تحميل الملف المرفق

‫ﺟﺎﻣﻌﺔ ﺍﻟﻤﻠﻚ ﺳﻌﻮﺩ‬
‫ﻗﺴﻢ ﺍﻹﺣﺼﺎﺀ ﻭﺑﺤﻮﺙ ﺍﻟﻌﻤﻠﻴﺎﺕ‬
‫ﻃﺮﻕ ﺍﻟﺘﻨﺒﺆ ﺍﻹﺣﺼﺎﺋﻲ‬
‫) ا
ء اول (‬
‫ﺗﺄﻟﻴﻒ ﺩ‪ .‬ﻋﺪﻧﺎﻥ ﻣﺎﺟﺪ ﻋﺒﺪﺍﻟﺮﺣﻤﻦ ﺑﺮﻱ‬
‫ﺃﺳﺘﺎﺫ ﺍﻹﺣﺼﺎﺀ ﻭﺑﺤﻮﺙ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻟﻤﺸﺎﺭﻙ‬
‫ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﺣﻤﻦ ﺍﻟﺮﺣﻴﻢ‬
!%& '(‫! رب ا
"
! وا
ة وا
م اف ا و‬%
‫ا‬
.)‫(* و‬%+‫
* و‬, ‫و‬
.". &‫أ‬
.‫س‬12‫ر‬1
3(
‫ ا‬45& ‫ب‬6
7859‫ ا‬:(';
‫;ب =ق ا‬3
‫دة او‬1!
‫ ا‬7‫@ ه‬A‫ه‬
@216;. ‫م‬1B‫ف أ‬1 "C ‫ذن ا‬F.‫ و‬7 ‫دة إ
&ء ا‬1& HI ‫;ب‬3
‫ا ا‬A‫ه‬
‫م‬1"
‫ ان ا‬J;‫ أ‬7 ‫ا‬A‫ ه‬7‫;و‬3
9‫* ا‬3K. HI‫ &;! و‬H3K. *'%C‫@ و‬2C‫و‬
73C; &L ‫ آ;ب‬7N O"P‫ ان و‬Q%. ‫ &;رع‬H3K.‫& و‬12 ‫ر‬16;C 4'J;
‫وا‬
.S;9‫&ت وا‬1"!
‫رة ا‬1U 7N 4+‫ع و‬1P1!
‫ ا‬43&'2‫ د‬V& W';2X
‫ع‬1P1& ‫ق إ‬6;2‫ع و‬1P1!
4
‫;ب ات او‬3
‫ ا
ء اول & ا‬76Y2
‫دة‬L 4P2‫ ر‬4
"& ‫ اول‬S‫ آ‬7;
‫ وا‬ARIMA ‫;[ام !ذج‬F. 7859‫ ا‬:(';
‫ا‬
SB6C !‫ آ‬Time Series 4'&
‫;[ام ا
!;ت ا‬F. 7859‫ ا‬:(';
4!3%&‫و‬
V!L 7N‫ و‬7859‫ ا‬:(';
43;‫ر‬1O
‫ ا‬42J;
‫ق ا‬6
‫"\ ا‬. ‫;ب إ‬3
‫ ا‬, 7N
4859‫ ا‬4&%
‫;[ام ا‬F. 4‫ت ا
را‬X%
‫ وا‬4]&‫^ ا‬P1;. S!B ‫;ب‬3
‫اء ا‬L‫أ‬
*‫و‬N V!. ‫ء‬59‫ ;") ) ا‬4+ ‫رت‬1= W5 _&‫ا‬. 7‫ وه‬Minitab
.‫
!ن‬. ‫ب‬6
‫ة‬N1;& 4&%
‫@ ا‬A‫وه‬
‫ذن ا‬F. ‫ق‬6;2 ‫ف‬1 "
‫ب ا
رات ا‬6
*L1&‫;ب و‬3
‫ & ا‬7]
‫ا
ء ا‬
H21%;
‫ ا‬4
‫ و!ذج دا‬Intervention Analysis H;
‫ ا‬H%C H]& VP‫ا‬1!
‫ ا
!;"دة‬4'&
‫ و!ذج ا
!;ت ا‬Transfer Function Models
*OL1!
‫ ا‬4'&
‫ و!ذج ا
!;ت ا‬Multivariate Time Series Models
State !
‫ و&^ آ‬4
%
‫`ء ا‬N ‫ و!ذج‬Vector Time Series Models
Threshold Time %
‫ و!ذج ا‬Space Models and Kalman Filtering
:(';
‫ ا‬7N OCJ(6C‫ و‬GARCH ‫ و!ذج‬ARCH ‫ و!ذج‬Series Models
‫ت‬3(K
‫ق إ
ا‬6;' !‫ آ‬Finantial Time Series Forecasting 7
!
‫ا‬
.7859‫ ا‬:(';
‫ ا‬7N O&‫ وإ;[ا‬Neural Networks 4("
‫ا‬
4(;3!
‫اء ا‬U9‫) و‬23
‫* ا‬OL1
H!"
‫ا ا‬A‫ إز ه‬7N 7'JN12 ‫ا & ا ان‬1L‫ا وار‬A‫ه‬
.‫;ب‬3
‫ا ا‬A‫ ه‬H]& ‫ة إ‬Jb
‫ ا‬4."
‫ا‬
2
S;9‫ ا‬43( L‫ا‬1;& ‫ن‬13 1‫ ) وه‬W
= ‫ ي‬7& ‫;ب‬3
‫ا ا‬A‫ن ه‬13
http://www.abarry.ws/books/statisticalForecast.pdf VB1!
‫ ا‬7N
.N1!
‫وا ا‬
e
:!
‫ا‬
‫ي‬. !5
‫ ( ا‬L& ‫ ن‬.‫د‬
‫د‬1" f!
‫ ا‬4"&L
‫ هـ‬1422 ‫"ة‬J
‫ذو ا‬
‫ م‬2002 2'2
3
‫ﺍﻟﻤﺤﺘﻮﻳﺎﺕ‬
‫&‪4&J‬‬
‫‪ -1‬ا
‪ Hb‬اول‪ 4&J& :‬و‪"C‬ر‪9...................................................................e2‬‬
‫‪1-1‬‬
‫أ&]‪ 4‬ا
!;ت ا
&'‪9 ....................................................... 4‬‬
‫‪2-1‬‬
‫ا
‪Y‬ض & درا‪ 4‬و‪ H%C‬ا
!;ت ا
&'‪9 ................................. 4‬‬
‫‪ 3-1‬ا
[‪16‬ات ا
!;[‪A‬ة ('ء !‪1‬ذج ‪9 ................................................ :('C‬‬
‫‪ "C 1-3-1‬ا
'!‪1‬ذج ‪...................................................................‬‬
‫‪9‬‬
‫‪ (6C 2-3-1‬ا
'!‪1‬ذج ‪10 ..................................................................‬‬
‫‪ o[KC 3-3-1‬وإ;(ر ا
'!‪1‬ذج ‪10 .....................................................‬‬
‫‪ 1C 4-3-1‬ا
;'(‪:‬ات ‪10 ....................................................................‬‬
‫‪ 5-3-1‬إ;[ام ا
;'(‪:‬ات وو‪ VP‬ا
‪J‬ارات ‪10 .........................................‬‬
‫‪"C 4-1‬ر‪ e2‬و&(دئ أو
‪10 ................................................................... 4‬‬
‫‪ 7P& e2"C 1-4-1‬أو ‪C‬ر‪ r2‬ا
‪I‬هة ‪.............................................‬‬
‫‪10‬‬
‫‪ e2"C 2-4-1‬ا
‪ P%‬أو ا‪s‬ن ‪.......................................................‬‬
‫‪10‬‬
‫‪ e2"C 3-4-1‬أ‪6‬ء ا
;‪......................................................... (6‬‬
‫‪10‬‬
‫‪ e2"C 4-4-1‬أ‪6‬ء ا
;'(‪............................................................ :‬‬
‫‪11‬‬
‫‪ e2"C 5-4-1‬ا‪J;9‬ار ‪11 .................................................................‬‬
‫‪ e2"C 6-4-1‬ا
`‪ 4‬ا
(`ء ‪11 .........................................................‬‬
‫‪]& 7-4-1‬ل ‪ : 1‬ا
!‪ 7K‬ا
"‪1K‬ا‪11 ................................................... 78‬‬
‫‪ e2"C 8-4-1‬دا
‪ 4‬ا
;‪ 2Y‬ا
‪A‬ا‪.................................................... 7C‬‬
‫‪12‬‬
‫‪ e2"C 9-4-1‬دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪12 ................................................... 7C‬‬
‫‪]& 10-4-1‬ل ‪ : 2‬دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪ 4`
7C‬ا
(`ء ‪12 .........................‬‬
‫‪ e2"C 11-4-1‬دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬ا
‪13 ...................................... 78‬‬
‫‪]& 12-4-1‬ل ‪ :3‬دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬ا
‪ 4`
78‬ا
(`ء ‪14 ..................‬‬
‫‪ e2"C 13-4-1‬دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪15 ......................................... 4'"
7C‬‬
‫‪ e2"C 14-4-1‬دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬ا
‪16 .............................. 4'"
78‬‬
‫‪4‬‬
‫‪]& 15-4-1‬ل ‪ :4‬دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬وا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬ا
‪17 ......... 4'"
78‬‬
‫‪ -2‬ا
‪ Hb‬ا
]‪! :7‬ذج ا‪%9‬ار ا
‪A‬ا‪-7C‬ا
!;‪ w1‬ا
!;‪%‬ك ‪ARMA‬‬
‫‪ -3‬وإ;[ا&‪ 7N OC‬ا
;'(‪25 .........................................................................:‬‬
‫‪1-2‬‬
‫‪! e2"C‬ذج ا‪%9‬ار ا
‪A‬ا‪-7C‬ا
!;‪ w1‬ا
!;‪%‬ك & ا
ر‪25 ....... (p,q) 4L‬‬
‫‪2-2‬‬
‫‪ H& e2"C‬ا‪9‬زا‪ 45‬ا
[‪25........................................................ 7b‬‬
‫‪3-2‬‬
‫‪ H& e2"C‬ا‪9‬زا‪ 45‬ا&&‪25 .................................................... 7‬‬
‫‪4-2‬‬
‫‪ H& e2"C‬ا
;‪25 ............................................................... 2b‬‬
‫‪5-2‬‬
‫‪ H& e2"C‬ا
;!‪25 ............................................................... V‬‬
‫‪6-2‬‬
‫أ&]‪26 ................................................................................... 4‬‬
‫‪7-2‬‬
‫‪! o8‬ذج ا‪%9‬ار ا
‪A‬ا‪-7C‬ا
!;‪ w1‬ا
!;‪%‬ك ‪26 ...........................‬‬
‫‪1! 1-7-2‬ذج )‪26 ......................................................... ARMA(0,0‬‬
‫‪1! 2-7-2‬ذج )‪31 ................................................................... AR(1‬‬
‫‪1! 3-7-2‬ذج )‪31 ................................................................... AR(2‬‬
‫‪1! 4-7-2‬ذج )‪36 .................................................................... MA(1‬‬
‫‪1! 5-7-2‬ذج )‪39 ................................................................... MA(2‬‬
‫‪1! 6-7-2‬ذج )‪40 ........................................................... ARMA(1,1‬‬
‫‪1 7-7-2‬اص !ذج )‪47 ............................................... ARMA(p,q‬‬
‫‪ -3‬ا
‪ Hb‬ا
]
‪! :Q‬ذج ا
!;ت ا
&'‪ z 4‬ا
!;‪J‬ة ‪58 ....................................‬‬
‫‪1-3‬‬
‫م ا‪J;9‬ار ‪ 7N‬ا
!;‪58 ............................................................ w1‬‬
‫‪2-3‬‬
‫م ا‪J;9‬ار ‪ 7N‬ا
;(‪59 ............................................................... 2‬‬
‫‪3-3‬‬
‫!ذج ا‪%9‬ار ا
‪A‬ا‪-7C‬ا
;‪-7&3‬ا
!;‪ w1‬ا
!;‪%‬ك & ا
ر‪62 ..... (p,d,q) 4L‬‬
‫‪1! 1-3-3‬ذج )‪62 ...................................................... ARIMA(1,1,0‬‬
‫‪1! 2-3-3‬ذج )‪62 ....................................................... ARIMA(0,1,1‬‬
‫‪1! 3-3-3‬ذج ا
!‪ 7K‬ا
"‪1K‬ا‪F. 78‬اف ‪63 ................................................‬‬
‫‪4- 3‬‬
‫دا
‪ 4‬اوزان ) ‪ ψ (B‬و‪! H]!C‬ذج )‪63 .............................. ARMA(p,q‬‬
‫‪5- 3‬‬
‫ا&]‪
4‬ا
‪ 4‬اوزان ("\ ا
'!ذج ‪64 .....................................................‬‬
‫‪ 1-5-3‬دا
‪ 4‬اوزان '!‪1‬ذج )‪64 .................................................... AR(1‬‬
‫‪ 2-5-3‬دا
‪ 4‬اوزان '!‪1‬ذج )‪65 .................................................... MA(1‬‬
‫‪5‬‬
‫‪ 3-5-3‬دا
‪ 4‬اوزان '!‪1‬ذج )‪65 .................................................... AR(2‬‬
‫‪ 4-5-3‬دا
‪ 4‬اوزان '!‪1‬ذج )‪66 ................................................... MA(2‬‬
‫‪ 5-5-3‬دا
‪ 4‬اوزان '!‪1‬ذج )‪66 ........................................... ARMA(1,1‬‬
‫‪ 6-5-3‬دا
‪ 4‬اوزان '!‪1‬ذج )‪67 ................................................... ARI(1‬‬
‫‪ 7-5-3‬دا
‪ 4‬اوزان '!‪1‬ذج ا
!‪ 7K‬ا
"‪1K‬ا‪68 .................. ARIMA(1,0,1) 78‬‬
‫‪6- 3‬‬
‫‪1 \".‬اص دا
‪ 4‬اوزان ) ‪69 .................................................... ψ (B‬‬
‫‪ -4‬ا
‪ Hb‬ا
ا‪ :V.‬ا
;'(‪:‬ات ذات &;‪ V.& w1‬ا
[‪ {6‬اد '!ذج )‪71 ....... ARMA(p,q‬‬
‫‪ :2 42I 1-4‬أ‪6‬ء ا
;'(‪71 ......................................................................... :‬‬
‫‪ 41!& 2-4‬ا
!"‪&1‬ت ‪72 ................................................. Information Sets‬‬
‫‪ :3 42I 3-4‬ا
!;'(| ذا &;‪ V.& w1‬ا
[‪ {6‬اد ‪72 ............................................‬‬
‫‪B 4-4‬ة ‪72 ............................................................................................. 2‬‬
‫‪ e2"C 5-4‬دا
‪ 4‬ا
;'(‪73 ................................................................................. :‬‬
‫‪ 6-4‬دوال ا
;'(‪!'
:‬ذج )‪73 ....................................................... ARIMA(p,d,q‬‬
‫‪ 1-6-4‬دا
‪ 4‬ا
;'(‪1!'
:‬ذج )‪73 ............................................................... AR(1‬‬
‫‪ 2-6-4‬ط ا‪!;9‬ار ‪73 ............................................................................‬‬
‫‪ 3-6-4‬دا
‪ 4‬ا
;'(‪1!'
:‬ذج )‪74 .............................................................. AR(2‬‬
‫‪ 4-6-4‬دا
‪ 4‬ا
;'(‪1!'
:‬ذج )‪74 ................................................. ARIMA(0,1,1‬‬
‫‪ 5-6-4‬دا
‪ 4‬ا
;'(‪1!'
:‬ذج )‪75 .............................................................. MA(1‬‬
‫‪ 6-6-4‬دا
‪ 4‬ا
;'(‪1!'
:‬ذج )‪75 .............................................................. MA(2‬‬
‫‪ 7-6-4‬دا
‪ 4‬ا
;'(‪1!'
:‬ذج )‪76 ..................................................... ARMA(1,1‬‬
‫‪5 7-4‬ود ا
;'(‪80 ......................................................................................... :‬‬
‫‪;N e2"C 1-7-4‬ة ‪ 4!J
:('C‬ا
!;‪80 ..................................................... 4(J‬‬
‫‪]& 2-7-4‬ل ‪81 ........................................................................................‬‬
‫‪ -5‬ا
‪ Hb‬ا
[&~‪ )!C :‬و‪'.‬ء ‪I‬م ‪ :('C‬إ‪82 ............................................ 785‬‬
‫‪ "C 1-5‬أو ‪ 2%C‬ا
'!‪1‬ذج ‪82 .......................................................................‬‬
‫‪ S(]C 1-1-5‬ا
;(‪83 .............................................................................. 2‬‬
‫‪ 2-1-5‬إ;ر در‪ 4L‬ا
;‪83 ................................................................ d 2b‬‬
‫‪84 ............................................................................... p,q 2%C 3-1-5‬‬
‫‪ 4-1-5‬إ‪ )"& 4NP‬إاف ‪84 ...................................................................‬‬
‫‪6‬‬
‫‪ 2JC‬ا
'!‪1‬ذج ‪85 ..............................................................................‬‬
‫‪2-5‬‬
‫‪ 4J2= 1-2-5‬ا
"وم ‪85 ........................................................................‬‬
‫‪ 2JC 2-2-5‬ا
"وم ("\ ا
'!ذج ‪86 .......................................................‬‬
‫‪1!'
1-2-2-5‬ذج )‪86 .............................................................. AR(1‬‬
‫‪1!'
2-2-2-5‬ذج )‪86 ......................................................... MA(1‬‬
‫‪1!'
3-2-2-5‬ذج )‪87 .......................................................... AR(2‬‬
‫‪1!'
4-2-2-5‬ذج )‪87 ......................................................... MA(2‬‬
‫‪1!'
5-2-2-5‬ذج )‪87 ................................................ ARMA(1,1‬‬
‫‪ 4J2= 3-2-5‬ا
!‪".‬ت ا
ا
‪89 .............................................. 4=K‬‬
‫‪2JC 4-2-5‬ات ا
!‪".‬ت ا
ا
‪ \"(
4=K‬ا
'!ذج ‪89 .........................‬‬
‫‪!'
1-4-2-5‬ذج )‪89 .........................................................AR(1‬‬
‫‪!'
2-4-2-5‬ذج )‪90 ....................................................... MA(1‬‬
‫‪ o[KC‬وإ;(ر ا
'!‪1‬ذج‪94 .........................................................‬‬
‫‪3-5‬‬
‫‪ o%N 1-3-5‬ا
(‪1‬ا‪94 .................................................................... 7B‬‬
‫‪ 1-1-3-5‬إ;(ر ا
!;‪1(
w1‬ا‪94 .................................................. 7B‬‬
‫‪ 2-1-3-5‬إ;(ر ا
"‪1K‬ا‪1(
48‬ا‪95 ................................................. 7B‬‬
‫‪ 3-1-3-5‬إ;(ر ا
;ا‪ w.‬أو ا‪J;9‬ل (‪1‬ا‪95 ................................... 7B‬‬
‫‪ 4-1-3-5‬إ;(ر =("‪ 4‬ا
(‪1‬ا‪96 .................................................... 7B‬‬
‫‪ \". 2-3-5‬ا
!"‪ 2‬ا‪X‬ى ‪;9‬ر !‪1‬ذج &'‪96 ............................. W‬‬
‫‪ 1-2-3-5‬إ‪ 485‬آ‪ '
1‬و‪96 ........................................... ~3.‬‬
‫‪"& 2-2-3-5‬ر ا‪9‬م ا
‪A‬ا‪96 ......................................... AIC 7C‬‬
‫‪ 3-3-5‬أ&]‪ 4‬و‪X5‬ت درا‪96 .......................................................... 4‬‬
‫‪ -6‬ا
‪ Hb‬ا
دس‪! :‬ذج ا‪%9‬ار ا
‪A‬ا‪-7C‬ا
;‪-7&3‬ا
!;‪ w1‬ا
!;‪%‬ك ا
!‪143 ...... 4!1‬‬
‫‪1-6‬‬
‫دوال ا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬وا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬ا
‪ \"(
78‬ا
'!ذج ا
!‪143 ..... 4!1‬‬
‫‪1!'
1-1-6‬ذج ‪144 ......................................... SARMA(0,1)(1,1)12‬‬
‫‪2- 6‬‬
‫دوال ا
;ا‪ w.‬ا
‪A‬ا‪ \"(
7C‬ا
'!ذج ا
!‪145 .................................. 4!1‬‬
‫‪145............................................. SARIMA(0,d,0)(0,D,1)s 1-2-6‬‬
‫‪145 ........................................... SARIMA(0,d,0)(1,D,1)s 2-2-6‬‬
‫‪145 ............................................ SARIMA(0,d,1)(0,D,1)s 3-2-6‬‬
‫‪7‬‬
‫‪146 ........................................... SARIMA(0,d,0)(1,D,1)s 4-2-6‬‬
‫‪146 ........................................... SARIMA(0,d,1)(1,D,0)s 5-2-6‬‬
‫‪146 ............................................ SARIMA(0,d,2)(0,D,1)s 6-2-6‬‬
‫‪3- 6‬‬
‫دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬ا
‪1!'
78‬ذج ا
!‪ 7!1‬ا
;`‪147 .................... 7b‬‬
‫‪4- 6‬‬
‫أ&]‪ 4‬ا
!;ت ا
&'‪ 4‬ا
!‪147 ....................................... 4!1‬‬
‫‪5- 6‬‬
‫إ;‪J‬ق دوال ‪! \"(
:('C‬ذج ا
!;ت ا
!‪ 4!1‬ا
;`‪148 .......... 4b‬‬
‫‪ 1-5-6‬دا
‪ 4‬ا
;'(‪1!'
:‬ذج ‪148 .................... SARIMA(0,0,0)(0,1,1)12‬‬
‫‪ 2-5-6‬دا
‪ 4‬ا
;'(‪1!'
:‬ذج ‪148 .................... SARIMA(0,1,1)(0,1,1)12‬‬
‫‪6- 6‬‬
‫أ&]‪ 4‬و‪X5‬ت درا‪;!
4‬ت ا
&'‪ 4‬ا
!‪149 .......................... 4!1‬‬
‫ا
ء ا
"!‪:7‬‬
‫‪ -7‬ا
‪ Hb‬ا
‪ :V.‬ور‪C 4B‬ر‪ 7! W2‬ا
;'(‪1. :‬ا‪! 46‬ذج ا‪%9‬ار‬
‫ا
‪A‬ا‪-7C‬ا
!;‪ w1‬ا
!;‪%‬ك ‪178 .......................................................................‬‬
‫‪ -8‬ا
‪ Hb‬ا
]& ‪]& :‬ل ‪ H%C‬ا
(‪1‬ا‪ 7B‬و&" إ;ر !‪1‬ذج &'‪193 .................. W‬‬
‫‪ -9‬ا
‪ Hb‬ا
;‪ H%C :V‬أو ‪ f3bC‬ا
!;‪ 4‬ا
&'‪ 4‬إ
&آ(ت ‪202 .....................‬‬
‫‪ -10‬ا
;!‪ O‬وا
;'(‪1. :‬ا‪ 46‬ا
!;‪ w1‬ا
!;‪%‬ك ‪225 ...........................................‬‬
‫‪ 1-10‬ا
‪ w1‬ا
ري ‪225 .............................................................‬‬
‫‪ -11‬ا
‪ Hb‬ا
‪%‬دي ‪ :K‬ا
;!‪ O‬وا
;'(‪1. :‬ا‪ 46‬ا
;!‪ O‬ا‪ 7‬ا
(‪232 ............. w‬‬
‫‪ -12‬ا
‪ Hb‬ا
]‪ :K 7‬ا
;!‪ O‬وا
;'(‪1. :‬ا‪ 46‬ا
;!‪ O‬ا‪ 7‬ا
!دوج ‪239 ...........‬‬
‫‪. 4J2= 1-12‬اون ‪239 ........................................................................‬‬
‫‪ 4J2= 2-12‬ه‪240 ........................................................................ S
1‬‬
‫‪ 3-12‬أ&]‪242 .................................................................................. 4‬‬
‫‪ -13‬ا
‪ Hb‬ا
]
‪ :K Q‬ا
;!‪ O‬ا‪ 7‬ا
]‪ 7U‬وا
;'(‪1. :‬ا‪4J2= 46‬‬
‫و;ز !;ت ا
!‪ 4!1‬ا
!'‪250 ..................................................... 4N‬‬
‫‪ 1-13‬ا
'!‪1‬ذج ا‪250 ............................................................... 7NP9‬‬
‫‪ 2-13‬ا
'!‪1‬ذج ا
;`‪242 .............................................................. 7b‬‬
‫‪]& 3-13‬ل ('ء !‪1‬ذج ‪259 ........................................................... :('C‬‬
‫‪]& 4-13‬ل ‪'(
,‬ء !‪1‬ذج ‪267 ..................................................... :('C‬‬
‫&‪ (1) %‬أ€‪ 4‬وإ‪.L‬ت ا‪(;9‬رات ا
‪275 ............................................... 4J.‬‬
‫ا
!ا‪358 ........................................................................................... VL‬‬
‫‪8‬‬
9
‫ﺍﻟﻔﺼﻞ ﺍﻷﻭﻝ‬
‫
ور‬
‫ ‪:1‬‬
‫ا ا
‪ Time Series‬ه ‪ #
$‬ا" اهة !هة ا ‬
‫
‪ %‬ا
‪ ) #‬او ' ا)ن (‬
‫ا
‪ ' -‬ا‪,‬ت ا
‪:‬‬
‫‪ " -1‬ا‪bB‬ل ‪ f'. )O‬ا
‪2‬ض ‪.&12‬‬
‫‪ -2‬د ا
‪51‬ات ا
!‪ 4.16‬ا(‪ & 1‬ا;ج "‪.4'"& 4‬‬
‫‪ )5 -3‬ا
!("ت ‪.& 4" & 2O‬‬
‫‪ )5 -4‬ا‪;9‬ج ا
‪ wb'
7&1‬ا
[م ‪.43!!
.‬‬
‫وا‪3‬ض ‪ #‬درا‪ 0‬و‪ ./‬ا‪,‬ت ا
ه‪:‬‬
‫‪ )ON -1‬و!‪1K 4LA‬ا‪ 48‬ا
‪I‬هة ا
!‪K‬هة‪.‬‬
‫‪ -2‬ا
;'(‪ :‬ا
‪ )J‬ا
!;‪I
4(J‬هة ا
"‪1K‬ا‪.48‬‬
‫‪ -3‬ا
;‪I
. )3%‬هة ا
"‪1K‬ا‪ 48‬إذا ا&‪ 3‬ذ
‪.f‬‬
‫ا
‪ H3K‬ا
;
‪ 4;!
7‬ز&'‪K& 4‬هة وه‪( 7‬رة ا‪;9‬ج ا
‪J(
H=
. W%
7&1‬ة &‬
‫‪850‬‬
‫‪750‬‬
‫‪C1‬‬
‫‪650‬‬
‫‪550‬‬
‫‪70‬‬
‫‪60‬‬
‫‪50‬‬
‫‪40‬‬
‫‪10‬‬
‫‪30‬‬
‫‪20‬‬
‫‪10‬‬
‫‪Index‬‬
‫ا‪;:‬ات ا‪9:‬ة ء ‪7‬ذج ‪:4‬‬
‫إن إ‪2‬د !‪1‬ذج &'‪ 4;& 4 (6'C W‬ز&'‪K& 4‬هة ‪ & (;"2‬ا
!‪O‬م ا
"(‪ 4‬وا
;‪;%C 7‬ج‬
‫ا
ا
‪ & ]3‬ا
(‪ Q%‬وا
[(ة‪1 .‬ف ;"ض ‪ \".‬ا
[‪16‬ات ا
"‪'(
4`2‬ء !‪1‬ذج ر‪7P2‬‬
‫
;'(‪ 4;& :‬ز&'‪:& 4‬‬
‫‪-1‬‬
‫‪ #‬اذج أو ‪ /‬اذج ‪:Model Identification‬‬
‫وه‪A‬ا ‪ ). );2‬ا
!;‪ 4‬ا
&'‪132 Q5 Time Plot !2 !N 4‬ن ا‪59‬ا‪ 7U‬ا‪ 7JNX‬ه‪ 1‬ا
&‬
‫وا
أ‪ )5 7‬ا
‪I‬هة ا
!‪K‬هة و& ‪ )U‬إ;ر !‪1‬ذج ر‪ \". 7 2!;"& 7P2‬ا
!‪~2J‬‬
‫ا‪ 4859‬ا
; ‪1! !C‬ذج ‪ ,‬و ا
[(ة ا
!;!ة & ا
رات وا‪%.X‬ث‪.‬‬
‫‪-2‬‬
‫;= اذج ‪:Model Fitting‬‬
‫‪1! ^C ".‬ذج او اآ] آ'!‪1‬ذج &'‪ e+1
W‬ا
!;‪ 4‬ا
!‪K‬هة ‪1J‬م ‪ )
"& 2J;.‬ه‪A‬ا‬
‫ا
'!‪1‬ذج & ا
(ت ا
!‪K‬هة ‪[;F.‬ام =ق ا
;‪ 2J‬ا‪ 7859‬ا
[‪;!
. 4+‬ت ا
&'‪4‬‬
‫وه‪A‬ا ا
'!‪1‬ذج ا
!^ ‪ A:2‬آ'!‪1‬ذج او
‪.J5X H2";
H.B 7‬‬
‫‪-3‬‬
‫‪ >:‬وإ?ر اذج ‪:Model Diagnostics‬‬
‫إ‪L‬اء إ;(رات ‪ 4%bC‬أ‪6‬ء ا
;‪& 4N"!
Fitting Errors (6‬ى ‪ .6C‬ا
!‪K‬هات‬
‫&‪ V‬ا
‪ )J‬ا
!‪ & 4.1%‬ا
'!‪1‬ذج ا
!^ و&ى ‪PN 4%+‬ت ا
'!‪1‬ذج‪ 4
5 7N .‬إ‪;L‬ز ا
'!‪1‬ذج‬
‫ا
!^ ‪ @AO‬ا‪(;9‬رات ‪1J‬م ‪!;F.‬دة ا* ا
'!‪1‬ذج ا
'‪ 78O‬و‪[;2‬م ;‪:('C 1‬ات ‪)J‬‬
‫ا
!;‪ 4(J‬وإ‪1" X‬د [‪16‬ة ا‪X‬و
;" !‪1‬ذج ‪.2L‬‬
‫‪-4‬‬
‫ ا‪4‬ات ‪:Forecast Generation‬‬
‫‪[;2‬م ا
'!‪1‬ذج ا
'‪:('C 1;
78O‬ات ‬
‫ا
‪ )J‬ا
!;‪ 4(J‬و&‬
‫‪ Forecast Errors‬آ! ا;ت ‪2L )B‬ة &‪K‬هة &‬
‫‪5 )U‬ب أ‪6‬ء ا
;'(‪:‬‬
‫ا
!;‪ 4‬ا
&'‪ 4‬و&ا‪ 4(B‬ه‪@A‬‬
‫ا‪6‬ء ‪66[!. !2 & N‬ت ا
!ا‪ Control Charts 4(B‬وا
;‪1(J
VP1C 7‬ل ‪{6 4('.‬‬
‫&" إذا ‪C‬وز‪ 4C‬أ‪6‬ء ا
;'(‪"2 :‬د ا
'‪ 7N I‬ا
'!‪1‬ذج و‪"C‬د ا
ورة & ‪1! 2%;. 2L‬ذج‬
‫&^ ‪.,‬‬
‫‪-5‬‬
‫إ‪:0‬ام ا‪4‬ات وو‪ %A‬اارات ‪Implementation and Decision‬‬
‫‪JC :making‬م ا
;'(‪:‬ات ‪ 7"
2JC N‬ا
‪J‬ار '‪ 7N I‬إ;[ا&‪H3K
. O‬‬
‫ا
!'‪.W‬‬
‫‪11‬‬
:‫ر و
دئ او‬
&
. 4'&
‫ ا‬4;!
‫
ا‬1C 7;
‫ ا‬48‫ا‬1K"
‫ ا‬4!"
‫ أو ا‬48‫ا‬1K"
‫هة ا‬I
& ‫ف‬1
{Z t }
4=(. ‫{ او‬Z t , t ∈ {⋯, −1,0,1,2,⋯}} ‫او ا;را‬
{⋯, Z −1 , Z 0 , Z1 , Z 2 ,⋯}
{z1 , z2 ,⋯, zn−1 , zn } &
. ‫هة‬K!
‫ ا‬4'&
‫ ا‬4;!
‫و‬
:2
History ‫ ا!هة‬E‫' او ر‬A$ ' z1 , z2 ,⋯ , zn −1 "‫ا‬
4LA!'
‫ ا‬4! 7N ‫ا‬L )O& r2‫وا
;ر‬
: 3 ‫ن‬G‫ او ا‬A/‫ ' ا‬zn ‫ا‬
. ‫هة اة‬K!
‫ ا‬7‫وه‬
:4 ) ;‫ ه ا" ا‬zˆt JK et = zt − zˆt , t = 1, 2,..., n I,$ '; =;‫أ?;ء ا‬
Residuals N0‫ اوا‬O‫ اذج( و أ‬#
L .M/7 ‫ا" ا‬
.‫ذج‬1!'
‫ ا‬2JC ". ‫ة‬5‫ وا‬4"N‫ د‬O H% (6;
‫ء ا‬6‫‚ ان ا‬52‫و‬
‫ م‬H3K. ‫ او‬zn +1 , zn +2 , zn +3 ,... ‫ز‬1&
. 4(J;!
‫هات ا‬K!
& ‫ف‬1 :!K,
‫ م‬H3K. ‫او‬
zn (1) , zn ( 2 ) , zn ( 3) ,...
&
. OC‫ا‬:(';
&‫و‬
zn + ℓ , ℓ ≥ 0
zn ( ℓ ) , ℓ ≥ 0
12
:5 en ( ℓ ) = zn +ℓ − zn ( ℓ ) , ℓ ≥ 0
I,$ '; 4‫أ?;ء ا‬
4JJ%
‫) ا‬J
‫هت ا‬1‫م ا
& و‬JC !‫ى آ‬X‫ ا‬1C ‫ة‬5‫ا‬1
‫';_ ا‬C :(';
‫ء ا‬6‫وأ‬
:6 SK ‫ إذا‬Stationary ‫{ ة‬z1 , z2 ,⋯ , zn −1 , zn } ‫ل ان ا ا
اهة‬
:‫اوط ا‬
1) E ( zt ) = constant = µ , ∀t
constant = γ 0 , ∀t , ∀s, t = s
2) cov ( zt , zs ) = 
 f ( s − t ) , ∀t , ∀s, t ≠ s
Building Blocks ‫ب ا
('ء‬1= ‫ة او‬5 O13
‫ا‬L 4!O& 4'&‫ ز‬4;& ‫ف "ف‬1 ‫ن‬s‫ا‬
O‫ف ر‬1 7;
‫ ا
'!ذج ا‬V!
:7 White ‫ء‬O‫ ا‬VO‫ او ا‬White Noise Series ‫ء‬O‫ ا‬VO‫
ا‬
) ;$‫ اا‬W ‫ اهات اا‬#
$
# ‫{ ه رة‬at } Noise Process
‫ زت‬L‫ات اا ا )ن و‬3‫ ا‬#
$
L7‫ض ا‬Y7 7K‫وا‬
#‫ي و‬Y[ \0$ ( Independent, Identically Distributed (IID) $;
:‫ أي‬σ 2 S$]
1) E ( at ) = 0, ∀t
σ 2 , ∀t , ∀s, t = s
2) cov ( at , a s ) = 
 0 , ∀t , ∀s , t ≠ s
at ~ WN ( 0,σ 2 ) $ L ‫و‬
13
:1‫ل‬-
: Random Walk ‫
ا اا‬
:7
;
‫{ آ‬Z t } 48‫ا‬1K 4! 7'( ‫ف‬1
Z1 = a1
Z 2 = a1 + a2
⋮
Z t = a1 + a2 + ⋯ + at
‫أو‬
Z t = Z t −1 + at
Z t ‫ن‬N j
&
‫ ' ا‬e[
‫&م او ا‬X‫ ا‬7
‫ ا‬A:C 7;
‫ة ا‬16[
‫) ا‬5 1‫ ه‬a j ‫ ا;( ان‬1
‫أي‬
t &
‫ ' ا‬78‫ا‬1K 7& VB1& 7‫ه‬
4!
"
‫اق ا
!ل ا‬1‫ ا‬eC 7;
‫ا ا‬L 4&O
‫ & ا
'!ذج ا‬4;!
‫ او ا‬4!"
‫@ ا‬A‫ ه‬:!K,
‫ة؟‬J;& 4!"
‫ ا‬H‫ وه‬t , s )B V!
cov ( Z t , Z s ) ‫ و‬E ( Z t ) L‫ او‬: 2!C
:8 :‫ وف آ‬Autocovariance Function ‫ا‬9‫ ا‬3‫دا ا‬
γ t ,s = cov ( Z t , Z s ) , ∀t , ∀s
= E  ( Z t − µ )( Z s − µ )  , ∀t , ∀s
‫ن‬ca Z t + k ‫ أو‬Z t −k #$‫ و‬Z t #$ .MY ‫ة ا
ا‬Y‫ ا‬b7‫ ا‬k :‫ ا‬a ‫وإذا‬
:I,$ '; ‫ا‬9‫ ا‬3‫دا ا‬
γ k = cov ( Z t , Z t −k ) , k = 0, ±1, ±2,⋯
= E ( Z t − µ )( Z t −k − µ )  , k = 0, ±1, ±2,⋯
!8‫ دا‬7]
‫ ا‬e2";
‫ف ;[م ا‬1 :!K,
14
:9 :‫ وف آ‬Autocorrelation Function (ACF) ‫ا‬9‫\ ا‬$‫دا اا‬
ρk =
γk
, k = 0, ±1, ±2,⋯
γ0
:4
;
‫اص ا‬1[
‫ ا‬O
‫و‬
1. ρ 0 = 1
2. ρ − k = ρ k
3.
ρk ≤ 1
:2 ‫ل‬-
‫ ا
(`ء‬4`
‫ ا‬4!"
7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ن دا‬s‫; ا‬K ‫ف‬1
:7‫ ا
(`ء ه‬4`
‫ ا‬4!"
7C‫ا‬A
‫ ا‬2Y;
‫ ا‬4
‫دا‬
σ 2 , k = 0
γ k = cov ( at , at −k ) = 
 0, k ≠0
:7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ دا‬O'&‫ و‬7 e2";
‫ & ا‬f
‫وذ‬
γ k 1 , k = 0
=
γ 0 0 , k ≠ 0
:7
;
‫ ا‬H3K
‫ ا‬O
‫و‬
Autocorrelation function of White Noise
1.0
Autocorr
ρk =
0.5
0.0
0
1
2
3
4
5
Lag
15
6
7
8
9
:10 Partial Autocorrelation Function (PACF) V‫ا ا‬9‫\ ا‬$‫دا اا‬
‫ات‬3‫ ا‬#
f‫\ ا‬$‫] اا‬g S‫ إزا‬$ Z t −k ‫ و‬Z t #$ \$‫و; ار اا‬
‫ق‬i K‫ وأ‬φkk $ k :‫ ا‬L ‫ و‬L$ I‫ اا‬Z t −1 , Z t −2 ,..., Z t −k +1
:.-‫ ا‬a φkk V‫ار ا‬/7j‫ ا‬.
‫ب‬K ‫ م‬L$K
Z t = φk 1Z t −1 + φk 2 Z t −2 + ⋯ + φkk Z t −k + at
: φ11 ‫ب‬5
Z t = φ11Z t −1 + at
VB1;
‫ ا‬A‫ وأ‬Z t −1 ‫ـ‬. 4B"
‫ ا‬7N= ‫`ب‬.
E ( Z t −1 Z t ) = φ11 E ( Z t −1 Z t −1 ) + E ( Z t −1at )
‫أي‬
γ 1 = φ11γ 0
( J5X (' !‫ آ‬E ( Z t −k at ) = 0, k = 1, 2,... ‫ م‬H3K. ) E ( Z t −1at ) = 0 Q5
γ 0 7 4!J
.‫و‬
φ11 = ρ1
16
:11 :‫ آ‬V‫ا ا‬9‫\ ا‬$‫ م ف دا اا‬.)$








