jitter (See Figure 12. Fmax/JITTER) VPP Input Voltage Swing (Differential) (Note 26) tr tf Output Rise/Fall Times (20% - 80%) RESET 400 PCLK Q 1660 1490 1760 1580 400 0.2 <1 150 800 1200 100 180 250 272 1900 1710 400 0.2 <1 150 800 1200 100 200 300 25. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC - 2.0 V. 26. VPP(min) is the minimum input swing for which AC parameters are guaranteed. http://onsemi.com GHz ps ps 0.2 <1 ps 150 800 1200 mV 125 230 325 ps MC10EP445, MC100EP445 Reset tRR CLK CLK Figure 3. Reset Recovery CLK Data Setup Time + ts Data Hold Time + th Figure 4. Data Setup and Hold Time CLK CKEN Setup Time + ts CKEN Hold Time - + th Figure 5. CKEN Setup and Hold Time http://onsemi.com 273 MC10EP445, MC100EP445 APPLICATION INFORMATION The two selectable serial data paths can be used for loop-back testing as well as the bit error testing. Upon power-up, the internal flip-flops will attain a random state. To synchronize multiple flip–flops in the device, the Reset (pin 1) must be asserted. The reset pin will disable the internal clock signal irrespective of the CKEN state (CKEN disables the internal clock circuitry). The device will grab the first stream of data after the falling edge of RESET, followed by the falling edge of CLK, on second rising edge of CLK in either CKSEL modes. (See Figure 6) The MC10/100EP445 is an integrated 1:8 serial to parallel converter with two modes of operation selected by CKSEL (Pin 7). CKSEL HIGH mode only latches data on the rising edge of the input CLK and CKSEL LOW mode latches data on both the rising and falling edge of the input CLK. CKSEL LOW is the open default state. Either of the two differential input serial data path provided for this device, SINA and SINB, can be chosen with the SINSEL pin (pin 25). SINA is the default input path when SINSEL pin is left floating. Because of internal pull-downs on the input pins, all input pins will default to logic low when left open. RESET (Asynchronous Reset) RESET (Synchronous ENABLE) CLK RESET PCLK Figure 6. Reset Timing Diagram http://onsemi.com 274 MC10EP445, MC100EP445 For CKSEL LOW operation, the data is latched on both the rising edge and the falling edge of the clock and the time from when the serial data is latched to when the data is seen on the parallel output is 6 clock cycles (see Figure 7). Number of Clock Cycles from Data Latch to Q 1 2 3 4 5 6 CLK SINA D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 RESET CKEN CKSEL PCLK Q0 D0 D8 D16 Q1 D1 D9 D17 Q2 D2 D10 D18 Q3 D3 D11 D19 Q4 D4 D12 D20 Q5 D5 D13 D21 Q6 D6 D14 D22 Q7 D7 D15 D23 Figure 7. Timing Diagram A. 1:8 Serial to Parallel Conversion with CKSEL LOW http://onsemi.com 275 MC10EP445, MC100EP445 Similarly, for CKSEL HIGH operation, the data is latched only on the rising edge of the clock and the time from when the serial data is latched to when the data is seen on the parallel output is 12 clock cycles (see Figure 8). Number of Clock Cycles from Data Latch to Q 2 3 4 5 6 7 8 9 10 1 11 12 CLK SINA D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 RESET CKEN CKSEL PCLK Q0 D0 Q1 D1 Q2 D2 Q3 D3 Q4 D4 Q5 D5 Q6 D6 Q7 D7 Figure 8. Timing Diagram A. 1:8 Serial to Parallel Conversion with CKSEL HIGH http://onsemi.com 276 MC10EP445, MC100EP445 clock cycles shifts the start bit for conversion from Qn to Qn- 1. The bit is swallowed following the two clock cycle pulse width of SYNC on the next triggering edge of clock (either on the rising or the falling edge of the clock). Each additional shift requires an additional pulse to be applied to the SYNC pin. (See Figure 9) To allow the user to synchronize the output byte data correctly, the start bit for conversion can be moved using the SYNC input pin (pin 2). Asynchronously asserting the SYNC pin will force the internal clock to swallow a clock pulse, effectively shifting a bit from the Qn to the Qn- 1 output as shown in Figure 9 and Figure 10. For CKSEL LOW, a single pulse applied asynchronously for two consecutive 2 Clock Cycles for SYNC 1 2 Next Triggering Edge of Clock Bit D8 is Swallowed CLK SINA D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 CKSEL PCLK SYNC Q0 D0 D9 D17 Q1 D1 D10 D18 Q2 D2 D11 D19 Q3 D3 D12 D20 Q4 D4 D13 D21 Q5 D5 D14 D22 Q6 D6 D15 D23 Q7 D7 D16 D24 Figure 9. Timing Diagram A. 1:8 Serial to Parallel Conversion with SYNC Pulse at CKSEL LOW http://onsemi.com 277 MC10EP445, MC100EP445 triggering edge of clock (on the rising edge of the clock only). Each additional shift requires an additional pulse to be applied to the SYNC pin. (See Figure 10) For CKSEL HIGH, a single pulse applied asynchronously for three consecutive clock cycles shifts the start bit for conversion from Qn to Qn- 1. The bit is swallowed following the three clock cycle pulse width of SYNC on the next 3 Clock Cycles for Sync 1 2 3 Next Triggering Edge of Clock Bit D8 is Swallowed CLK SINA SYNC D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 PCLK Q0 D0 Q1 D1 Q2 D2 Q3 D3 Q4 D4 Q5 D5 Q6 D6 Q7 D7 Figure 10. Timing Diagram A. 1:8 Serial to Parallel Conversion with SYNC Pulse at CKSEL HIGH http://onsemi.com 278 MC10EP445, MC100EP445 edge of CLK will suspend all activities. The first data bit will clock on the rising edge, since the falling edge of CKEN followed by the falling edge of the incoming clock triggers the enabling of the internal process. (See Figure 11) The synchronous CKEN (pin 3) applied with at least one clock cycle pulse length will disable the internal clock signal. The synchronous CKEN will suspend all of the device activities and prevent runt pulses from being generated. The rising edge of CKEN followed by the falling Internal Clock Disabled Internal Clock Enabled CLK CKEN PCLK CKSEL Figure 11. Timing Diagram with CKEN with CKSEL HIGH conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor, which will limit the current sourcing or sinking to 0.5mA. When not used, VBB should be left open. Also, both outputs of the differential pair must be terminated (50 to VTT = VCC – 2 V) even if only one output is used. The differential PCLK output (pins 22 and 23) is a word framer and can help the user to synchronize the parallel data outputs. During CKSEL LOW operation, the PCLK will provide a divide by 4-clock frequency, which frames the serial data in period of PCLK output. Likewise during CKSEL HIGH operation, the PCLK will provide a divide by 8-clock frequency. The VBB pin, an internally generated voltage supply, is available to this device only. For single–ended input http://onsemi.com 279 MC10EP445, MC100EP445 VOUTpp (mV) CKSEL HIGH 10 900 9 800 8 700 7 CKSEL LOW 600 6 500 5 400 300 200 ÉÉ ÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 4 3 2 (JITTER) 100 0 JITTEROUT ps (RMS) 1000 1 0 500 1000 1500 2000 2500 3000 3500 INPUT CLK FREQUENCY (MHz) Figure 12. Fmax/Jitter Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 13. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 280 MC10EP446, MC100EP446 3.3V/5V 8−Bit CMOS/ECL/TTL Data Input Parallel/Serial Converter The MC10/100EP446 is an integrated 8- bit parallel to serial data converter. The device is designed with unique circuit topology to operate for NRZ data rates up to 3.2 Gb/s. The conversion sequence from parallel data into a serial data stream is from bit D0 to D7. The parallel input pins D0- D7 are configurable to be threshold controlled by CMOS, ECL, or TTL level signals. The serial data rate output can be selected at internal clock data rate or twice the internal clock data rate using the CKSEL pin. Control pins are provided to reset (SYNC) and disable internal clock circuitry (CKEN). In either CKSEL modes, the internal flip-flops are triggered on the rising edge for CLK and the multiplexers are switched on the falling edge of CLK, therefore, all associated specification limits are referenced to the negative edge of the clock input. Additionally, VBB pin is provided for single-ended input condition. The 100 Series devices contain temperature compensation network. • • • • • • http://onsemi.com MARKING DIAGRAM* MCXXX EP446 AWLYYWW LQFP-32 FA SUFFIX CASE 873A 1 XXX A WL YY WW 3.2 Gb/s Typical Data Rate Capability Differential Clock and Serial Outputs VBB Output for Single-ended Input Applications Asynchronous Data Reset (SYNC) PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State May, 2002 - Rev. 4 = 10 or 100 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D • • Safety Clamp on Inputs • Parallel Interface Can Support PECL, TTL or CMOS Semiconductor Components Industries, LLC, 2002 32 ORDERING INFORMATION Device 281 Package Shipping MC10EP446FA LQFP-32 250 Units/Tray MC10EP446FAR2 LQFP-32 2000/Tape & Reel MC100EP446FA LQFP-32 250 Units/Tray MC100EP446FAR2 LQFP-32 2000/Tape & Reel Publication Order Number: MC10EP446/D D1 D2 D3 D4 D5 D6 24 23 22 21 20 19 18 D7 D0 MC10EP446, MC100EP446 17 VCC 25 16 VEE VCF 26 15 PCLK VEF 27 14 PCLK VEE 28 13 VCC SYNC 29 12 SOUT SYNC 30 11 SOUT VBB2 31 10 VCC VCC 32 9 VCC 1 2 3 4 5 6 7 8 VCC CKSEL CLK CLK VBB1 CKEN CKEN VEE MC10EP446 MC100EP446 Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 32-Lead LQFP Pinout (Top View) PIN DESCRIPTION PIN FUNCTION D0*-D7* ECL, CMOS, or TTL Parallel Data Input SOUT, SOUT ECL Differential Serial Data Output CLK*, CLK* ECL Differential Clock Input PCLK, PCLK ECL Differential Parallel Clock Output SYNC*, SYNC** ECL Conversion Synchronizing Differential Input (Reset)*** CKSEL* ECL Clock Input Selector CKEN*, CKEN* ECL Clock Enable Differential Input VCF ECL, CMOS, or TTL Input Selector VEF ECL Reference Mode Connection VBB1, VBB2 Reference Voltage Output VCC Positive Supply VEE Negative Supply * Pins will default LOW when left open. ** Pins will default HIGH when left open. *** The rising edge of SYNC will asynchronously reset the internal circuitry. The falling edge of the SYNC followed by the falling edge of CLK initiates the conversion process synchronously on the next rising edge of CLK. http://onsemi.com 282 MC10EP446, MC100EP446 TRUTH TABLE FUNCTION HIGH PIN CKSEL LOW SOUT: PCLK = 8:1 CLK: SOUT = 1:1 SOUT: PCLK = 8:1 CLK: SOUT = 1:2 CLK CLK SOUT SOUT CKEN Synchronously Disables Normal Parallel to Serial Conversion Synchronously Enables Normal Parallel to Serial Conversion SYNC Asynchronously Resets Internal Flip-Flops* Synchronous Enable *The rising edge of SYNC will asynchronously reset the internal circuitry. The falling edge of the SYNC followed by the falling edge of CLK initiates the conversion process synchronously on the next rising edge of CLK. INPUT VOLTAGE LEVEL SELECTION TABLE INPUT FUNCTION CONNECT TO VCF PIN ECL Mode VEF Pin CMOS Mode No Connect TTL Mode* 1.5 V 100 mV *For TTL Mode, if no external voltage can be provided, the reference voltage can be provided by connecting the appropriate resistor between VCF and VEE pins. Power Supply Resistor Value 10% (Tolerance) 3.3 V 1.5 k 5.0 V 500 DATA INPUT OPERATING VOLTAGE TABLE POWER SUPPLY (VCC,V VEE) DATA INPUTS (D [0:7]) CMOS TTL PECL NECL PECL N/A NECL N/A N/A N/A http://onsemi.com 283 MC10EP446, MC100EP446 D0 D Q CR MUX 2:1 D Q CR D4 D Q CR MUX 2:1 D Q C R D2 D Q C R MUX 2:1 D Q CR D6 D Q CR D1 D MUX 2:1 SOUT SOUT Q CR MUX 2:1 D Q CR D5 D Q CR MUX 2:1 D Q CR D3 D Q CR MUX 2:1 D Q CR D7 D Q CR ÷2 ÷2 ÷2 CKEN CKEN CLK CLK D Q C R CKSEL SYNC SYNC VCC VEE VBB VCF VEF Figure 2. Logic Diagram http://onsemi.com 284 MUX 2:1 Control Logic PCLK PCLK MC10EP446, MC100EP446 ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection 37.5 k > 2 kV > 100 V > 2 kV Human Body Model Machine Model Charged Device Model Moisture Sensitivity (Note 1) Level 2 Flammability Rating Oxygen Index UL 94 V-0 @ 0.125 in 28 to 34 Transistor Count 962 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 32 LQFP 32 LQFP 80 55 °C/W °C/W θJC Thermal Resistance (Junction-to-Case) std bd 32 LQFP 12 to 17 °C/W 265 °C Tsol Wave Solder < 2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 285 VI ≤ VCC VI ≥ VEE MC10EP446, MC100EP446 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 90 110 130 90 110 130 95 115 135 mA Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single-Ended) CMOS PECL TTL 2000 2090 2000 3300 3300 3300 2000 2155 2000 3300 3300 3300 2000 2215 2000 3300 3300 3300 mV Input LOW Voltage (Single-Ended) CMOS PECL TTL 0 1365 0 800 1690 800 0 1460 0 800 1755 800 0 1490 0 800 1815 800 mV VBB Output Voltage Reference 1740 1940 1805 2005 1865 2065 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A Symbol Characteristic IEE Power Supply Current VOH VIL 1840 2.0 1905 150 1965 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 ohms to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 90 110 130 90 110 130 95 115 135 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 7) 3865 3950 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single-Ended) CMOS PECL TTL 3500 3790 2000 5000 5000 5000 3500 3855 2000 5000 5000 5000 3500 3915 2000 5000 5000 5000 mV Input LOW Voltage (Single-Ended) CMOS PECL TTL 0 3065 0 1500 3390 800 0 3130 0 1500 3455 800 0 3190 0 1500 3915 800 mV VBB VIHCMR Output Voltage Reference 3440 3640 3505 3705 3565 3765 mV 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 A VIL Input HIGH Voltage Common Mode Range (Differential) (Note 8) Input LOW Current 3540 2.0 150 0.5 3605 150 0.5 0.5 3665 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 ohms to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 286 MC10EP446, MC100EP446 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 9) -40 °C Symbol Characteristic Min 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 90 110 130 90 110 130 95 115 135 mA Output HIGH Voltage (Note 10) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL VIH Output LOW Voltage (Note 10) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL VBB Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV Output Voltage Reference -1560 -1360 -1495 -1295 -1435 -1235 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11) 0.0 V IIH IIL Input HIGH Current 150 A Input LOW Current -1460 VEE+2.0 0.0 -1395 VEE+2.0 150 0.5 0.0 -1335 VEE+2.0 150 0.5 A 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 ohms to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12) -40 °C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 90 110 130 90 110 130 95 115 135 mA Output HIGH Voltage (Note 13) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV Output LOW Voltage (Note 13) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV Input HIGH Voltage (Single-Ended) CMOS PECL TTL 2000 2075 2000 3300 3300 3300 2000 2075 2000 3300 3300 3300 2000 2075 2000 3300 3300 3300 mV Input LOW Voltage (Single-Ended) CMOS PECL TTL 0 1355 0 800 1675 800 0 1355 0 800 1675 800 0 1355 0 800 1675 800 mV VBB VIHCMR Output Voltage Reference 1725 1925 1725 1925 1725 1925 mV 3.3 2.0 3.3 2.0 3.3 V IIH IIL Input HIGH Current 150 A Symbol Characteristic IEE VOH Power Supply Current VOL VIH VIL Input HIGH Voltage Common Mode Range (Differential) (Note 14) Input LOW Current 1825 2.0 150 0.5 1825 150 0.5 0.5 1825 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 ohms to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 287 MC10EP446, MC100EP446 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15) -40 °C Symbol Characteristic Min 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 90 110 130 90 110 130 95 115 135 mA Output HIGH Voltage (Note 16) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL VIH Output LOW Voltage (Note 16) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV Input HIGH Voltage (Single-Ended) CMOS PECL TTL 3500 3775 2000 5000 5000 5000 3500 3775 2000 5000 5000 5000 3500 3775 2000 5000 5000 5000 mV Input LOW Voltage (Single-Ended) CMOS PECL TTL 0 3055 0 1500 3375 800 0 3055 0 1500 3375 800 0 3055 0 1500 3375 800 mV VBB VIHCMR Output Voltage Reference 3425 3625 3425 3625 3425 3625 mV 5.0 2.0 5.0 2.0 5.0 V IIH IIL Input HIGH Current 150 A VIL Input HIGH Voltage Common Mode Range (Differential) (Note 17) Input LOW Current 3525 2.0 3525 150 3525 150 0.5 0.5 A 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 ohms to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 18) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 90 110 130 90 110 130 95 115 135 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 19) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 19) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV VBB Output Voltage Reference -1575 -1375 -1575 -1375 -1575 -1375 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 20) 0.0 V IIH Input HIGH Current 150 A -1475 VEE+2.0 0.0 150 -1475 VEE+2.0 0.0 150 -1475 VEE+2.0 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 ohms to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 288 MC10EP446, MC100EP446 AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21) -40 °C Characteristic Min Typ Maximum Frequency (See Figure 14. Fmax/JITTER) CKSEL High CKSEL Low 3.2 1.6 3.4 1.7 Propagation Delay to Output Differential CKSEL = 0 CLK TO SOUT, CLK TO PCLK 650 700 750 800 CLK TO SOUT, CLK TO PCLK 775 850 875 950 (Figure 3) (Figure 4) (Figure 5) -375 200 70 (Figure 3) -525 0 75 Symbol fmax tPLH, tPHL CKSEL = 1 tS th tpw Setup Time D to CLK+ SYNC- to CLKCKEN+ to CLKHold Time D to CLK+ SYNC- to CLKCLK- to CKEN- (Figure 5) Minimum Pulse Width (Note 23) Data (D0-D7) SYNC CKEN tJITTER Cycle-to-Cycle Jitter (PCLK) (See Figure 14. Fmax/JITTER) VPP Input Differential Voltage Swing (Note 22) tr tf Output Rise/Fall Times (20% - 80%) 25°C Max Min Typ 3.2 1.6 3.4 1.7 850 900 700 750 800 850 975 1050 825 900 925 1000 -425 140 40 -400 200 70 -575 -550 0 75 45 150 200 145 SOUT 85°C Max Min Typ 3.2 1.6 3.4 1.7 900 950 725 775 850 900 975 1025 ps 1025 1100 875 950 1000 1075 1125 1200 ps -450 140 40 -450 200 70 -500 140 40 ps -600 -600 0 75 -650 ps 45 150 200 145 0.2 <1 150 800 1200 50 100 150 0.2 <1 150 800 1200 70 120 170 289 Unit GHz 45 150 200 145 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. 22. VPP(min) is the minimum input swing for which AC parameters are guaranteed. 23. The minimum pulse width is valid only if the setup and hold times are respected. http://onsemi.com Max ps 0.2 <1 ps 150 800 1200 mV 90 140 190 ps MC10EP446, MC100EP446 CLK Data Valid Data Setup Time ts th + 0 - Figure 3. Setup and Hold Time for Data SYNC CLK SYNC ts CLK CKEN tS CLK Figure 4. Setup Time for SYNC th Figure 5. Setup and Hold Time for CKEN http://onsemi.com 290 MC10EP446, MC100EP446 APPLICATION INFORMATION Note: all pins requiring ECL voltage inputs must have a 50 terminating resistor to VTT (VTT = VCC – 2.0 V). The CKSEL input (pin 2) is provided to enable the user to select the serial data rate output between internal clock data rate or twice the internal clock data rate. For CKSEL LOW operation, the time from when the parallel data is latched to when the data is seen on the SOUT is on the falling edge of the 7th clock cycle plus internal propagation delay (See Figure 6). Note the PCLK switches on the falling edge of CLK. The MC10/100EP446 is an integrated 8:1 parallel to serial converter. An attribute for EP446 is that the parallel inputs D0–D7 (pins 17 – 24) can be configured to accept either CMOS, ECL, or TTL level signals by a combination of interconnects between VEF (pin 27) and VCF (pin 26) pins. For CMOS input levels, leave VEF and VCF open. For ECL operation, short VCF and VEF (pins 26 and 27). For TTL operation, connect a 1.5 V supply reference to VCF and leave the VEF pin open. The 1.5 V reference voltage to VCF pin can be accomplished by placing a 1.5 k or 500 between VCF and VEE for 3.3 V or 5.0 V power supplies, respectively. Number of Clock Cycles from Data Latch to SOUT 1 2 3 4 5 6 7 CLK D0 D0-1 D0-2 D0-3 D0-4 D1 D1-1 D1-2 D1-3 D1-4 D2 D2-1 D2-2 D2-3 D2-4 D3 D3-1 D3-2 D3-3 D3-4 D4 D4-1 D4-2 D4-3 D4-4 D5 D5-1 D5-2 D5-3 D5-4 D6 D6-1 D6-2 D6-3 D6-4 D7 D7-1 D7-2 D7-3 D7-4 Data Latched Data Latched CKSEL PCLK Figure 6. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL LOW http://onsemi.com 291 D6-2 D5-2 D4-2 D3-2 D2-2 D0-2 D1-2 D7-1 D6-1 Data Latched D5-1 D4-1 D3-1 D2-1 D1-1 SOUT D0-1 Data Latched MC10EP446, MC100EP446 Similarly, for CKSEL HIGH operation, the time from when the parallel data is latched to when the data is seen on the SOUT is on the rising edge of the 14th clock cycle plus internal propagation delay (See Figure 7). Furthermore, the PCLK switches on the rising edge of CLK. Number of Clock Cycles from Data Latch to SOUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 CLK D0 D0-1 D0-2 D0-3 D1 D1-1 D1-2 D1-3 D2 D2-1 D2-2 D2-3 D3 D3-1 D3-2 D3-3 D4 D4-1 D4-2 D4-3 D5 D5-1 D5-2 D5-3 D6 D6-1 D6-2 D6-3 D7 D7-1 D7-2 D7-3 CKSEL PCLK Figure 7. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL HIGH http://onsemi.com 292 D1-2 D0-2 D7-1 D6-1 D5-1 D4-1 D3-1 D2-1 SOUT D1-1 Data Latched Data Latched D0-1 Data Latched MC10EP446, MC100EP446 initiates the start of the conversion process on the next rising edge of CLK (See Figures 8 and 9). As shown in the figures below, the device will start to latch the parallel input data after the a falling edge of SYNC , followed by the falling edge CLK , on the next rising of edge of CLK for CKSEL LOW The device also features a differential SYNC input (pins 29 and 30), which asynchronously reset all internal flip–flops and clock circuitry on the rising edge of SYNC. The release of SYNC is a synchronous process, which ensures that no runt serial data bits are generated. The falling edge of the SYNC followed by a falling edge of CLK SYNC (Synchronous ENABLE) Number of Clock Cycles from Data Latch to SOUT 1 SYNC (Asynchronous RESET) SYNC 3 4 5 6 7 D0 D0-1 D0-2 D0-3 D0-4 D1 D1-1 D1-2 D1-3 D1-4 D2 D2-1 D2-2 D2-3 D2-4 D3 D3-1 D3-2 D3-3 D3-4 D4 D4-1 D4-2 D4-3 D4-4 D5 D5-1 D5-2 D5-3 D5-4 D6 D6-1 D6-2 D6-3 D6-4 D7 D7-1 D7-2 D7-3 D7-4 Data Latched Data Latched SOUT CKSEL PCLK Figure 8. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL LOW and SYNC SYNC CLK Figure 9. Synchronous Release of SYNC for CKSEL LOW http://onsemi.com 293 D5-2 D4-2 D3-2 D2-2 D1-2 D0-2 D7-1 D6-1 Data Latched D5-1 D4-1 D0-1 D1-1 D2-1 D3-1 Data Latched D6-2 CLK 2 MC10EP446, MC100EP446 edge CLK , on the second rising edge of CLK (See Figures 10 and 11). For CKSEL HIGH, as shown in the timing diagrams below, the device will start to latch the parallel input data after the falling edge of SYNC , followed by the falling SYNC (Synchronous ENABLE) Number of Clock Cycles from Data Latch to SOUT SYNC (Asynchronous RESET) CLK SYNC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 D0 D0-1 D0-2 D0-3 D0-4 D1 D1-1 D1-2 D1-3 D1-4 D2 D2-1 D2-2 D2-3 D2-4 D3 D3-1 D3-2 D3-3 D3-4 D4 D4-1 D4-2 D4-3 D4-4 D5 D5-1 D5-2 D5-3 D5-4 D6 D6-1 D6-2 D6-3 D6-4 D7 D7-1 D7-2 D7-3 D7-4 Data Latched SOUT CKSEL PCLK Figure 10. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL HIGH and SYNC SYNC CLK Figure 11. Synchronous Release of SYNC for CKSEL HIGH http://onsemi.com 294 D1-2 D0-2 D7-1 D6-1 D5-1 D4-1 D3-1 D2-1 D1-1 Data Latched D0-1 Data Latched MC10EP446, MC100EP446 followed by the falling edge of CLK will suspend all activities. The falling edge of CKEN followed by the falling edge of CLK will resume all activities (See Figure 12). The differential synchronous CKEN inputs (pins 6 and 7), disable the internal clock circuitry. The synchronous CKEN will suspend all of the device activities and prevent runt pulses from being generated. The rising edge of CKEN Internal Clock Disabled Internal Clock Enabled CLK CKEN SOUT D0-1 D1-1 D2-1 D3-1 D4-1 D5-1 PCLK CKSEL Figure 12. Timing Diagram with CKEN with CKSEL HIGH conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. Also, both outputs of the differential pair must be terminated (50 to VTT) even if only one output is used. The differential PCLK output (pins 14 and 15) is a word framer and can help the user synchronize the serial data output, SOUT (pins 11 and 12), in their applications. Furthermore, PCLK can be used as a trigger for input parallel data (see Figure 13). An internally generated voltage supply, the VBB pin, is available to this device only. For single–ended input CLK RESET CLK SYNC TRIGGER EP446 PARALLEL DATA INPUT PARALLEL DATA OUTPUT Pattern Generator Data Format Logic (FPGA, ASIC) SOUT SERIAL DATA PCLK Figure 13. PCLK as Trigger Application http://onsemi.com 295 MC10EP446, MC100EP446 800 8 CKSEL High 700 VOUTpp (mV) 600 6 500 5 400 4 JITTEROUT ps (RMS) 7 CKSEL Low ÉÉ ÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 300 3 200 2 (JITTER) 100 1 0 0 500 1000 1500 2000 2500 3000 3500 INPUT CLOCK FREQUENCY (MHz) Figure 14. Fmax/Jitter Figure 15. SOUT System Jitter Measurement (Condition: 3.4 GHz input frequency, CKSEL HIGH, BEOFE32 bit pattern on SOUT D Q Driver Device Receiver Device Q D 50 Ω 50 Ω VTT VTT = VCC - 2.0 V Figure 16. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 296 MC10EP451, MC100EP451 3.3V / 5VECL 6−Bit Differential Register with Master Reset The MC10/100EP451 is a 6-bit fully differential register with common clock and Single-Ended Master Reset (MR). It is ideal for very high frequency applications where a registered data path is necessary. All inputs have a 75 k pulldown resistor internally. Differential inputs have an override clamp. Unused differential register inputs can be left open and will default LOW. When the differential inputs are forced to <VEE + 1.2 V, the clamp will override and force the output to a default state. When in the default state, and since the flip-flop is edge triggered, the output reaches a determined, but not predicted, valid state. The positive transition of CLK (pin 4) will latch the registers. Master Reset (MR) HIGH will asynchronously reset all registers forcing Q outputs to go LOW. The 100 Series contains temperature compensation. • • • • • • http://onsemi.com MARKING DIAGRAM* LQFP-32 FA SUFFIX CASE 873A xxx A WL YY WW Maximum Frequency > 3.0 GHz Typical Asynchronous Master Reset PECL Mode Operating Range: VCC = 3.0 V to 5.5 V With VEE = 0 V NECL Mode Operating Range: VCC = 0 V With VEE = -3.0 V to -5.5 V Open Input Default State • • Safety Clamp on Inputs Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 5 32 1 450 ps Typical Propagation Delay 20 ps Skew Within Device, 35 ps Skew Device-To-Device MCxxx EP451 AWLYYWW = 10 or 100 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device 297 Package Shipping MC10EP451FA LQFP-32 250 Units/Tray MC10EP451FAR2 LQFP-32 2000 Tape & Reel MC100EP451FA LQFP-32 250 Units/Tray MC100EP451FAR2 LQFP-32 2000 Tape & Reel Publication Order Number: MC10EP451/D MC10EP451, MC100EP451 D4 D5 D5 Q5 Q5 VEE Q4 Q4 D0 D0 24 23 22 21 20 19 18 25 16 VCC D3 26 15 Q3 D3 27 14 Q3 VEE 28 13 VCC MR 29 12 Q2 D2 30 11 Q2 D2 31 10 Q1 D1 32 9 Q1 MC10EP451 MC100EP451 2 3 4 5 6 7 R D1 D1 D0 D0 CLK CLK VCC Q0 Q D Q1 Q1 R D2 D2 Q D Q2 Q2 R 8 D3 D3 D1 Q0 Q0 17 D4 1 Q D Q D Q3 Q3 Q0 R Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. D4 D4 Figure 1. 32-Lead LQFP Pinout (Top View) Q D Q4 Q4 R PIN DESCRIPTION FUNCTION PIN D [0:5]*, D [0:5]* ECL Differential Data Inputs MR* ECL Master Reset Input D5 D5 Q D Q5 CLK CLK CLK*, CLK* ECL Differential Clock Inputs Q [0:5], Q [0:5] ECL Differential Data Outputs VCC Positive Supply VEE Negative Supply R VEE MR * Pins will default LOW when left open. Figure 2. Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model Moisture Sensitivity (Note 1) Flammability Rating Q5 > 2 kV > 200 V > 2 kV Level 2 Oxygen Index: 28 to 34 Transistor Count UL 94 V-0 @ 0.125 in 919 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 298 MC10EP451, MC100EP451 MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode Input Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 32 LQFP 32 LQFP 80 55 °C/W °C/W JC Thermal Resistance (Junction to Case) std bd 32 LQFP 12 to 17 °C/W Tsol Wave Solder <2 to 3 sec @ 248°C 265 °C VI VCC VI VEE 2. Maximum Ratings are those values beyond which device damage may occur. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) -40 °C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 80 95 125 80 95 125 80 95 125 mA Output HIGH Voltage (Note 4) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1470 1615 1740 mV VIH Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single-Ended) 1365 1690 1430 1755 1490 1815 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A Symbol Characteristic IEE Power Supply Current VOH 150 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 80 95 125 80 95 125 80 95 125 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 7) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3170 3315 3440 mV VIH Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) 2.0 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 A 150 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 to VCC-2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 299 MC10EP451, MC100EP451 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 9) -40 °C Symbol Characteristic Min 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 80 95 125 80 95 125 80 95 125 mA VOH Output HIGH Voltage (Note 10) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL Output LOW Voltage (Note 10) -1935 -1810 -1685 -1870 -1745 -1620 -1830 -1685 -1560 mV VIH Input HIGH Voltage (Single-Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single-Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11) 0.0 V IIH Input HIGH Current 150 A VEE+2.0 0.0 VEE+2.0 150 0.0 VEE+2.0 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 to VCC-2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 85 105 135 85 105 135 85 105 135 mA VOH Output HIGH Voltage (Note 13) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 13) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A IIL Input LOW Current 150 0.5 150 0.5 A 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 to VCC-2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 85 105 135 85 105 135 85 105 135 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 16) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 16) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 17) 2.0 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 A 150 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 to VCC-2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 300 MC10EP451, MC100EP451 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 18) -40 °C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 85 105 135 85 105 135 85 105 135 mA Output HIGH Voltage (Note 19) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 19) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 20) 0.0 V IIH Input HIGH Current 150 A Symbol Characteristic IEE Power Supply Current VOH VEE+2.0 0.0 VEE+2.0 0.0 150 VEE+2.0 150 IIL Input LOW Current 0.5 0.5 0.5 A NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 to VCC-2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21) -40 °C Symbol Min Characteristic Typ 25°C Max Min > 3.0 Typ 85°C Max Min Max Maximum Frequency (See Figure 3 Fmax/JITTER) (Note 22) tPLH, tPHL Propagation Delay to Output Differential tRR Reset Recovery tS tH Setup Time Hold Time tPW Minimum Pulse Rate tSKEW Within-Device Skew (Note 23) Device-T o-Device Skew (Note 24) 20 35 40 100 20 35 40 100 20 35 40 100 tJITTER Cycle-to-Cycle Jitter (See Figure 3 Fmax/JITTER) 0.2 <1 0.2 <1 0.2 <1 ps tr tf Output Rise/Fall Times (20% - 80%) 150 150 250 250 160 160 260 260 180 180 280 280 ps 330 430 430 530 MR to CLK 240 D to CLK CLK to D 80 80 MR 400 Q, Q 100 100 530 630 350 450 450 550 145 250 40 40 80 80 > 3.0 Unit fmax CLK to Q, Q MR to Q, Q > 3.0 Typ 550 650 390 490 490 590 150 260 160 ps 40 40 80 80 40 40 ps 400 110 110 301 590 690 400 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. 22. VOL and VOH specifications not guaranteed for Fmax testing. 23. Skew is measured between outputs under identical transitions and conditions on any one device. 24. Device-T o-Device skew for identical transitions at identical VCC levels. http://onsemi.com GHz 130 130 ps ps 800 8 700 7 600 6 500 5 400 4 300 3 200 2 100 1 ÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉ JITTEROUT ps (RMS) VOUTpp (mV) MC10EP451, MC100EP451 ÉÉ ÉÉ 0 0 1000 2000 3000 4000 5000 6000 FREQUENCY (MHz) Figure 3. Fmax/Jitter Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 4. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 302 MC100EP809 3.3V1:9 Differential HSTL/PECL to HSTL Clock Driver with LVTTL Clock Select and Enable The MC100EP809 is a low skew 1- to- 9 differential clock driver, designed with clock distribution in mind, accepting two clock sources into an input multiplexer. The part is designed for use in low voltage applications which require a large number of outputs to drive precisely aligned low skew signals to their destination. The two clock inputs are differential HSTL or PECL and they are selected by the CLK_SEL pin which is LVTTL. To avoid generation of a runt clock pulse when the device is enabled/disabled, the Output Enable (OE), which is LVTTL, is synchronous ensuring the outputs will only be enabled/disabled when they are already in LOW state (See Figure 8). The MC100EP809 guarantees low output- to- output skew. The optimal design, layout, and processing minimize skew within a device and from lot to lot. The MC100EP809 output structure uses open emitter architecture and will be terminated with 50 to ground instead of a standard HSTL configuration (See Figure 6). To ensure the tight skew specification is realized, both sides of the differential output need to be terminated identically into 50 even if only one output is being used. If an output pair is unused, both outputs may be left open (unterminated) without affecting skew. Designers can take advantage of the EP809’s performance to distribute low skew clocks across the backplane of the board. HSTL clock inputs may be driven single-end by biasing the non-driven pin in an input pair (see Figure 7). • 100 ps Typical Device-to- Device Skew • 15 ps Typical Within Device Skew • HSTL Compatible Outputs Drive 50 to Ground with no Offset Voltage Maximum Frequency > 750 MHz 850 ps Typical Propagation Delay • • • Fully Compatible with Micrel SY89809L • PECL and HSTL Mode Operating Range: VCCI = 3 V to 3.6 V http://onsemi.com MARKING DIAGRAM* MC100 EP809 32-LEAD LQFP FA SUFFIX CASE 873A AWLYYWW 32 1 A WL YY WW = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Package Shipping MC100EP809FA LQFP-32 250 Units/Tray MC100EP809FAR2 LQFP-32 2000/Tape & Reel with GND = 0 V, VCCO = 1.6 V to 2.0 V • Open Input Default State Semiconductor Components Industries, LLC, 2002 August, 2002 - Rev. 5 303 Publication Order Number: MC100EP809/D VCCO Q3 Q3 Q4 Q4 Q5 Q5 VCCO MC100EP809 24 23 22 21 20 19 18 17 VCCO 25 16 VCCO Q2 26 15 Q6 Q2 27 14 Q6 Q1 28 13 Q7 Q1 29 12 Q7 Q0 30 11 Q8 Q0 31 10 Q8 VCCO 32 MC100EP809 4 5 6 HSTL_CLK HSTL_CLK CLK_SEL LVPECL_CLK LVPECL_CLK 7 8 OE 3 GND 2 VCCI 9 1 VCCO All VCCI, VCCO, and GND pins must be externally connected to appropriate Power Supply to guarantee proper operation (VCCI VCCO). Figure 1. 32-Lead LQFP Pinout (Top View) PIN DESCRIPTION FUNCTION TABLE PIN FUNCTION HSTL_CLK*, HSTL_CLK** LVPECL_CLK*, LVPECL_CLK** CLK_SEL** OE** Q0-Q8, Q0-Q8 VCCI VCCO HSTL or LVDS Differential Inputs LVPECL Differential Inputs LVCMOS/LVTTL Input CLK Select LVCMOS/LVTTL Output Enable HSTL Differential Outputs Positive Supply_Core (3.0 V - 3.6 V) Positive Supply_HSTL Outputs (1.6 V - 2.0 V) Ground GND OE* CLK_SEL Q0-Q8 Q0-Q8 L L H H L H L H L L HSTL_CLK LVPECL_CLK H H HSTL_CLK LVPECL_CLK * The OE (Output Enable) signal is synchronized with the rising edge of the HSTL_CLK and LVPECL_CLK signal. * Pins will default LOW when left open. ** Pins will default HIGH when left open. CLK_SEL HSTL_CLK 0 9 HSTL_CLK 9 LVPECL_CLK VCCI GND Q0-Q8 (HSTL) Q0-Q8 (HSTL) 1 LVPECL_CLK Q D OE Figure 2. Logic Diagram http://onsemi.com 304 VCCO MC100EP809 ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor 37.5 k ESD Protection Human Body Model Machine Model Charged Device Model > 2 kV > 200 V > 2 kV Moisture Sensitivity (Note 1) Level 2 Flammability Rating Oxygen Index: 28 to 34 UL 94 V-0 @ 0.125 in Transistor Count 478 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, refer to Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Parameter Symbol Condition 1 Condition 2 Rating Units VCCI Core Power Supply GND= 0 V VCCO= 1.8 V 4 V VCCO HSTL Output Power Supply GND= 0 V VCCI = 3.3 V 4 V PECL Mode Input Voltage GND = 0 V VI ≤ VCCI 6 V Iout Output Current Continuous Surge 50 100 mA mA TA Operating Temperature Range 0 to +85 °C -65 to +150 °C VI Tstg Storage Temperature Range JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 32 LQFP 32 LQFP 80 55 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 32 LQFP 12 to 17 °C/W Tsol Wave Solder < 2 to 3 sec @ 248°C 265 °C 2. Maximum Ratings are those values beyond which device damage may occur. LVPECL DC CHARACTERISTICS VCCI = 3.0 V to 3.6 V; VCCO = 1.6 V to 2.0 V, GND = 0 V 0°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 75 95 115 75 95 115 75 95 115 mA ICC Core Power Supply Current VIH Input HIGH Voltage (Single-Ended) VCCI1.165 VCCI -0.88 VCCI1.165 VCCI -0.88 VCCI1.165 VCCI -0.88 V VIL Input LOW Voltage (Single-Ended) VCCI1.945 VCCI -1.6 VCCI1.945 VCCI -1.6 VCCI1.945 VCCI -1.6 V 1.2 VCCI 1.2 VCCI 1.2 VCCI V VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 3) (Figure 4) LVPECL_CLK/LVPECL_CLK IIH Input HIGH Current -150 150 -150 150 -150 150 A IIL Input LOW Current -150 150 -150 150 -150 150 A NOTE: 100EP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. 3. VIHCMR max varies 1:1 with VCCI. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 305 MC100EP809 LVTTL/LVCMOS DC CHARACTERISTICS VCCI = 3.0 V to 3.6 V; VCCO = 1.6 V to 2.0 V, GND = 0 V 0°C Symbol Characteristic Min 25°C Typ Max Min Max VIH Input HIGH Voltage VIL Input LOW Voltage IIH Input HIGH Current -150 150 -150 150 IIL Input LOW Current -300 300 -300 300 NOTE: 2.0 Typ 85°C 2.0 Min Typ Max 2.0 0.8 Unit V 0.8 0.8 V -150 150 A -300 300 A 100EP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. HSTL DC CHARACTERISTICS VCCI = 3.0 V to 3.6 V; VCCO = 1.6 V to 2.0 V, GND = 0 V 0°C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit VOH Output HIGH Voltage (Note 4) 1.0 1.2 1.0 1.2 1.0 1.2 V VOL Output LOW Voltage (Note 4) 0.1 0.4 0.1 0.4 0.1 0.4 V VIH VIL Input HIGH Voltage (Figure 5) VX+0.1 -0.3 - 1.6 1.6 1.6 V - - HSTL Input Crossover Voltage 0.68 - 0.68 - 0.68 - VX-0.1 0.9 V VX VX-0.1 0.9 VX+0.1 -0.3 - VX-0.1 0.9 VX+0.1 -0.3 - - IIH Input HIGH Current -150 150 -150 150 -150 150 A IIL Input LOW Current -300 300 -300 300 -300 300 A 0.6 VCCI -1.2 0.6 VCCI -1.2 0.6 VCCI -1.2 V V VIHCMR Input LOW Voltage (Figure 5) Input HIGH Voltage Common Mode Range (Differential) (Note 5) HSTL_CLK/HSTL_CLK NOTE: V 100EP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. 