φkk = 








k =0
k =1
1,
ρ1 ,
1
ρ1
ρ1
1
⋮
⋮
⋯ ρ k −2
⋯ ρ k −3
⋯
⋮
⋮
⋯ ρ1 ρ k
,
⋯ ρ k −2 ρ k −1
ρ k −1 ρ k −2
ρ1
1
ρ1
1 ⋯ ρ k −3
⋮
⋮
ρ k −1 ρ k −2
ρ1
ρ2
⋯
⋯
⋮
ρ1
k = 2,3,...
ρ k −2
⋮
1
4N1b& ‫دة‬%& 7
‫& ا‬C
Q5
4
‫ب دا‬%
, e2"C 76" ‫ف‬1 ‫ا‬AO
‫(ة و‬3
‫ ا‬k )J
‫;[ام‬9‫ ا‬W"+ .
‫ ا‬e2";
‫ا‬
:2‫ار‬3C 78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ا
;ا‬
:‫ ب‬11 ‫ت‬I,‫ ا‬#
‫ )ار‬φkk N/
φ00 = 1, by definition
φ11 = ρ1
k −1
φkk =
ρ k − ∑φk −1, j ρ k − j
j =1
k −1
1 − ∑φk −1, j ρ j
, k = 2,3,...
j =1
JK
φkj = φk −1, j − φkkφk −1,k −1 ,
j = 1, 2,..., k − 1
17
: φ22 ‫ب‬5
:‫ ب‬11 e2"C &
φ22 =
ρ 2 − φ11 ρ1 ρ 2 − ρ12
=
1 − φ11 ρ1
1 − ρ12
. φ11 = ρ1 ‫ ن‬f
‫وذ‬
:3 ‫ل‬-
:‫ ا
(`ء‬4`
‫ ا‬4!"
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ن دا‬s‫; ا‬K ‫ف‬1
‫ ب‬11 e2"C &
φ00 = 1, by definition
φ11 = ρ1 = 0
.
‫ ا‬1 ‫ & &]ل‬f
‫وذ‬
φkk
‫ ب‬11 e2"C 7N \21";
.‫و‬
φ22 = φ33 = ⋯ = 0
:‫ا‬A3‫وه‬
1, k = 0
0, k ≠ 0
φkk = 
:7
;
‫ ا‬H3K
‫ ا‬O
‫و‬
18
Partial Autocorrelation function of White Noise
PACF
1.0
0.5
0.0
0
1
2
3
4
5
6
7
8
9
Lag
‫ ا
(`ء‬4`
‫ ا‬4!"
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬7;
‫ & دا‬H‫‚ أن آ‬5X :!K,
‫ او‬46.‫ ا
!;ا‬z 48‫ا‬1K"
‫ات ا‬Y;!
‫ ا‬V!L 4+ @A‫ وه‬.‫ اول‬e[;
‫ & ا‬b
‫وي ا‬C
.f
A
7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫;[م دا‬C 78‫ا‬1K Y;!
‫هة‬K& )B . w.‫;(ر م ا
;ا‬9 .4J;!
‫ا‬
: 12 Sample Autocorrelation Function SACF ‫ا‬9‫\ ا‬$‫دا اا‬
:I,$ ';‫ و‬rk , k = 0,1, 2,... $ L ‫ و‬z1 , z2 ,⋯ , zn −1 , zn ‫ز
هة‬
n −k
rk =
∑( z
t
t =1
− z )( zt +k − z )
n
∑( z
t =1
t
−z)
, k = 0,1,2,...
2
z=
1 n
∑ zt JK
n t =1
‫ …ر‬J&ُ O‫! ا‬.‫ و‬ρˆ k = rk , k = 0,1, 2,... ‫ أي‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ ا‬Estimator ‫ …ر‬J&ُ 7‫وه‬
:4
;
‫ ا‬4'"
‫اص ا‬1[
‫ ا‬O
‫ن‬FN ‫ا‬AO
‫ى و‬X 4' & 8‫ا‬1K Y;C ‫ إذا‬7ON
‫ن‬FN ρ k = 0, k > q S‫ إذا آ‬-1
q
1

V ( rk ) ≅  1 + 2∑ ρ k2  , k > q
n
k =1

19
1
V ( rk ) ≅ , k > 0 ‫ن‬FN ρ k = 0, k > 0 &' 4+[
‫ ا‬4
%
‫ ا‬7N‫و‬
n
‫م‬J
‫ ا‬V6; 7
;
.‫ و‬7"(= V2‫ز‬1C (2JC O
‫ن‬132 rk ‫ن‬FN ρ k = 0 ‫(ة و‬3
‫ ا‬n )J
-2
:7
;
‫;(ر ا‬X.
H 0 : ρk = 0
H1 : ρ k ≠ 0
:4859‫;[ام ا‬F. f
‫وذ‬
rk
n
− 12
= n rk
n rk > 1.96 S‫ إذا آ‬H 0 \NC‫ و‬α = 0.05 421'"& ‫ى‬1;& ' f
‫وذ‬
corr ( rk , rk − s ) ≅ 0, s ≠ 0 ‫ن‬FN H 0 : ρ k = 0, ∀k 4Pb
‫ ا‬S%C -3
:7
;
‫ آ‬4'"
7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫'ت ا‬2(;
‫ †ر ا‬JCُ -4
q
1

Vˆ ( rk ) ≅  1 + 2∑ rk2  , k > q
n
k =1

:13 Sample Partial Autocorrelation Function V‫ا ا‬9‫\ ا‬$‫دا اا‬
$
L
‫و‬
‫
هة‬
z1 , z2 ,⋯ , zn −1 , zn
‫ز‬
SPACF
:I,$ '; rkk , k = 0,1, 2,...
20
 1,
 r,
 1
 1
r1

1
 r1
 ⋮
⋮

rkk =  rk −1 rk −2
 1
r1

1
 r1
 ⋮
⋮

 rk −1 rk −2


k =0
k =1
⋯ rk −2
⋯ rk −3
⋯ ⋮
⋯ r1
⋯ rk −2
⋯ rk −3
⋯
⋯
⋮
r1
r1
r2
⋮
rk
,
rk −1
rk −2
k = 2,3,...
⋮
1
:2‫ار‬3C 4'"
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ب دا‬%
‫و‬
:‫ ب‬13 ‫ت‬I,‫ ا‬#
‫ )ار‬rkk N/
r00 = 1, by definition
r11 = r1
k −1
rk − ∑ rk −1, j rk − j
rkk =
j =1
k −1
1 − ∑ rk −1, j rj
, k = 2,3,...
j =1
JK
rkj = rk −1, j − rkk rk −1,k −1 ,
j = 1, 2,..., k − 1
‫أي‬
7C‫ا‬A
‫ا‬
4'"
78
‫ا‬
w.‫ا
;ا‬
4
‫
ا‬
Estimator
‫†ر‬J&
`2‫ا‬
7‫وه‬
‫ن‬FN ‫ا‬AO
‫ى و‬X 4' & 8‫ا‬1K Y;C ‫ إذا‬7ON ‫ …ر‬J&ُ O‫! ا‬.‫ و‬φˆkk = rkk , k = 0,1, 2,...
:4
;
‫ ا‬4'"
‫اص ا‬1[
‫ ا‬O
21
1
V ( rkk ) ≅ , k > 0 -1
n
‫;(ر‬X. ‫م‬J
‫ ا‬V6; 7
;
.‫ و‬7"(= V2‫ز‬1C (2JC O
‫ن‬132 rkk ‫ن‬FN ‫(ة‬3
‫ ا‬n )J
-2
:7
;
‫ا‬
H 0 : φkk = 0
H1 : φkk ≠ 0
:4859‫;[ام ا‬F. f
‫وذ‬
rkk
n
− 12
= n rkk
n rkk > 1.96 S‫ إذا آ‬H 0 \NC‫ و‬α = 0.05 421'"& ‫ى‬1;& ' f
‫وذ‬
corr (φkk ,φk −s ,k − s ) ≅ 0, s ≠ 0 ‫ن‬FN H 0 : φkk = 0, ∀k 4Pb
‫ ا‬S%C -3
:7
;
‫ آ‬4'"
7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫'ت ا‬2(;
‫ ّر ا‬JCُ -4
1
Vˆ ( rkk ) ≅ , k > 0
n
:4 ‫ل‬-
:&12 "& _;'& 7 W6
‫ ا‬H]!C 4
;
‫ا
(ت ا‬
158 222 248 216 226 239 206 178 169
:!O!‫ وار‬4'"
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬W5‫أ‬
1 n
1
z = ∑ zt = (158 + 222 + ⋯ + 169 ) = 206.89 w1;!
‫ ا‬W% :X‫او‬
n t =1
9
4B"
‫ & ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬W% :U
n −k
rk =
∑( z
t =1
t
− z )( zt +k − z )
n
∑( z
t =1
t
−z)
, k = 0,1,2,...
2
22
r1 =
(158 × 222 + 222 × 248 + ⋯ + 178 × 169 )
= 0.265116
(158 × 158 + 222 × 222 + ⋯ + 169 × 169 )
r2 =
(158 × 248 + 222 × 216 + ⋯ + 206 × 169 )
= -0.212
(158 × 158 + 222 × 222 + ⋯ + 169 × 169 )
r3 =
(158 × 216 + 222 × 226 + ⋯ + 239 × 169 )
= −0.076
(158 × 158 + 222 × 222 + ⋯ + 169 × 169 )
r8 = 0.230, r7 = 0.104, r6 = −0.242, r5 = −0.387, r4 = −0.183 ‫ا‬A3‫وه‬
& ‫'ت‬2(;
‫ ا‬W% :]
U
q
1

Vˆ ( rk ) ≅  1 + 2∑ rk2  , k > q
n
k =1

1
Vˆ ( r1 ) ≅
9
(
)
1
1
2
Vˆ ( r2 ) ≅ (1 + 2r12 ) = 1 + 2 ( 0.265) = 0.1267
n
9
) (
(
(
1
1
2
2
Vˆ ( r3 ) ≅ 1 + 2 ( r12 + r22 ) = 1 + 2 ( 0.265) + ( −0.212 )
n
9
)) = 0.1367
Vˆ ( r4 ) ≅ 0.138 Vˆ ( r5 ) ≅ 0.1454 Vˆ ( r6 ) ≅ 0.1787
…r
‫ا‬
:4'"
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬W% :".‫را‬
r00 = 1, by definition
r11 = r1 = 0.265
42‫ار‬3;
‫ت ا‬B"
‫ت & ا‬6.‫ ا
;ا‬7B. W% )U
k −1
rk − ∑ rk −1, j rk − j
rkk =
j =1
k −1
1 − ∑ rk −1, j rj
, k = 2,3,...
j =1
Q5
rkj = rk −1, j − rkk rk −1,k −1 ,
j = 1, 2,..., k − 1
23
1
r2 − ∑ r1, j r2− j
r22 =
j =1
1
1 − ∑ r1, j rj
=
r2 − r11r1 ( −0.212 ) − ( 0.265)( 0.265) −0.282225
=
=
1 − r11r1
1 − ( 0.265)( 0.265)
0.929775
j =1
= −0.30354
& W%C‫ و‬r21 ‫;ج ا‬% r33 ‫ب‬%
r21 = r11 − r22 r11 = 0.265 − ( −0.303)( 0.265) = 0.345295
2
r3 − ∑ r2, j r3− j
r33 =
j =1
k −1
1 − ∑ r2, j rj
=
r3 − ( r21r2 + r22 r1 )
1 − ( r21r1 + r22 r2 )
j =1
=
( −0.076 ) − ( ( 0.345)( −0.212 ) + ( −0.303)( 0.265) )
1 − ( ( 0.345)( 0.265) + ( −0.303)( −0.212 ) )
= 0.092
4'"
48
‫ت ا‬6.‫ ا
;ا‬7B. W% ‫ا‬A3‫وه‬
r88 = 0.042, r77 = 0.013, r66 = −0.207, r55 = −0.294, r44 = −0.298
1 = 0.1111 (2JC ‫وي‬C ‫'ت‬2(;
‫!" ا‬L O
‫و‬
9
4'"
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫ ر) دوال ا
;ا‬:&
Autocorrelation
Autocorrelation Function for Demand
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
2
3
4
5
6
Lag
Corr
T
LBQ
Lag
Corr
T
LBQ
1
2
3
4
5
6
7
0.27
-0.21
-0.08
-0.18
-0.39
-0.24
0.10
0.80
-0.59
-0.21
-0.49
-1.01
-0.57
0.24
0.87
1.50
1.60
2.26
5.96
7.89
8.43
8
0.23
0.52
13.66
24
7
8
Partial Autocorrelation
Partial Autocorrelation Function for Demand
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
2
3
Lag PAC
1
2
3
4
5
6
7
0.27
-0.30
0.09
-0.30
-0.29
-0.21
0.01
4
5
6
T
Lag PAC
T
0.80
-0.91
0.27
-0.89
-0.88
-0.62
0.04
8 0.04
0.13
25
7
8
‫ﺍﻟﻔﺼﻞ ﺍﻟﺜﺎﻧﻲ‬
Autoregressive-Moving Average ‫ك‬/‫\ ا‬0‫ا_ا‬9‫ار ا‬/7j‫ذج ا‬7
:4‫ ا‬a L
‫ا‬:0‫ وإ‬Models
‫ك‬%;!
‫ ا‬w1;!
‫_ا‬7C‫ا‬A
‫ار ا‬%9‫ !ذج ا‬O 62 7;
‫ا
'!ذج ا‬
& ‫ آ(ة‬48 ‫ه'ك‬
e;[& 7N ‫]ة‬3
‫ث ا‬%.‫ ا‬S;(U‫ ا‬7;
‫ وا‬Autoregressive-Moving Average Models
.:(';
‫ ا‬7N 42J;
‫ق ا‬6
‫ ا‬7 H8O
‫ ا‬OB1bC 7 4J(6;
‫ ا‬2‫ا
!د‬
:14 ARMA ( p, q ) b ‫و‬
( p, q )
n‫ ار‬#
‫ك‬/‫\ ا‬0‫ا_ا‬9‫ار ا‬/7j‫ذج ا‬7
:.)‫ ا‬N) {z1 , z2 ,… , zn −1 , zn } ‫ ز
هة‬
zt = δ + φ1 zt −1 + φ2 zt −2 + ⋯ + φ p zt − p + at − θ1at −1 − θ 2 at −2 − ⋯ − θ q at −q
‫ اي‬.- S$] "
−∞ < δ < ∞ ‫ء و‬O$ VA at ~ WN ( 0,σ 2 ) JK
‫ و‬Autoregressive Parameters ‫ا‬9‫ار ا‬/7j‫ ه " ا‬φ1 ,φ2 ,… ,φ p ‫و‬
Moving Average Operators ‫ك‬/‫\ ا‬0‫ ه " ا‬θ1 ,θ 2 ,… ,θ q
O"& H&";
‫ ا‬HO2 73
‫@ ا
'!ذج‬A‫ ه‬w(;
Operators Algebra ‫( ا
"!ل‬. "; ‫ف‬1
‫اص‬:‫ ا‬b‫ و‬B b ‫ و‬Backshift Operator Y:‫ ا‬K‫زا‬j‫ ا‬.
:15 :‫ا‬
1 − Bzt = zt −1
2 − B m zt = B m −1 ( Bzt ) = B m−2 ( B ( Bzt ) ) = ⋯ = zt −m
3 − Bc = c, c is a constant
:7‫ ه‬J5X O
‫;ج ا‬% ‫ !ل اي‬L1C 7b[
‫ ا‬45‫زا‬9‫ ا‬H& 7
‫ ا‬4NP9.
26
:‫ ب‬15 :‫ وف آ‬F b ‫ و‬Forewardshift Operator q‫ ا‬K‫زا‬j‫ ا‬.
-1
F = B −1
:‫ ∇ وف آ‬b ‫ و‬Difference Operator =Y‫ ا‬.
-2
∇ = (1 − B )
:‫ وف آ‬S b ‫ و‬Sum Operator %V‫ ا‬.
-4
S = ∇ −1 = (1 − B )
7 *(;3‫و‬
( p, q )
−1
4L‫ك & ا
ر‬%;!
‫ ا‬w1;!
‫_ا‬7C‫ا‬A
‫ار ا‬%9‫ذج ا‬1! 7
‫د ا‬1" ‫ن‬s‫ا‬
:H3K
‫ا‬
zt − φ1 zt −1 − φ2 zt −2 − ⋯ − φ p zt − p = δ + at − θ1at −1 − θ 2 at −2 − ⋯ − θ q at −q
zt − φ1 Bzt − φ2 B 2 zt − ⋯ − φ p B p zt = δ + at − θ1 Bat − θ 2 B 2 at − ⋯ − θ q B q at
(1 − φ B − φ B
1
2
2
− ⋯ − φ p B p ) zt = δ + (1 − θ1 B − θ 2 B 2 − ⋯ − θ q B q ) at
‫أو‬
φ p ( B ) z t = δ + θ q ( B ) at
Autoregressive 7C‫ا‬A
‫ار ا‬%9‫ ا‬H& 1‫ ه‬φ p ( B ) = 1 − φ1 B − φ2 B 2 − ⋯ − φ p B p Q5
‫ك‬%;!
‫ ا‬w1;!
‫ ا‬H& 1‫ ه‬θ q ( B ) = 1 − θ1 B − θ 2 B 2 − ⋯ − θ q B q ‫ و‬Operator
Moving Average Operator
:-
‫أ‬
W;32‫ و‬ARMA ( 0,0 ) *
&2‫ و‬Constant Mean Model S.]
‫ ا‬w1;!
‫ذج ا‬1! -1
:H3K
‫ ا‬7
φ 0 ( B ) z t = δ + θ 0 ( B ) at
‫او‬
(1) zt = δ + (1) at
zt = δ + at , at ~ WN ( 0,σ 2 )
27
:H3K
‫ ا‬7 1‫ وه‬ARMA (1,0 ) ≡ AR (1) 7
‫و‬X‫ ا‬4L‫ & ا
ر‬7C‫ا‬A
‫ار ا‬%9‫ذج ا‬1! -2
φ1 ( B ) zt = δ + θ 0 ( B ) at
(1 − φ1B ) zt = δ + at
zt = δ + φ1 zt −1 + at , at ~ WN ( 0,σ 2 )
:H3K
‫ ا‬7 1‫ وه‬ARMA ( 0,1) ≡ MA (1) 7
‫و‬X‫ ا‬4L‫ك & ا
ر‬%;!
‫ ا‬w1;!
‫ذج ا‬1! -3
φ0 ( B ) zt = δ + θ1 ( B ) at
zt = δ + (1 − θ1B ) at
zt = δ + at − θ1at −1 , at ~ WN ( 0,σ 2 )
:H3K
‫ ا‬7 1‫ وه‬ARMA ( 2,0 ) ≡ AR ( 2 ) 4]
‫ ا‬4L‫ & ا
ر‬7C‫ا‬A
‫ار ا‬%9‫ذج ا‬1! -4
φ 2 ( B ) zt = δ + θ 0 ( B ) a t
(1 − φ B − φ B ) z
2
1
2
t
= δ + at
zt = δ + φ1 zt −1 + φ2 zt −2 + at , at ~ WN ( 0,σ 2 )
7 *(;3‫ و‬ARMA (1,1) (1‫و‬1) 4L‫ك & ا
ر‬%;!
‫ ا‬w1;!
‫_ا‬7C‫ا‬A
‫ار ا‬%9‫ذج ا‬1! -5
:H3K
‫ا‬
φ1 ( B ) zt = δ + θ1 ( B ) at
(1 − φ1B ) zt = δ + (1 − θ1B ) at
zt = δ + φ1 zt −1 + at − θ1at −1 , at ~ WN ( 0,σ 2 )
28
:‫ك‬/‫\ ا‬0‫ا_ا‬9‫ار ا‬/7j‫ذج ا‬7 >M?
‫ك‬%;!
‫ ا‬w1;!
‫_ا‬7C‫ا‬A
‫ار ا‬%9‫! !ذج ا‬C 7;
‫ ا‬4859‫ ا‬o8[
‫ف رس ا‬1
‫ذج‬1! 2%C ‫ ;" او‬f
‫هة وذ‬K& 4' & ‫@ ا
'!ذج‬A‫ ه‬5‫ ا‬7 ‫ ا
;"ف‬4b‫ آ‬4N"&‫و‬
.‫هات‬K!
‫ ا‬e2 W'&
:ARMA(0,0)S$-‫\ ا‬0‫ذج ا‬7 :r‫أو‬
H3K
‫ ا‬7 W;32‫و‬
φ 0 ( B ) z t = δ + θ 0 ( B ) at
‫او‬
zt = δ + at , at ~ WN ( 0,σ 2 )
w.‫ ا
;ا‬7;
‫( ودا‬w1;!
‫ )ا‬VB1;
‫د ا‬2F. f
‫ذج وذ‬1!'
‫ا ا‬AO
4859‫اص ا‬1[
‫; ا‬K ‫ف‬1
:7
;
‫ آ‬78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ا‬
E ( z t ) = δ + E ( at )
=δ
at ~ WN ( 0,σ 2 ) ‫ ن‬f
‫وذ‬
δ = µ ‫ن‬132 7
;
.‫ و‬µ = E ( zt ) ‫ أي‬µ &
. E ( zt ) 4;!
‫ ا‬w1;!
& ‫ف‬1
:‫ذج‬1!'
‫ ا‬W;32‫و‬
z t − µ = at
7N 4J.
‫ ا‬4
‫ ا
!"د‬7N= ‫ `ب‬78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬7;
‫ق دا‬J;9
‫ أي‬VB1;
‫ ا‬A{‫ و‬zt −k − µ
E ( zt −k − µ )( zt − µ )  = E ( zt −k − µ ) at 
‫ إذا‬8 e2"C & E ( zt −k − µ )( zt − µ )  = γ k 3
‫و‬
γ k = E ( zt −k − µ ) at  , k = 0, ±1, ±2,⋯
:2‫ار‬3C 4B"
‫@ ا‬A‫ ه‬H%‫و‬
k = 0 : γ 0 = E ( zt − µ ) at 
29
‫ أي‬VB1;
‫ ا‬A{‫ و‬at 7N zt − µ = at 7N= ‫! `ب‬2‫ف ا‬6
‫د ا‬29
E ( zt − µ ) at  = E ( at at ) = σ 2
‫ إذا‬at ~ WN ( 0,σ 2 ) ‫ ن‬f
‫وذ‬
k = 0 : γ 0 = E ( zt − µ ) at  = σ 2
k = 1: γ 1 = E ( zt −1 − µ ) at  = 0
‫ ن‬f
‫وذ‬
zt −1 − µ = at −1
E ( zt −1 − µ ) at  = E ( at −1at ) = 0
‫ن‬FN 4JJ%
‫ ا‬7N
zt −k − µ = at −k , k = 1,2,…
E ( zt −k − µ ) at  = E ( at −k at ) = 0, k = 1, 2,…
‫أي‬
:1 ‫ة‬I
σ 2 , k = 0
E ( zt −k − µ ) at  = E ( at −k at ) = 
 0, k = 1,2,..
‫أي‬
γ0 =σ 2
γ k = 0, k = ±1, ±2,…
:7
‫ دا‬H3 7 VP1C‫و‬
σ 2 , k = 0
γk = 
 0, k ≠ 0
γ 0 = σ 2 7 4!J
.‫و‬
30
ρk =
γ k 1, k = 0
=
γ 0 0, k ≠ 0
:7
;
‫ ا‬H3K
‫ ا‬O
‫و‬
Autocorrelation function of Constant Mean Model
Autocorr
1.0
0.5
0.0
0
1
2
3
4
5
6
7
8
9
Lag
11 e2";
‫ & ا‬78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ن دا‬s‫; ا‬K
φ00 = 1, by definition
φ11 = ρ1 , by definition
φ11 = 0
1
ρ1 1 0
ρ2 0 0
=
=0
ρ1 1 0
ρ1
1
1
φ22 =
ρ1
0 1
31
φ33 =
1
ρ1
1
ρ1 1 0
ρ2 0 1
ρ3 0 0
=
ρ2 1 0
ρ1 0 1
ρ1
ρ2
1
ρ1
1
ρ1
ρ1
1
ρ1
ρ2
0
0
0
=0
0
0
0 0 1
⋮
1
ρ1
ρ1
1
⋮
⋮
ρ k −1 ρ k −2
ρ1
1
ρ1
1
φkk =
⋮
⋮
ρ k −1 ρ k −2
⋯ ρ1
1 0 ⋯ 0
ρ2
⋯
⋮
⋯
⋯
⋯
ρk
ρ k −1
ρ k −2
⋮
⋯
⋮
1
0
⋮
0
=
1
0
⋮
⋮
⋯
⋮
⋯
⋯
⋯
⋮
1
⋮
0
0
1
⋮
0
⋮
0 0
= = 0, k = 2,3,⋯
0 1
0
⋮
0 0 ⋯ 1
:7
‫ دا‬H3 7 VP1C‫و‬
1, k = 0
0, k ≠ 0
φkk = 
Partial Autocorrelation function of Constant Mean Model
:7
;
‫ ا‬H3K
‫ ا‬O
‫و‬
PACF
1.0
0.5
0.0
0
1
2
3
4
5
6
7
8
9
Lag
z w1;& *
‫ ان‬7N X‫ ا
(`ء ا‬4`
‫ذج ا‬1! ‫;ق‬b2X S.]
‫ ا‬w1;!
‫ذج ا‬1! :!K,
‫ي‬b+
32
ARMA(1,0) = AR(1) ‫و‬r‫ ا‬n‫ ار‬#
‫ا‬9‫ار ا‬/7j‫ذج ا‬7 :7]
:H3K
‫ ا‬7 1‫وه‬
φ1 ( B ) zt = δ + θ 0 ( B ) at
(1 − φ1B ) zt = δ + at
zt = δ + φ1 zt −1 + at , at ~ WN ( 0,σ 2 )
:78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬7;
‫( ودا‬w1;!
‫ )ا‬VB1;
‫ ا‬L1 ‫ف‬1 .
‫ذج ا‬1!'
‫آ‬
(1 − φ1 B ) zt = δ + at
δ
zt =
(1 − φ1 )
E ( zt ) =
+ (1 − φ1 B ) at
−1
δ
−1
+ E (1 − φ1 B ) at 