4. All outputs loaded with 50 to GND (See Figure 6). 5. VIHCMR max varies 1:1 with VCCI. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 306 MC100EP809 AC CHARACTERISTICS VCCI = 3.0 V to 3.6 V; VCCO = 1.6 V to 2.0 V, GND = 0 V (Note 6) 0°C 25°C Min Typ fout < 100 MHz fout < 500 MHz fout < 750 MHz 600 600 450 850 750 575 tPLH tPHL Propagation Delay (Differential) LVPECL_CLK to Q HSTL_CLK to Q 680 690 800 830 930 990 tskew Within-Device Skew (Note 7) Device-to-Device Skew (Note 8) 15 100 Random Clock Jitter (Figure 3) (RMS) 1.4 Symbol VOpp tJITTER VPP Characteristic Differential Output Voltage (Figure 3) Max 85°C Min Typ Max Min Typ 600 600 450 850 750 575 700 700 820 850 950 1000 50 200 15 100 3.0 1.4 Max 600 600 450 850 750 575 780 790 920 950 1070 1110 ps ps 50 200 15 100 50 200 ps ps 3.0 1.4 3.0 ps Unit mV mV Input Swing (Differential Mode) (Note 10) (Figure 4) LVPECL HSTL 200 200 200 200 200 200 mV mV tS OE Set Up Time (Note 9) 0.5 0.5 0.5 ns tH OE Hold Time 0.5 0.5 0.5 ns tr/tf Output Rise/Fall Time (20%-80%) 350 600 350 450 600 350 600 ps 6. Measured with 750 mV (LVPECL) source or 1 V (HSTL) source, 50% duty cycle clock source. All outputs loaded with 50 to Ground (See Figure 6). 7. Skew is measured between outputs under identical transitions and conditions on any one device. 8. Device-to-Device skew for identical transitions and conditions. 9. OE Set Up Time is defined with respect to the rising edge of the clock. OE High-to-Low transition ensures outputs remain disabled during the next clock cycle. OE Low-to-High transition enables normal operation of the next input clock (See Figure 8). 10. VPP is the Differential Input Voltage swing required to maintain AC characteristics listed herein. 900 9 800 8 VOPP 7 600 6 500 5 400 4 300 3 tJITTER ps (RMS) VOPP (mV) 700 RMS JITTER 200 2 100 1 0 0 100 200 300 400 500 600 700 800 900 1000 FREQUENCY (MHz) Figure 3. Output Frequency (FOUT) versus Output Voltage (VOPP) and Random Clock Jitter (tJITTER) http://onsemi.com 307 MC100EP809 VCCI VCCO(HSTL) VCCI(LVPECL) VIH(DIFF) VPP VIH(DIFF) VX VIL(DIFF) VIHCMR VIL(DIFF) GND VPP Figure 4. LVPECL Differential Input Levels GND Figure 5. HSTL Differential Input Levels Z = 50 Q HSTL OUTPUT Q 50 50 GROUND Figure 6. HSTL Output Termination and AC Test Reference CLK/CLK D.C. Bias* *Must fall within 680 to 900 mV (Preferably (VIH + VIL)/2). Figure 7. HSTL Single-Ended Input Configuration CLK CLK OE Q Q Figure 8. Output Enable (OE) Timing Diagram http://onsemi.com 308 CHAPTER 2 ECLinPS Plus Translator Data Sheets http://onsemi.com 309 MC10EPT20, MC100EPT20 3.3VLVTTL/LVCMOS to Differential LVPECL Translator The MC10EPT20 is a 3.3 V TTL/CMOS to differential PECL translator. Because PECL (Positive ECL) levels are used, only +3.3 V and ground are required. The small outline 8- lead SOIC package and the single gate of the EPT20 makes it ideal for those applications where space, performance, and low power are at a premium. The 100 Series contains temperature compensation. • • • • • http://onsemi.com MARKING DIAGRAMS* 8 8 390 ps Typical Propagation Delay Maximum Frequency > 1 GHz Typical PNP TTL Inputs for Minimal Loading Operating Range VCC = 3.0 V to 3.6 V with GND = 0 V Q Output will default HIGH with inputs open 8 1 SO-8 D SUFFIX CASE 751 HPT20 ALYW 1 1 8 8 1 TSSOP-8 DT SUFFIX CASE 948R KPT20 ALYW 8 HT20 ALYW 1 KT20 ALYW 1 H = MC10 K = MC100 A = Assembly Location L = Wafer Lot Y = Year W = Work Week ORDERING INFORMATION Package Shipping MC10EPT20D Device SO-8 98 Units/Rail MC10EPT20DR2 SO-8 2500 Tape & Reel MC100EPT20D SO-8 98 Units/Rail MC100EPT20DR2 Semiconductor Components Industries, LLC, 2001 April, 2001 - Rev. 4 310 SO-8 2500 Tape & Reel MC10EPT20DT TSSOP-8 100 Units/Rail MC10EPT20DTR2 TSSOP-8 2500 Tape & Reel MC100EPT20DT TSSOP-8 100 Units/Rail MC100EPT20DTR2 TSSOP-8 2500 Tape & Reel Publication Order Number: MC10EPT20/D MC10EPT20, MC100EPT20 PIN DESCRIPTION NC Q Q 1 8 LVTTL 2 3 7 VCC D 6 NC 5 GND PIN FUNCTION Q, Q Differential PECL Outputs D LVTTL Input VCC Positive Supply GND Ground NC No Connect LVPECL NC 4 Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor N/A Internal Input Pullup Resistor N/A ESD Protection Human Body Model Machine Model Charged Device Model > 1.5 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1.) Level 1 Flammability Rating Oxygen Index UL-94 code V-0 A 1/8” 28 to 34 Transistor Count 150 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2.) Parameter Symbol Condition 1 VCC Power Supply GND = 0 V VI Input Voltage GND = 0 V Iout Output Current Continuous Surge TA Condition 2 VI VCC Rating Units 6 V 6 V 50 100 mA mA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 SOIC 41 to 44 °C/W θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 TSSOP 41 to 44 °C/W Tsol Wave Solder <2 to 3 sec @ 248°C 265 °C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 311 MC10EPT20, MC100EPT20 LVTTL INPUT DC CHARACTERISTICS VCC = 3.3 V, GND = 0 V, TA = -40°C to +85°C Characteristic Symbol Min Typ Max Unit 20 µA IIH Input HIGH Current (Vin = 2.7 V) IIHH Input HIGH Current MAX (Vin = 6.0 V) 100 µA IIL Input LOW Current (Vin = 0.5 V) -0.6 mA VIK Input Clamp Voltage (Iin = -18 mA) -1.2 V VIH Input HIGH Voltage VIL Input LOW Voltage 2.0 V 0.8 V 10EPT PECL OUTPUT DC CHARACTERISTICS VCC = 3.3 V, GND = 0 V (Note 3.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 18 23 28 18 23 28 19 24 29 mA ICC Power Supply Current HIGH VOH Output HIGH Voltage (Note 4.) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4.) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV NOTE: 10EPT circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Output parameters vary 1:1 with VCC. 4. All loading with 50 ohms to VCC-2.0 volts. 100EPT PECL OUTPUT DC CHARACTERISTICS VCC = 3.3 V, GND = 0 V (Note 5.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 25 30 22 27 32 23 28 33 mA Output HIGH Voltage (Note 6.) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV Output LOW Voltage (Note 6.) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV IEE Power Supply Current VOH VOL NOTE: 100EPT circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 5. Output parameters vary 1:1 with VCC. 6. All loading with 50 ohms to VCC-2.0 volts. AC CHARACTERISTICS VCC = 3.0 V to 3.6 V, GND = 0 V (Note 7.) -40 °C Symbol Characteristic fmax Maximum Frequency (See Figure 2. Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tSKEW Device-to-Device Skew (Note 8.) tJITTER Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) tr tf Output Rise/Fall Times (20% - 80%) Min Typ 25°C Max Min >1 Typ 85°C Max Min >1 Typ Max >1 Unit GHz ps 280 350 430 300 370 150 Q, Q 70 1 <2 100 170 450 312 400 150 80 1 <2 120 180 7. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. 8. Skew is measured between outputs under identical transitions. http://onsemi.com 320 90 490 170 ps 1 <2 ps 140 190 ps 900 9 800 8 700 7 600 6 500 5 400 4 300 3 200 2 ÉÉÉÉ ÉÉÉÉ ÉÉÉÉ ÉÉ ÉÉ 100 1 (JITTER) 0 0 JITTEROUT ps (RMS) VOUTpp (mV) MC10EPT20, MC100EPT20 200 400 600 800 1000 1200 1400 FREQUENCY (MHz) Figure 2. Fmax/Jitter Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 313 1600 MC100EPT21 3.3VDifferential LVPECL to LVTTL Translator The MC100EPT21 is a Differential LVPECL to LVTTL translator. Because LVPECL (Positive ECL) levels are used only +3.3 V and ground are required. The small outline 8-lead SOIC package makes the EPT21 ideal for applications which require the translation of a clock or data signal. The VBB output allows this EPT21 to be cap coupled in either single-ended or differential input mode. When single-ended cap coupled, VBB output is tied to the D input and D is driven for a non-inverting buffer, or VBB output is tied to the D input and D is driven for an inverting buffer. The D0 input for an inverting buffer. When cap coupled differentially, VBB output is connected through a resistor to each input pin. If used, the VBB pin should be bypassed to VCC via a 0.01 F capacitor. For additional information see AND8020. For a single-ended direct connection use an external voltage reference source such as a resistor divider. Do not use VBB for a single-ended direct connection or port to another device. • • • • • • • • • http://onsemi.com MARKING DIAGRAMS* 8 SO-8 D SUFFIX CASE 751 8 1 1 8 TSSOP-8 DT SUFFIX CASE 948R 8 1 1.4 ns Typical Propagation Delay KPT21 ALYW KA21 ALYW 1 Maximum Frequency > 275 MHz Typical 24 mA TTL outputs A L Y W Operating Range: VCC = 3.0 V to 3.6 V with GND = 0 V Open Input Default State Q Output Will Default LOW with Inputs Open or at GND The 100 Series Contains Temperature Compensation = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D VBB Output New Differential Input Common Mode Range ORDERING INFORMATION Device Semiconductor Components Industries, LLC, 2002 November, 2002 - Rev. 8 314 Package Shipping MC100EPT21D SO-8 98 Units/Rail MC100EPT21DR2 SO-8 2500 Tape & Reel MC100EPT21DT TSSOP-8 100 Units/Rail MC100EPT21DTR2 TSSOP-8 2500 Tape & Reel Publication Order Number: MC100EPT21/D MC100EPT21 NC 1 D 2 D LVTTL 3 8 VCC 7 Q 6 PIN DESCRIPTION NC LVPECL VBB 4 5 GND PIN FUNCTION Q LVTTL Output D**, D** Differential LVPECL Input Pair VCC VBB Positive Supply Output Reference Voltage GND Ground NC No Connect ** Pins will default to VCC/2 when left open. Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection 37.5 k Human Body Model Machine Model Charged Device Model > 1.5 kV > 100 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Level 1 Oxygen Index: 28 to 34 UL 94 V-0 @ 0.125 in Transistor Count 81 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 Rating Units 3.8 V 0 to 3.8 V ± 0.5 mA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 8 SOIC 41 to 44 °C/W JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 8 TSSOP 41 to 44 °C/W Tsol Wave Solder < 2 to 3 sec @ 248°C 265 °C VCC PECL Power Supply GND = 0 V VIN PECL Input Voltage GND = 0 V IBB VBB Sink/Source TA 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 315 Condition 2 VI VCC MC100EPT21 PECL INPUT DC CHARACTERISTICS VCC = 3.3 V, GND = 0.0 V (Note 3) Symbol -40 °C Characteristic Min 25°C Typ Max Min Max Min VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV VBB Output Voltage Reference 1775 1975 1775 1975 1775 1975 V VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 4) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A IIL Input LOW Current 0.5 A 1875 2.0 Typ Unit 85°C 1875 150 D D 1875 150 0.5 -150 Typ 0.5 -150 Max -150 NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. 3. Input parameters vary 1:1 with VCC. 4. VIHCMR min varies 1:1 with GND, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. TTL OUTPUT DC CHARACTERISTICS VCC = 3.3 V, GND = 0.0 V, TA = -40°C to 85°C Symbol Characteristic Condition Min VOH Output HIGH Voltage (Note 5) IOH = -3.0 mA VOL Output LOW Voltage (Note 5) IOL = 24 mA ICCH Power Supply Current Outputs set to HIGH 5 ICCL Power Supply Current Outputs set to LOW 8 IOS Output Short Circuit Current Typ Max 2.4 Unit V 0.5 V 12 20 mA 18 26 mA -80 mA -130 5. All loading with 500 to GND. AC CHARACTERISTICS VCC = 3.0 V to 3.6 V, GND = 0.0 V (Note 6) -40 °C Symbol Characteristic Min Typ 25°C Max fmax Maximum Frequency (See Figure 2. Fmax/JITTER) 275 350 tPLH, tPHL Propagation Delay to Output Differential 1200 1200 1450 1400 tSK++ tSK- tSKPP Output-to-Output Skew++ Output-to-Output Skew- Part- to- Part Skew (Note 7) tJITTER Cycle-to-Cycle Jitter (See Figure 2 Fmax/JITTER) VPP Input Voltage Swing (Differential) tr tf Output Rise/Fall Times (0.8V - 2.0V) Min Typ 275 350 1200 1200 1450 1400 85°C Max Min Typ 275 350 1300 1200 1450 1400 Max Unit MHz 1800 1800 60 25 500 0.2 <1 150 800 1200 330 500 900 1800 1800 1900 1900 ps 60 25 500 ps 0.2 <1 ps mV 60 25 500 0.2 <1 150 800 1200 150 800 1200 330 500 900 330 500 900 ps Q, Q 6. Measured with a 750 mV 50% duty-cycle clock source. RL = 500 to GND and CL = 20 pF to GND. Refer to FIgure 3. 7. Skews are measured between outputs under identical transitions. http://onsemi.com 316 MC100EPT21 3000 6 5 2000 4 VOL 0.5 V 1500 3 1000 2 ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ (JITTER) 500 1 0 0 50 100 150 200 250 300 350 400 450 500 FREQUENCY (MHz) Figure 2. Fmax/Jitter APPLICATION TTL RECEIVER CHARACTERISTIC TEST *CL includes fixture capacitance CL* RL AC TEST LOAD GND Figure 3. TTL Output Loading Used For Device Evaluation http://onsemi.com 317 550 600 JITTEROUT ps (RMS) VOUTpp (mV) VOH 2500 É É MC100EPT22 3.3VDual LVTTL/LVCMOS to Differential LVPECL Translator The MC100EPT22 is a dual LVTTL/LVCMOS to differential LVPECL translator. Because LVPECL (Positive ECL) levels are used only +3.3 V and ground are required. The small outline 8- lead package and the single gate of the EPT22 makes it ideal for those applications where space, performance, and low power are at a premium. Because the mature MOSAIC 5 process is used, low cost and high speed can be added to the list of features. • • • • • • 420 ps Typical Propagation Delay http://onsemi.com MARKING DIAGRAMS* 8 SO-8 D SUFFIX CASE 751 8 1 Maximum Frequency > 1.1 GHz Typical KPT22 ALYW 1 Operating Range: VCC = 3.0 V to 3.6 V with GND = 0 V PNP LVTTL Inputs for Minimal Loading 8 Q Output Will Default HIGH with Inputs Open TSSOP-8 DT SUFFIX CASE 948R 8 The 100 Series Contains Temperature Compensation. 1 KA22 ALYW 1 A L Y W = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Semiconductor Components Industries, LLC, 2002 September, 2002 - Rev. 8 318 Package Shipping MC100EPT22D SO-8 98 Units/Rail MC100EPT22DR2 SO-8 2500 Tape & Reel MC100EPT22DT TSSOP-8 100 Units/Rail MC100EPT22DTR2 TSSOP-8 2500 Tape & Reel Publication Order Number: MC100EPT22/D MC100EPT22 Q0 1 8 VCC Q0 2 7 D0 LVPECL Q1 Q1 PIN DESCRIPTION PIN FUNCTION Q0, Q1, Q0, Q1 LVPECL Differential Outputs D0, D1 LVTTL Inputs VCC Positive Supply GND Ground LVTTL 3 6 4 5 D1 GND Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor N/A Internal Input Pullup Resistor N/A ESD Protection Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Level 1 Oxygen Index: 28 to 34 UL 94 V-0 @ 0.125 in Transistor Count 164 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Parameter Symbol Condition 1 VCC Power Supply GND = 0 V VI Input Voltage GND = 0 V Iout Output Current Continuous Surge TA Condition 2 VI VCC Rating Units 6 V 6 to 0 V 50 100 mA mA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 8 SOIC 41 to 44 °C/W JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 8 TSSOP 41 to 44 °C/W Tsol Wave Solder <2 to 3 sec @ 248°C 265 °C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 319 MC100EPT22 TTL INPUT DC CHARACTERISTICS VCC= 3.3 V, GND= 0.0 V, TA= -40°C to 85°C Symbol Characteristic Condition Min Typ Max Unit IIH Input HIGH Current VIN= 2.7 V 20 A IIHH Input HIGH Current MAX VIN= 6.0 V 100 A IIL Input LOW Current VIN= 0.5 V -0.6 mA VIK Input Clamp Voltage IIN= -18 mA -1.0 V VIH Input HIGH Voltage VIL Input LOW Voltage 2.0 V 0.8 V PECL OUTPUT DC CHARACTERISTICS VCC = 3.3 V, GND = 0.0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit ICC Power Supply Current 32 43 55 35 45 60 37 46 62 mA VOH Output HIGH Voltage (Note 4) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 4) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. 3. Output parameters vary 1:1 with VCC. 4. All loading with 50 to VCC- 2.0 V. AC CHARACTERISTICS VCC= 3.0 V to 3.6 V, GND= 0.0 V (Note 5) -40 °C Symbol Characteristic Min Typ 25°C Max fmax Maximum Frequency (See Figure 2. Fmax/JITTER) 0.8 1.1 tPLH, tPHL Propagation Delay to Output Differential 250 400 650 tJITTER Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) 0.2 <1 tr tf Output Rise/Fall Times (20% - 80%) 110 200 50 85°C Min Typ 0.8 1.1 250 420 675 0.2 <1 120 220 60 Max Q, Q 5. Measured using a 2.4 V source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. http://onsemi.com 320 Min Typ 0.8 1.1 300 500 700 ps 0.2 <1 ps 140 250 ps 70 Max Unit GHz 900 9 800 8 700 7 600 6 500 5 400 4 300 3 200 2 ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 100 1 (JITTER) 0 0 200 400 600 800 1000 1200 1400 1600 FREQUENCY (MHz) Figure 2. Fmax/Jitter Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 321 JITTEROUT ps (RMS) VOUTpp (mV) MC100EPT22 ÉÉ ÉÉ ÉÉ MC100EPT23 3.3VDual Differential LVPECL to LVTTL Translator The MC100EPT23 is a dual differential LVPECL to LVTTL translator. Because LVPECL (Positive ECL) levels are used, only +3.3 V and ground are required. The small outline 8-lead package and the dual gate design of the EPT23 makes it ideal for applications which require the translation of a clock and a data signal. The EPT23 is available in only the ECL 100K standard. Since there are no LVPECL outputs or an external VBB reference, the EPT23 does not require both ECL standard versions. The LVPECL inputs are differential. Therefore, the MC100EPT23 can accept any standard differential LVPECL input referenced from a VCC of +3.3 V. • • • • http://onsemi.com MARKING DIAGRAMS* 8 8 1 1.5 ns Typical Propagation Delay KPT23 ALYW SO-8 D SUFFIX CASE 751 1 8 Maximum Operating Frequency > 275 MHz 24 mA LVTTL Outputs TSSOP-8 DT SUFFIX CASE 948R 8 Operating Range: VCC = 3.0 V to 3.6 V with GND = 0 V 1 KA23 ALYW 1 A L Y W = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Package Shipping MC100EPT23D SO-8 98 Units/Rail MC100EPT23DR2 SO-8 2500 Tape & Reel TSSOP-8 100 Units/Rail MC100EPT23DT MC100EPT23DTR2 TSSOP-8 2500 Tape & Reel Semiconductor Components Industries, LLC, 2002 November, 2002 - Rev. 8 322 Publication Order Number: MC100EPT23/D MC100EPT23 D0 1 8 VCC PIN DESCRIPTION D0 2 7 LVPECL D1 D1 Q0 LVTTL 3 6 4 5 PIN FUNCTION Q0, Q1 LVTTL Outputs D0**, D1** D0**, D1** Differential LVPECL Inputs VCC Positive Supply GND Ground Q1 ** Pins will default to (2/3)VCC when left open. GND Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection 37.5 k Human Body Model Machine Model Charged Device Model > 1.2 kV > 150 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Level 1 Oxygen Index: 28 to 34 UL 94 V-0 @ 0.125 in Transistor Count 91 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Parameter Symbol Condition 1 Condition 2 Rating Units 3.8 V 3.8 V 50 100 mA mA VCC Power Supply GND = 0 V VI Input Voltage GND = 0 V Iout Output Current Continuous Surge TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 8 SOIC 41 to 44 °C/W JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 8 TSSOP 41 to 44 °C/W Tsol Wave Solder < 2 to 3 sec @ 248°C 265 °C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 323 VI VCC MC100EPT23 PECL DC CHARACTERISTICS VCC = 3.3 V, GND = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit ICCH Power Supply Current (Outputs set to HIGH) 10 18 25 10 18 25 10 18 25 mA ICCL Power Supply Current (Outputs set to LOW) 15 26 33 15 26 33 15 26 33 mA VIH Input HIGH Voltage 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage 1355 1675 1355 1675 1355 1675 mV VIHCMR Input HIGH Voltage Common Mode Range (Note 4) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A IIL Input LOW Current 0.5 A 150 D D -150 -150 150 -150 -150 -150 -150 NOTE: Circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. All values vary 1:1 with VCC. 4. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. TTL DC CHARACTERISTICS VCC = 3.3 V, GND = 0.0 V, TA = -40°C to 85°C Symbol Characteristic Condition VOH Output HIGH Voltage (Note 5) IOH = -3.0 mA VOL Output LOW Voltage (Note 5) IOL = 24 mA IOS Output Short Circuit Current Min Typ Max Unit 2.4 V -180 0.5 V -50 mA NOTE: Circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained. 5. All loading with 500 to GND. AC CHARACTERISTICS VCC = 3.0 V to 3.6 V, GND = 0.0 V (Note 6) -40 °C Min Typ fmax Maximum Frequency (See Figure 2. Fmax/JITTER) 275 350 tPLH, tPHL Propagation Delay to Output Differential (Note 7) 1.2 1.2 1.5 1.5 tSK+ + tSK- tSKPP Output-to-Output Skew++ Output-to-Output Skew- Part- to- Part Skew (Note 8) tJITTER Cycle-to-Cycle Jitter (See Figure 2 Fmax/JITTER) VPP Input Voltage Swing (Differential) tr tf Output Rise/Fall Times (0.8 V - 2.0 V) Symbol Characteristic 25°C Max 1.8 1.8 Min Typ 275 350 1.2 1.2 1.5 1.5 60 25 500 0.2 <1 150 800 1200 330 600 900 85°C Max 1.8 1.8 Min Typ 275 350 1.3 1.2 1.7 1.5 Max Unit MHz 2.2 1.8 ns 60 25 500 ps 0.2 <1 ps mV 60 25 500 0.2 <1 150 800 1200 150 800 1200 330 600 900 330 650 900 ps Q, Q 6. Measured with a 750 mV 50% duty-cycle clock source. RL = 500 to GND and CL = 20 pF to GND. Refer to Figure 3. 7. Reference (VCC = 3.3V ± 5%; GND = 0V) 8. Skews are measured between outputs under identical conditions. http://onsemi.com 324 MC100EPT23 3000 6 5 2000 4 VOL 0.5 V 1500 3 1000 2 ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉ ÉÉ (JITTER) 500 0 0 50 100 150 200 250 300 350 400 450 500 FREQUENCY (MHz) Figure 2. Fmax/Jitter APPLICATION TTL RECEIVER CHARACTERISTIC TEST *CL includes fixture capacitance CL* RL AC TEST LOAD GND Figure 3. TTL Output Loading Used for Device Evaluation http://onsemi.com 325 JITTEROUT ps (RMS) VOUTpp (mV) VOH 2500 1 550 600 MC100EPT24 3.3VLVTTL/LVCMOS to Differential LVECL Translator The MC100EPT24 is a LVTTL/LVCMOS to differential LVECL translator. Because LVECL levels and LVTTL/LVCMOS levels are used, a -3.3 V, +3.3 V and ground are required. The small outline 8-lead package and the single gate of the EPT24 makes it ideal for those applications where space, performance, and low power are at a premium. • • • • • • http://onsemi.com MARKING DIAGRAMS* 350 ps Typical Propagation Delay Maximum Frequency > 1.0 GHz Typical The 100 Series Contains Temperature Compensation 8 Operating Range: VCC = 3.0 V to 3.6 V; VEE = -3.6 V to -3.0 V; GND = 0 V PNP LVTTL Inputs for Minimal Loading Q Output Will Default HIGH with Input Open KPT24 ALYW SO-8 D SUFFIX CASE 751 8 1 1 8 TSSOP-8 DT SUFFIX CASE 948R 8 1 KA24 ALYW 1 A L Y W = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Semiconductor Components Industries, LLC, 2001 June, 2001 - Rev. 5 326 Package Shipping MC100EPT24D SO-8 98 Units / Rail MC100EPT24DR2 SO-8 2500 Tape & Reel MC100EPT24DT TSSOP-8 100 Units / Rail MC100EPT24DTR2 TSSOP-8 2500 Tape & Reel Publication Order Number: MC100EPT24/D MC100EPT24 VEE 1 8 VCC PIN DESCRIPTION LVTTL D 2 7 Q LVECL NC NC 3 6 4 5 FUNCTION PIN Q GND Q, Q Differential LVECL Outputs D LVTTL Input VCC Positive Supply GND Ground VEE Negative Supply NC No Connect Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor N/A Internal Input Pullup Resistor N/A ESD Protection Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1.) Flammability Rating Oxygen Index Level 1 UL-94 code V-0 A 1/8” 28 to 34 Transistor Count 181 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2.) Symbol Parameter Condition 1 Condition 2 Rating Units VCC Positive Power Supply GND = 0 V VEE = -3.3 V 3.8 V VEE Negative Power Supply GND = 0 V VCC = +3.3 V -3.8 V VIN Input Voltage GND = 0 V VI VCC 0 to VCC V Iout Output Current Continuous Surge 50 100 mA mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 SOIC 41 to 44 °C/W θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 TSSOP 41 to 44 °C/W Tsol Wave Solder <2 to 3 sec @ 248°C 265 °C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 327 MC100EPT24 LVTTL INPUT DC CHARACTERISTICS VCC= 3.3 V, VEE= -3.6 V to -3.0 V, GND= 0.0 V; TA= -40°C to 85°C Symbol Characteristic Condition Min Typ Max Unit IIH Input HIGH Current VIN = 2.7 V 20 µA IIHH Input HIGH Current VIN = 6.0 V 100 µA IIL Input LOW Current VIN = 0.5 V -0.6 mA VIK Input Clamp Diode Voltage IIN = -18 mA -1.2 V VIH Input HIGH Voltage VIL Input LOW Voltage 2.0 V 0.8 V NECL OUTPUT DC CHARACTERISTICS VCC= 3.3 V, VEE= -3.3 V, GND= 0.0 V (Note 3.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit VOH Output HIGH Voltage (Note 4.) -1145 -1020 -895 -1145 -1020 -895 -1145 -1030 -895 mV VOL Output LOW Voltage (Note 4.) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV ICC Power Supply Current 2.0 4.0 2.0 4.0 2.0 4.0 mA IEE Power Supply Current 30 38 30 38 30 38 mA 20 20 20 NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. 3. Output levels will vary 1:1 with GND. VEE can vary ± 0.3 V. 4. Outputs are terminated through a 50 ohm resistor to GND-2 volts. AC CHARACTERISTICS VCC= 3.0 V to 3.6 V, VEE= -3.6 V to -3.0 V, GND= 0.0 V (Note 5.) -40 °C Symbol Characteristic fmax Maximum Frequency (See Figure 2. Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential (Note 6.) tJITTER Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) tr tf Output Rise/Fall Times (20% - 80%) Min Typ 25°C Max Min >1 300 Q, Q 70 Typ 85°C Max Min >1 500 800 0.2 <1 125 170 300 80 328 Max >1 530 800 0.2 <1 130 180 300 100 5. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. 6. Specifications for standard TTL input signal. http://onsemi.com Typ Unit GHz 560 800 ps 0.2 <1 ps 150 200 ps 900 9 800 8 700 7 600 6 500 5 400 4 300 3 ÉÉ ÉÉ 2 200 ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ (JITTER) 100 0 100 300 500 700 900 1100 1300 1 1500 FREQUENCY (MHz) Figure 2. Fmax/Jitter Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 329 JITTEROUT ps (RMS) VOUTpp (mV) MC100EPT24 MC100EPT25 −3.3V / −5VDifferential ECL to +3.3V LVTTL Translator The MC100EPT25 is a Differential ECL to LVTTL translator. This device requires +3.3 V, -3.3 V to -5.2 V, and ground. The small outline 8-lead package and the single gate of the EPT25 make it ideal for applications which require the translation of a clock or data signal. The VBB output allows the EPT25 to also be used in a single-ended input mode. In this mode the VBB output is tied to the D input for a inverting buffer or the D input for a non-inverting buffer. If used, the VBB pin should be bypassed to ground with at least a 0.01 F capacitor. • 1.1 ns Typical Propagation Delay • Maximum Frequency > 275 MHz Typical • Operating Range: VCC = 3.0 V to 3.6 V; • • • • • http://onsemi.com MARKING DIAGRAMS* 8 SO-8 D SUFFIX CASE 751 8 1 KPT25 ALYW 1 8 VEE = -5.5 V to -3.0 V; GND = 0 V 24 mA TTL Outputs TSSOP-8 DT SUFFIX CASE 948R 8 Q Output Will Default LOW with Inputs Open or at VEE 1 KA25 ALYW 1 VBB Output Open Input Default State A L Y W Safety Clamp on Inputs = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Package Shipping MC100EPT25D SO-8 98 Units/Rail MC100EPT25DR2 SO-8 2500 Tape & Reel TSSOP-8 100 Units/Rail MC100EPT25DT MC100EPT25DTR2 TSSOP-8 Semiconductor Components Industries, LLC, 2002 November, 2002 - Rev. 9 330 2500 Tape & Reel Publication Order Number: MC100EPT25/D MC100EPT25 VEE D D 1 8 LVTTL 2 3 PIN DESCRIPTION VCC 7 Q NC 6 LVECL/ECL VBB 4 5 GND PIN FUNCTION Q LVTTL Output D*, D* Differential ECL Input Pair VCC Positive Supply VBB GND Ground VEE Negative Supply NC No Connect Output Reference Voltage * Pins will default LOW when left open. Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Oxygen Index: 28 to 34 Level 1 UL-94 V-0 @ 0.125 in Transistor Count 111 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Parameter Symbol Condition 1 Condition 2 Rating Units VCC Positive Power Supply GND = 0 V VEE = -5.0 V 3.8 V VEE Negative Power Supply GND = 0 V VCC = +3.3 V -6 V VIN Input Voltage GND = 0 V 0 to VEE V IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 8 SOIC 41 to 44 °C/W JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 8 TSSOP 41 to 44 °C/W Tsol Wave Solder < 2 to 3 sec @ 248°C 265 °C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 331 MC100EPT25 NECL DC CHARACTERISTICS VCC = 3.3 V; VEE = -5.5 V to -3.0 V; GND = 0.0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 8.0 16 25 8.0 16 25 8.0 16 25 mA IEE Power Supply Current VIH Input HIGH Voltage Single-Ended -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage Single-Ended -1945 -1625 -1945 -1625 -1945 -1625 mV VBB Output Voltage Reference -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Note 4) 0.0 V IIH Input HIGH Current 150 A IIL Input LOW Current -1425 VEE + 2.0 0.0 -1425 VEE + 2.0 0.0 150 -1425 VEE + 2.0 150 0.5 0.5 A 0.5 NOTE: 100EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input parameters vary 1:1 with GND. 4. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. TTL OUTPUT DC CHARACTERISTICS VCC = 3.3 V; VEE = -5.5 V to -3.0 V; GND = 0.0 V; TA = -40°C to 85°C Symbol Characteristic Condition Min VOH Output HIGH Voltage (Note 5) IOH = -3.0 mA VOL Output LOW Voltage (Note 5) IOL = 24 mA ICCH Power Supply Current 6 ICCL Power Supply Current 7 Typ Max 2.2 Unit V 0.5 V 10 14 mA 12 17 mA NOTE: 100EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 5. All loading with 500 to GND; CL = 20 pF. AC CHARACTERISTICS VCC = 3.0 V to 3.6 V; VEE = -5.5 V to -3.0 V; GND = 0.0 V (Note 6) -40 °C Symbol fmax Min Characteristic Maximum Frequency (See Figure 2 Fmax/JITTER) 275 tPLH,PHL t Propagation Delay to Output Differential (Cross-Point to 1.5 V) 800 tSKPP Device- to- Device Skew (Note 7) tJITTER CLOCK Random Jitter (See Figure 2 Fmax/JITTER) VPP Input Voltage Swing (Differential) tr tf Output Rise/Fall Times (0.8 V - 2.0 V) Typ 25°C Max Min Typ Max 275 1200 1800 800 0.2 <1 150 800 1200 450 900 600 1160 750 1400 Min Typ 1100 1600 800 332 Unit MHz 1100 1600 ps 500 ps 0.2 <1 ps 500 0.2 <1 150 800 1200 150 800 1200 mV 450 900 600 1100 750 1400 450 900 600 1100 750 1400 ps 6. Measured with a 750 mV 50% duty-cycle clock source. RL = 500 to GND and CL = 20 pF to GND. Refer to Figure 3. 7. Skews are measured between outputs under identical conditions. http://onsemi.com Max 275 500 Q, Q 85°C MC100EPT25 7 2800 VOH 6 2000 5 1600 4 1200 3 VOL 0.5 V 2 800 ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ (JITTER) 400 0 25 100 175 250 325 400 475 550 FREQUENCY (MHz) Figure 2. Fmax/Jitter APPLICATION TTL RECEIVER CHARACTERISTIC TEST *CL includes fixture capacitance CL* RL AC TEST LOAD GND Figure 3. TTL Output Loading Used for Device Evaluation http://onsemi.com 333 1 625 JITTEROUT ps (RMS) VOUTpp (mV) 2400 É É MC100EPT26 3.3V1:2 Fanout Differential LVPECL to LVTTL Translator The MC100EPT26 is a 1:2 Fanout Differential LVPECL to LVTTL translator. Because LVPECL (Positive ECL) levels are used only +3.3 V and ground are required. The small outline 8- lead package and the 1:2 fanout design of the EPT26 makes it ideal for applications which require the low skew duplication of a signal in a tightly packed PC board. The VBB output allows the EPT26 to be used in a single-ended input mode. In this mode the VBB output is tied to the D0 input for a non-inverting buffer or the D0 input for an inverting buffer. If used, the VBB pin should be bypassed to ground via a 0.01 F capacitator. • • • • • • • • • 1.4 ns Typical Propagation Delay http://onsemi.com MARKING DIAGRAMS* 8 SO-8 D SUFFIX CASE 751 8 1 Maximum Frequency > 275 MHz Typical KPT26 ALYW 1 The 100 Series Contains Temperature Compensation 8 Operating Range: VCC = 3.0 V to 3.6 V with GND = 0 V Open Input Default State TSSOP-8 DT SUFFIX CASE 948R 8 1 Safety Clamp on Inputs KA26 ALYW 1 24 mA TTL outputs Q Outputs Will Default LOW with Inputs Open or at VEE A L Y W VBB Output = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Package Shipping MC100EPT26D SO-8 98 Units/Rail MC100EPT26DR2 SO-8 2500 Tape & Reel TSSOP-8 100 Units/Rail MC100EPT26DT MC100EPT26DTR2 TSSOP-8 Semiconductor Components Industries, LLC, 2002 November, 2002 - Rev. 7 334 2500 Tape & Reel Publication Order Number: MC100EPT26/D MC100EPT26 NC 1 8 VCC PIN DESCRIPTION PIN D 2 7 Q0 LVTTL D VBB 3 6 4 5 LVPECL Q1 GND FUNCTION Q0, Q1 LVTTL Outputs D**, D** Differential LVPECL Input Pair VCC VBB Positive Supply GND Ground NC No Connect Output Reference Voltage ** Pins will default to VCC/2 when left open. Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection 37.5 k Human Body Model Machine Model Charged Device Model > 2 kV > 100 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Level 1 Oxygen Index: 28 to 34 UL 94 V-0 @ 0.125 in Transistor Count 117 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Parameter Symbol Condition 1 Condition 2 Rating Units 3.8 V 0 to 3.8 V ± 0.5 mA -40 to +85 °C VCC Positive Power Supply GND = 0 V VIN Input Voltage GND = 0 V IBB VBB Sink/Source TA Operating Temperature Range Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 8 SOIC 41 to 44 °C/W JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 8 TSSOP 41 to 44 °C/W Tsol Wave Solder < 2 to 3 sec @ 248°C 265 °C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 335 VI VCC MC100EPT26 PECL INPUT DC CHARACTERISTICS VCC = 3.3 V; GND = 0.0 V (Note 3) -40 °C Max Min Max Min Max Unit Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV VBB Output Voltage Reference 1775 1975 1775 1975 1775 1975 V VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 4) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 A IIL Input LOW Current Characteristic Typ 85°C VIH Symbol Min 25°C 1875 2.0 Typ 1875 150 D D Typ 1875 150 0.5 -150 0.5 -150 A 0.5 -150 NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. 3. Input parameters vary 1:1 with VCC. 4. VIHCMR min varies 1:1 with GND, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. TTL OUTPUT DC CHARACTERISTICS VCC = 3.3 V; GND = 0.0 V; TA = -40°C to 85°C Symbol Characteristic Condition Min VOH Output HIGH Voltage (Note 5) IOH = -3.0 mA VOL Output LOW Voltage (Note 5) IOL = 24 mA ICCH Power Supply Current 10 ICCL Power Supply Current 15 Typ Max 2.4 IOS Output Short Circuit Current 5. All loading with 500 to GND, CL = 20 pF. Unit V 0.5 V 20 18 mA 28 35 mA -150 mA -50 AC CHARACTERISTICS VCC = 3.0 V to 3.6 V; GND = 0.0 V (Note 6) -40 °C 25°C Min Typ fmax Maximum Frequency (See Figure 2. Fmax/JITTER) 275 350 tPLH, tPHL Propagation Delay to Output Differential (Note 7) 1.2 1.2 1.5 1.5 tSK+ + tSK- tSKPP Within Device Skew++ Within Device Skew- Device- to- Device Skew (Note 8) tJITTER Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) VPP Input Voltage Swing (Differential) 150 800 1200 150 800 1200 150 800 1200 tr tf Output Rise/Fall Times (0.8V - 2.0V) 330 600 900 330 600 900 330 650 900 Symbol Characteristic Max 1.8 1.8 Min Typ 275 350 1.2 1.2 1.5 1.5 85°C 60 25 500 Max 1.8 1.8 Min Typ 275 350 1.3 1.2 1.7 1.5 60 25 500 TBD TBD Max Unit MHz 2.2 1.8 ns 60 25 500 ps TBD ps mV ps Q, Q 6. Measured with a 750 mV 50% duty-cycle clock source. RL = 500 to GND and CL = 20 pF to GND. Refer to Figure 3. 7. Reference (VCC = 3.3V ± 5%; GND = 0V) 8. Skews are measured between outputs under identical transitions. http://onsemi.com 336 MC100EPT26 3000 6 5 2000 4 VOL 0.5 V 1500 3 1000 2 ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ (JITTER) 500 1 0 0 50 100 150 200 250 300 350 400 450 500 FREQUENCY (MHz) Figure 2. Fmax/Jitter APPLICATION TTL RECEIVER CHARACTERISTIC TEST *CL includes fixture capacitance CL* RL AC TEST LOAD GND Figure 3. TTL Output Loading Used for Device Evaluation http://onsemi.com 337 550 600 JITTEROUT ps (RMS) VOUTpp (mV) VOH 2500 ÉÉ ÉÉ MC100EPT622 3.3VLVTTL/LVCMOS to LVPECL Translator The MC100EPT622 is a 10- Bit LVTTL/LVCMOS to LVPECL translator. Because LVPECL (Positive ECL) levels are used only +3.3 V and ground are required. The device has an OR- ed enable input which can accept either LVPECL (ENPECL) or TTL/LVCMOS inputs (ENTTL). If the inputs are left open, they will default to the enable state. The device design has been optimized for low channel- to- channel skew • • • • • • • http://onsemi.com MARKING DIAGRAM* 450 ps Typical Propagation Delay Maximum Frequency > 1.5 GHz Typical MC100 EPT622 PECL Mode Operating Range: VCC = 3.0 V to 3.8 V with VEE = 0 V AWLYYWW LQFP-32 TBD SUFFIX CASE 873A PNP LVTTL Inputs for Minimal Loading Q Output Will Default HIGH with Inputs Open 32 1 The 100 Series Contains Temperature Compensation. A WL YY WW ENPECL ENTTL D0 D1 D2 Q0 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D Q1 ORDERING INFORMATION Q2 Device Package Shipping LQFP32 250 Unit Trays MC100EPT622FA D3 LVCMOS/TTL D4 MC100EPT622FAR2 LQFP32 Q3 2000 Tape & Reel Q4 LVPECL TRUTH TABLE D5 D6 D7 D8 D9 Q5 Q6 Q7 ENPECL ENTTL D Q H X H H H X L L X H H H X H L L L L X L Q8 Q9 Figure 4. Logic Symbol Semiconductor Components Industries, LLC, 2002 August, 2002 - Rev. 0 338 Publication Order Number: MC100EPT622/D VCCO Q4 Q3 VCCO Q2 Q1 Q0 VCCO MC100EPT622 PIN DESCRIPTION 24 23 22 21 20 19 18 17 PIN FUNCTION D0:9 Data Input (TTL) Q0:9 Data Output (PECL) ENTTL Enable Control (TTL) VCCO 25 16 VCCO D0 26 15 Q5 D1 27 14 Q6 VEE 28 13 VCC ENPECL Enable Control (PECL) D2 29 12 Q7 VCC Positive Supply D3 30 11 Q8 VEE Ground D4 31 10 Q9 VCCO 32 9 5 D8 D9 6 7 8 VEE 4 ENPECL 3 ENTTL 2 D7 D5 1 D6 MC100EPT622 VCCO Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 32-Lead LQFP Pinout (Top View) ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor N/A Internal Input Pullup Resistor N/A ESD Protection Human Body Model Machine Model Charged Device Model > 2 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack Flammability Rating Level 2 Oxygen Index: 28 to 34 UL 94 V-0 @ 0.125 in Transistor Count 596 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test MAXIMUM RATINGS (Note 9) Symbol Parameter Condition 1 Rating Units 5 V 5 to 0 V 50 100 mA mA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 32 LQFP 32 LQFP 80 55 °C/W °C/W JC Thermal Resistance (Junction-to-Case) std bd 32 LQFP 12 to 17 °C/W 265 °C VCC Power Supply VEE = 0 V VI Input Voltage VEE = 0 V Iout Output Current Continuous Surge TA Tsol Wave Solder <2 to 3 sec @ 248°C 9. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 339 Condition 2 VI VCC MC100EPT622 TTL INPUT DC CHARACTERISTICS VCC = 3.3 V, GND= 0.0 V, TA = -40°C to 85°C Symbol Characteristic Condition Min Typ Max Unit IIH Input HIGH Current VIN= 2.7 V 20 A IIHH Input HIGH Current MAX VIN= VCC 100 A IIL Input LOW Current VIN= 0.5 V -0.6 mA VIK Input Clamp Voltage IIN= -18 mA VIH Input HIGH Voltage VIL Input LOW Voltage -1.2 -0.9 V 2.0 V 0.8 V Max Unit PECL INPUT DC CHARACTERISTICS VCC = 3.3 V, GND= 0.0 V, TA = -40°C to 85°C Symbol Characteristic Condition Min Typ IIH Input HIGH Current VIN= 2420 mV 150 A IIL Input LOW Current VIN= 1490 mV 200 A VIH Input HIGH Voltage 2075 2420 mV VIL Input LOW Voltage 1490 1675 mV PECL OUTPUT DC CHARACTERISTICS VCC = 3.3 V, GND = 0.0 V (Note 10) -40 °C Symbol Characteristic Min Typ 25°C Max Min 85°C Typ Max Min Typ Max Unit IEE Power Supply Current 85 115 145 90 120 155 95 130 155 mA VOH Input High Voltage (Note 11) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Input Low Current (Note 11) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. 