(1 − φ1 ) 
1‫! ه‬2‫ف ا‬6
‫ ا‬7N 7]
‫ ا‬%
‫ا‬
 ∞ j  
−1
E (1 − φ1 B ) at  = E  ∑φ1 B j  at 


 
 j =0
∞
∑φ
j =0
j
1
B j < ∞ 48O‰
‫ ا‬4;!
‫ن ا‬13C ‫ ان‬W2 78O‰
‫ع ا‬1!!
‫ ا‬7 VB1;
‫دل ا‬9
Y;& ‫ دور‬W"2 ‫ن‬s‫ ا‬B H&"
‫ إذا ا;( ا‬f
‫ وذ‬φ1 < 1 S‫ إذا آ‬J%;2 f
‫ وذ‬4.‫ر‬J;&
‫ ان‬.X 4JJ%
‫ ا‬7N B = 1 ‫س‬J
‫ و
* ا‬B = a + ib H3K
‫ * ا‬Complex Variable W‫&آ‬
‫ أي‬B > 1 ‫ة أي‬51
‫ة ا‬8‫( رج دا‬1 − φ1 B ) = 0 ‫ر‬b+‫ور او ا‬L ‫ن‬13C ‫ ان‬W6;
1 − φ1 B = 0
B=
1
φ1
B >1⇒
1
φ1
> 1 ⇒ φ1 < 1
4B"
‫ ا‬7
‫د ا‬1" .‫ار‬J;9‫ ط ا‬1‫ا ه‬A‫وه‬
33
 ∞ j j  
−1


E (1 − φ1 B ) at = E  ∑φ1 B  at 


 
 j =0
 ∞ j 

=  ∑φ1 B j  E ( at ) 
 j =0


=0, ∀t
‫ن‬132‫و‬
E ( zt ) =
δ
(1 − φ1 )
‫او‬
µ=
δ
(1 − φ1 )
∴δ = µ (1 − φ1 )
‫ذج‬1!'
‫ ا‬4Y+ 7N δ
\21";
.‫و‬
zt = δ + φ1 zt −1 + at
= µ (1 − φ1 ) + φ1 zt −1 + at
= µ + φ1 ( zt −1 − µ ) + at
( zt − µ ) − φ1 ( zt −1 − µ ) = at
‫ أي‬VB1;
‫ ا‬A{‫ و‬zt −k − µ 7N 4J.
‫ ا‬4
‫ ا
!"د‬7N= ‫`ب‬
E ( zt −k − µ )( zt − µ )  − φ1 E ( zt −k − µ )( zt −1 − µ )  = E ( zt −k − µ ) at  , k = 0, ±1, ±2,⋯
‫أي‬
γ k − φ1γ k −1 = E ( zt −k − µ ) at  , k = 0, ±1, ±2,⋯
:72 !‫ آ‬2‫ار‬3C 4B"
‫@ ا‬A‫ ه‬H%C ‫ و‬8 e2"C & f
‫وذ‬
k = 0 : γ 0 − φ1γ 1 = E ( zt − µ ) at 
:7
;
. ‫م‬1J !2‫ف ا‬6
‫د ا‬29
34
E  at ( zt − µ )  − φ1 E  at ( zt −1 − µ )  = E ( at at )
E  at ( zt − µ )  − φ1 × ( 0 ) = σ 2
∴ E  at ( zt − µ ) = σ 2
‫إذا‬
γ 0 − φ1γ 1 = σ 2
k = 1: γ 1 − φ1γ 0 = E ( zt −1 − µ ) at  = 0
4JJ%
‫ ا‬7N
γ k − φ1γ k −1 = 0, k = 1, 2,⋯
γ 0 7 ‫ اة‬4
‫ ا
!"د‬4!J.
ρ k − φ1 ρ k −1 = 0, k = 1,2,⋯
‫أو‬
ρ k = φ1 ρ k −1 , k = 1, 2,⋯
:‫ن‬FN ρ 0 = 1 ‫! ان‬.‫و‬
ρ1 = φ1 ρ 0 = φ1
ρ 2 = φ1 ρ1 = φ12
⋮
ρ k = φ1k
4
‫ دا‬H3K. ‫أو‬
ρ k = φ1k , k = 0, ±1, ±2,⋯
‫ أي‬ρ k & WL1!
‫ ا‬K
‫ا‬+‫ن و‬s‫ & ا‬I' ‫ف‬1 ρ − k = ρ k , ∀k ‫ ن‬f
‫وذ‬
ρ k = φ1k , k = 0,1, 2,⋯
:7
;
‫ ا‬H3K
‫ ا‬O
4
‫@ ا
ا‬A‫ه‬
φ1 > 0 ‫ن‬13C &' -1
35
Autocorrelation function of AR(1) Model
0.5
0.3
0.2
0.1
0.0
0
1
2
3
4
5
6
7
8
9
10
Lag
φ1 < 0 ‫ن‬13C &' -2
Autocorrelation function of AR(1) Model
0.3
0.2
0.1
0.0
ACF
ACF
0.4
-0.1
-0.2
-0.3
-0.4
-0.5
0
1
2
3
4
5
6
7
8
9
10
Lag
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ن دا‬s‫; ا‬K
11 e2"C &
36
φ00 = 1, by definition
φ11 = ρ1 = φ1 , by definition
1
φ22 =
ρ1
1
ρ1
1 φ1
ρ1
ρ 2 φ1 φ12
0
=
=
=0
1 φ1 1 − φ12
ρ1
1
φ1 1
⋮
φkk =
1
ρ1
ρ1
1
⋮
⋮
ρ k −1 ρ k −2
1
ρ1
1
ρ1
⋮
⋮
ρ k −1 ρ k −2
⋯ ρ1
⋯ ρ2
1
φ1
φ1
1
⋯ φ1
⋯ φ12
⋯ ⋮
⋮
⋮
⋯ ρk
φ1k −1 φ1k −2
=
⋯ ρ k −1
1
φ1
⋯ ρ k −2
1
φ1
⋯
⋮
⋮
⋮
⋯ 1
φ1k −1 φ1k −2
⋯ ⋮
⋯ φ1k
⋯ φ
⋯ φ
k
1
k −1
1
⋯
⋯
=
0
>0
⋮
1
W;3‫ و‬φ1 7N .‫د اول &`و‬1&"
‫وي ا‬2 ‫د ا‬1&"
‫ا ن ا‬b+ ‫وي‬C w(
‫دة ا‬%&
:7
‫ ا
ا‬H3K
‫ ا‬7 78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫دا‬
 1, k = 0

φkk = φ1 , k = 1
 0, k ≥ 2

:7
;
‫ ا‬H3K
‫ ا‬O
‫و‬
φ1 > 0 ‫ن‬13C &' -1
Partial Autocorrelation function of AR(1) Model
0.5
PACF
0.4
0.3
0.2
0.1
0.0
0
1
2
3
4
5
6
Lag
37
7
8
9
10
φ1 < 0 ‫ن‬13C &' -2
Partial Autocorrelation function of AR(1) Model
0.0
PACF
-0.1
-0.2
-0.3
-0.4
-0.5
0
1
2
3
4
5
6
7
8
9
10
Lag
.4(
‫ل ا‬3‫ ا‬7N φ00 = 1 ‫ او‬ρ 0 = 1 & ‫) أي‬CX !8‫ دا‬:4I5&
:‫ اذج‬I
t )B V!
S.U1‫ وه‬E ( zt ) = δ (1 − φ1 ) ‫ن‬FN (‫ار‬J;9‫ )ط ا‬φ1 < 1 ‫ن‬13C &' -1
t &
‫ ا‬7 !;"CX‫ و‬wJN k e[;
4
‫ دا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ دا‬-2
&[;C‫ و‬φ1 > 0 ‫ن‬13C &' ρ1 & ‫;اءا‬.‫ إ‬5‫@ وا‬C‫ إ‬7N ‫;[& ا‬C 7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ دا‬-3
φ1 < 0 ‫ن‬13C &' 4(
‫ وا‬4(L1!
‫) ا‬J
‫ ا‬. ‫ا &;ددة‬
‫ن‬132‫ ( و‬φ00 7
‫ ا‬I'
‫ م ا‬V& ) 42b+ z ‫ة‬5‫ وا‬4!B O
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ دا‬-4
φ1 ‫وي‬2 ‫اره‬J&‫ و‬φ1 ‫ إرة‬W5 O‫ه‬C‫إ‬
: ARMA(2,0) = AR(2) 7-‫ ا‬n‫ ار‬#
‫ا‬9‫ار ا‬/7j‫ذج ا‬7 :-]
:H3K
‫ ا‬7 W;32‫و‬
φ 2 ( B ) z t = δ + θ 0 ( B ) at
(1 − φ B + φ B ) z
2
1
2
t
= δ + at
zt = δ + φ1 zt −1 + φ2 zt −2 + at , at ∼ WN ( 0, σ 2 )
:78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬7;
‫ ودا‬w1;!
‫ ا‬L1 .
‫آ‬
38
(1 − φ B − φ B ) z
2
1
zt =
2
t
= δ + at
−1
δ
+ (1 − φ1 B − φ2 B 2 ) at
(1 − φ1 − φ2 )
E ( zt ) =
−1
δ
+ E (1 − φ1 B − φ2 B 2 ) at 

(1 − φ1 − φ2 ) 
 ∞

VB1;
‫ ا‬H 73
‫ و‬E  ∑ψ j at − j  H3K
‫ ا‬78OX ‫ع‬1!& !2‫ف ا‬6
‫ ا‬7N 7]
‫ ا‬%
‫ا‬
 j =0

‫ إذا‬J%;2 ‫ا‬A‫ وه‬V.!
‫ ا‬w1;!
‫ ا‬7N 4.‫ر‬J;&
∞
∑ψ
j =0
a
j t− j
‫ن‬13C ‫ ان‬.X 78O
‫ ا‬V!;
‫ ا‬H‫دا‬
:4
;
‫وط ا‬K
‫ ا‬7C‫ا‬A
‫ار ا‬%9‫ &"
) ا‬SJJ5 ‫ إذا‬J%;2 ‫ا‬A‫وه‬
∞
∑ψ
j =0
2
j
< ∞ ‫ إذا آن‬wJN‫و‬
φ2 − φ1 < 1
φ2 + φ1 < 1
−1 < φ2 < 1
‫ر‬b+‫ور او أ‬L ‫ن‬1‫آ‬
& `2‫';_ ا‬C ‫وط‬K
‫@ ا‬A‫ار ) ه‬0j‫وط ا‬$ 7!C 7;
‫وا‬
‫ن‬FN ‫ار‬J;9‫ وط ا‬SJJ%C ‫ إذا‬. ( ‫ة‬51
‫ة ا‬8‫( رج دا‬1 − φ1 B − φ2 B 2 ) = 0
−1
−1
E (1 − φ1 B − φ2 B 2 ) at  = (1 − φ1 B − φ2 B 2 ) E ( at )  = 0, ∀t

 

‫ن‬132‫و‬
µ = E ( zt ) =
δ
(1 − φ1 − φ2 )
δ = (1 − φ1 − φ2 ) µ
‫ذج‬1!'
‫ ا‬4Y+ 7N δ
\21";
. ‫و‬
zt = (1 − φ1 − φ2 ) µ + φ1 zt −1 + φ2 zt −2 + at
= µ + φ1 ( zt −1 − µ ) + φ2 ( zt −2 − µ ) + at
( zt − µ ) − φ1 ( zt −1 − µ ) − φ2 ( zt −2 − µ ) = at
: VB1;
‫ ا‬A{‫ و‬zt −k − µ 7N 4J.
‫ ا‬4
‫`ب ا
!"د‬
39
E ( zt − µ )( zt −k − µ ) − φ1 ( zt −1 − µ )( zt −k − µ ) − φ2 ( zt −2 − µ )( zt −k − µ ) 
= E  at ( zt −k − µ )  , k = 0, ±1, ±2,...
‫أي‬
E ( zt − µ )( zt −k − µ )  − φ1 E ( zt −1 − µ )( zt −k − µ )  − φ2 E ( zt −2 − µ )( zt −k − µ ) 
= E  at ( zt −k − µ )  , k = 0, ±1, ±2,...
‫أو‬
γ k − φ1γ k −1 − φ2γ k −2 = E  at ( zt −k − µ ) , k = 0, ±1, ±2,...
:72 !‫ آ‬2‫ار‬3C 4B"
‫@ ا‬A‫ ه‬H% ‫ن‬s‫ ا‬8 e2"C & f
‫وذ‬
k = 0 : γ 0 − φ1γ −1 − φ2γ −2 = E  at ( zt − µ )  = σ 2 ⇒ γ 0 = φ1γ 1 − φ2γ 2 + σ 2
1 ‫ة‬B & f
‫وذ‬
k = 1: γ 1 − φ1γ 0 − φ2γ 1 = 0 ⇒ γ 1 = φ1γ 0 − φ2γ 1
k = 2 : γ 2 − φ1γ 1 − φ2γ 0 = 0 ⇒ γ 2 = φ1γ 1 − φ2γ 0
‫ م‬H3K.‫و‬
k ≥ 1: γ k = φ1γ k −1 + φ2γ k −2
γ 0 7 N6
‫ ا‬4!J.
ρ k = φ1 ρ k −1 + φ2 ρ k −2 , k = 1, 2,...
ρ k − φ1 ρ k −1 − φ2 ρ k −2 = 0, k = 1,2,... H3K
‫ ا‬7 4J.
‫ ا‬4
‫ ا
!"د‬VP1. :4I5& )
H5 ‫;[ام =ق‬F. Y& H3K. O5 3!2 7;
‫ وا‬4]
‫ ا‬4L‫ & ا
ر‬4B‫و‬N 4
‫ &"د‬O‫ ا‬
(7
%
‫ر ا‬J!
‫ق ا‬6 ‫ا رج‬A‫ ه‬3
‫ و‬4B‫و‬b
‫ت ا‬X‫ا
!"د‬
: ;
‫!; او‬B 7
‫;ج ا‬%C 7;
‫ وا‬42‫ار‬3;
‫ ا‬4J26
. 4J.
‫ ا‬4B"
‫ ا‬H% ‫ف‬1
1 − ρ0 = 1
2 − ρ1 = φ1 ρ0 + φ2 ρ −1 ⇒ ρ1 =
φ1
1 − φ2
O'&‫و‬
40
φ12
ρ 2 = φ1 ρ1 + φ2 ρ0 ⇒ ρ 2 =
+ φ2
1 − φ2
…r
‫ا ا‬A3‫وه‬
AR ( 2 ) 4!"
7C‫ا‬A
‫ ا‬w.‫ وال ا
;ا‬7‫ ه‬4
;
‫ل ا‬3‫ا‬
φ1 = 0.4, φ2 = 0.4 (1) H3K
‫ ا‬-1
φ1 = 1.5, φ2 = −0.8 (2) H3K
‫ ا‬-2
φ1 = 0.5, φ2 = −0.6 (3) H3K
‫ ا‬-3
(1) H3
ACF
0.7
0.6
ACF
0.5
0.4
0.3
0.2
0.1
0.0
0
10
20
Lag
(2) H3
ACF
1.0
ACF
0.5
0.0
-0.5
0
10
Lag
41
20
(3) H3
ACF
ACF
0.5
0.0
-0.5
0
10
20
Lag
:7
;
‫ آ‬AR ( 2 ) 4!"
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫; دا‬K ‫ن‬s‫ا‬
φ00 = 1, by definition
φ11 = ρ1 , by definition
1
φ22 =
ρ1
1
ρ1
φ33 =
ρ1
ρ 2 ρ 2 − ρ12
=
≠0
ρ1
1 − ρ12
1
1
ρ1
ρ1
ρ2
1
1
ρ1
ρ2
1
ρ1
1
ρ2
ρ1
ρ3 ρ 2
=
ρ2
ρ1
ρ1
1
ρ1
ρ1
ρ1
1
ρ1
ρ1 = φ1 + φ2 ρ1
ρ 2 = φ1 ρ1 + φ2
ρ3 = φ1 ρ 2 + φ2 ρ1
>0
=0
f
A‫ آ‬،7]
‫ اول وا‬2‫د‬1!"
‫ & ا‬76 W‫آ‬C 1‫ ه‬w(
‫دة ا‬%& 7N ‫د ا‬1!"
‫ ن ا‬f
‫وذ‬
42
1
ρ1
ρ1
1
⋮
⋮
φkk =
⋯ ρ1
1
⋯ ρ2
ρ1
⋯ ⋮
⋮
⋯ ρk
ρ
= k −1
⋯ ρ k −1
ρ k −1 ρ k −2
1
ρ1
1 ⋯ ρ k −2
ρ1
⋮
⋮
ρ k −1 ρ k −2
⋯
⋯
ρ1
⋯
1
⋮
⋯
⋯
⋮
⋯ ρ k = φ1 ρ k −1 + φ2 ρ k −2
= 0, k = 3, 4,...
>0
ρ k −2
ρ1 = φ1 ρ 0 + φ2 ρ1
ρ 2 = φ1 ρ1 + φ2 ρ 0
⋮
1
‫ إذا‬..
‫ ا‬W(
‫~ ا‬b'
`2‫ ا‬f
‫وذ‬
k =0
 1,
 ρ,
1