10. Input and output parameters vary 1:1 with VCC. 11. All loading with 50 to VCC- 2.0 V. AC CHARACTERISTICS VCC = 3.0 V to 3.8 V (Note 12) -40 °C Symbol Characteristic fmax Maximum Frequency (See Figure 2) tPLH, tPHL Propagation Delay to Output (Figure 3, Note 13) D to Q ENPECL to Q ENTTL to Q tJITTER Random Clock Jitter (RMS) (See Figure 2) tr / tf Output Rise/Fall Times (20% - 80%) TSKEW Duty Cycle Skew (Note 14) D to Q 25°C Min Typ Max 1.0 1.5 100 200 300 450 450 450 800 850 800 0.7 3.0 200 450 120 200 120 120 300 500 350 250 85°C Min Typ Max 1.0 1.5 100 200 300 500 500 500 800 850 800 0.7 3.0 200 250 120 200 120 120 300 500 350 250 Min Typ Max 1.0 1.5 100 200 300 500 500 500 800 850 800 0.7 3.0 ps 200 300 ps 120 200 120 120 300 500 350 250 Unit GHz ps 100 100 100 ps Channel 0-7 Channel 8-9 ENPECL to Q ENTTL to Q 12. Measured using a 2.4 V source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. 13. 1.5 V to 50% point of the output. 14. Duty cycle skew |tPLH - tPHL| on the specific path. http://onsemi.com 340 MC100EPT622 2400 10.0 9.0 8.0 VCC = 3.3 V TA = 25°C 2000 VOH (mV) 7.0 6.0 VOL (mV) 1800 5.0 1600 4.0 1400 3.0 RMS Jitter (ps) RMS JITTER (ps) OUTPUT AMPLITUDE (mV) 2200 2.0 1200 1.0 1000 0.5 1.0 1.5 2.0 0.0 FREQUENCY (GHz) Figure 2. Average Output Amplitude/Jitter (3.3 V, 25C) 800 700 tPLH, tPHL (ps) 600 500 400 300 200 100 0 ÉÉ ÉÉ É ÉÉ ÉÉ É É ÉÉ É É ÉÉ É É ÉÉ ÉÉ ÉÉÉ ÉÉ É É ÉÉ ÉÉ ÉÉ ÉÉ É ÉÉ É É ÉÉ É É ÉÉ ÉÉ É É ÉÉ É É ÉÉ É É ÉÉ ÉÉ É É ÉÉ É É ÉÉ É É ÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ tPLH tPHL CHANNEL Figure 3. Average Propagation Delay (3.3 V, 25C) Q D Driver Device Receiver Device 50 VTT VTT = VCC - 2.0 V Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 341 http://onsemi.com 342 CHAPTER 3 Low Voltage ECLinPS Plus Data Sheets http://onsemi.com 343 MC10LVEP11, MC100LVEP11 2.5V / 3.3VECL 1:2 Differential Fanout Buffer The MC10/100LVEP11 is a differential 1:2 fanout buffer. The device is pin and functionally equivalent to the EP11 device. With AC performance the same as the EP11 device, the LVEP11 is ideal for applications requiring lower voltage. Single- ended CLK input operation is limited to a VCC 3.0 V in PECL mode, or VEE -3.0 V in NECL mode. The 100 Series contains temperature compensation. • 240 ps Typical Propagation Delay • Maximum Frequency > 3 GHz Typical • PECL Mode Operating Range: VCC = 2.375 V to 3.8 V • http://onsemi.com MARKING DIAGRAMS* 8 8 8 HVP11 ALYW 1 SO-8 D SUFFIX CASE 751 with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -2.375 V to -3.8 V Open Input Default State • • Q Output Will Default LOW with Inputs Open or at VEE • LVDS Input Compatible 1 1 8 8 1 TSSOP-8 DT SUFFIX CASE 948R KVP11 ALYW 8 HU11 ALYW 1 H = MC10 K = MC100 A = Assembly Location KU11 ALYW 1 L = Wafer Lot Y = Year W = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device Package MC10LVEP11D SO-8 98 Units/Rail MC10LVEP11DR2 SO-8 2500 Tape & Reel MC100LVEP11D SO-8 98 Units/Rail MC100LVEP11DR2 SO-8 2500 Tape & Reel TSSOP-8 100 Units/Rail MC10LVEP11DTR2 TSSOP-8 2500 Tape & Reel MC100LVEP11DT TSSOP-8 100 Units/Rail MC10LVEP11DT MC100LVEP11DTR2 TSSOP-8 Semiconductor Components Industries, LLC, 2001 October, 2001 - Rev. 4 344 Shipping 2500 Tape & Reel Publication Order Number: MC10LVEP11/D MC10LVEP11, MC100LVEP11 Q0 Q0 1 2 PIN DESCRIPTION VCC 8 7 D Q1 3 6 D Q1 4 5 VEE PIN FUNCTION D*, D** ECL Data Inputs Q0, Q0, Q1, Q1 ECL Data Outputs VCC VEE Positive Supply Negative Supply * Pins will default LOW when left open. ** Pins will default to VCC/2 when left open. Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection 37.5 k Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1.) Level 1 Flammability Rating Oxygen Index UL-94 code V-0 A 1/8” 28 to 34 Transistor Count 110 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2.) Parameter Symbol Condition 1 Condition 2 Rating Units 6 V -6 V 6 -6 V V 50 100 mA mA VCC PECL Mode Power Supply VEE = 0 V VEE NECL Mode Power Supply VCC = 0 V VI Input PECL Mode In ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V Iout Output Current Continuous Surge TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 SOIC 41 to 44 °C/W θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 TSSOP 41 to 44 °C/W 265 °C Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 345 VI VCC VI VEE MC10LVEP11, MC100LVEP11 10LVEP DC CHARACTERISTICS, PECL VCC = 2.5 V, VEE = 0 V (Note 3.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 24 30 36 24 30 36 25 31 38 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 4.) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VOL Output LOW Voltage (Note 4.) 565 690 815 630 755 880 690 815 940 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5.) 1.2 2.5 1.2 2.5 1.2 2.5 V IIH Input HIGH Current 150 µA IIL Input LOW Current 150 D D 0.5 -150 150 0.5 -150 µA 0.5 -150 NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.125 V to -1.3 V. 4. All loading with 50 ohms to VCC-2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Single ended input CLK pin operation is limited to VCC 3.0 V in PECL mode. 10LVEP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 6.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 24 30 36 24 30 36 25 31 38 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 7.) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 7.) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single Ended) (Note 8.) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single Ended) (Note 8.) 1365 1690 1430 1755 1490 1815 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 9.) 1.2 3.3 1.2 3.3 1.2 3.3 V IIH Input HIGH Current 150 µA IIL Input LOW Current 150 D D 0.5 -150 150 0.5 -150 0.5 -150 µA NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +0.925 V to -0.5 V. 7. All loading with 50 ohms to VCC-2.0 volts. 8. Single ended input CLK pin operation is limited to VCC 3.0 V in PECL mode. 9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 346 MC10LVEP11, MC100LVEP11 10LVEP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -3.8 V to -2.375 V (Note 10.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 24 30 36 24 30 36 25 31 38 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 11.) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL Output LOW Voltage (Note 11.) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV VIH Input HIGH Voltage (Single Ended) (Note 12.) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single Ended) (Note 12.) -1935 -1610 -1870 -1545 -1810 -1485 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 13.) 0.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current VEE+1.2 0.0 VEE+1.2 0.0 150 D D 0.5 -150 VEE+1.2 150 0.5 -150 µA 0.5 -150 NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 10. Input and output parameters vary 1:1 with VCC. 11. All loading with 50 ohms to VCC-2.0 volts. 12. Single ended input CLK pin operation is limited to VEE -3.0 V in NECL mode. 13. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100LVEP DC CHARACTERISTICS, PECL VCC = 2.5 V, VEE = 0 V (Note 14.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 25 31 37 29 35 41 32 38 45 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 15.) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VOL Output LOW Voltage (Note 15.) 555 680 805 555 680 805 555 680 805 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 16.) 1.2 2.5 1.2 2.5 1.2 2.5 V IIH Input HIGH Current 150 µA IIL Input LOW Current 150 D D 0.5 -150 150 0.5 -150 0.5 -150 µA NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 14. Input and output parameters vary 1:1 with VCC. VEE can vary +0.125 V to -1.3 V. 15. All loading with 50 ohms to VCC-2.0 volts. 16. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Single ended input CLK pin operation is limited to VCC 3.0 V in PECL mode. http://onsemi.com 347 MC10LVEP11, MC100LVEP11 100LVEP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 17.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 25 31 37 29 35 41 32 38 45 mA Output HIGH Voltage (Note 18.) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV Output LOW Voltage (Note 18.) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV Input HIGH Voltage (Single Ended) (Note 19.) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single Ended) (Note 19.) 1355 1675 1355 1675 1355 1675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 20.) 1.2 3.3 1.2 3.3 1.2 3.3 V IIH IIL Input HIGH Current 150 µA IEE VOH Power Supply Current VOL VIH 150 150 D 0.5 0.5 0.5 µA -150 -150 D -150 NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 17. Input and output parameters vary 1:1 with VCC. VEE can vary +0.925 V to -0.5 V. 18. All loading with 50 ohms to VCC-2.0 volts. 19. Single ended input CLK pin operation is limited to VCC 3.0 V in PECL mode. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Input LOW Current 100LVEP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -3.8 V to -2.375 V (Note 21.) -40 °C Symbol Characteristic Min 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit IEE VOH Power Supply Current 25 31 37 29 35 41 32 38 45 mA Output HIGH Voltage (Note 22.) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL VIH Output LOW Voltage (Note 22.) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV Input HIGH Voltage (Single Ended) (Note 23.) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single Ended) (Note 23.) -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 24.) 0.0 V IIH IIL Input HIGH Current 150 µA Input LOW Current -1425 VEE+1.2 0.0 -1425 VEE+1.2 150 D D 0.5 -150 0.0 -1425 VEE+1.2 150 0.5 -150 µA 0.5 -150 NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 21. Input and output parameters vary 1:1 with VCC. 22. All loading with 50 ohms to VCC-2.0 volts. 23. Single ended input CLK pin operation is limited to VEE -3.0 V in NECL mode. 24. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. AC CHARACTERISTICS VCC = 0 V; VEE = -3.8 V to -2.375 V or VCC = 2.375 V to 3.8 V; VEE = 0 V (Note 25.) -40 °C Symbol Characteristic fmax Maximum Frequency (See Figure 2. Fmax/JITTER) tPLH, tPHL Propagation Delay (Differential) CLK to Q, Q tSKEW tJITTER Min Typ 25°C Max Min >3 170 Typ 85°C Max Min >3 230 300 Within Device Skew Q, Q Device to Device Skew (Note 26.) 5.0 Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) 0.2 180 310 20 130 5.0 <1 0.2 210 Unit GHz 270 360 ps 20 130 5.0 20 150 ps <1 0.2 <1 ps 800 1200 mV 140 200 ps VPP Input Voltage Swing (Differential) 150 800 1200 150 800 1200 150 tr Output Rise/Fall Times Q, Q 70 110 170 80 120 180 100 tf (20% - 80%) 25. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. 26. Skew is measured between outputs under identical transitions. 348 Max >3 240 http://onsemi.com Typ 900 9 800 8 700 7 600 6 500 5 400 4 300 3 ÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉ ÉÉ 200 2 100 0 0 1000 2000 3000 4000 1 (JITTER) 5000 6000 FREQUENCY (MHz) Figure 2. Fmax/Jitter Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 349 JITTEROUT ps (RMS) VOUTpp (mV) MC10LVEP11, MC100LVEP11 MC100LVEP14 2.5V / 3.3V1:5 Differential ECL/PECL/HSTL Clock Driver The MC100LVEP14 is a low skew 1- to- 5 differential driver, designed with clock distribution in mind, accepting two clock sources into an input multiplexer. The ECL/PECL input signals can be either differential or single- ended (if the VBB output is used). HSTL inputs can be used when the LVEP14 is operating under PECL conditions. The LVEP14 specifically guarantees low output- to- output skew. Optimal design, layout, and processing minimize skew within a device and from device to device. To ensure that the tight skew specification is realized, both sides of any differential output need to be terminated identically into 50 even if only one output is being used. If an output pair is unused, both outputs may be left open (unterminated) without affecting skew. The common enable (EN) is synchronous, outputs are enabled/ disabled in the LOW state. This avoids a runt clock pulse when the device is enabled/disabled as can happen with an asynchronous control. The internal flip flop is clocked on the falling edge of the input clock; therefore, all associated specification limits are referenced to the negative edge of the clock input. The MC100LVEP14, as with most other ECL devices, can be operated from a positive VCC supply in PECL mode. This allows the LVEP14 to be used for high performance clock distribution in +3.3 V or +2.5 V systems. Single ended CLK input pin operation is limited to a VCC ≥ 3.0 V in PECL mode, or VEE ≤ -3.0 V in NECL mode. Designers can take advantage of the LVEP14’s performance to distribute low skew clocks across the backplane or the board. • • • • • • • http://onsemi.com MARKING DIAGRAM* 20 20 100 VP14 ALYW 1 TSSOP-20 DT SUFFIX CASE 948E A L Y W 1 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D 100 ps Device-to-Device Skew 25 ps Within Device Skew 400 ps Typical Propagation Delay ORDERING INFORMATION Maximum Frequency > 2 GHz Typical Device The 100 Series Contains Temperature Compensation MC100LVEP14DT PECL and HSTL Mode: VCC = 2.375 V to 3.8 V with VEE = 0 V NECL Mode: VCC = 0 V with VEE = -2.375 V to -3.8 V LVDS Input Compatible Package Shipping TSSOP 75 Units/Rail MC100LVEP14DTR2 TSSOP 2500 Tape & Reel • • Open Input Default State Semiconductor Components Industries, LLC, 2002 January, 2002 - Rev. 5 350 Publication Order Number: MC100LVEP14/D VCC EN VCC CLK1 CLK1 VBB CLK0 CLK0 CLK_SEL MC100LVEP14 20 19 18 17 16 15 14 13 12 11 1 D VEE 0 Q 1 2 3 4 5 6 7 8 9 10 Q0 Q0 Q1 Q1 Q2 Q2 Q3 Q3 Q4 Q4 Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 20-Lead Pinout (Top View) and Logic Diagram PIN DESCRIPTION PINS FUNCTION TABLE FUNCTION CLK0*, CLK0** ECL/PECL/HSTL CLK Input CLK1*, CLK1** ECL/PECL/HSTL CLK Input Q0:4, Q0:4 ECL/PECL Outputs CLK_SEL* ECL/PECL Active Clock Select Input EN* ECL Sync Enable VBB Reference Voltage Output VCC Positive Supply VEE Negative Supply CLK0 CLK1 CLK_SEL EN Q L H X X X X X L H X L L H H X L L L L H L H L H L* * On next negative transition of CLK0 or CLK1 * Pins will default LOW when left open. ** Pins will default to VCC/2 when left open. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection 37.5 k Human Body Model Machine Model Charged Device Model Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Oxygen Index > 2 kV > 100 V > 2 kV Level 1 UL-94 code V-0 A 1/8” 28 to 34 Transistor Count 357 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 351 MC100LVEP14 MAXIMUM RATINGS (Note 2) Symbol Rating Units VCC PECL Mode Power Supply Parameter VEE = 0 V Condition 1 Condition 2 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 20 TSSOP 20 TSSOP 140 100 °C/W °C/W θJC Thermal Resistance (Junction-to-Case) std bd 20 TSSOP 23 to 41 °C/W 265 °C VI VCC VI VEE Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. 100LVEP DC CHARACTERISTICS, PECL VCC = 2.5 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 45 60 75 45 60 75 45 60 75 mA 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV 680 680 680 IEE Power Supply Current VOH Output HIGH Voltage (Note 4) VOL Output LOW Voltage (Note 4) 555 805 555 805 555 805 mV VIH Input HIGH Voltage (Single-Ended) (Note 5) 1335 1620 1335 1620 1275 1620 mV VIL Input LOW Voltage (Single-Ended) (Note 5) 555 875 555 875 555 875 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 6) 1.2 2.5 1.2 2.5 1.2 2.5 V IIH Input HIGH Current 150 µA IIL Input LOW Current 150 CLK CLK 0.5 -150 150 0.5 -150 0.5 -150 µA NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.125 V to -1.3 V. 4. All loading with 50 ohms to VCC-2.0 volts. 5. Do not use VBB at VCC < 3.0 V. 6. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 352 MC100LVEP14 100LVEP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 7) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 45 60 75 45 60 75 45 60 75 mA Output HIGH Voltage (Note 8) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 8) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single-Ended) 2135 2420 2135 2420 2135 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV VBB Output Reference Voltage (Note 9) 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 10) 1.2 3.3 1.2 3.3 1.2 3.3 V IIH Input HIGH Current 150 µA IIL Input LOW Current IEE Power Supply Current VOH 1875 1875 150 CLK CLK 1875 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 7. Input and output parameters vary 1:1 with VCC. VEE can vary +0.925 V to -0.5 V. 8. All loading with 50 ohms to VCC-2.0 volts. 9. Single ended input operation is limited to VCC 3.0 V in PECL mode. 10. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100LVEP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -3.8 V to -2.375 V (Note 11) -40 °C Symbol Characteristic Min 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 45 60 75 45 60 75 45 60 95 mA VOH Output HIGH Voltage (Note 12) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 12) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single-Ended) -1 165 -880 -1 165 -880 -1 165 -880 mV VIL Input LOW Voltage (Single-Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV VBB Output Reference Voltage (Note 13) -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14) 0.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current -1425 VEE+1.2 0.0 VEE+1.2 150 CLK CLK 0.5 -150 -1425 0.0 VEE+1.2 150 0.5 -150 -1425 0.5 -150 µA NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 11. Input and output parameters vary 1:1 with VCC. 12. All loading with 50 ohms to VCC-2.0 volts. 13. Single ended input operation is limited to VEE 3.0 V in NECL mode. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 353 MC100LVEP14 DC CHARACTERISTICS, HSTL VCC = 2.375 V to 3.8 V, VEE = 0 V -40 °C Symbol Characteristic VIH Input HIGH Voltage VIL Input LOW Voltage Min 25°C Typ Max 1200 Min Typ 85°C Max 1200 Min Typ Max 1200 400 Unit mV 400 400 mV Max Unit AC CHARACTERISTICS VCC = 0 V, VEE = -2.375 V to -3.8 V or VCC = 2.375 V to 3.8 V; VEE = 0 V (Note 15) -40 °C Symbol Characteristic fmaxLVPECL /HSTL Maximum Frequency (See Figure 2. Fmax/JITTER) tPLH tPHL Propagation Delay to Output Differential tskew Within-Device Skew Device-to-Device Skew (Note 16) ts th Setup Time Hold Time tJITTER Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) VPP Minimum Input Swing tr/tf Output Rise/Fall Time (20%-80%) Min 25°C Typ Max Min >2 300 EN EN 100 200 Typ 85°C Max Min Typ >2 375 425 10 100 25 125 50 140 300 100 200 0.2 <1 150 800 1200 125 165 225 >2 400 475 15 150 25 175 50 140 300 100 200 0.2 <1 150 800 1200 125 180 250 430 525 ps 15 200 25 225 ps 50 140 <1 ps 150 800 1200 mV 125 200 275 ps 9 800 8 700 7 600 6 500 5 400 4 300 3 ÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉ ÉÉ ÉÉ 2 (JITTER) 1 0 0 1000 2000 FREQUENCY (MHz) Figure 2. Fmax/Jitter http://onsemi.com 354 JITTEROUT ps (RMS) VOUTpp (mV) 900 100 3000 ps 0.2 15. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. 16. Skew is measured between outputs under identical transitions. 200 GHz 4000 MC100LVEP14 Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 355 MC10LVEP16, MC100LVEP16 2.5V / 3.3VECL Differential Receiver/Driver The MC10/100LVEP16 is a world class differential receiver/driver. The device is functionally equivalent to the EL16, EP16 and LVEL16 devices. With output transition times significantly faster than the EL16 and LVEL16, the LVEP16 is ideally suited for interfacing with high frequency and low voltage (2.5 V) sources. Single- ended CLK input operation is limited to a VCC 3.0 V in PECL mode, or VEE -3.0 V in NECL mode. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. The 100 Series contains temperature compensation. • 240 ps Propagation Delay • Maximum Frequency > 4 GHz Typical • PECL Mode Operating Range: VCC = 2.375 V to 3.8 V http://onsemi.com MARKING DIAGRAMS* 8 8 8 HVP16 ALYW 1 SO-8 D SUFFIX CASE 751 8 1 1 8 1 TSSOP-8 DT SUFFIX CASE 948R with VEE = 0 V • NECL Mode Operating Range: VCC = 0 V with VEE = -2.375 V to -3.8 V 8 KU16 ALYW HU16 ALYW 1 1 H = MC10 K = MC100 A = Assembly Location • VBB Output • Open Input Default State • LVDS Input Compatible KVP16 ALYW L = Wafer Lot Y = Year W = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device MC10LVEP16D April, 2001 - Rev. 3 356 Shipping SO-8 98 Units/Rail MC10LVEP16DR2 SO-8 2500 Tape & Reel MC100LVEP16D SO-8 98 Units/Rail MC100LVEP16DR2 SO-8 2500 Tape & Reel TSSOP-8 100 Units/Rail MC10LVEP16DTR2 TSSOP-8 2500 Tape & Reel MC100LVEP16DT TSSOP-8 100 Units/Rail MC100LVEP16DTR2 TSSOP-8 2500 Tape & Reel MC10LVEP16DT Semiconductor Components Industries, LLC, 2001 Package Publication Order Number: MC10LVEP16/D MC10LVEP16, MC100LVEP16 NC D D VBB 1 8 2 7 3 6 4 5 PIN DESCRIPTION VCC Q Q VEE PIN FUNCTION D*, D** ECL Data Inputs Q, Q ECL Data Outputs VBB Ref. Voltage Output VCC Positive Supply VEE Negative Supply NC No Connect * Pins will default LOW when left open. ** Pins will default to VCC/2 when left open. Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection 37.5 k Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1.) Level 1 Flammability Rating Oxygen Index UL-94 code V-0 A 1/8” 28 to 34 Transistor Count 167 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2.) Parameter Symbol Condition 1 Condition 2 Rating Units 6 V -6 V 6 -6 V V 50 100 mA mA ± 0.5 mA -40 to +85 °C VCC PECL Mode Power Supply VEE = 0 V VEE NECL Mode Power Supply VCC = 0 V VI PECL Mode In Input ut Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V Iout Output Current Continuous Surge IBB VBB Sink/Source TA Operating Temperature Range Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 SOIC 8 SOIC 190 130 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 SOIC 41 to 44 °C/W θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 8 TSSOP 8 TSSOP 185 140 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 8 TSSOP 41 to 44 °C/W 265 °C Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 357 VI VCC VI VEE MC10LVEP16, MC100LVEP16 10EP DC CHARACTERISTICS, PECL VCC = 2.5 V, VEE = 0 V (Note 3.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 17 22 27 17 22 27 17 22 28 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 4.) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VOL Output LOW Voltage (Note 4.) 565 690 815 630 755 880 690 815 940 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5., Note 6.) 1.2 2.5 1.2 2.5 1.2 2.5 V IIH Input HIGH Current 150 µA IIL Input LOW Current 150 D D 0.5 -150 150 0.5 -150 µA 0.5 -150 NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.125 V to -1.3 V. 4. All loading with 50 ohms to VCC-2.0 volts. 5. Do not use VBB at VCC < 3.0 V. Single ended input CLK pin operation is limited to VCC 3.0 V in PECL mode. 6. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 7.) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 17 22 27 17 22 27 17 22 28 mA VOH Output HIGH Voltage (Note 8.) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 8.) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single Ended) 1365 1690 1430 1755 1490 1815 mV VBB Output Voltage Reference (Note 9.) 1790 1990 1855 2055 1915 2115 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 10.) 1.2 3.3 1.2 3.3 1.2 3.3 V IIH Input HIGH Current 150 µA IIL Input LOW Current 1890 150 D D 0.5 -150 1955 150 0.5 -150 0.5 -150 2015 µA NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 7. Input and output parameters vary 1:1 with VCC. VEE can vary +0.925 V to -0.5 V. 8. All loading with 50 ohms to VCC-2.0 volts. 9. Single ended input CLK pin operation is limited to VCC 3.0 V in PECL mode. 10. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 358 MC10LVEP16, MC100LVEP16 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -3.8 V to -2.375 V (Note 11.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 17 22 27 17 22 27 17 22 28 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 12.) -1 135 -1010 -885 -1070 -945 -820 -1010 -885 -760 mV VOL Output LOW Voltage (Note 12.) -1935 -1810 -1685 -1870 -1745 -1620 -1810 -1685 -1560 mV VIH Input HIGH Voltage (Single Ended) -1210 -885 -1 145 -820 -1085 -760 mV VIL Input LOW Voltage (Single Ended) -1935 -1610 -1870 -1545 -1810 -1485 mV VBB Output Voltage Reference (Note 13.) -1510 -1310 -1445 -1245 -1385 -1 185 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14.) 0.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current -1410 VEE+1.2 0.0 -1345 VEE+1.2 0.0 150 D D 0.5 -150 -1285 VEE+1.2 150 0.5 -150 µA 0.5 -150 NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 11. Input and output parameters vary 1:1 with VCC. 12. All loading with 50 ohms to VCC-2.0 volts. 13. Single ended input CLK pin operation is limited to VEE -3.0 V in NECL mode. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 2.5 V, VEE = 0 V (Note 15.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 19 24 29 22 28 34 24 30 36 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 16.) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VOL Output LOW Voltage (Note 16.) 555 680 805 555 680 805 555 680 805 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 17., Note 18.) 1.2 3.3 1.2 3.3 1.2 3.3 V IIH Input HIGH Current 150 µA IIL Input LOW Current 150 D D 0.5 -150 150 0.5 -150 0.5 -150 µA NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +0.125 V to -1.3 V. 16. All loading with 50 ohms to VCC-2.0 volts. 17. Do not use VBB at VCC < 3.0 V. Single ended input CLK pin operation is limited to VCC 3.0 V in PECL mode. 18. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 359 MC10LVEP16, MC100LVEP16 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 19.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 19 24 29 22 28 34 24 30 36 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 20.) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL VIH Output LOW Voltage (Note 20.) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV Input HIGH Voltage (Single Ended) 2075 2420 2075 2420 2075 2420 mV VIL VBB Input LOW Voltage (Single Ended) 1355 1675 1355 1675 1355 1675 mV Output Voltage Reference (Note 21.) 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 22.) 1.2 3.3 1.2 3.3 1.2 3.3 V IIH IIL Input HIGH Current 150 µA 1875 1875 150 Input LOW Current D D 1875 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 19. Input and output parameters vary 1:1 with VCC. VEE can vary +0.925 V to -0.5 V. 20. All loading with 50 ohms to VCC-2.0 volts. 21. Single ended input CLK pin operation is limited to VCC 3.0 V in PECL mode. 22. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -3.8 V to -2.375 V (Note 23.) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 19 24 29 22 28 34 24 30 36 mA IEE VOH Power Supply Current Output HIGH Voltage (Note 24.) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL VIH Output LOW Voltage (Note 24.) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV Input HIGH Voltage (Single Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL VBB Input LOW Voltage (Single Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV Output Voltage Reference (Note 25.) -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 26.) 0.0 V IIH IIL Input HIGH Current 150 µA Input LOW Current -1425 VEE+1.2 0.0 -1425 VEE+1.2 150 D D 0.5 -150 0.0 -1425 VEE+1.2 150 0.5 -150 µA 0.5 -150 NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 23. Input and output parameters vary 1:1 with VCC. 24. All loading with 50 ohms to VCC-2.0 volts. 25. Single ended input CLK pin operation is limited to VEE -3.0 V in NECL mode. 26. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. AC CHARACTERISTICS VCC = 0 V; VEE = -3.8 V to -2.375 V or VCC = 2.375 V to 3.8 V; VEE = 0 V (Note 27.) -40 °C Symbol Characteristic fmax Maximum Frequency (See Figure 2. Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tSKEW Min Typ 25°C Max Min >4 150 Max Min >4 220 300 Duty Cycle Skew (Note 28.) 5.0 tJITTER Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) VPP Input Voltage Swing (Differential) 150 Typ 85°C 170 Max >4 240 320 20 5.0 0.2 <1 800 1200 150 Typ 190 Unit GHz 260 330 ps 20 5.0 20 ps 0.2 <1 0.2 <1 ps 800 1200 800 1200 mV 150 tr Output Rise/Fall Times Q, Q 70 120 170 80 130 180 100 150 200 ps tf (20% - 80%) 27. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. 28. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. http://onsemi.com 360 900 9 800 8 700 7 600 6 500 5 400 4 300 3 ÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉ ÉÉ 200 2 100 1 (JITTER) 0 0 1000 2000 3000 4000 5000 6000 FREQUENCY (MHz) Figure 2. Fmax/Jitter Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 361 JITTEROUT ps (RMS) VOUTpp (mV) MC10LVEP16, MC100LVEP16 MC100LVEP34 2.5V / 3.3VECL ÷2, ÷4, ÷8 Clock Generation Chip The MC100LVEP34 is a low skew ÷2, ÷4, ÷8 clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The VBB pin, an internally generated voltage supply, is available to this device only. For single- ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. The common enable (EN) is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. An internal runt pulse could lead to losing synchronization between the internal divider stages. The internal enable flip-flop is clocked on the falling edge of the input clock; therefore, all associated specification limits are referenced to the negative edge of the clock input. Upon startup, the internal flip-flops will attain a random state; the master reset (MR) input allows for the synchronization of the internal dividers, as well as multiple LVEP34s in a system. Single-ended CLK input operation is limited to a VCC ≥ 3.0 V in PECL mode, or VEE ≤ -3.0 V in NECL mode. • • • • • • http://onsemi.com MARKING DIAGRAMS* 16 16 100LVEP34 AWLYWW 1 SO-16 D SUFFIX CASE 751B 16 16 Synchronous Enable/Disable Master Reset for Synchronization The 100 Series Contains Temperature Compensation. 100 LVEP34 ALYW 1 TSSOP-16 DT SUFFIX CASE 948F A L, WL Y W, WW 35 ps Output-to-Output Skew 1 1 = Assembly Location = Wafer Lot = Year = Work Week *For additional information, refer to Application Note AND8002/D PECL Mode Operating Range: VCC = 2.375 V to 3.8 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -2.375 V to -3.8 V Open Input Default State ORDERING INFORMATION • • LVDS Input Compatible Device Package MC100LVEP34D SO- 16 48 Units/Rail MC100LVEP34DR2 SO- 16 2500 Units/Reel TSSOP- 16 96 Units/Rail MC100LVEP34DT MC100LVEP34DTR2 TSSOP- 16 Semiconductor Components Industries, LLC, 2001 September, 2001 - Rev. 4 362 Shipping 2500 Units/Reel Publication Order Number: MC100LVEP34/D MC100LVEP34 PIN DESCRIPTION Q0 16 1 Q Q0 ÷2 15 2 R VCC Q1 Q 3 EN D R 4 14 13 NC CLK Q Q1 ÷4 5 12 CLK R VCC 6 11 PIN FUNCTION CLK*, CLK** ECL Diff Clock Inputs EN* ECL Sync Enable MR* ECL Master Reset Q0, Q0 ECL Diff ÷2 Outputs Q1, Q1 ECL Diff ÷4 Outputs Q2, Q2 ECL Diff ÷8 Outputs VBB Reference Voltage Output VCC Positive Supply VEE Negative Supply NC No Connect VCC VBB * Pins will default LOW when left open. ** Pins will default to VCC/2 when left open. FUNCTION TABLE Q2 7 10 MR CLK EN MR FUNCTION Z ZZ X L H X L L H Divide Hold Q0- 3 Reset Q0- 3 Q ÷8 Q2 8 9 R VEE Z = Low-to-High Transition ZZ = High-to-Low Transition Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 16-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection 37.5 k Human Body Model Machine Model Charged Device Model Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Oxygen Index > 2 kV > 200 V > 2 kV Level 1 UL 94 V-0 A @ 0.125 in 28 to 34 Transistor Count 210 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 363 MC100LVEP34 MAXIMUM RATINGS (Note 2) Symbol Rating Units VCC PECL Mode Power Supply Parameter VEE = 0 V Condition 1 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL C Mode ode Input u Voltage o age VEE = 0 V VCC = 0 V NECL Mode Input Voltage Condition 2 VI VCC VI VEE Continuous Surge 6 V -6 V 50 100 mA mA ± 0.5 mA Iout Output Current IBB VBB Sink/Source TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 16 SOIC 16 SOIC 100 60 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 16 SOIC 33 to 36 °C/W θJA Thermal Resistance (Junction to Ambient) 0 LFPM 500 LFPM 16 TSSOP 16 TSSOP 138 108 °C/W °C/W θJC Thermal Resistance (Junction to Case) std bd 16 TSSOP 33 to 36 °C/W 265 °C Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. 100EP DC CHARACTERISTICS, PECL VCC = 2.5 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 40 50 60 40 50 60 42 52 62 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 4) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VOL Output LOW Voltage (Note 4) 555 680 925 555 680 925 555 680 925 mV VIH Input HIGH Voltage (Single Ended) (Note 5) 1335 1620 1335 1620 1275 1620 mV VIL Input LOW Voltage (Single Ended) (Note 5) 555 875 555 875 555 875 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5, Note 6) 1.2 3.3 1.2 3.3 1.2 3.3 V IIH Input HIGH Current 150 µA IIL Input LOW Current 150 D D 0.5 -150 150 0.5 -150 0.5 -150 µA NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. 4. All loading with 50 ohms to VCC-2.0 volts. 5. Do not use VBB at VCC < 3.0 V. Single ended input CLK pin operation is limited to VCC 3.0 V in PECL mode. 6. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 364 MC100LVEP34 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 7) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 40 50 60 40 50 60 42 52 62 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 8) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 8) 1355 1570 1725 1355 1570 1725 1355 1570 1725 mV VIH Input HIGH Voltage (Single Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single Ended) 1355 1675 1355 1675 1355 1675 mV VBB Output Voltage Reference (Note 9) 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 10) 1.2 3.3 1.2 3.3 1.2 3.3 V IIH Input HIGH Current 150 µA IIL Input LOW Current 1875 1875 150 D D 1875 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 7. Input and output parameters vary 1:1 with VCC. VEE can vary +0.925 V to -0.5 V. 8. All loading with 50 ohms to VCC-2.0 volts. 9. Single ended input CLK pin operation is limited to VCC 3.0 V in PECL mode. 10. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -3.8 V to -2.375 V (Note 11) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 40 50 60 40 50 60 42 52 62 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 12) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 12) -1945 -1700 -1575 -1945 -1700 -1575 -1945 -1700 -1575 mV VIH Input HIGH Voltage (Single Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single Ended) -1945 -1625 -1945 -1625 -1945 -1625 mV VBB Output Voltage Reference (Note 13) -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14) 0.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current -1425 VEE+1.2 0.0 VEE+1.2 150 D D 0.5 -150 -1425 0.0 VEE+1.2 150 0.5 -150 -1425 0.5 -150 µA NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 11. Input and output parameters vary 1:1 with VCC. 12. All loading with 50 ohms to VCC-2.0 volts. 13. Single ended input CLK pin operation is limited to VEE -3.0 V in NECL mode. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 365 MC100LVEP34 AC CHARACTERISTICS VCC= 0 V; VEE= -3.8 V to -2.375 V or VCC= 2.375 V to 3.8 V; VEE= 0 V (Note 15) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ fmax Maximum Toggle Frequency (See Figure 4. Fmax/JITTER) 2.8 tPLH tPHL Propagation Delay to Output 550 500 tJITTER Cycle-to-Cycle Jitter (See Figure 4. Fmax/JITTER) tS Setup Time EN 150 50 150 50 tH Hold Time EN 200 100 200 tRR Set/Reset Recovery 300 200 300 VPP Input Swing (Note 16) 150 CLK to Q0, Q1, Q2 MR to Q 85°C Max 2.8 650 600 750 700 600 550 <1 Min 150 700 650 800 750 650 600 366 Unit GHz 750 700 850 800 ps <1 ps 150 50 ps 100 200 100 ps 200 300 200 ps 1000 150 tr Output Rise/Fall Times Q 90 170 200 100 180 250 120 tf (20% - 80%) 15. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC-2.0 V. 16. VPP(min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈40. http://onsemi.com Max 2.8 <1 1000 Typ 200 1000 mV 280 ps MC100LVEP34 There are two distinct functional relationships between the Master Reset and Clock: Internal Clock Disabled Internal Clock Enabled MR CLK Q0 Q1 Q2 EN CASE 1: If the MR is de-asserted (L-H), while the Clock is still high, the outputs will follow the first ensuing clock rising edge. Internal Clock Disabled Internal Clock Enabled MR CLK Q0 Q1 Q2 EN CASE 2: If the MR is de-asserted (L-H), after the Clock has transitioned low, the outputs will follow the second ensuing clock rising edge. Figure 2. Timing Diagrams The EN signal will freeze the internal clocks to the flip-flops on the first falling edge of CLK after its assertion. The internal dividers will maintain their state during the internal clock freeze and will return to clocking once the internal clocks are unfrozen. The outputs will transition to their next states in the same manner, time and relationship as they would have had the EN signal not been asserted. TRR TRR CLOCK CLOCK MR MR OUTPUT OUTPUT CASE 1 CASE 2 Figure 3. Reset Recovery Time http://onsemi.com 367 MC100LVEP34 900 9 VOUTpp (mV) 800 8 4 / 8 700 7 600 6 2 500 5 400 4 300 3 200 2 JITTEROUT ps (RMS) 100 1 0 0 1000 2000 3000 4000 5000 6000 FREQUENCY (MHz) Figure 4. Fmax/Jitter Q D Receiver Device Driver Device Qb Db 50 50 V TT V TT = V CC - 2.0 V Figure 5. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 368 MC100LVEP111 2.5V / 3.3V1:10 Differential ECL/PECL/HSTL Clock Driver The MC100LVEP111 is a low skew 1- to- 10 differential driver, designed with clock distribution in mind, accepting two clock sources into an input multiplexer. The PECL input signals can be either differential or single- ended (if the VBB output is used). HSTL inputs can be used when the LVEP111 is operating under PECL conditions. The LVEP111 specifically guarantees low output- to- output skew. Optimal design, layout, and processing minimize skew within a device and from device to device. To ensure tightest skew, both sides of differential outputs identically terminate into 50 even if only one output is being used. If an output pair is unused, both outputs may be left open (unterminated) without affecting skew. The MC100LVEP111, as with most other ECL devices, can be operated from a positive VCC supply in PECL mode. This allows the LVEP111 to be used for high performance clock distribution in +3.3 V or +2.5 V systems. Single- ended CLK input operation is limited to a VCC ≥ 3.0 V in PECL mode, or VEE ≤ -3.0 V in NECL mode. Designers can take advantage of the LVEP111’s performance to distribute low skew clocks across the backplane or the board. In a PECL environment, series or Thevenin line terminations are typically used as they require no additional power supplies. For more information on using PECL, designers should refer to Application Note AN1406/D. • • • • • • • • http://onsemi.com MARKING DIAGRAM* MC100 LVEP111 32-LEAD LQFP FA SUFFIX CASE 873A AWLYYWW 32 1 A WL YY WW = Assembly Location = Wafer Lot = Year = Work Week *For additional information, refer to Application Note AND8002/D 85 ps Typical Device-to- Device Skew 20 ps Typical Output-to-Output Skew Jitter Less than 1 ps RMS Maximum Frequency > 3 Ghz Typical ORDERING INFORMATION VBB Output 430 ps Typical Propagation Delay Device Package Shipping The 100 Series Contains Temperature Compensation MC100LVEP111FA LQFP-32 250 Units/Tray PECL and HSTL Mode Operating Range: VCC = 2.375 V to 3.8 V with VEE = 0 V MC100LVEP111FAR2 LQFP-32 2000 Tape & Reel • NECL Mode Operating Range: VCC = 0 V with VEE = -2.375 V to -3.8 V Open Input Default State • • LVDS Input Compatible • Fully Compatible with Motorola MC100EP111 Semiconductor Components Industries, LLC, 2002 May, 2002 - Rev. 6 369 Publication Order Number: MC100LVEP111/D MC100LVEP111 Q3 Q3 Q4 Q4 Q5 Q5 Q6 Q6 PIN DESCRIPTION 24 23 22 21 20 19 18 17 PIN FUNCTION VCC 25 16 VCC CLK0*, CLK0** ECL/PECL/HSTL CLK Input Q2 26 15 Q7 CLK1*, CLK1** ECL/PECL/HSTL CLK Input Q2 27 14 Q7 Q0:9, Q0:9 ECL/PECL Outputs Q1 28 13 Q8 CLK_SEL* ECL/PECL Active Clock Select Input 29 12 VBB Reference Voltage Output Q1 Q8 VCC Positive Supply Q0 30 11 Q9 VEE Negative Supply Q0 31 10 Q9 VCC 32 9 1 2 3 4 5 6 7 8 VCC CLK_SEL CLK0 CLK0 VBB CLK1 CLK1 MC100LVEP111 VEE * Pins will default LOW when left open. ** Pins will default to VCC/2 when left open. VCC FUNCTION TABLE CLK_SEL Active Input L H CLK0, CLK0 CLK1, CLK1 Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Q0 Q0 Figure 1. 