φkk =  ρ 2 − ρ12
 1− ρ2 ,
1

 0,
k =1
k =2
k ≥3
AR ( 2 ) 4!"
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وال ا
;ا‬7‫ ه‬4
;
‫ل ا‬3‫ا‬
φ1 = 0.4, φ2 = 0.4 (4) H3K
‫ ا‬-4
φ1 = 1.5, φ2 = −0.8 (5) H3K
‫ ا‬-5
φ1 = 0.5, φ2 = −0.6 (6) H3K
‫ ا‬-6
(4) H3
PACF
0.7
0.6
PACF
0.5
0.4
0.3
0.2
0.1
0.0
0
10
Lag
43
20
(5) H3
PACF
PACF
1
0
-1
0
10
20
Lag
(6) H3
PACF
0.3
0.2
PACF
0.1
0.0
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
0
10
20
Lag
: ARMA(0,1) = MA(1) ‫و‬q‫ ا‬n‫ ار‬#
‫ك‬/‫\ ا‬0‫ذج ا‬7 :$‫را‬
:H3K
‫ ا‬7 W;3C‫و‬
φ 0 ( B ) z t = δ + θ 1 ( B ) at
zt = δ + (1 − θ1 B ) at
zt = δ + at − θ1at −1 , at ∼ WN ( 0, σ 2 )
:78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬7;
‫ ودا‬w1;!
‫ ا‬L1 ‫ن‬s‫ا‬
E ( zt ) = E (δ + at − θ1at −1 ) = δ
∴µ = δ
44
‫ذج‬1!'
‫ ا‬W;3‫و‬
zt − µ = at − θ1at −1
VB1;
‫ ا‬A‫ وأ‬zt −k − µ 7N 4
‫@ ا
!"د‬A‫`ب ه‬.
E ( zt − µ )( zt −k − µ )  = E ( zt −k − µ ) at  − θ1 E ( zt −k − µ ) at −1  , k = 0, ±1, ±2,...
‫او‬
γ k = E ( zt −k − µ ) at  − θ1 E ( zt −k − µ ) at −1  , k = 0, ±1, ±2,...
2‫ار‬3C O%.‫و‬
k = 0 : γ 0 = E ( zt − µ ) at  − θ1 E ( zt − µ ) at −1 
:7Cs‫ آ‬E ( zt − µ ) at −1  ‫ و‬E ( zt − µ ) at  & H‫ آ‬L1
E ( zt − µ ) at  = E ( at at ) − θ1 E ( at −1at ) = σ 2
E ( zt − µ ) at −1  = E ( at at −1 ) − θ1 E ( at −1at −1 ) = −θ1σ 2
∴γ 0 = σ 2 − θ1 ( −θ1σ 2 ) = σ 2 (1 + θ12 )
k = 1: γ 1 = E ( zt −1 − µ ) at  − θ1 E ( zt −1 − µ ) at −1 
∴ γ 1 = −θ1σ 2 ⇒ ρ1 =
−θ1
γ1
=
γ 0 1 + θ12
1 ‫ة‬J
‫;[ام ا‬F. f
‫وذ‬
k = 2 : γ 2 = E ( zt −2 − µ ) at  − θ1 E ( zt −2 − µ ) at −1 
∴ γ 2 = 0 ⇒ ρ2 = 0
‫ن‬FN ‫ م‬H3K.‫ و‬1 ‫ة‬B & `2‫أ‬
k ≥ 2 : γ k = 0 ⇒ ρk = 0
7 7‫ ه‬MA (1) 7
‫ او‬4L‫ك & ا
ر‬%;!
‫ ا‬w1;!
‫ذج ا‬1!'
7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ن دا‬FN ‫ا‬A3‫وه‬
:H3K
‫ا‬
45
 1,
k =0

 −θ
ρk =  1 2 , k = 1
1 + θ1
 0
k≥2
:7
;
‫ ا‬H3K
‫ ا‬O
‫و‬
θ1 = 0.8 &' -1
ACF
0.0
ACF
-0.1
-0.2
-0.3
-0.4
-0.5
0
10
20
Lag
θ1 = −0.8 &' -2
ACF
0.5
ACF
0.4
0.3
0.2
0.1
0.0
0
10
Lag
46
20
MA (1) 7
‫ او‬4L‫ك & ا
ر‬%;!
‫ ا‬w1;!
‫ذج ا‬1!'
78
‫ ا‬w.‫ ا
;ا‬4
‫; دا‬K ‫ن‬s‫ا‬
φ00 = 1, by definition
φ11 = ρ1 , by definition
1
φ22 =
ρ1
1
ρ1
φ33 =
ρ1
1 ρ1
−θ12 (1 − θ12 )
ρ2
ρ1 0
− ρ12
−θ12
=
=
=
=
ρ1
1 − ρ12
1 − ρ12 1 + θ12 + θ14
1 − θ16
1
1
ρ1
ρ1
ρ2
1
1
ρ1
ρ2
ρ1
ρ1
1
ρ1
1 ρ1 ρ1
ρ1
ρ2
ρ1 1 0
−θ13 (1 − θ12 )
0 ρ1 0
ρ3
ρ13
=
=
=
1 ρ1 0 1 − 2 ρ12
ρ2
1 − θ18
ρ1
ρ1 1 ρ1
1
0 ρ1 1
‫ م‬H3K.‫و‬
1 − θ1 (
2 k +1)
, k >0
:7
;
‫ ا‬H3K
‫ ا‬O
‫و‬
θ1 = −0.8 &' &' -1
PACF
0.5
0.4
0.3
PACF
φkk =
−θ1k (1 − θ12 )
0.2
0.1
0.0
-0.1
-0.2
-0.3
0
10
Lag
47
20
θ1 = 0.8 &' -2
PACF
0.0
PACF
-0.1
-0.2
-0.3
-0.4
-0.5
0
10
20
Lag
: ARMA(0,2) = MA(2) 7-‫ ا‬n‫ ار‬#
‫ك‬/‫\ ا‬0‫ذج ا‬7 :
?
:H3K
‫ ا‬7 W;3C‫و‬
φ 0 ( B ) zt = δ + θ 2 ( B ) a t
zt = δ + (1 − θ1 B − θ 2 B 2 ) at
zt = δ + at − θ1at −1 − θ 2 at −2 , at ∼ WN ( 0,σ 2 )
:78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬7;
‫ ودا‬w1;!
‫ ا‬L1 ‫ن‬s‫ا‬
E ( zt ) = E (δ + at − θ1at −1 − θ 2 at −2 ) = δ
∴µ = δ
‫ذج‬1!'
‫ ا‬W;3‫و‬
zt − µ = at − θ1at −1 − θ 2 at −2
VB1;
‫ ا‬A‫ وأ‬zt −k − µ 7N 4
‫@ ا
!"د‬A‫`ب ه‬.
E ( zt − µ )( zt −k − µ )  = E ( zt −k − µ ) at  − θ1 E ( zt −k − µ ) at −1 
− θ 2 E ( zt −k − µ ) at −2  , k = 0, ±1, ±2,...
‫او‬
48
γ k = E ( zt −k − µ ) at  − θ1E ( zt −k − µ ) at −1  − θ 2 E ( zt −k − µ ) at −2  , k = 0, ±1, ±2,...
2‫ار‬3C O%.‫و‬
γ 0 = (1 + θ12 + θ 22 ) σ 2
γ 1 = ( −θ1 + θ1θ 2 ) σ 2
γ 2 = −θ 2σ 2
γ k = 0, k > 2
γ 0 7 4!J
.‫و‬
ρ1 =
−θ1 + θ1θ 2
1 + θ12 + θ 22
ρ2 =
−θ 2
1 + θ12 + θ 22
ρ k = 0, k > 2
4
‫ دا‬H3 7 W;3C‫و‬
1,
k =0

 −θ + θ θ
 1 2 1 22 , k = 1
 1 + θ1 + θ 2
ρk = 
 −θ 2
, k =2
1 + θ12 + θ 22

0,
k >2

MA ( 2 ) 4!"
7C‫ا‬A
‫ ا‬w.‫ وال ا
;ا‬7‫ ه‬4
;
‫ل ا‬3‫ا‬
θ1 = 0.4, θ 2 = 0.4 (7) H3K
‫ ا‬-7
θ1 = 1.5, θ 2 = −0.8 (8) H3K
‫ ا‬-8
θ1 = 0.5, θ 2 = −0.6 (9) H3K
‫ ا‬-9
49
(7) H3
ACF
0.0
ACF
-0.1
-0.2
-0.3
0
10
20
Lag
(8) H3
ACF
0.2
0.1
0.0
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
0
10
20
Lag
(9) H3
ACF
0.4
0.3
0.2
0.1
ACF
ACF
-0.1
0.0
-0.1
-0.2
-0.3
-0.4
-0.5
0
10
Lag
50
20
& ‫ك‬%;!
‫ ا‬w1;!
‫ذج ا‬1!'
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ ا‬Y& H3 ‫د‬2‫ا إ‬L W"
‫& ا‬
)J
2‫ار‬3C O!‫ ور‬O.%
‫ ب‬11 e2"C ‫ف ;[م‬1 ‫ا‬AO
‫ و‬MA ( 2 ) 4]
‫ ا‬4L‫ا
ر‬
:4
;
‫ا
!"
) ا‬
θ1 = 0.4, θ 2 = 0.4 (10) H3K
‫ا‬
-10
θ1 = 1.5, θ 2 = −0.8 (11) H3K
‫ا‬
-11
θ1 = 0.5, θ 2 = −0.6 (12) H3K
‫ا‬
-12
(10) H3
PACF
0.0
PACF
-0.1
-0.2
-0.3
0
10
20
Lag
(11) H3
PACF
0.2
0.1
0.0
PACF
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
0
10
Lag
51
20
(12) H3
PACF
0.4
0.3
0.2
PACF
0.1
0.0
-0.1
-0.2
-0.3
-0.4
-0.5
0
10
20
Lag
: ARMA(1,1) n‫ ار‬#
‫ا‬9‫ار ا‬/7j‫ا‬-‫ك‬/‫\ ا‬0‫ذج ا‬7 :0‫د‬0
:H3K
‫ ا‬W;32‫و‬
φ1 ( B ) zt = δ + θ1 ( B ) at
(1 − φ1B ) zt = δ + (1 − θ1B ) at
zt − φ1 zt −1 = δ + at − θ1at −1
zt = δ + φ1 zt −1 + at − θ1at −1 , at ∼ WN ( 0, σ 2 ) , φ1 ≠ θ1
‫&;خ‬9‫! ط ا‬2 , ‫ وه'ك ط‬θ1 < 1 ‫ب‬J9‫ وط ا‬φ1 < 1 ‫ار‬J;9‫ط ا‬
‫ذج‬1! ‫ذج إ‬1!'
‫`! م إ&;خ ا‬2 ‫ط‬K
‫ا ا‬A‫ وه‬φ1 ≠ θ1 1‫ وه‬Degeneracy Condition
4!J
.‫( و‬1 − φ1B ) zt = δ + (1 − θ1B ) at 4B"
‫! ا‬N φ1 = θ1 ‫ن‬1‫ آ‬4
5 7bN 4L‫ در‬HB‫أ‬
ARMA ( 0, 0 ) 1‫ وه‬δ ′ =
δ
1 − φ1
Q5 zt = δ ′ + at ^(2 ‫ذج‬1!'
‫( أن ا‬1 − φ1B )
:7
;
‫ آ‬w1;!
‫ ا‬L1
(1 − φ1B ) zt = δ + (1 − θ1B ) at
(1 − θ1B ) a
δ
zt =
+
t
1 − φ1 (1 − φ1 B )
δ
(1 − θ1B ) E a
E ( zt ) =
+
( t)
1 − φ1 (1 − φ1 B )
‫ا‬A3‫ وه‬φ1 < 1 ‫ ن‬f
‫وذ‬
E ( zt ) =
δ
1 − φ1
52
δ
\21";
.‫ و‬δ = µ (1 − φ1 ) ‫ أو‬E ( zt ) = µ =
δ
1 − φ1
‫أي‬
zt = µ (1 − φ1 ) + φ1 zt −1 + at − θ1at −1
( zt − µ ) − φ1 ( zt −1 − µ ) = at − θ1at −1
N6
VB1;
‫ ا‬A‫ ( وأ‬zt −k − µ ) , k = 0, ±1, ±2,... %
. 4
‫ ا
!"د‬7N= ‫`ب‬.‫و‬
E  ( zt −k − µ )( zt − µ ) − φ1 E ( zt −k − µ )( zt −1 − µ )  = E  ( zt −k − µ ) at  − θ1 E ( zt −k − µ ) at −1  ,
k = 0, ±1, ±2,...
O'&‫و‬
γ k − φ1γ k −1 = E  ( zt −k − µ ) at  − θ1E ( zt −k − µ ) at −1  , k = 0, ±1, ±2,...
2‫ار‬3C O%.‫و‬
k = 0 γ 0 − φ1γ 1 = E  ( zt − µ ) at  − θ1 E  ( zt − µ ) at −1 
4B"
‫`ب ا‬. E ( zt − µ ) at −1  ‫ و‬E ( zt − µ ) at  & H‫ن آ‬s‫ ا‬L1
( zt − µ ) − φ1 ( zt −1 − µ ) = at − θ1at −1
VB1;
‫ ا‬A‫ وأ‬at −1 ‫ و‬at & H‫ آ‬7N
E  ( zt − µ ) at  − φ1 E ( zt −1 − µ ) at  = E [ at at ] − θ1 E [ at −1at ]
1 ‫ة‬J
‫و& ا‬
E  ( zt − µ ) at  − φ1 ( 0 ) = σ 2 − θ1 ( 0 )
E  ( zt − µ ) at  = σ 2
‫و‬
E  ( zt − µ ) at −1  − φ1E  ( zt −1 − µ ) at −1  = E [at at −1 ] − θ1E [ at −1at −1 ]
E  ( zt − µ ) at −1  − φ1σ 2 = 0 − θ1σ 2
∴ E  ( zt − µ ) at −1  = σ 2 (φ1 − θ1 )
4J.
‫ ا‬4Y
‫ ا‬7N \21";
.‫و‬
k = 0 γ 0 − φ1γ 1 = σ 2 − θ1σ 2 (φ1 − θ1 )
∴γ 0 − φ1γ 1 = σ 2 1 − θ1 (φ1 − θ1 ) 
‫و‬
53
k = 1 γ 1 − φ1γ 0 = E ( zt −1 − µ ) at  − θ1 E  ( zt −1 − µ ) at −1 
∴γ 1 − φ1γ 0 = −θ1σ 2
‫و‬
k = 2 γ 2 − φ1γ 1 = E  ( zt −2 − µ ) at  − θ1 E ( zt − 2 − µ ) at −1  = 0
∴ k ≥ 2 γ k − φ1γ k −1 = 0
‫ت‬X‫و& ا
!"د‬
γ 0 − φ1γ 1 = σ 2 1 − θ1 (φ1 − θ1 )
‫و‬
γ 1 − φ1γ 0 = −θ1σ 2
γ0 =
γ1 =
1 + θ12 − 2φ1θ1 2
σ
1 − φ12
(1 − φ1θ1 )(φ1 − θ1 ) σ 2
1 − φ12
;J.
‫; ا‬B"
‫و& ا‬
ρ1 =
γ 1 (1 − φ1θ1 )(φ1 − θ1 )
=
γ0
1 + θ12 − 2φ1θ1
4B"
‫و& ا‬
γ k − φ1γ k −1 = 0, k ≥ 2
γ 0 4!J
.‫و‬
ρ k − φ1 ρ k −1 = 0, k ≥ 2
‫ و‬ρ0 = 1 4
‫) او‬J
‫;[ام ا‬F. k ≥ 2 )B V!
2‫ار‬3C 4
‫@ ا
!"د‬A‫ ه‬H5
]!N ρ1 =
ρ 2 = φ1 ρ1
ρ 2 = φ1
(1 − φ1θ1 )(φ1 − θ1 )
1 + θ12 − 2φ1θ1
ρ 3 = φ1 ρ 2
54
3!2‫و‬
(1 − φ1θ1 )(φ1 − θ1 )
1 + θ12 − 2φ1θ1
ρ 3 = φ12
(1 − φ1θ1 )(φ1 − θ1 )
1 + θ12 − 2φ1θ1
.‫ا‬A3‫وه‬
H3K
‫ ا‬ARMA (1,1) ‫ذج‬1!'
7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ دا‬W;3
1,
k =0


 (1 − φ1θ1 )(φ1 − θ1 )
, k =1
ρk = 
2
1
+
−
2
θ
φ
θ
1
1
1


φ1 ρ k −1
k≥2
φ1 = 0.9,θ1 = −0.5 )J
7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ دا‬76"2 13 H3
(13)H3
A C F o f A R M A (1 ,1 )
1 .0
0 .9
0 .8
0 .7
C1
0 .6
0 .5
0 .4
0 .3
0 .2
0 .1
0 .0
0
5
10
15
Lag
φ1 = −0.9,θ1 = −0.5 )J
7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ دا‬76"2 14 H3
(14)H3
A C F o f A R M A ( 1 ,1 )
C1
0 .5
0 .0
-0 .5
0
5
10
15
Lag
55
. ‫ أو &;دد‬5‫@ وا‬C‫ إ‬7N ‫;[& ا‬C ARMA (1,1) ‫ذج‬1!'
7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫‚ ان دا‬5
‫ &ى ان‬AR (1) ‫ذج‬1!'
7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫!& دا‬C *(KC ‫ا‬A‫ ه‬7N 7‫ وه‬4(
‫ وا‬4(L1!
‫) ا‬J
‫ا‬
( ρ k = φ1k −1 ρ1 , k ≥ 2 ‫ه أن‬. ) ρ1 & ‫(أ‬2 &[;
‫ا‬
:7
;
‫ب آ‬11 ‫ أو‬11 e2"C & W%C φkk 78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫دا‬
2‫ار‬3C φkk L1 ‫ب‬11 e2"C &
φ00 = 1, by definition
φ11 = ρ1 =
(1 − φ1θ1 )(φ1 − θ1 )
1 + θ12 − 2φ1θ1
ρ 2 − φ11 ρ1
1 − φ11 ρ1
ρ −φ ρ −φ ρ
φ33 = 3 21 2 22 1 , φ21 = φ11 − φ22φ11
1 − φ21 ρ1 − φ22 ρ 2
φ22 =
.2‫ار‬3C )J
‫ ا‬4J. W%C ‫ا‬A3‫وه‬
φ1 = 0.9,θ1 = −0.5 )J
]!N
φ11 = 0.944186 φ22 = -0.384471 φ33 = 0.183710
φ44 = -0.908462 φ55 = 0.452979 φ66 = -0.226337
φ77 = 0.113154 φ88 = -0.565702 φ99 = 0.282834
15 H3 7N )J
‫@ ا‬A‫و) ه‬
15 H3
P A C F o f A R M A (1 ,1 )
1 .0
C2
0 .5
0 .0
0
5
10
15
Lag
φ1 = −0.9,θ1 = −0.5 )J
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫( دا‬2 16 H3
56
16 H3
P A C F o f A R M A (1 ,1 )
0 .3
0 .2
0 .1
C2
0 .0
-0 .1
-0 .2
-0 .3
-0 .4
-0 .5
-0 .6
0
5
10
15
Lag
‫ أو &;دد‬5‫@ وا‬C‫ إ‬7N ‫;[& ا‬C ARMA (1,1) ‫ذج‬1!'
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫‚ ان دا‬5
MA (1) ‫ذج‬1!'
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫!& دا‬C *(KC ‫ا‬A‫ ه‬7N 7‫ وه‬4(
‫ وا‬4(L1!
‫) ا‬J
‫ ا‬.
. φ11 = ρ1 4
‫ او‬4!J
‫" ا‬. ‫(أ‬2 &[;
‫&ى ان ا‬
: ARMA(p,q) ‫ذج‬7 ‫> ?اص‬:
AR(p) ‫ذج‬7 :r‫أو‬
:7
;
. !;2‫و‬
.4(
‫ وا
;[&ات ا‬4X‫ & ا
;[&ات ا‬w & ‫ن‬13;C‫ و‬8OX ;!C 7C‫ ذا‬w.‫ا‬C 4
‫ دا‬-1
‫ أي‬k > p ‫ت‬b[;
‫) ا‬J
‫ر‬b+‫ن & أ‬13;C 78L 7C‫ ذا‬w.‫ا‬C 4
‫ دا‬-2
φ11 = φ22 = φ33 = ⋯ = φ pp ≠ 0
φ p +1, p +1 = φ p + 2, p + 2 = ⋯ = 0
. k > p e[;
‫" ا‬. 78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ دا‬7N "6B ‫ا‬A‫! ه‬2‫و‬
: MA(q) ‫ذج‬7 :7]
:7
;
. !;2‫و‬
‫ أي‬k > q ‫ت‬b[;
‫) ا‬J
‫ر‬b+‫ن & أ‬13;C 7C‫ ذا‬w.‫ا‬C 4
‫ دا‬-1
ρ1 = ρ 2 = ρ 3 = ⋯ = ρ q ≠ 0
ρ q+1,q+1 = ρ q+ 2,q +2 = ⋯ = 0
. k > q e[;
‫" ا‬. 7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ دا‬7N "6B ‫ا‬A‫! ه‬2‫و‬
57
‫‪ -2‬دا
‪C 4‬ا‪ w.‬ذا‪ 8OX ;!C 78L 7C‬و‪13;C‬ن & ‪ & w‬ا
;[&ات ا‪ 4X‬وا
;[&ات‬
‫ا
(‪.4‬‬
‫‪ ‚5X‬ا‪9‬زدوا‪1! . Duality 4L‬ذ‪ AR 7L‬و ‪.MA‬‬
‫]‪ :-‬اذج ا‪:ARMA(p,q) \:‬‬
‫و‪:7
;
. !;2‬‬
‫دوال ا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬وا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬ا
‪1!'
78‬ذج ا
![;‪ 8OX ;!C w‬و‪13;C‬ن & ‪& w‬‬
‫ا
;[&ات ا‪ 4X‬وا
;[&ات ا
(‪ 4‬ا
;‪ 7O;'C 7‬إ
ا
‪ b‬آ! زاد ا
;[‪13C &' . k e‬ن‬
‫‪FN k > q − p‬ن دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪%;C 7C‬د & ‪L‬ء ا‪%9‬ار ا
‪A‬ا‪1!'
7C‬ذج و '& ‪13C‬ن‬
‫‪FN k > p − q‬ن دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬ا
‪%;C 78‬د & ‪L‬ء ا
!;‪ w1‬ا
!;‪%‬ك '!‪1‬ذج‪.‬‬
‫‪58‬‬
‫ﺍﻟﻔﺼﻞ ﺍﻟﺜﺎﻟﺚ‬
:Nonstationar Time Series Models ‫ اة‬W ‫ت ا‬,‫ذج ا‬7
:\0‫ ا‬a ‫ار‬0j‫ م ا‬:r‫او‬
‫ار‬J;Œ
‫اول‬
‫ط‬K
‫ا‬
‫ان‬
‫ى‬
4'&‫ز‬
4;&
‫ار‬J;9
6
e2"C
&
]!N ، &
‫ل ا‬1= S.U 4;!
‫ ا‬w1;& ‫ن‬132 ‫ أن‬W6;2 E ( zt ) = µ = constant ∀t
76[
‫اف ا‬9‫ذج ا‬1!'
zt = b0 + b1t + at , at ∼ WN ( 0, σ 2 ) , b0 , b1 ∈ ( −∞, ∞ )
1‫ ه‬w1;!
‫ ان ا‬
E ( z )t = b0 + b1t
.4
%
‫@ ا‬A‫ ه‬7N J%;& z ‫ار اول‬J;9‫ اي ان ط ا‬، &
4('
. S.U z 1‫وه‬
‫ذج‬1!'
‫ ا‬2b;
‫ ا‬H& (6;. f
‫∇ وذ‬zt H21%;
‫ول ا‬%'
wt = ∇zt = zt − zt −1 = b0 + b1t + at − b0 − b1 ( t − 1) − at −1
=b1 + at − at −1 = b1 + ct
∴ wt = b1 + ct , ct ∼ WN ( 0,ν 2 )
( σ 2 ‫ و‬ν 2 . 4B"
‫ ا‬L‫ أو‬: 2!C )
wt ‫ة‬2
‫ ا‬4;!
‫ ا‬w1;& ‫ن‬s‫ا‬
E ( wt ) = b1 = constant ∀t
‫ اول‬2b;
‫ ا‬A‫ة ) أي أ‬J;!
‫ ا‬z 4;!
‫( = ∇ ا‬1 − B ) H21%;
‫( ا‬6C ‫أي ان‬
.‫ة‬J;& 4;& ‫ إ‬O
15 (4;!
7".;
‫اف ا‬9‫ذج ا‬1! , ‫آ!]ل‬
zt = b0 + b1t + b2t 2 + at , at ∼ WN ( 0, σ 2 ) , b0 , b1 , b2 ∈ ( −∞, ∞ )
w1;!
‫د ا‬2F.
E ( zt ) = b0 + b1t + b2t 2
(7]
‫ ا‬2b;
‫ ا‬A‫∇ ) أ‬2 zt H21%;
‫ ا‬A{. .J;& z ‫ذج‬1!'
‫ أي ان ا‬، &
‫";! ا‬2 1‫وه‬
59
∇ 2 zt = ∇2 ( b0 + b1t + b2t 2 + at )
(1 − 2 B + B ) z = (1 − 2 B + B )( b
2
2
0
t
+ b1t + b2t 2 + at )
wt = {b0 − 2b0 + b0 } + {b1t − 2b1 ( t − 1) + b1 ( t − 2 )} +
{b t
2
2
}
− 2b2 ( t − 1) + b2 ( t − 2 ) +
2
2
{at − 2at −1 + at −2 }
= 2b2 + {at − 2at −1 + at −2 }
=b′ + ht , ht ∼ WN ( 0,τ 2 )
‫ا‬A3‫وه‬
wt = ∇ 2 zt = b′ + ht , ht ∼ WN ( 0,τ 2 )
E ( wt ) = b′ = constant
∀t
‫ ا‬O
15 ‫ة‬J;!
‫ ا‬z 4;!
‫( ا‬7]
‫ ا‬2b;
‫ ا‬A‫∇ )أي ا‬2 H21%;
‫( ا‬6C ‫أي ان‬
.‫ة‬J;&
.( σ 2 ‫ و‬τ 2 . 4B"
‫ ا‬L‫ أو‬: 2!C )
H3K
‫ ا‬J;!
‫ ا‬z ‫ذج‬1!'
‫ م إذا آن ا‬H3K.
zt = b0 + b1t + ⋯ + bd t d + at , at ∼ WN ( 0,σ 2 ) , b0 , b1 ,⋯ , bd ∈ ( −∞, ∞ )
.J;& ‫ذج‬1! 1‫ ه‬wt = ∇d zt ‫ أي ان‬،J;& ‫ذج‬1! ‫
* إ‬1%2 ∇d zt H21%;
‫ن ا‬FN
:16 \0‫ ا‬a ‫ اة‬W zt = b0 + b1t + ⋯ + bd t d + at , at ∼ WN ( 0,σ 2 ) , b0 , b1 ,⋯ , bd ∈ ( −∞, ∞ )
.‫ إ' ة‬L/ d n‫= ر‬Y‫∇ وه ا‬d zt ./‫ا‬
:#‫ ا‬a ‫ار‬0j‫ م ا‬:ً 7]
7]
‫ط ا‬K
‫ ا‬،4'&‫ ز‬4;& ‫ار‬J;9 6 e2"C &
V ( zt ) = γ 0 = constant ∀t
. t )B V!
S.U 2(;
‫ن ا‬132 ‫ أن‬W6;2
78‫ا‬1K"
‫ ا‬7K!
‫ذج ا‬1!'
]!N
60
zt = zt −1 + at , at ∼ WN ( 0,σ 2 )
‫ر‬3;!
‫\ ا‬21";
‫ & ا‬
zt = a1 + a2 + ⋯ + at
2(;
‫ وا‬VB1;
‫ ا‬AF.‫و‬
E ( zt ) = 0 = constant ∀t
V ( zt ) = tσ 2
. t &
‫";! ا‬2 2(;
‫‚ أن ا‬5‫و‬
‫ اول‬2b;
‫ ا‬A{.
wt = ∇zt = zt − zt −1 = at
2(;
‫ وا‬VB1;
‫ ا‬AF.‫و‬
E ( wt ) = 0 = constant ∀t
V ( wt ) = σ 2 = constant ∀t
.‫ة‬J;& 4;& ‫ إ‬2(;
‫ ا‬7N ‫ة‬J;!
‫ ا‬z 4;!
‫ل ا‬15 ‫ اول‬2b;
‫إذًا ا‬
H3K
‫ ا‬Y;& (w1;&) ‫ى‬1;!
4
‫ دا‬2(;
‫ آن ا‬1
‫ م‬H3K.
V ( zt ) = cf ( µt )
Y;2 w1;& ‫ى أو‬1;& µt ‫ و‬4(
z 4!B 6"C 4N‫ &"و‬4
‫ دا‬f (⋅) ‫ و‬S.U c > 0 Q5
4
‫د دا‬2‫ أي إ‬T ( zt ) H21%C ‫د‬2‫ول إ‬% '‫";! ا
& وه‬2 2(;
‫ن ا‬FN 7
;
. ‫ ا
& و‬V&
. 2(;
‫ار ا‬J;9 T (⋅)
H21%;
‫ا‬
y t = T ( zt ) =
ztλ − 1
λ
76"2 7
;
‫ ا
ول ا‬.H21%;
‫ &") ا‬1‫ ه‬λ ∈ ( −∞, ∞ ) Q5 2(;
‫ ا‬7N ‫ة‬J;& 4;& 76"2
:O
4.J!
‫ت ا‬21%;
‫ ا‬V& λ )"!
&‫) اآ] إ;[ا‬J
‫ا‬
λ
-0.1
yt
1
zt
-0.5
0.0
0.5
1
zt
ln zt
zt
61
1.0
zt
:‫ل‬-
2(;
‫ وا‬w1;!
‫ ا‬7N ‫ة‬J;& z 4;!
(‫)ا‬H3K
‫ا‬
zt
O r ig in a l S e r ie s
400
z(t)
300
200
100
In d e x
10
20
30
40
50
60
70
80
90
yt = ln zt H21%;
‫اء ا‬LF. 2(;
‫ ا‬S(]C ". 4;!
‫)ب( ا‬H3K
‫ا‬
T r a n s f o r m e d S e r ie s
6 .0
ln z(t)
5 .5
5 .0
In d e x
10
20
30
40
50
60
70
80
90
∇yt = yt − yt −1 ‫ اول‬2b;
‫اء ا‬L‫" إ‬. yt 4
1%!
‫ ا‬4;!
‫)ج( ا‬H3K
‫ا‬
D if f e re n c e d a n d T ra n s f o rm e d S e rie s
0 .2
y(t)-y(t-1)
0 .1
0 .0
-0 .1
-0 .2
In d e x
10
20
30
40
50
60
70
80
90
. 2(;
‫ وا‬w1;!
‫ & ا‬H‫ آ‬7N ‫ة‬J;& 4;!
‫ ا‬S%(+‫ ا‬e‫‚ آ‬5X
62
Autoregressive- (p,d,q) n‫ ار‬#
‫ك‬/‫\ ا‬0‫ا‬-
)‫ا‬-‫ا‬9‫ار ا‬/7j‫ذج ا‬7
Integrated-Moving Average Models ARIMA(p,d,q)
& ‫ك‬%;& w1;&-7C‫ار ذا‬%‫ذج أ‬1! H3 wt = ∇d zt ‫ة‬J;!
‫ ا‬4;!
‫ ا‬4LA! 3!2
:7
;
‫ ( آ‬p, q ) 4L‫ا
ر‬
φ p ( B ) wt = φ p ( B ) ∇d zt = δ + θ q ( B ) at , at ∼ WN ( 0, σ 2 )
‫أو‬
φ p ( B )(1 − B ) zt = δ + θ q ( B ) at , at ∼ WN ( 0, σ 2 )
d
( p, d , q ) 4L‫ك & ا
ر‬%;!
‫ ا‬w1;!
‫ا‬-7&3;
‫ا‬-7C‫ا‬A
‫ار ا‬%9‫ذج ا‬1! !2 ‫ذج‬1!'
‫ا ا‬A‫وه‬
.‫اف‬9‫ &") ا‬δ ∈ ( −∞, ∞ ) Q5
: ( p, d , q ) 4L‫ك & ا
ر‬%;!
‫ ا‬w1;!
‫ا‬-7&3;
‫ا‬-7C‫ا‬A
‫ار ا‬%9‫ !ذج ا‬4]&‫أ‬
: ARIMA(1,1,0) =ARI(1,1) ‫( أو‬1,1) n‫ ار‬#
)‫ا‬-‫ا‬9‫ارا‬/7j‫ذج ا‬7 :r‫او‬
H3K
‫ ا‬W;32‫و‬
φ1 ( B )(1 − B ) zt = δ + θ 0 ( B ) at , at ∼ WN ( 0,σ 2 )
(1 − φ1B )(1 − B ) zt = δ + at
{1 − (φ1 + 1) B + φ1B 2 } zt = δ + at
‫أي‬
zt = δ + (φ1 + 1) zt −1 − φ1 zt −2 + at , at ∼ WN ( 0, σ 2 ) ,
φ1 < 1
(1,1) n‫ ار‬#
‫ك‬/‫\ ا‬0‫ا‬-
)‫ذج ا‬7 :7]
: ARIMA(0,1,1) = IMA(1,1) ‫أو‬
H3K
‫ ا‬W;32‫و‬
φ0 ( B )(1 − B ) zt = δ + θ1 ( B ) at , at ∼ WN ( 0, σ 2 )
(1 − B ) zt = δ + (1 − θ1B ) at ,
at ∼ WN ( 0, σ 2 ) ,
zt − zt −1 = δ + at − θ1at , at ∼ WN ( 0, σ 2 ) ,
θ1 < 1
θ1 < 1
‫أي‬
zt = δ + zt −1 + at − θ1at , at ∼ WN ( 0,σ 2 ) ,
θ1 < 1
63
‫ أو‬Random Walk with Trend Model ‫اف‬V7c$ ‫ذج ا اا‬7 :-]
: ARIMA(0,1,0)
H3K
‫ ا‬W;32‫و‬
φ0 ( B )(1 − B ) zt = δ + θ 0 ( B ) at , at ∼ WN ( 0, σ 2 )
(1 − B ) zt = δ + at ,
at ∼ WN ( 0,σ 2 )
‫أي‬
zt = δ + zt −1 + at , at ∼ WN ( 0,σ 2 )
:ARMA(p,q) ‫ذج‬7 .-‫ و‬ψ ( B ) ‫وزان‬q‫دا ا‬
H3K
‫ ا‬ARMA ( p, q ) ‫( أن آ;(' !ذج‬
φ p ( B ) zt = δ + θ q ( B ) at , at ∼ WN ( 0, σ 2 )
w1;!
‫اف ا‬%9‫ ا‬H3K. ‫أو‬
φ p ( B )( zt − µ ) = θ q ( B ) at , at ∼ WN ( 0,σ 2 )
φ p ( B ) 7C‫ا‬A
‫ار ا‬%9‫ ا‬H& 4!J
. ;
%
‫ آ; ا‬7N
zt =
δ
φ p (1)
zt − µ =
+
θq ( B )
at , at ∼ WN ( 0, σ 2 )
φp (B)
θq ( B )
at , at ∼ WN ( 0, σ 2 )
φp (B)
φ p ( B ) = 0 ‫ور‬AL ‫ ن‬f
‫ وذ‬4.‫ر‬J;& 4& H3KC
7N w1;!
‫اف ا‬%9‫ ا‬H3K. 7b;3 ‫ف‬1 ‫ا‬AO
‫و‬
θq ( B )
4('
‫ة ا‬J;!
‫‚ ان '!ذج ا‬5X
φp (B)
δ
φ p (1)
= µ `2‫ة ا‬51
‫ة ا‬8‫ رج دا‬VJC
4
;
‫;' ا‬KB'&
zt − µ =
θq ( B )
at , at ∼ WN ( 0,σ 2 )
φp ( B)
4.‫ر‬J;!
‫ ا‬4!
‫ا‬
64
ψ ( B) =
θq ( B )
φp (B)
H3K
‫ ا‬W;3C 7;
‫وا‬
ψ ( B) =
θq ( B)
= ψ 0 B 0 + ψ 1 B1 + ψ 2 B 2 + ψ 3 B 3 + ⋯ , ψ 0 = 1
φp (B)
.‫ اوزان‬4
‫! دا‬C
:17 I,$ '; ‫ ا‬ARMA ( p, q ) ‫وزان ذج‬q‫دا ا‬
ψ ( B) =
θq ( B)
= ψ 0 B 0 + ψ 1 B1 + ψ 2 B 2 + ψ 3 B 3 + ⋯ , ψ 0 = 1
φp (B)
ψ ( B) =
θq ( B) ∞
= ∑ψ j B j , ψ 0 = 1
φ p ( B ) j =0
ψ 0 = 1,ψ 1 ,ψ 2 ,ψ 3 ,⋯ ‫وزان ه‬q‫ ا‬JK
H]!C !2 zt − µ =
θq ( B )
at , at ∼ WN ( 0,σ 2 ) H3K
‫ي ا‬A
‫ذج ا‬1!'
‫ ا‬:!K,
φp ( B)
. ARMA ( p, q ) ‫ '!ذج‬78O
‫ك ا‬%;!
‫ ا‬w1;!
‫ا‬
:‫ اذج‬v ‫وزان‬q‫ ا ا‬-
‫أ‬
: AR(1) ‫وزان ذج‬q‫دا ا‬
H3K
‫ ا‬W;32 AR(1) ‫ذج‬1!
φ1 ( B )( zt − µ ) = θ 0 ( B ) at , at ∼ WN ( 0,σ 2 )
(1 − φ1B )( zt − µ ) = at
zt − µ =
1
a
(1 − φ1B ) t
z t − µ = ψ ( B ) at
Q5
ψ (B) =
1
(1 − φ1B )
65
4
;
‫ ا‬4J26
. ψ 1 ,ψ 2 ,ψ 3 ,⋯ ‫ اوزان‬L1 ‫ف‬1
ψ ( B) =
1
(1 − φ1B )
ψ ( B )(1 − φ1B ) ≡ 1
(1 + ψ B + ψ
1
2
B 2 + ψ 3 B 3 + ⋯) (1 − φ1 B ) ≡ 1
.42‫ &;و‬4B"
‫ ا‬7N= B j ‫ أي ان &"&ت‬:N3C 4B 7‫ اة ه‬4B"
‫‚ أن ا‬5X
4B"
‫ ا‬7N= B j ‫!واة &"&ت‬.‫و‬
(1 + ψ B + ψ
1
2
B 2 + ψ 3 B 3 + ⋯) (1 − φ1 B ) ≡ 1,
φ1 < 1
B 0 : (1)(1) ≡ 1
B1 : ψ 1 − φ1 ≡ 0 ⇒ ψ 1 = φ1
B 2 : ψ 2 − ψ 1φ1 ≡ 0 ⇒ ψ 2 = ψ 1φ1 = φ12
B 3 : ψ 3 − ψ 2φ1 ≡ 0 ⇒ ψ 3 = ψ 2φ1 = φ13
⋮
B j : ψ j − ψ j −1φ1 ≡ 0 ⇒ ψ j = ψ j −1φ1 = φ1j
7‫ ه‬AR(1) ‫ذج‬1!'
‫أي ان اوزان‬
ψ j = φ1j , φ1 < 1
: MA(1) ‫وزان ذج‬q‫دا ا‬
H3K
‫ ا‬W;32 MA(1) ‫ذج‬1!
φ0 ( B )( zt − µ ) = θ1 ( B ) at , at ∼ WN ( 0,σ 2 )
( zt − µ ) = (1 − θ1B ) at
z t − µ = ψ ( B ) at
Q5
ψ ( B ) = (1 − θ1B )
4B"
‫ ا‬7N= B j ‫!واة &"&ت‬.
ψ 1 = −θ1 , ψ 2 = ψ 3 = ⋯ = 0
‫أي‬
 1,

ψ j =  −θ1 ,
 0,

j=0
j =1
j≥2
66
: AR(2) ‫وزان ذج‬q‫دا ا‬
H3K
‫ ا‬W;32 AR(2) ‫ذج‬1!
φ2 ( B )( zt − µ ) = θ 0 ( B ) at , at ∼ WN ( 0, σ 2 )
(1 − φ B − φ B ) ( z − µ ) = a
2
1
zt − µ =
2
t
t
1
a
(1 − φ1B − φ2 B 2 ) t
z t − µ = ψ ( B ) at
Q5
ψ ( B) =
1
(1 − φ1B − φ2 B 2 )
4J.
‫ ا‬4J26
. ψ 1 ,ψ 2 ,ψ 3 ,⋯ ‫ اوزان‬L1 ‫و‬
ψ ( B ) (1 − φ1B − φ2 B 2 ) ≡ 1
(1 + ψ B + ψ
1
2
B 2 + ψ 3 B 3 + ⋯)(1 − φ1 B − φ2 B 2 ) ≡ 1
B1 : ψ 1 − φ1 = 0 ⇒ ψ 1 = φ1
2
B 2 : ψ 2 − φψ
1 1 − φ 2 = 0 ⇒ ψ 2 = φψ
1 1 + φ 2 = φ1 + φ2
B 3 : ψ 3 − φψ
1 2 − φ 2ψ 1 = 0 ⇒ ψ 3 = φψ
1 2 + φ2ψ 1
⋮
B j : ψ j − φψ
1 j −1 − φ2ψ j − 2 = 0 ⇒ ψ j = φψ
1 j −1 + φ 2ψ j − 2
7‫ ه‬AR(2) ‫ذج‬1!'
‫أي ان اوزان‬
 1,
φ ,
 1
ψj = 2
 φ1 + φ2 ,
φψ
1 j −1 + φ2ψ j − 2 ,
j=0
j =1
j=2
j≥3
: MA(2) ‫وزان ذج‬q‫دا ا‬
H3K
‫ ا‬W;32 MA(2) ‫ذج‬1!
φ0 ( B )( zt − µ ) = θ 2 ( B ) at , at ∼ WN ( 0, σ 2 )
( zt − µ ) = (1 − θ1B − θ 2 B 2 ) at
z t − µ = ψ ( B ) at
Q5
ψ ( B ) = (1 − θ1B − θ 2 B 2 )
67
4B"
‫ ا‬7N= B j ‫!واة &"&ت‬.
ψ 1 = −θ1 , ψ 2 = −θ 2 , ψ 3 = ψ 4 = ψ 5 ⋯ = 0
‫أي‬
j=0
 1,
 −θ ,