32-Lead LQFP Pinout (Top View) Q1 Q1 Q2 Q2 Q3 Q3 CLK0 CLK0 Q4 0 Q4 Q5 CLK1 Q5 1 Q6 CLK1 VBB CLK_SEL VEE Q6 Q7 Q7 Q8 VCC Q8 Q9 Q9 Figure 2. Logic Diagram http://onsemi.com 370 MC100LVEP111 ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor 37.5 k ESD Protection > 2 kV > 100 V > 2 kV Human Body Model Machine Model Charged Device Model Moisture Sensitivity (Note 1) Level 2 Flammability Rating Oxygen Index UL-94 code V-0 A 1/8″ 28 to 34 Transistor Count 602 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, refer to Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 VCC PECL Mode Power Supply VEE = 0 V VEE NECL Mode Power Supply VCC = 0 V VI PECL C Mode ode Input u Voltage o age VEE = 0 V VCC = 0 V NECL Mode Input Voltage Condition 2 Rating Units 6 V -6 V 6 V -6 V 50 100 mA mA ± 0.5 mA -40 to +85 °C VI ≤ VCC VI ≥ VEE Iout Output Current Continuous Surge IBB VBB Sink/Source TA Operating Temperature Range Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 32 LQFP 32 LQFP 80 55 °C/W °C/W θJC Thermal Resistance (Junction-to-Case) std bd 32 LQFP 12 to 17 °C/W 265 °C Tsol Wave Solder < 2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. PECL DC CHARACTERISTICS VCC = 3.3 V; VEE = 0 V (Note 3) -40 °C Symbol Characteristic Min Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current 70 100 120 70 100 120 70 100 120 mA VOH Output HIGH Voltage (Note 4) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 4) 1355 1480 1695 1355 1480 1695 1355 1480 1695 mV VIH Input HIGH Voltage (Single-Ended) 2135 2420 2135 2420 2135 2420 mV VIL Input LOW Voltage (Single-Ended) 1490 1675 1490 1675 1490 1675 mV VBB Output Reference Voltage (Note 5) 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 6) 1.2 3.3 1.2 3.3 1.2 3.3 V IIH Input HIGH Current 150 µA IIL Input LOW Current 1875 150 CLK CLK 0.5 -150 3. 4. 5. 6. 150 0.5 -150 NOTE: 1875 0.5 -150 1875 µA 100LVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Input and output parameters vary 1:1 with VCC. VEE can vary + 0.925 V to -0.5 V. All loading with 50 Ω to VCC-2.0 volts. Single ended input operation is limited VCC ≥ 3.0 V in PECL mode. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 371 MC100LVEP111 PECL DC CHARACTERISTICS VCC = 2.5 V; VEE = 0 V (Note 7) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 70 100 120 70 100 120 70 100 120 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 8) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VOL Output LOW Voltage (Note 8) 555 680 895 555 680 895 555 680 895 mV VIH Input HIGH Voltage (Single-Ended) (Note 9) 1335 1620 1335 1620 1275 1620 mV VIL Input LOW Voltage (Single-Ended) (Note 9) 555 875 555 875 555 875 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 10) 1.2 2.5 1.2 2.5 1.2 2.5 V IIH Input HIGH Current 150 µA IIL Input LOW Current 150 CLK CLK 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: 100LVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. 7. Input and output parameters vary 1:1 with VCC. VEE can vary + 0.125 V to -1.3 V. 8. All loading with 50 Ω to VEE. 9. Do not use VBB at VCC < 3.0 V. 10. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. NECL DC CHARACTERISTICS VCC = 0 V, VEE = -2.375 V to -3.8 V (Note 11) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 70 100 120 70 100 120 70 100 120 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 12) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 12) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single-Ended) -1 165 -880 -1 165 -880 -1 165 -880 mV VIL Input LOW Voltage (Single-Ended) -1810 -1625 -1810 -1625 -1810 -1625 mV VBB Output Reference Voltage (Note 13) -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14) 0.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current -1425 VEE + 1.2 0.0 -1425 VEE + 1.2 150 CLK CLK 0.5 -150 0.0 -1425 VEE + 1.2 150 0.5 -150 µA 0.5 -150 NOTE: 100LVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. 11. Input and output parameters vary 1:1 with VCC. 12. All loading with 50 Ω to VCC-2.0 volts. 13. Single ended input operation is limited VEE ≤ -3.0V in NECL mode. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. HSTL DC CHARACTERISTICS VCC = 2.375 to 3.8 V, VEE = 0 V -40 °C Symbol Characteristic Min VIH Input HIGH Voltage VIL Input LOW Voltage V Input Crossover Voltage 680 ICC Power Supply Current 70 Typ 25°C Max 1200 Min Typ 85°C Max 1200 680 120 70 372 Max 100 900 680 120 70 Unit mV 400 900 http://onsemi.com Typ 1200 400 100 Min 100 400 mV 900 mV 120 mA MC100LVEP111 AC CHARACTERISTICS VCC = 0 V; VEE = -2.375 to -3.8 V or VCC = 2.375 to 3.8 V; VEE = 0 V (Note 15) -40 °C Characteristic Min fmaxPECL/HSTL Maximum Frequency (See Figure 3. Fmax/JITTER) tPLH tPHL Propagation Delay (Differential) tskew Typ Max Min >3 325 475 Within- Device Skew (Note 16) Within- Device Skew @ 2.5 V (Note 16) Device- to- Device Skew (Note 17) 20 20 85 tJITTER Cycle-to-Cycle Jitter (See Figure 3. Fmax/JITTER) VPP Minimum Input Swing 350 Min 500 25 25 150 20 20 85 0.2 <1 800 1200 150 440 25 25 150 25 20 85 35 25 150 ps 0.2 <1 0.2 <1 ps 800 1200 150 800 1200 mV 275 150 230 320 ps 7 600 6 500 5 400 4 300 3 200 2 (JITTER) 100 1 É É 0 2000 3000 4000 5000 6000 FREQUENCY (MHz) Figure 3. Fmax/Jitter D Q Receiver Device Driver Device D Q 50 Ω 50 Ω VTT VTT = VCC - 2.0 V Figure 4. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 373 GHz ps 700 1000 Unit 590 8 0 Max 510 800 ÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉ Typ >3 430 tr/tf Output Rise/Fall Time (20%-80%) 105 200 255 125 200 15. Measured with 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to VCC-2 V. 16. Skew is measured between outputs under identical transitions and conditions on any one device. 17. Device-to-Device skew for identical transitions at identical VCC levels. VOUTpp (mV) Max >3 400 150 Typ 85°C JITTEROUT ps (RMS) Symbol 25°C MC100LVEP210 2.5V / 3.3V1:5 Dual Differential ECL/PECL/HSTL Clock Driver The MC100LVEP210 is a low skew 1- to- 5 dual differential driver, designed with clock distribution in mind. The ECL/PECL input signals can be either differential or single- ended if the VBB output is used. The signal is fanned out to 5 identical differential outputs. HSTL inputs can be used when the EP210 is operating in PECL mode. The LVEP210 specifically guarantees low output- to- output skew. Optimal design, layout, and processing minimize skew within a device and from device to device. To ensure the tight skew specification is realized, both sides of the differential output need to be terminated identically into 50 Ω even if only one output is being used. If an output pair is unused, both outputs may be left open (unterminated) without affecting skew. The MC100LVEP210, as with most other ECL devices, can be operated from a positive VCC supply in PECL mode. This allows the LVEP210 to be used for high performance clock distribution in +3.3 V or +2.5 V systems. Single- ended CLK input operation is limited to a VCC ≥ 3.0 V in PECL mode, or VEE ≤ -3.0 V in ECL mode. Designers can take advantage of the LVEP210’s performance to distribute low skew clocks across the backplane or the board. In a PECL environment, series or Thevenin line terminations are typically used as they require no additional power supplies. For more information on using PECL, designers should refer to Application Note AN1406/D. • • • • • • • • • 85 ps Typical Device-to- Device Skew http://onsemi.com MARKING DIAGRAM* MC100 LVEP210 32-LEAD LQFP FA SUFFIX CASE 873A AWLYYWW 32 1 A WL YY WW = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D 20 ps Typical Output-to-Output Skew VBB Output Jitter Less than 1 ps RMS 350 ps Typical Propagation Delay ORDERING INFORMATION Maximum Frequency > 3 GHz Typical Device The 100 Series Contains Temperature Compensation PECL and HSTL Mode Operating Range: VCC = 2.375 V to 3.8 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -2.375 V to -3.8 V Open Input Default State Package Shipping MC100LVEP210FA LQFP 250 Units/Tray MC100LVEP210FAR2 LQFP 2000 Tape & Reel • • LVDS Input Compatible • Fully Compatible with Motorola MC100EP210 Semiconductor Components Industries, LLC, 2002 January, 2002 - Rev. 6 374 Publication Order Number: MC100LVEP210/D MC100LVEP210 Qa3 Qa3 Qa4 Qa4 Qb0 Qb0 Qb1 Qb1 24 23 22 21 20 19 18 17 VCC 25 16 VCC Qa2 26 15 Qb2 Qa2 27 14 Qb2 CLKn*, CLKn** ECL/PECL/HSTL CLK Inputs Qa1 28 13 Qb3 Qn0:4, Qn0:4 ECL/PECL Outputs 12 Qb3 VBB Reference Voltage Output MC100LVEP210 PIN DESCRIPTION PIN FUNCTION 11 Qb4 VCC Positive Supply Qa0 31 10 Qb4 VEE Negative Supply VCC 32 9 VCC * Pins will default LOW when left open. ** Pins will default to VCC/2 when left open. 1 2 VCC NC 3 4 5 6 7 8 VBB CLKb 30 CLKb Qa0 CLKa 29 CLKa Qa1 VEE Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 32-Lead LQFP Pinout (Top View) Qa0 Qb0 Qa0 Qb0 Qb1 Qa1 CLKa CLKb Qa1 CLKa Qa2 Qb1 CLKb Qb2 Qb2 Qa2 Qa3 Qb3 VBB Qa3 Qb3 VCC VEE Qa4 Qa4 Qb4 Qb4 Figure 2. Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pull-up Resistor ESD Protection 37.5 k Human Body Model Machine Model Charged Device Model Moisture Sensitivity (Note 1) > 2 kV > 100 V > 2 kV Level 2 Flammability Rating Oxygen Index UL-94 code V-0 A 1/8″ 28 to 34 Transistor Count 461 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 375 MC100LVEP210 MAXIMUM RATINGS (Note 2) Symbol Rating Units VCC PECL Mode Power Supply Parameter VEE = 0 V Condition 1 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL C Mode ode Input u Voltage o age VEE = 0 V VCC = 0 V NECL Mode Input Voltage Condition 2 VI ≤ VCC VI ≥ VEE Continuous Surge 6 V -6 V 50 100 mA mA ± 0.5 mA Iout Output Current IBB VBB Sink/Source TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C θJA Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 32 LQFP 32 LQFP 80 55 °C/W °C/W θJC Thermal Resistance (Junction-to-Case) std bd 32 LQFP 12 to 17 °C/W 265 °C Tsol Wave Solder < 2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. PECL DC CHARACTERISTICS VCC = 3.3 V; VEE = 0 V (Note 3) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 60 70 90 60 70 90 60 70 90 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 4) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 4) 1355 1480 1695 1355 1480 1695 1355 1480 1695 mV VIH Input HIGH Voltage (Single-Ended) 2135 2420 2135 2420 2135 2420 mV VIL Input LOW Voltage (Single-Ended) 1490 1675 1490 1675 1490 1675 mV VBB Output Reference Voltage (Note 5) 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 6) 1.2 3.3 1.2 3.3 1.2 3.3 V IIH Input HIGH Current 150 µA IIL Input LOW Current 1875 150 CLK CLK 0.5 -150 3. 4. 5. 6. 150 0.5 -150 NOTE: 1875 0.5 -150 1875 µA 100LVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Input and output parameters vary 1:1 with VCC. VEE can vary + 0.925 V to -0.5 V. All loading with 50 Ω to VCC-2.0 volts. Single ended input operation is limited VCC ≥ 3.0 V in PECL mode. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 376 MC100LVEP210 PECL DC CHARACTERISTICS VCC = 2.5 V; VEE = 0 V (Note 7) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 60 70 90 60 70 90 60 70 90 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 8) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VOL Output LOW Voltage (Note 8) 555 680 895 555 680 895 555 680 895 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 9) 1.2 2.5 1.2 2.5 1.2 2.5 V IIH Input HIGH Current 150 µA IIL Input LOW Current 150 CLK CLK 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: 100LVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. 7. Input and output parameters vary 1:1 with VCC.. VEE can vary + 0.125 V to -1.3 V. 8. All loading with 50 Ω to VEE. 9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. NECL DC CHARACTERISTICS VCC = 0 V, VEE = -2.375 V to -3.8 V (Note 10) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 60 70 90 60 70 90 60 70 90 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 11) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 11) -1945 -1820 -1695 -1945 -1820 -1695 -1945 -1820 -1695 mV VIH Input HIGH Voltage (Single-Ended) -1 165 -880 -1 165 -880 -1 165 -880 mV VIL Input LOW Voltage (Single-Ended) -1810 -1625 -1810 -1625 -1810 -1625 mV VBB Output Reference Voltage (Note 12) -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 13) 0.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current 150 µA -1425 VEE + 1.2 0.0 -1425 VEE + 1.2 150 CLK CLK 0.5 -150 0.0 -1425 VEE + 1.2 150 0.5 -150 0.5 -150 NOTE: 100LVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. 10. Input and output parameters vary 1:1 with VCC. 11. All loading with 50 Ω to VCC-2.0 volts. 12. Single ended input operation is limited VEE ≤ -3.0V in NECL mode. 13. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. HSTL DC CHARACTERISTICS VCC = 2.375 to 3.8 V, VEE = 0 V -40 °C Symbol Characteristic Min VIH Input HIGH Voltage VIL Input LOW Voltage V Input Crossover Voltage 680 ICC Power Supply Current 60 Typ 25°C Max 1200 Min Typ 85°C Max 1200 680 90 60 377 Max 70 900 680 90 60 Unit mV 400 900 http://onsemi.com Typ 1200 400 70 Min 70 400 mV 900 mV 90 mA MC100LVEP210 AC CHARACTERISTICS VCC = 0 V; VEE = -2.375 to -3.8 V or VCC = 2.375 to 3.8 V; VEE = 0 V (Note 14) -40 °C Characteristic fmaxPECL/ HSTL Maximum Frequency (See Figure 3. Fmax/JITTER) tPLH tPHL Propagation Delay Propagation Delay @ 2.5 V tskew Min Typ Max Min >3 220 380 Within- Device Skew (Note 15) Device- to- Device Skew (Note 16) 20 85 tJITTER Cycle-to-Cycle Jitter (See Figure 3. Fmax/JITTER) VPP Minimum Input Swing 270 Min 430 25 160 20 85 0.2 <1 800 1200 150 300 330 25 160 20 85 35 160 ps 0.2 <1 0.2 <1 ps 800 1200 150 800 1200 mV 270 150 280 350 ps 7 600 6 500 5 400 4 300 3 200 2 ÉÉ ÉÉ (JITTER) 100 1 0 2000 3000 4000 5000 6000 FREQUENCY (MHz) Figure 3. Fmax/Jitter D Q Receiver Device Driver Device D Q 50 Ω 50 Ω VTT VTT = VCC - 2.0 V Figure 4. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020 - Termination of ECL Logic Devices.) http://onsemi.com 378 GHz ps 700 1000 Unit 750 490 8 0 Max 500 410 800 ÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉ Typ >3 350 tr/tf Output Rise/Fall Time (20%-80%) 100 170 250 120 190 14. Measured with 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to VCC-2 V. 15. Skew is measured between outputs under identical transitions of similar paths through a device. 16. Device-to-Device skew for identical transitions at identical VCC levels. VOUTpp (mV) Max >3 300 150 Typ 85°C JITTEROUT ps (RMS) Symbol 25°C MC100EP210S 2.5V1:5 Dual Differential LVDS Compatible Clock Driver The MC100EP210S is a low skew 1-to-5 dual differential driver, designed with LVDS clock distribution in mind. The LVDS or LVPECL input signals are differential and the signal is fanned out to five identical differential LVDS outputs. The EP210S specifically guarantees low output-to-output skew. Optimal design, layout, and processing minimize skew within a device and from device to device. Two internal 50 resistors are provided across the inputs. For LVDS inputs, VTA and VTB pins should be unconnected. For LVPECL inputs, VTA and VTB pins should be connected to the VTT (VCC-2.0 V) supply. Designers can take advantage of the EP210S performance to distribute low skew LVDS clocks across the backplane or the board. Special considerations are required for differential inputs under No Signal conditions to prevent instability. • • • • • • • • http://onsemi.com MARKING DIAGRAM* MC100 EP210S LQFP-32 FA SUFFIX CASE 873A AWLYYWW 32 1 A WL YY WW 20 ps Typical Output-to-Output Skew 85 ps Typical Device-to- Device Skew = Assembly Location = Wafer Lot = Year = Work Week 550 ps Typical Propagation Delay The 100 Series Contains Temperature Compensation *For additional information, refer to Application Note AND8002/D Maximum Frequency > 1 GHz Typical Operating Range: VCC = 2.375 V to 2.625 V with VEE = 0 V Internal 50 Input Termination Resistors LVDS Input/Output Compatible ORDERING INFORMATION Semiconductor Components Industries, LLC, 2002 May, 2002 - Rev. 5 379 Device Package Shipping MC100EP210SFA LQFP-32 250 Units/Tray MC100EP210SFAR2 LQFP-32 2000 Tape & Reel Publication Order Number: MC100EP210S/D MC100EP210S Qa3 Qa3 Qa4 Qa4 Qb0 Qb0 Qb1 Qb1 24 23 22 21 20 19 18 17 VCC 25 16 VCC Qa2 26 15 Qb2 Qa2 27 14 Qb2 Qa1 28 13 Qb3 Qa1 29 Qb3 VTA 50 Ω Termination Resistors MC100EP210S 12 Qa0 31 10 Qb4 VCC 32 9 VCC 1 2 VEE VTA 3 4 5 6 7 8 VTB CLKb Qb4 CLKb 11 CLKa 30 CLKa Qa0 VEE PIN DESCRIPTION PIN FUNCTION CLKn, CLKn LVDS, LVPECL CLK Inputs Qn0:4, Qn0:4 LVDS Outputs VTB 50 Ω Termination Resistors VCC Positive Supply VEE Ground Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 32-Lead LQFP Pinout (Top View) VTA 50 VTB Qa0 Qa0 50 50 Qb0 Qb0 50 Qa1 CLKa Qa1 CLKa Qa2 Qb1 CLKb Qb1 CLKb Qb2 Qa2 Qb2 Qa3 Qb3 Qa3 Qb3 Qa4 Qb4 Qa4 Qb4 Figure 2. Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor N/A Internal Input Pullup Resistor N/A ESD Protection Human Body Model Machine Model Charged Device Model Moisture Sensitivity (Note 1) > 2 kV > 100 V > 2 kV Level 2 Flammability Rating Oxygen Index UL-94 code V-0 A 1/8″ 28 to 34 Transistor Count 461 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, refer to Application Note AND8003/D. http://onsemi.com 380 MC100EP210S MAXIMUM RATINGS (Note 2) Parameter Symbol Condition 1 Condition 2 VEE = 0 V VCC = 2.5 V Rating Units 6 V -6 V VCC VEE Power Supply VI Iout LVDS LVPECL Input Voltage LVDS, TA Operating Temperature Range Tstg θJA Storage Temperature Range -65 to +150 °C Thermal Resistance (Junction-to-Ambient) 0 LFPM 500 LFPM 32 LQFP 32 LQFP 80 55 °C/W °C/W θJC Tsol Thermal Resistance (Junction-to-Case) std bd 32 LQFP 12 to 17 °C/W Wave Solder < 2 to 3 sec @ 248°C 265 °C Power Supply (GND) VI ≤ VCC VEE = 0 V Continuous Surge Output Current 6 V 50 100 mA mA -40 to +85 °C 2. Maximum Ratings are those values beyond which device damage may occur. DC CHARACTERISTICS VCC = 2.5 V, VEE = 0 V (Note 3) -40 °C Symbol Characteristic Min 25°C Typ Max 150 200 Min 85°C Typ Max 150 200 Min Typ Max Unit 150 200 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 4) 1250 1400 1550 1250 1400 1550 1250 1400 1550 mV VOL Output LOW Voltage (Note 4) 800 950 1100 800 950 1100 800 950 1100 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 1.2 2.5 1.2 2.5 1.2 2.5 V RT Internal Termination Resistor 43 57 43 57 43 57 IIH Input HIGH Current 150 µA IIL Input LOW Current 50 150 CLK CLK 150 0.5 -150 0.5 -150 µA 0.5 -150 NOTE: 100EP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. 4. All loading with 100 Ω across LVDS differential outputs. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. AC CHARACTERISTICS VCC = 2.375 to 2.625 V, VEE = 0 V (Note 6) -40 °C Symbol Characteristic fmaxLVDS/ LVPECL Maximum Frequency (See Figure 3. Fmax/JITTER) tPLH tPHL Propagation Delay tskew Min Typ 25°C Max Min >1 425 Max Min >1 525 625 Within- Device Skew (Note 7) Device- to- Device Skew (Note 8) Duty Cycle Skew (Note 9) 20 85 80 tJITTER Cycle-to-Cycle Jitter (See Figure 3. Fmax/JITTER) VPP Minimum Input Swing 150 Typ 85°C 450 Max >1 550 650 25 160 100 20 85 80 .2 <1 800 1200 150 Typ 475 Unit GHz 575 675 ps 25 160 100 20 85 80 35 160 100 ps .2 <1 .2 <1 ps 800 1200 800 1200 mV 150 tr/tf Output Rise/Fall Time (20%-80%) 50 130 200 75 150 225 80 160 230 ps 6. Measured with 400 mV source, 50% duty cycle clock source. All loading with 100 Ω across differential outputs. 7. Skew is measured between outputs under identical transitions of similar paths through a device. 8. Device-to-Device skew for identical transitions at identical VCC levels. 9. Duty cycle skew guaranteed only for differential operation measured from the cross point of the input to the cross point of the output. http://onsemi.com 381 MC100EP210S 450 9 Simulated 8 350 7 300 6 250 5 200 4 150 3 ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 100 ÉÉ ÉÉ ÉÉ 2 (JITTER) 50 1 0 0 200 400 600 800 1000 1200 1400 FREQUENCY (MHz) Figure 3. Fmax/Jitter Q Driver Device D Recceiver Device 100 Ω D Q Figure 4. Typical Termination for Output Driver and Device Evaluation http://onsemi.com 382 JITTEROUT ps (RMS) VOUTpp (mV) 400 CHAPTER 4 Case Outlines and Package Dimensions http://onsemi.com 383 Logic Devices Device Nomenclatures ECLinPS, ECLinPS Lite, ECLinPS Plus MC WWW XXX YYY ZZ Package Type • FN = PLCC • D = Plastic SOIC • L = Ceramic DIP • P = Plastic DIP Circuit Identifier • MC = Fully Qualified Circuit • XC = Non Reliability Qualified Function Type • YYY = 3-Digits for ECLinPS • YY= 2-Digits for ECLinPS Lite Compatibility Identifier • 10 = 10H Compatible (0 to +85°C) • 100 = 100K Compatible (0 to +85°C) ECLinPS Family Identifier • E = ECLinPS • EL = ECLinPS Lite • ELT = ECLinPS Lite Translator • EP = ECLinPS Plus • EPT = ECLinPS Plus Translator • LVEP = Low Voltage ECLinPS Plus • LVE = Low Voltage ECLinPS • LVEL = Low Voltage ECLinPS Lite • LVELT = Low Voltage ECLinPS Lite Translator http://onsemi.com 384 CASE OUTLINES AND PACKAGE DIMENSIONS SO-8 D SUFFIX PLASTIC SOIC PACKAGE CASE 751-07 ISSUE AA -X- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDAARD IS 751−07 A 8 5 0.25 (0.010) S B 1 M Y M 4 K -YG C N X 45 SEATING PLANE -Z- 0.10 (0.004) H M D 0.25 (0.010) M Z Y X S J S DIM A B C D G H J K M N S MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0 8 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 8 0.010 0.020 0.228 0.244 TSSOP-8 DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948R-02 ISSUE A 8x 0.15 (0.006) T U K REF 0.10 (0.004) S 2X L/2 8 1 PIN 1 IDENT S T U S V NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. S 5 0.25 (0.010) B -U- L 0.15 (0.006) T U M M 4 A -V- F DETAIL E C 0.10 (0.004) -T- SEATING PLANE D -WG DETAIL E http://onsemi.com 385 DIM A B C D F G K L M MILLIMETERS MIN MAX 2.90 3.10 2.90 3.10 0.80 1.10 0.05 0.15 0.40 0.70 0.65 BSC 0.25 0.40 4.90 BSC 0 6 INCHES MIN MAX 0.114 0.122 0.114 0.122 0.031 0.043 0.002 0.006 0.016 0.028 0.026 BSC 0.010 0.016 0.193 BSC 0 6 CASE OUTLINES AND PACKAGE DIMENSIONS SO-16 D SUFFIX CASE 751B-05 ISSUE J -A16 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 9 -B1 P 8 PL 0.25 (0.010) 8 M B S G R K DIM A B C D F G J K M P R F X 45 C -T- SEATING PLANE J M D 16 PL 0.25 (0.010) M T B S A S 0.10 (0.004) M T U V S S S K ÉÉÉ ÇÇÇ ÇÇÇ ÉÉÉ ÇÇÇ K1 2X L/2 16 9 J1 B -U- L SECTION N-N J PIN 1 IDENT. 8 1 N 0.15 (0.006) T U S 0.25 (0.010) A -V- M N NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. F DETAIL E -W- C 0.10 (0.004) -T- SEATING PLANE H D INCHES MIN MAX 0.386 0.393 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0 7 0.229 0.244 0.010 0.019 TSSOP-16 DT SUFFIX CASE 948F-01 ISSUE O 16X K REF 0.15 (0.006) T U MILLIMETERS MIN MAX 9.80 10.00 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0 7 5.80 6.20 0.25 0.50 DETAIL E G http://onsemi.com 386 DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 −−− 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.18 0.28 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0 8 INCHES MIN MAX 0.193 0.200 0.169 0.177 −−− 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.007 0.011 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0 8 CASE OUTLINES AND PACKAGE DIMENSIONS SO-20 DW SUFFIX PLASTIC SOIC PACKAGE CASE 751D-05 ISSUE F D 20 X 45 h 1 10 20X DIM A A1 B C D E e H h L B B 0.25 M T A S B S A L H M E 0.25 10X NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION. 11 B M A e 18X SEATING PLANE A1 C T MILLIMETERS MIN MAX 2.35 2.65 0.10 0.25 0.35 0.49 0.23 0.32 12.65 12.95 7.40 7.60 1.27 BSC 10.05 10.55 0.25 0.75 0.50 0.90 0 7 TSSOP-20 DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948E-02 ISSUE A 20X 0.15 (0.006) T U 2X S 20 L/2 M T U S V S K K1 ÍÍÍÍ ÍÍÍÍ ÍÍÍÍ 11 B L J J1 -U- PIN 1 IDENT SECTION N-N 1 10 0.25 (0.010) N 0.15 (0.006) T U NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. K REF 0.10 (0.004) S M A -VN F DETAIL E -W- C D G H DETAIL E 0.100 (0.004) -T- SEATING PLANE http://onsemi.com 387 DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 6.40 6.60 4.30 4.50 1.20 −−− 0.05 0.15 0.50 0.75 0.65 BSC 0.27 0.37 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0 8 INCHES MIN MAX 0.252 0.260 0.169 0.177 0.047 −−− 0.002 0.006 0.020 0.030 0.026 BSC 0.011 0.015 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0 8 PACKAGE DIMENSIONS A 32 -T-, -U-, -Z- TQFP FA SUFFIX 32-LEAD PLASTIC PACKAGE CASE 873A-02 ISSUE A 4X A1 0.20 (0.008) AB T−U Z 25 1 -U- -TB V AE P B1 DETAIL Y 17 8 AE DETAIL Y 9 4X -Z9 V1 0.20 (0.008) AC T−U Z S1 S DETAIL AD G -AB0.10 (0.004) AC AC T−U Z -ACBASE METAL ÉÉ ÉÉ ÉÉ ÉÉ F 8X M R M N D J 0.20 (0.008) SEATING PLANE SECTION AE-AE W K X DETAIL AD Q GAUGE PLANE H 0.250 (0.010) C E http://onsemi.com 388 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE −AB− IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS −T−, −U−, AND −Z− TO BE DETERMINED AT DATUM PLANE −AB−. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE −AC−. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE −AB−. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.520 (0.020). 8. MINIMUM SOLDER PLATE THICKNESS SHALL BE 0.0076 (0.0003). 9. EXACT SHAPE OF EACH CORNER MAY VARY FROM DEPICTION. DIM A A1 B B1 C D E F G H J K M N P Q R S S1 V V1 W X MILLIMETERS MIN MAX 7.000 BSC 3.500 BSC 7.000 BSC 3.500 BSC 1.400 1.600 0.300 0.450 1.350 1.450 0.300 0.400 0.800 BSC 0.050 0.150 0.090 0.200 0.500 0.700 12 REF 0.090 0.160 0.400 BSC 1 5 0.150 0.250 9.000 BSC 4.500 BSC 9.000 BSC 4.500 BSC 0.200 REF 1.000 REF INCHES MIN MAX 0.276 BSC 0.138 BSC 0.276 BSC 0.138 BSC 0.055 0.063 0.012 0.018 0.053 0.057 0.012 0.016 0.031 BSC 0.002 0.006 0.004 0.008 0.020 0.028 12 REF 0.004 0.006 0.016 BSC 1 5 0.006 0.010 0.354 BSC 0.177 BSC 0.354 BSC 0.177 BSC 0.008 REF 0.039 REF CHAPTER 5 Index http://onsemi.com 389 Index Device Number Page Device Number Page Device Number Page MC100EP01 10 MC100EP40 129 MC10EP105 MC100EP016 178 MC100EP445 266 MC10EP11 28 MC100EP016A 188 MC100EP446 281 MC10EP116 209 MC100EP05 16 MC100EP451 297 MC10EP131 216 MC100EP08 22 MC100EP51 134 MC10EP139 222 MC100EP101 197 MC100EP52 140 MC10EP142 234 MC100EP105 203 MC100EP56 146 MC10EP16 39 MC100EP11 28 MC100EP57 153 MC100EP116 209 MC10EP16T 50 MC100EP58 160 MC100EP131 216 MC10EP16VA 56 MC100EP809 303 MC100EP139 222 MC100EP90 172 MC100EPT20 310 MC100EPT21 314 MC100EPT22 318 MC100EPT23 322 MC100EPT24 326 MC100EPT25 330 MC100EPT26 334 MC100EP14 34 MC100EP140 229 MC100EP142 234 MC100EP16 39 MC100EP16F 45 MC100EP16T 50 MC100EP16VA 56 MC100EP16VB 62 MC100EP16VC 67 MC100EP16VS 74 MC100EP16VT 82 MC100EP17 203 MC10EP17 90 MC10EP195 242 MC10EP29 96 MC10EP31 103 MC10EP32 109 MC10EP33 116 MC10EP35 123 MC10EP445 266 MC10EP446 281 MC10EP451 297 MC10EP51 134 MC10EP52 140 MC100EPT622 338 MC100LVEP11 344 MC100LVEP111 369 90 MC100LVEP14 350 MC100EP195 242 MC100LVEP16 356 MC10EP56 146 MC100EP196 255 MC100LVEP210 374 MC10EP57 153 362 MC10EP58 160 MC100EP210S 379 MC100LVEP34 MC100EP29 96 MC10EP01 10 MC10EP89 166 MC100EP31 103 MC10EP016 178 MC10EP90 172 MC100EP32 109 MC10EP05 16 MC10EPT20 310 MC100EP33 116 MC10EP08 22 MC10LVEP11 344 MC100EP35 123 MC10EP101 197 MC10LVEP16 356 http://onsemi.com 390 ON SEMICONDUCTOR MAJOR WORLDWIDE SALES OFFICES AND REPRESENTATIVES UNITED STATES UNITED STATES (continued) NORTH CAROLINA ALABAMA Huntsville . . . . . . . . . . . . . . . . . . 256-774-1010 Huntsville (Sales Rep) . . . . . . . . 256-705-5205 ARIZONA Phoenix (Sales Rep) . . . . . . . . . . 480-769-0968 CALIFORNIA Los Angeles (Sales Rep) . . . . . . Sacramento (Sales Rep) . . . . . . Santa Clara (Sales Rep) . . . . . . . San Diego (Sales Rep) . . . . . . . . 949-580-0270 916-652-0268 408-350-3900 858-635-5960 COLORADO Denver (Sales Rep) . . . . . . . . . . . 303-741-0900 CONNECTICUT Southbury . . . . . . . . . . . . . . . . . . 203-267-5451 FLORIDA Boca Raton . . . . . . . . . . . . . . . . 561-995-1466 Tampa . . . . . . . . . . . . . . . . . . . . . 813-286-6181 Raleigh (Sales Rep) . . . . . . . . . . 919-845-9900 OREGON Portland . . . . . . . . . . . . . . . . . . . 503-590-5852 IDAHO Boise (Sales Rep) . . . . . . . . . . . . 208-424-1002 ILLINOIS Chicago . . . . . . . . . . . . . . . . . . . 847-330-6979 Itasca (Sales Rep) . . . . . . . . . . . . 630-250-9586 INDIANA Carmel (Sales Rep) . . . . . . . . . . . 317-848-9958 Kokomo . . . . . . . . . . . . . . . . . . . 765-865-2085 Kokomo (Sales Rep) . . . . . . . . . . 765-455-0777 MARYLAND Philadelphia/Horsham . . . . . . . 215-997-4340 Hatboro (Sales Rep) . . . . . . . . . . 215-957-0600 Austin (Sales Rep) . . . . . . . . . . . . 512-343-1 199 Dallas (Sales Rep) . . . . . . . . . . . . 972-680-2800 Houston (Sales Rep) . . . . . . . . . . 281-999-0101 Livonia . . . . . . . . . . . . . . . . . . . . 734-953-6704 MINNESOTA Plymouth . . . . . . . . . . . . . . . . . . 763-249-2360 MISSOURI St. Louis . . . . . . . . . . . . . . . . . . . 618-288-0619 NEW YORK New York Metro (Sales Rep) . . . 516-466-2300 Binghamton (Sales Rep) . . . . . . 607-722-3580 Rochester (Sales Rep) . . . . . . . . 585-385-6500 HONG KONG Hong Kong . . . . . . . . . . . . . . . . 852-2689-0088 Bangalore . . . . . . . . . . . . . . . . 91-80-226-7272 ISRAEL Herzelia . . . . . . . . . . . . . . 972 (0) 9-9609-111 ITALY UTAH Draper (Sales Rep) . . . . . . . . . . . 801-572-4010 Milan . . . . . . . . . . . . . . . . . . 39 (0) 2-530-0951 JAPAN VIRGINIA Herndon (Sales Rep) . . . . . . . . . 804-897-6007 Tokyo . . . . . . . . . . . . . . . . . . . 81-3-5740-2737 KOREA WISCONSIN Brookfield (Sales Rep) . . . . . . . . 262-797-7977 Seoul . . . . . . . . . . . . . . . . . . . . . 82-2-528-2700 MALAYSIA Penang . . . . . . . . . . . . . . . . . . . 60-4-226-9368 MEXICO CANADA ALBERTA Calgary (Sales Rep) . . . . . . . . . . 403-730-6225 BRITISH COLUMBIA Vancouver (Sales Rep) . . . . . . . . 604-532-3881 ONTARIO Nepean (Sales Rep) . . . . . . . . . . 613-596-9294 Toronto . . . . . . . . . . . . . . . . . . . . 905-812-0092 Mississauga (Sales Rep) . . . . . . 905-607-1444 QUEBEC Mascouche (Sales Rep) . . . . . . . 450-966-9530 Montreal . . . . . . . . . . . . . . . . . . . 514-695-4599 Chihuahua . . . . . . . . . . . . . 52-614-483-5683 Ciudad Juarez . . . . . . . . . . . . . . 915-845-3402 Guadalajara . . . . . . . . . . . . 52-333-836-6326 Monterrey . . . . . . . . . . . . . . . 52-818-31 1-6204 Tijuana . . . . . . . . . . . . . . . . 52-664-684-2333 PHILIPPINES Muntinlupa City . . . . . . . . . . . . 63-2-809-2350 PUERTO RICO San Juan . . . . . . . . . . . . . . . . . . 787-641-4100 SINGAPORE Singapore . . . . . . . . . . . . . . . . . . . 65-298-1768 SWEDEN Solna . . . . . . . . . . . . . . . . . 46 (0) 8-5090-4680 Baltimore (Sales Rep) . . . . . . . . . 703-481-9895 MICHIGAN GERMANY INDIA TEXAS TAIWAN MASSACHUSETTS Boston . . . . . . . . . . . . . . . . . . . . 781-376-8059 Burlington (Sales Rep) . . . . . . . . 781-238-8888 Paris . . . . . . . . . . . . . . . 33 (0) 1-39-26-41-00 Toulouse . . . . . . . . . . . . 33 (0) 5-34-61-10-00 Munich . . . . . . . . . . . . . . 49 (0) 89-93-0808-0 PENNSYLVANIA GEORGIA Atlanta . . . . . . . . . . . . . . . . . . . . 561-995-1486 Norcross (Sales Rep) . . . . . . . . . 770-209-9242 INTERNATIONAL (continued) FRANCE Taipei . . . . . . . . . . . . . . . . . 886-2-2718-9961 INTERNATIONAL BRAZIL THAILAND Sao Paulo . . . . . . . . . . . . . . 55-1 1-5505-801 1 CHINA Beijing . . . . . . . . . . . . . . . . . 86-10-8518-2323 Chengdu . . . . . . . . . . . . . . . . . 86-28-678-4078 Shenzhen . . . . . . . . . . . . . . . 86-755-209-1 128 Shanghai . . . . . . . . . . . . . . 86-21-6875-6677 Bangkok . . . . . . . . . . . . . . . . . . 66-2-653-5031 UNITED KINGDOM Aylesbury . . . . . . . . . . . . . 44 (0) 1296-610400 CZECH REPUBLIC Roznov . . . . . . . . . . . . . . . . . 420 571-667-141 FINLAND Vantaa . . . . . . . . . . . . . 358 (0) 9-85-666-460 http://onsemi.com 391 N. AMERICAN TECHNICAL SUPPORT 1-800-282-9855 Toll Free ON SEMICONDUCTOR STANDARD DOCUMENT TYPE DEFINITIONS DATA SHEET CLASSIFICATIONS A Data Sheet is the fundamental publication for each individual product/device, or series of products/devices, containing detailed parametric information and any other key information needed in using, designing-in or purchasing of the product(s)/device(s) it describes. Below are the three classifications of Data Sheet: Product Preview; Advance Information; and Fully Released Technical Data PRODUCT PREVIEW A Product Preview is a summary document for a product/device under consideration or in the early stages of development. The Product Preview exists only until an “Advance Information” document is published that replaces it. The Product Preview is often used as the first section or chapter in a corresponding reference manual. The Product Preview displays the following disclaimer at the bottom of the first page: “This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.” ADVANCE INFORMATION The Advance Information document is for a device that is NOT fully qualified, but is in the final stages of the release process, and for which production is eminent. While the commitment has been made to produce the device, final characterization and qualification may not be complete. The Advance Information document is replaced with the “Fully Released Technical Data” document once the device/part becomes fully qualified. The Advance Information document displays the following disclaimer at the bottom of the first page: “This document contains information on a new product. Specifications and information herein are subject to change without notice.” FULLY RELEASED TECHNICAL DATA The Fully Released Technical Data document is for a product/device that is in full production (i.e., fully released). It replaces the Advance Information document and represents a part that is fully qualified. The Fully Released Technical Data document is virtually the same document as the Product Preview and the Advance Information document with the exception that it provides information that is unavailable for a product in the early phases of development, such as complete parametric characterization data. The Fully Released Technical Data document is also a more comprehensive document than either of its earlier incarnations. This document displays no disclaimer, and while it may be informally referred to as a “data sheet,” it is not labeled as such. DATA BOOK A Data Book is a publication that contains primarily a collection of Data Sheets, general family and/or parametric information, Application Notes and any other information needed as reference or support material for the Data Sheets. It may also contain cross reference or selector guide information, detailed quality and reliability information, packaging and case outline information, etc. APPLICATION NOTE An Application Note is a document that contains real-world application information about how a specific ON Semiconductor device/product is used, or information that is pertinent to its use. It is designed to address a particular technical issue. Parts and/or software must already exist and be available. SELECTOR GUIDE A Selector Guide is a document published, generally at set intervals, that contains key line-item, device-specific information for particular products or families. The Selector Guide is designed to be a quick reference tool that will assist a customer in determining the availability of a particular device, along with its key parameters and available packaging options. In essence, it allows a customer to quickly “select” a device. For detailed design and parametric information, the customer would then refer to the device’s Data Sheet. The Master Components Selector Guide (SG388/D) is a listing of ALL currently available ON Semiconductor devices. REFERENCE MANUAL A Reference Manual is a publication that contains a comprehensive system or device-specific descriptions of the structure and function (operation) of a particular part/system; used overwhelmingly to describe the functionality or application of a device, series of devices or device category. Procedural information in a Reference Manual is limited to less than 40 percent (usually much less). HANDBOOK A Handbook is a publication that contains a collection of information on almost any give subject which does not fall into the Reference Manual definition. The subject matter can consist of information ranging from a device specific design information, to system design, to quality and reliability information. ADDENDUM A documentation Addendum is a supplemental publication that contains missing information or replaces preliminary information in the primary publication it supports. Individual addendum items are published cumulatively. The Addendum is destroyed upon the next revision of the primary document. http://onsemi.com 392 BRD8017/D Rev. 4, Apr-2002 Clock and Data Management Solutions High Performance Data Management, Advanced Clock Management and Communication ASSPs ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION GLOBAL Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: [email protected] JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031 Phone: 81-3-5740-2700 Email: [email protected] N. American Technical Support: 800-282-9855 Toll Free USA/Canada For additional information, please contact your local Sales Representative ON Semiconductor Website: http://onsemi.com DLD603/D
© Copyright 2026 Paperzz