ψj = 1
 −θ 2 ,
 0,
j =1
j=2
j≥2
: ARMA(1,1) ‫وزان ذج‬q‫دا ا‬
H3K
‫ ا‬W;32 ARMA(1,1) ‫ذج‬1!
φ1 ( B )( zt − µ ) = θ1 ( B ) at , at ∼ WN ( 0,σ 2 )
(1 − φ1B )( zt − µ ) = (1 − θ1B ) at
(1 − θ1B ) a
zt − µ =
(1 − φ1B ) t
z t − µ = ψ ( B ) at
Q5
ψ (B) =
(1 − θ1B )
(1 − φ1B )
4J.
‫ ا‬4J26
. ψ 1 ,ψ 2 ,ψ 3 ,⋯ ‫ اوزان‬L1 ‫و‬
ψ ( B )(1 − φ1B ) ≡ (1 − θ1B )
(1 + ψ B + ψ
1
2
B 2 + ψ 3 B 3 + ⋯) (1 − φ1B ) ≡ (1 − θ1 B )
B1 : ψ 1 − φ1 = −θ1 ⇒ ψ 1 = φ1 − θ1
B 2 : ψ 2 − φψ
1 1 = 0 ⇒ ψ 2 = φψ
1 1 = φ1 (φ1 − θ1 )
2
B 3 : ψ 3 − φψ
1 2 = 0 ⇒ ψ 3 = φψ
1 2 = φ1 (φ1 − θ1 )
⋮
j −1
B j : ψ j − φψ
(φ1 − θ1 )
1 j −1 = 0 ⇒ ψ j = φψ
1 j −1 = φ1
7‫ ه‬ARMA(1,1) ‫ذج‬1!'
‫أي ان اوزان‬
j −1
ψ j = φψ
(φ1 − θ1 ) ,
1 j −1 = φ1
j ≥ 1,
φ1 < 1, φ1 ≠ θ1
68
: ARI(1) ‫وزان ذج‬q‫دا ا‬
H3K
‫ ا‬W;32 ARI(1) ‫ذج‬1!
φ1 ( B )(1 − B )( zt − µ ) = at , at ∼ WN ( 0, σ 2 )
zt − µ =
1
a
(1 − φ1B )(1 − B ) t
z t − µ = ψ ( B ) at
Q5
ψ ( B) =
1
(1 − φ1B )(1 − B )
4J.
‫ ا‬4J26
. ψ 1 ,ψ 2 ,ψ 3 ,⋯ ‫ اوزان‬L1 ‫و‬
ψ ( B )(1 − φ1B )(1 − B ) ≡ 1
(1 + ψ B + ψ
(1 + ψ B + ψ
1
2
1
2
B 2 + ψ 3B 3 + ⋯) (1 − φ1B )(1 − B ) ≡ 1
B 2 + ψ 3B 3 + ⋯) (1 − (φ1 + 1) B + φ1B 2 ) ≡ 1
B1 : ψ 1 − (φ1 + 1) = 0 ⇒ ψ 1 = φ1 + 1
B 2 : ψ 2 − (φ1 + 1)ψ 1 + φ1 = 0 ⇒ ψ 2 = (φ1 + 1)ψ 1 + φ1 = (φ1 + 1) + φ1
2
B 3 : ψ 3 − (φ1 + 1)ψ 2 + φψ
1 1 = 0 ⇒ ψ 3 = (φ1 + 1)ψ 2 − φψ
1 1
⋮
B j : ψ j − (φ1 + 1)ψ j −1 + φψ
1 j − 2 = 0 ⇒ ψ j = (φ1 + 1)ψ j −1 − φψ
1 j −2
7‫ ه‬ARI(1) ‫ذج‬1!'
‫أي ان اوزان‬
 1,
 φ + 1,
 1
ψj =
2
 (φ1 + 1) + φ1 ,
(φ1 + 1)ψ j −1 − φψ
1 j −2 ,

j=0
j =1
j=2
j≥3
L1 ‫وأا‬
ARIMA(1,0,1) ‫ أو‬Random Walk Mdel ‫وزان ذج ا اا‬q‫دا ا‬
H3K
‫ ا‬W;32‫و‬
zt = zt −1 + at , at ∼ WN ( 0,σ 2 )
‫أي‬
69
zt − zt −1 = at , at ∼ WN ( 0,σ 2 )
(1 − B ) zt = at
zt =
1
a
(1 − B ) t
Q5
ψ ( B) =
1
(1 − B )
4J.
‫ ا‬4J26
. ψ 1 ,ψ 2 ,ψ 3 ,⋯ ‫ اوزان‬L1 ‫و‬
ψ ( B )(1 − B ) ≡ 1
(1 + ψ B + ψ
1
2
B 2 + ψ 3 B 3 + ⋯) (1 − B ) ≡ 1
B1 : ψ 1 − 1 = 0 ⇒ ψ 1 = 1
B 2 :ψ 2 −ψ 1 = 0 ⇒ ψ 2 = ψ 1 = 1
B 3 :ψ 3 −ψ 2 = 0 ⇒ ψ 3 = ψ 2 = 1
⋮
B j : ψ j − ψ j −1 = 0 ⇒ ψ j = ψ j −1 = 1
7‫ ه‬ARIMA ( 0,1, 0 ) 78‫ا‬1K"
‫ ا‬7K!
‫ذج ا‬1!'
‫أي ان اوزان‬
ψ j = 1,
j ≥1
: ψ ( B ) ‫وزان‬q‫ ?اص دا ا‬v$
H3K
‫ ا‬ARMA(p,q) 4L‫ك & ا
ر‬%;!
‫ ا‬w1;!
‫ا‬-7C‫ا‬A
‫ار ا‬%9‫ذج ا‬1! '(;‫( أن آ‬
zt − µ = ψ ( B ) at , at ∼ WN ( 0,σ 2 )
H3K
‫* ا‬B"
‫@ ا‬A‫ ه‬4.;3.‫و‬
zt − µ = at + ψ 1at −1 + ψ 2at −2 + ψ 3at −3 + ⋯
∞
= ∑ψ j at − j , ψ 0 = 1
j =0
:4
;
‫ ا‬42I'
‫(ت ا‬U‫ إ‬3!2 *FN
∑
∞
ψ 2j < ∞ ‫رب اي‬J;C ‫' ان اوزان‬P;N‫وإذا ا‬
j =0
70
:1 !7
N) ‫ي‬9‫ ا وا‬ARMA(p,q) n‫ ار‬#
‫ك‬/‫\ ا‬0‫ا‬-‫ا‬9‫ار ا‬/7j‫ذج ا‬
.)‫' ا‬
∞
zt − µ = ∑ψ j at − j , at ∼ WN ( 0, σ 2 ) , ψ 0 = 1, ∑ j =0ψ 2j < ∞
∞
j =0
‫\ ه‬0‫ ا‬-1
E ( zt ) = µ , ∀t
I,$ '; ‫ا‬9‫\ ا‬$‫ دا اا‬-2
∞
ρk =
∑ψ ψ
j
j =0
j+k
∞
∑ψ 2j
, k = 0,1, 2,⋯
j =0
‫ اوزان‬4
‫ دا‬J. L‫ و‬AR(1) 4L‫ & ا
ر‬7C‫ا‬A
‫ار ا‬%9‫ذج ا‬1!'
:‫ل‬-
ψ j = φ1j , φ1 < 1
7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫دا‬
∞
ρk =
∑ψ ψ
j
j =0
∞
=
∞
∑ψ
j =0
∑φ φ
j +k
2
j
j =0
∞
j j+k
1 1
∑φ
2j
1
j =0
=
φ1k
1 − φ12
1
1 − φ12
= φ1k , k = 0,1, 2,⋯
4J.
‫ ا‬4;'
‫~ ا‬b 7‫وه‬
4
;
‫ '!ذج ا‬7C‫ا‬A
‫ ا‬w.‫ دوال ا
;ا‬L‫( أو‬2) 2 42I ‫{;[ام‬. :#
AR(2), MA(1), MA(2), ARMA(1,1), ARMA(2,1), ARMA(1,2)
71
‫ﺍﻟﻔﺼﻞ ﺍﻟﺮﺍﺑﻊ‬
‫ا‪4‬ات ذات ‪ %$
\0‬ا‪ g;:‬ا‪q‬د‪ '7‬ذج )‪ARMA(p,q‬‬
‫‪Minimum Mean Square Error Forecasts for ARMA(p,q) Models‬‬
‫ﻓﻲ ﺍﻝﻔﻘﺭﺓ ﺍﻝﺴﺎﺒﻘﺔ ﻜﺘﺒﻨﺎ ﻨﻤﻭﺫﺝ ﺍﻹﻨﺤﺩﺍﺭ ﺍﻝﺫﺍﺘﻲ‪-‬ﺍﻝﻤﺘﻭﺴﻁ ﺍﻝﻤﺘﺤﺭﻙ ﻤﻥ ﺍﻝﺩﺭﺠﺔ )‪ARMA(p,q‬‬
‫ﺍﻝﻤﺴﺘﻘﺭ ﻋﻠﻰ ﺍﻝﺸﻜل‬
‫∞‬
‫∞ < ‪zt − µ = ∑ψ j at − j , at ∼ WN ( 0, σ 2 ) , ψ 0 = 1, ∑ j =0ψ 2j‬‬
‫∞‬
‫‪j =0‬‬
‫ﺃﻭ‬
‫⋯ ‪zt − µ = at + ψ 1at −1 + ψ 2at −2 + ψ 3at −3 +‬‬
‫∞‬
‫‪= ∑ψ j at − j , ψ 0 = 1‬‬
‫‪j =0‬‬
‫ﻤﻼﺤﻅﺔ‪ :‬ﻫﺫﺍ ﻴﻨﻁﺒﻕ ﺃﻴﻀﺎ ﻋﻠﻰ ﻨﻤﺎﺫﺝ )‪ ARIMA(p,d,q‬ﺒﺸﻜل ﻋﺎﻡ‪.‬‬
‫ﻝﻤﺘﺴﻠﺴﻠﺔ ﺯﻤﻨﻴﺔ ﻤﺸﺎﻫﺩﺓ } ‪{z1 , z2 ,⋯ , zn−1 , zn‬‬
‫ﺍﻝﺘﻨﺒﺅﺍﺕ ‪zn ( ℓ ) , ℓ ≥ 1‬‬
‫ﻝﻠﻘﻴﻡ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ‬
‫‪ zn +ℓ , ℓ ≥ 1‬ﻴﻤﻜﻥ ﺍﻥ ﺘﻜﺘﺏ ﻋﻠﻰ ﺍﻝﺸﻜل‬
‫‪zn ( ℓ ) = ξ0 an + ξ1an −1 + ξ 2 an − 2 + ⋯ , ℓ ≥ 1‬‬
‫ﺍﻝﻘﻴﻡ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ ‪ zn +ℓ , ℓ ≥ 1‬ﺘﻜﺘﺏ ﺒﺩﻻﻝﺔ ﺍﻝﻨﻤﻭﺫﺝ ﻜﺎﻝﺘﺎﻝﻲ‬
‫‪zn + ℓ − µ = an + ℓ + ψ 1an + ℓ−1 + ⋯ + ψ ℓ−1an +1 + ψ ℓ an + ψ ℓ+1an −1 + ⋯ , ℓ ≥ 1‬‬
‫ﻤﺘﻭﺴﻁ ﻤﺭﺒﻊ ﺍﻝﺨﻁﺄ ﻴﻌﻁﻰ ﺒﺎﻝﻌﻼﻗﺔ )ﺃﻨﻅﺭ ﺘﻌﺭﻴﻑ ‪( 5‬‬
‫‪2‬‬
‫‪E  zn + ℓ − zn ( ℓ ) = E  an + ℓ + ψ 1an +ℓ −1 + ⋯ + ψ ℓ−1an +1 + (ψ ℓ − ξ0 ) an + (ψ ℓ+1 − ξ1 ) an −1 + ⋯‬‬
‫‪2‬‬
‫∞‬
‫‪= (1 + ψ 12 + ⋯ + ψ ℓ2−1 ) σ 2 + ∑ (ψ ℓ+ j − ξ j ) σ 2‬‬
‫‪2‬‬
‫‪j =0‬‬
‫ﻤﺘﻭﺴﻁ ﻤﺭﺒﻊ ﺍﻝﺨﻁﺄ ﺍﻷﺩﻨﻰ ﻴﻨﺘﺞ ﻤﻥ ﺘﺼﻐﻴﺭ ﺍﻝﻌﻼﻗﺔ ﺍﻝﺴﺎﺒﻘﺔ ﺒﺎﻝﻨﺴﺒﺔ ﻝﻸﻭﺯﺍﻥ ‪ ξ j‬ﻝﺠﻤﻴﻊ ﻗﻴﻡ ‪j‬‬
‫ﻭﻫﺫﺍ ﻴﻤﻜﻥ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﺤﻘﻘﺕ ﺍﻷﻭﺯﺍﻥ ‪ ξ j‬ﺍﻝﻌﻼﻗﺔ ﺍﻝﺘﺎﻝﻴﺔ‬
‫‪j = 0,1, 2,⋯ , ℓ ≥ 1‬‬
‫‪ξ j = ψ ℓ+ j ,‬‬
‫ﻭﻋﻠﻴﻪ ﻓﺈﻥ ﺍﻝﺘﻨﺒﺅﺍﺕ ﺫﺍﺕ ﻤﺘﻭﺴﻁ ﻤﺭﺒﻊ ﺍﻝﺨﻁﺄ ﺍﻷﺩﻨﻰ ‪ MMSE Forecasts‬ﺘﻌﻁﻰ ﺒﺎﻝﻌﻼﻗﺔ‬
‫‪zn ( ℓ ) = ψ ℓan + ψ ℓ +1an −1 + ψ ℓ+ 2 an −2 + ⋯ , ℓ ≥ 1‬‬
‫‪72‬‬
‫ﻨﻅﺭﻴﺔ ‪:2‬‬
‫ﺃﺨﻁﺎﺀ ﺍﻝﺘﻨﺒﺅ ﺘﻌﻁﻰ ﺒﺎﻝﻌﻼﻗﺔ‪:‬‬
‫‪en ( ℓ ) = zn + ℓ − zn ( ℓ ) = an +ℓ + ψ 1an + ℓ−1 + ψ 2 an +ℓ −2 + ⋯ + ψ ℓ−1an +1 , ℓ ≥ 1‬‬
‫ﻭﺘﺒﺎﻴﻥ ﺃﺨﻁﺎﺀ ﺍﻝﺘﻨﺒﺅ ﺘﻌﻁﻰ ﺒﺎﻝﻌﻼﻗﺔ‪:‬‬
‫‪V  en ( ℓ )  = σ 2 (1 + ψ 12 + ψ 22 + ⋯ + ψ ℓ2−1 ) , ℓ ≥ 1‬‬
‫ﺍﻝﺼﻴﻐﺔ ‪ zn ( ℓ ) = ψ ℓan + ψ ℓ+1an −1 + ψ ℓ +2an −2 + ⋯, ℓ ≥ 1‬ﻏﻴﺭ ﻋﻤﻠﻴﺔ ﻹﻴﺠﺎﺩ ﺍﻝﺘﻨﺒﺅﺍﺕ ﻝﻠﻘﻴﻡ‬
‫ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ ‪ zn +ℓ , ℓ ≥ 1‬ﻭﺫﻝﻙ ﻷﻨﻨﺎ ﻨﺤﺘﺎﺝ ﺇﻝﻰ ﻤﻌﺭﻓﺔ ﺍﻝﻘﻴﻡ } ‪. {a1 , a2 ,⋯ , an −1 , an‬‬
‫ﺘﻌﺭﻴﻑ ‪: 18‬‬
‫ﻤﺠﻤﻭﻋﺔ‬
‫ﺍﻝﻤﻌﻠﻭﻤﺎﺕ‬
‫)} ‪I ({z1 , z2 ,⋯ , zn −1 , zn‬‬
‫ﺘﻜﺎﻓﺊ‬
‫ﻤﺠﻤﻭﻋﺔ‬
‫ﺍﻝﻤﻌﻠﻭﻤﺎﺕ‬
‫)} ‪ I ({a1 , a2 ,⋯, an−1 , an‬ﻭﺫﻝﻙ ﺒﺎﻝﻤﻌﻨﻰ ﺃﻥ ﺍﻝﻤﺠﻤﻭﻋﺔ } ‪ {a1 , a2 ,⋯ , an −1 , an‬ﺘﺤﺘﻭﻯ ﻋﻠﻰ ﻨﻔﺱ‬
‫ﺍﻝﻤﻌﻠﻭﻤﺎﺕ ﻋﻥ ﺍﻝﻤﺘﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ } ‪. {z1 , z2 ,⋯ , zn−1 , zn‬‬
‫ﻤﻼﺤﻅﺔ‪ :‬ﺍﻝﻤﺘﺴﻠﺴﺔ ﺍﻝﺯﻤﻨﻴﺔ } ‪ {z1 , z2 ,⋯, zn −1 , zn‬ﻴﻤﻜﻥ ﻤﺸﺎﻫﺩﺘﻬﺎ ﻭﻗﻴﺎﺴﻬﺎ ﻭﻝﻜﻥ ﺍﻝﻤﺘﻠﺴﻠﺔ‬
‫} ‪ {a1 , a2 ,⋯ , an −1 , an‬ﻻﻴﻤﻜﻥ ﻤﺸﺎﻫﺩﺘﻬﺎ ﺃﻭ ﻗﻴﺎﺴﻬﺎ‪.‬‬
‫ﻨﻅﺭﻴﺔ ‪: 3‬‬
‫ﺍﻝﻤﺘﻨﺒﺊ ﺫﺍ ﻤﺘﻭﺴﻁ ﻤﺭﺒﻊ ﺍﻝﺨﻁﺄ ﺍﻷﺩﻨﻰ ‪ MMSE Forecasts‬ﻴﻌﻁﻰ ﺒﺎﻝﻌﻼﻗﺔ‬
‫‪zn ( ℓ ) = E ( zn + ℓ zn , zn −1 ,⋯) , ℓ ≥ 1‬‬
‫ﺃﻱ ﻫﻭ ﺍﻝﺘﻭﻗﻊ ﺍﻝﺸﺭﻁﻲ ﻝﻠﻘﻴﻤﺔ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ ‪ zn +ℓ , ℓ ≥ 1‬ﻤﻌﻁﻰ } ‪. {z1 , z2 ,⋯ , zn−1 , zn‬‬
‫ﺘﺴﺘﺨﺩﻡ ﻨﻅﺭﻴﺔ ‪ 2‬ﻋﻤﻠﻴﺎ ﻹﻴﺠﺎﺩ ﻗﻴﻡ ﺍﻝﺘﻨﺒﺅﺍﺕ ﺒﺩﻻ ﻤﻥ ﺍﻝﺼﻴﻐﺔ‬
‫‪zn ( ℓ ) = ψ ℓan + ψ ℓ +1an −1 + ψ ℓ+ 2 an −2 + ⋯ , ℓ ≥ 1‬‬
‫‪73‬‬
‫ﻭﺫﻝﻙ ﺘﺒﻌﺎ ﻝﻠﻤﻼﺤﻅﺔ ﺍﻝﺴﺎﺒﻘﺔ‪.‬‬
‫ﻗﺎﻋﺩﺓ ‪:2‬‬
‫‪a , j ≤ 0‬‬
‫‪1 − E ( an + j zn , zn −1 ,⋯) =  n + j‬‬
‫‪j>0‬‬
‫‪ 0,‬‬
‫‪j≤0‬‬
‫‪ zn + j ,‬‬
‫‪2 − E ( zn + j zn , zn −1 ,⋯) = ‬‬
‫‪ zn ( j ) , j > 0‬‬
‫ﻨﻅﺭﻴﺔ ‪ 3‬ﻤﻊ ﺍﻝﻘﺎﻋﺩﺓ ‪ 2‬ﺘﻌﻁﻲ ﻁﺭﻴﻘﺔ ﻋﻤﻠﻴﺔ ﻭﺴﻬﻠﺔ ﻹﻴﺠﺎﺩ ﺘﻨﺒﺅﺍﺕ ﻝﻠﻘﻴﻡ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ ‪zn + ℓ , ℓ ≥ 1‬‬
‫ﺘﻌﺭﻴﻑ ‪:19‬‬
‫ﺍﻝﺩﺍﻝﺔ ‪ zn ( ℓ ) , ℓ ≥ 1‬ﻜﺩﺍﻝﺔ ﻝﺯﻤﻥ ﺍﻝﺘﻘﺩﻡ ‪ ℓ ≥ 1‬ﻋﻨﺩ ﻨﻘﻁﺔ ﺍﻻﺼل ﻝﻠﺯﻤﻥ ‪ n‬ﺘﺴﻤﻰ ﺩﺍﻝﺔ ﺍﻝﺘﻨﺒﺅ‪.‬‬
‫دوال ا‪ 4‬ذج )‪: ARIMA(p,d,q‬‬
‫ﺍﻭﻻ‪ :‬ﺩﺍﻝﺔ ﺍﻝﺘﻨﺒﺅ ﻝﻨﻤﻭﺫﺝ )‪: AR(1‬‬
‫ﻝﻨﻔﺘﺭﺽ ﺍﻨﻨﺎ ﺸﺎﻫﺩﻨﺎ ﺍﻝﻤﺘﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ } ‪ {z1 , z2 ,⋯ , zn−1 , zn‬ﺤﺘﻰ ﺍﻝﺯﻤﻥ ‪ n‬ﻭﺍﻝﺘﻲ ﻨﻌﺘﻘﺩ ﺍﻨﻬﺎ‬
‫ﺘﺘﺒﻊ ﻨﻤﻭﺫﺝ )‪ AR(1‬ﻭﺍﻝﺫﻱ ﻴﻜﺘﺏ ﻋﻠﻰ ﺍﻝﺸﻜل‬
‫) ∞ ‪zt − µ = φ1 ( zt −1 − µ ) + at , at ∼ WN ( 0,σ 2 ) , φ1 < 1, µ ∈ ( −∞,‬‬
‫ﻨﺭﻴﺩ ﺃﻥ ﻨﺘﻨﺒﺄ ﻋﻥ ﺍﻝﻘﻴﻡ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ ⋯‪ zn +1 , zn+2 , zn +3 ,‬ﺃﻭ ﺒﺸﻜل ﻋﺎﻡ ‪. zn +ℓ , ℓ ≥ 1‬‬
‫ﻤﻥ ﻨﻅﺭﻴﺔ ‪ 3‬ﻨﺠﺩ‬
‫‪zn ( ℓ ) = E ( zn +ℓ zn , zn −1 ,⋯) , ℓ ≥ 1‬‬
‫‪=µ +E  φ1 ( zn + ℓ−1 − µ ) + an + ℓ  zn , zn −1 ,⋯ , ℓ ≥ 1‬‬
‫‪=µ +E φ1 ( zn + ℓ−1 − µ ) zn , zn −1 ,⋯ + an + ℓ zn , zn −1 ,⋯ , ℓ ≥ 1‬‬
‫‪= µ +φ1E  ( zn + ℓ−1 zn , zn −1 ,⋯) − µ  + E  an + ℓ zn , zn −1 ,⋯ , ℓ ≥ 1‬‬
‫ﺃﻱ‬
‫‪74‬‬
‫‪zn ( ℓ ) = µ +φ1E  ( zn + ℓ−1 zn , zn −1 ,⋯) − µ  + E  an + ℓ zn , zn −1 ,⋯ , ℓ ≥ 1‬‬
‫ﻨﺤل ﻫﺫﻩ ﺍﻝﻌﻼﻗﺔ ﺘﻜﺭﺍﺭﻴﺎ ﻭﺒﺈﺴﺘﺨﺩﺍﻡ ﺍﻝﻘﺎﻋﺩﺓ ‪2‬‬
‫‪ℓ = 1: zn (1) = µ +φ1E  ( zn zn , zn −1 ,⋯) − µ  + E  an +1 zn , zn −1 ,⋯‬‬
‫) ‪= µ +φ1 ( zn − µ‬‬
‫‪ℓ = 2 : zn ( 2 ) = µ +φ1E  ( zn +1 zn , zn −1 ,⋯) − µ  + E  an + 2 zn , zn −1 ,⋯‬‬
‫‪= µ +φ1  zn (1) − µ ‬‬
‫‪ℓ = 3 : zn ( 3) = µ +φ1E ( zn + 2 zn , zn −1 ,⋯) − µ  + E  an +3 zn , zn −1 ,⋯‬‬
‫‪= µ +φ1  zn ( 2 ) − µ ‬‬
‫ﻭﻫﻜﺫﺍ ﺒﺸﻜل ﻋﺎﻡ‬
‫‪zn ( ℓ ) = µ +φ1  zn ( ℓ − 1) − µ  , ℓ ≥ 1‬‬
‫ﻭﻫﻲ ﺩﺍﻝﺔ ﺍﻝﺘﻨﺒﺅ ﺫﺍﺕ ﻤﺘﻭﺴﻁ ﻤﺭﺒﻊ ﺍﻷﺨﻁﺎﺀ ﺍﻷﺩﻨﻰ ﻝﻨﻤﻭﺫﺝ )‪AR(1‬‬
‫ﺘﻌﺭﻴﻑ ‪:20‬‬
‫ﺸﺭﻁ ﺍﻹﺴﺘﻤﺭﺍﺭ ‪ Continuity Condition‬ﻴﺘﻁﻠﺏ ﺃﻨﻪ ﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ ‪ ℓ = 1‬ﻓﺈﻥ‬
‫‪zn ( ℓ − 1) = zn ( 0 ) = zn‬‬
‫ﻤﻥ ﻨﻅﺭﻴﺔ ‪ 2‬ﺘﺒﺎﻴﻥ ﺃﺨﻁﺎﺀ ﺍﻝﺘﻨﺒﺅ ﺘﻌﻁﻰ ﻤﻥ ﺍﻝﻌﻼﻗﺔ‬
‫‪V  en ( ℓ )  = σ 2 (1 + ψ 12 + ψ 22 + ⋯ + ψ ℓ2−1 ) , ℓ ≥ 1‬‬
‫ﺴﺒﻕ ﺃﻥ ﺍﺸﺘﻘﻘﻨﺎ ﺩﺍﻝﺔ ﺍﻷﻭﺯﺍﻥ ﻝﻨﻤﻭﺫﺝ )‪ AR(1‬ﻭﻫﻲ‬
‫‪ψ j = φ1j , φ1 < 1‬‬
‫ﻭﺒﺎﻝﺘﻌﻭﻴﺽ ﻓﻲ ﺼﻴﻐﺔ ﺍﻝﺘﺒﺎﻴﻥ ﻨﺠﺩ‬
‫‪), ℓ ≥1‬‬
‫(‬
‫( ‪V  en ( ℓ )  = σ 2 1 + φ12 + φ14 + ⋯ + φ1‬‬
‫)‪2 ℓ −1‬‬
‫‪1 − φ12 ℓ‬‬
‫‪, ℓ ≥1‬‬
‫‪1 − φ12‬‬
‫ﻤﺜﺎل‪ :‬ﻤﺘﺴﻠﺴﻠﺔ ﺯﻤﻨﻴﺔ ﻤﺸﺎﻫﺩﻩ ﻭﺠﺩ ﺍﻨﻬﺎ ﺘﺘﺒﻊ ﺍﻝﻨﻤﻭﺫﺝ‬
‫‪75‬‬
‫‪=σ2‬‬
‫) ‪zt − 0.97 = 0.85 ( zt −1 − 0.97 ) + at , at ∼ WN ( 0, 0.024‬‬
‫ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻝﻤﺸﺎﻫﺩﺓ ﺍﻷﺨﻴﺭﺓ ﻫﻲ ‪ ، z156 = 0.49‬ﺃﻭﺠﺩ ﺘﻨﺒﺅﺍﺕ ﻝﻠﻘﻴﻡ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ ‪z157 , z158 , z159‬‬
‫ﻭﺃﻭﺠﺩ ﺃﺨﻁﺎﺀ ﺍﻝﺘﻨﺒﺅ ﻝﻬﺎ‪.‬‬
‫ﺍﻝﺤل‪ :‬ﻤﻥ ﺍﻝﺼﻴﻐﺔ ‪ zn ( ℓ ) = µ +φ1  zn ( ℓ − 1) − µ  , ℓ ≥ 1‬ﻨﺠﺩ‬
‫) ‪z156 (1) = 0.97+0.85 ( z156 − 0.97‬‬
‫‪= 0.97+0.85 ( 0.49 − 0.97 ) = 0.56‬‬
‫) ‪z156 ( 2 ) = 0.97+0.85 ( z156 (1) − 0.97‬‬
‫‪= 0.97+0.85 ( 0.56 − 0.97 ) = 0.62‬‬
‫) ‪z156 ( 3) = 0.97+0.85 ( z156 ( 2 ) − 0.97‬‬
‫‪= 0.97+0.85 ( 0.62 − 0.97 ) = 0.68‬‬
‫ﻭﺍﻝﺘﺒﺎﻴﻨﺎﺕ‬
‫‪1 − φ12 ℓ‬‬
‫‪, ℓ ≥1‬‬
‫‪1 − φ12‬‬
‫‪V  en ( ℓ )  = σ 2‬‬
‫‪V  e156 (1) = 0.024‬‬
‫‪4‬‬
‫‪= 0.041‬‬
‫‪= 0.054‬‬
‫)‪1 − ( 0.85‬‬
‫‪2‬‬
‫)‪1 − ( 0.85‬‬
‫‪6‬‬
‫)‪1 − ( 0.85‬‬
‫‪2‬‬
‫)‪1 − ( 0.85‬‬
‫‪V  e156 ( 2 )  = 0.024‬‬
‫‪V  e156 ( 2 )  = 0.024‬‬
‫ﺜﺎﻨﻴﺎ‪ :‬ﺩﺍﻝﺔ ﺍﻝﺘﻨﺒﺅ ﻝﻨﻤﻭﺫﺝ )‪: AR(2‬‬
‫ﻝﻨﻔﺘﺭﺽ ﺍﻨﻨﺎ ﺸﺎﻫﺩﻨﺎ ﺍﻝﻤﺘﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ } ‪ {z1 , z2 ,⋯ , zn−1 , zn‬ﺤﺘﻰ ﺍﻝﺯﻤﻥ ‪ n‬ﻭﺍﻝﺘﻲ ﻨﻌﺘﻘﺩ ﺍﻨﻬﺎ‬
‫ﺘﺘﺒﻊ ﻨﻤﻭﺫﺝ )‪ AR(2‬ﻭﺍﻝﺫﻱ ﻴﻜﺘﺏ ﻋﻠﻰ ﺍﻝﺸﻜل‬
‫‪zt = µ + φ1 ( zt −1 − µ ) + φ2 ( zt −2 − µ ) + at , at ∼ WN ( 0,σ 2 ) , µ ∈ ( −∞, ∞ ) ,‬‬
‫‪φ2 − φ1 < 1, φ2 + φ1 < 1, φ2 < 1‬‬
‫ﻨﺭﻴﺩ ﺃﻥ ﻨﺘﻨﺒﺄ ﻋﻥ ﺍﻝﻘﻴﻡ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ ⋯‪ zn +1 , zn+2 , zn +3 ,‬ﺃﻭ ﺒﺸﻜل ﻋﺎﻡ ‪. zn +ℓ , ℓ ≥ 1‬‬
‫ﻤﻥ ﻨﻅﺭﻴﺔ ‪ 3‬ﻨﺠﺩ‬
‫‪zn ( ℓ ) = E ( zn + ℓ zn , zn −1 ,⋯) , ℓ ≥ 1‬‬
‫‪=µ +E  φ1 ( zn + ℓ−1 − µ ) + φ2 ( zn + ℓ− 2 − µ ) + an + ℓ  zn , zn −1 ,⋯ , ℓ ≥ 1‬‬
‫‪76‬‬
=µ +E φ1 ( zn + ℓ−1 − µ ) zn , zn −1 ,⋯ + φ2 ( zn + ℓ−2 − µ ) zn , zn −1 ,⋯ + an + ℓ zn , zn −1 ,⋯ , ℓ ≥ 1
= µ +φ1E ( zn + ℓ−1 zn , zn −1 ,⋯) − µ  + φ2 E  ( zn +ℓ −2 zn , zn −1 ,⋯) − µ  + E  an + ℓ zn , zn −1 ,⋯ , ℓ ≥ 1
‫ﺃﻱ‬
zn ( ℓ ) = µ +φ1E ( zn + ℓ−1 zn , zn −1 ,⋯) − µ  + φ2 E  ( zn + ℓ−2 zn , zn −1 ,⋯) − µ  + E  an +ℓ zn , zn −1 ,⋯ , ℓ ≥ 1
2 ‫ﻨﺤل ﻫﺫﻩ ﺍﻝﻌﻼﻗﺔ ﺘﻜﺭﺍﺭﻴﺎ ﻭﺒﺈﺴﺘﺨﺩﺍﻡ ﺍﻝﻘﺎﻋﺩﺓ‬
ℓ = 1: zn (1) = µ +φ1E ( zn zn , zn −1 ,⋯) − µ  + φ2 E  ( zn −1 zn , zn −1 ,⋯) − µ  + E  an +1 zn , zn −1 ,⋯
= µ +φ1 ( zn − µ ) + φ2 ( zn −1 − µ )
ℓ = 2 : zn ( 2 ) = µ +φ1E  ( zn +1 zn , zn −1 ,⋯) − µ  + φ2 E  ( zn zn , zn −1 ,⋯) − µ  + E  an +2 zn , zn −1 ,⋯
= µ +φ1  zn (1) − µ  + φ2 ( zn − µ )
ℓ = 3 : zn ( 3) = µ +φ1E  ( zn + 2 zn , zn −1 ,⋯) − µ  + φ2 E  ( zn +1 zn , zn −1 ,⋯) − µ  + E  an +3 zn , zn −1 ,⋯
= µ +φ1  zn ( 2 ) − µ  +φ2  zn (1) − µ 
ℓ = 4 : zn ( 4 ) = µ +φ1E  ( zn +3 zn , zn −1 ,⋯) − µ  + φ2 E  ( zn + 2 zn , zn −1 ,⋯) − µ  + E  an + 4 zn , zn −1 ,⋯
= µ +φ1  zn ( 3) − µ  +φ2  zn ( 2 ) − µ 
‫ﻭﻫﻜﺫﺍ ﺒﺸﻜل ﻋﺎﻡ‬
zn ( ℓ ) = µ +φ1  zn ( ℓ − 1) − µ  + φ2  zn ( ℓ − 2 ) − µ  , ℓ ≥ 1
AR(2) ‫ﻭﻫﻲ ﺩﺍﻝﺔ ﺍﻝﺘﻨﺒﺅ ﺫﺍﺕ ﻤﺘﻭﺴﻁ ﻤﺭﺒﻊ ﺍﻷﺨﻁﺎﺀ ﺍﻷﺩﻨﻰ ﻝﻨﻤﻭﺫﺝ‬
‫ ﻭﺩﺍﻝﺔ ﺍﻷﻭﺯﺍﻥ‬2 ‫ﻭﻴﻤﻜﻥ ﺤﺴﺎﺏ ﺘﺒﺎﻴﻨﺎﺕ ﺃﺨﻁﺎﺀ ﺍﻝﺘﻨﺒﺅ ﻤﻥ ﻨﻅﺭﻴﺔ‬
 1,
φ ,
 1
ψj = 2
 φ1 + φ2 ,
φψ
1 j −1 + φ2ψ j − 2 ,
j=0
j =1
j=2
j≥3
: ARIMA(0,1,1) ‫ ﺩﺍﻝﺔ ﺍﻝﺘﻨﺒﺅ ﻝﻨﻤﻭﺫﺝ‬:‫ﺜﺎﻝﺜﺎ‬
‫ ﻭﺍﻝﺘﻲ ﻨﻌﺘﻘﺩ ﺍﻨﻬﺎ‬n ‫{ ﺤﺘﻰ ﺍﻝﺯﻤﻥ‬z1 , z2 ,⋯ , zn−1 , zn } ‫ﻝﻨﻔﺘﺭﺽ ﺍﻨﻨﺎ ﺸﺎﻫﺩﻨﺎ ﺍﻝﻤﺘﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ‬
‫ ﻭﺍﻝﺫﻱ ﻴﻜﺘﺏ ﻋﻠﻰ ﺍﻝﺸﻜل‬ARIMA(0,1,1) ‫ﺘﺘﺒﻊ ﻨﻤﻭﺫﺝ‬
zt = zt −1 + at − θ1at −1 , at ∼ WN ( 0, σ 2 )
77
‫ﻨﺭﻴﺩ ﺃﻥ ﻨﺘﻨﺒﺄ ﻋﻥ ﺍﻝﻘﻴﻡ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ ⋯‪ zn +1 , zn+2 , zn +3 ,‬ﺃﻭ ﺒﺸﻜل ﻋﺎﻡ ‪. zn +ℓ , ℓ ≥ 1‬‬
‫ﻤﻥ ﻨﻅﺭﻴﺔ ‪ 3‬ﻨﺠﺩ‬
‫‪zn ( ℓ ) = E ( zn + ℓ zn , zn −1 ,⋯) , ℓ ≥ 1‬‬
‫‪=E ( zn + ℓ−1 zn , zn −1 ,⋯) + E ( an + ℓ zn , zn −1 ,⋯) − θ1E ( an + ℓ−1 zn , zn −1 ,⋯) , ℓ ≥ 1‬‬
‫ﻨﺤل ﻫﺫﻩ ﺍﻝﻌﻼﻗﺔ ﺘﻜﺭﺍﺭﻴﺎ ﻭﺒﺈﺴﺘﺨﺩﺍﻡ ﺍﻝﻘﺎﻋﺩﺓ ‪2‬‬
‫‪zn ( ℓ ) =E ( zn + ℓ−1 zn , zn −1 ,⋯) + E ( an +ℓ zn , zn −1 ,⋯) − θ1E ( an + ℓ−1 zn , zn −1 ,⋯) , ℓ ≥ 1‬‬
‫)⋯‪ℓ = 1: zn (1) =E ( zn zn , zn −1 ,⋯) + E ( an +1 zn , zn −1 ,⋯) − θ1 E ( an zn , zn −1 ,‬‬
‫‪= zn − θ1an‬‬
‫)⋯‪ℓ = 2 : zn ( 2 ) =E ( zn +1 zn , zn −1 ,⋯) + E ( an +2 zn , zn −1 ,⋯) − θ1 E ( an +1 zn , zn −1 ,‬‬
‫)‪= zn (1‬‬
‫)⋯‪ℓ = 3 : zn ( 3) =E ( zn +2 zn , zn −1 ,⋯) + E ( an +3 zn , zn −1 ,⋯) − θ1E ( an +1 zn , zn −1 ,‬‬
‫) ‪= zn ( 2‬‬
‫ﻭﻫﻜﺫﺍ ﺒﺸﻜل ﻋﺎﻡ‬
‫‪zn ( ℓ ) = zn ( ℓ − 1) , ℓ ≥ 2‬‬
‫ﻭﻫﻜﺫﺍ ﻓﺈﻥ ﺩﺍﻝﺔ ﺍﻝﺘﻨﺒﺅ ﺫﺍﺕ ﻤﺘﻭﺴﻁ ﻤﺭﺒﻊ ﺍﻷﺨﻁﺎﺀ ﺍﻷﺩﻨﻰ ﻝﻨﻤﻭﺫﺝ )‪ ARIMA(0,1,1‬ﺘﻌﻁﻰ‬
‫ﺒﺎﻝﻌﻼﻗﺔ‬
‫‪ zn − θ1an , ℓ = 1‬‬
‫‪zn ( ℓ ) = ‬‬
‫‪ zn ( ℓ − 1) , ℓ > 1‬‬
‫ﺭﺍﺒﻌﺎ ‪ :‬ﺩﺍﻝﺔ ﺍﻝﺘﻨﺒﺅ ﻝﻨﻤﻭﺫﺝ )‪: MA(1‬‬
‫ﻝﻨﻔﺘﺭﺽ ﺍﻨﻨﺎ ﺸﺎﻫﺩﻨﺎ ﺍﻝﻤﺘﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ } ‪ {z1 , z2 ,⋯ , zn−1 , zn‬ﺤﺘﻰ ﺍﻝﺯﻤﻥ ‪ n‬ﻭﺍﻝﺘﻲ ﻨﻌﺘﻘﺩ ﺍﻨﻬﺎ‬
‫ﺘﺘﺒﻊ ﻨﻤﻭﺫﺝ )‪ MA(1‬ﻭﺍﻝﺫﻱ ﻴﻜﺘﺏ ﻋﻠﻰ ﺍﻝﺸﻜل‬
‫) ‪zt = µ + at − θ1at −1 , at ∼ WN ( 0, σ 2‬‬
‫ﻨﺭﻴﺩ ﺃﻥ ﻨﺘﻨﺒﺄ ﻋﻥ ﺍﻝﻘﻴﻡ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ ⋯‪ zn +1 , zn+2 , zn +3 ,‬ﺃﻭ ﺒﺸﻜل ﻋﺎﻡ ‪. zn +ℓ , ℓ ≥ 1‬‬
‫ﻤﻥ ﻨﻅﺭﻴﺔ ‪ 3‬ﻨﺠﺩ‬
‫‪zn ( ℓ ) = E ( zn + ℓ zn , zn −1 ,⋯) , ℓ ≥ 1‬‬
‫‪=µ + E ( an + ℓ zn , zn −1 ,⋯) − θ1 E ( an + ℓ−1 zn , zn −1 ,⋯) , ℓ ≥ 1‬‬
‫ﻨﺤل ﻫﺫﻩ ﺍﻝﻌﻼﻗﺔ ﺘﻜﺭﺍﺭﻴﺎ ﻭﺒﺈﺴﺘﺨﺩﺍﻡ ﺍﻝﻘﺎﻋﺩﺓ ‪2‬‬
‫‪78‬‬
zn ( ℓ ) =µ + E ( an + ℓ zn , zn −1 ,⋯) − θ1E ( an + ℓ−1 zn , zn −1 ,⋯) , ℓ ≥ 1
ℓ = 1: zn (1) =µ + E ( an +1 zn , zn −1 ,⋯) − θ1 E ( an zn , zn −1 ,⋯)
= µ − θ1an
ℓ = 2 : zn ( 2 ) =µ + E ( an + 2 zn , zn −1 ,⋯) − θ1 E ( an +1 zn , zn −1 ,⋯)
=µ
ℓ = 3 : zn ( 3) =µ + E ( an +3 zn , zn −1 ,⋯) − θ1 E ( an + 2 zn , zn −1 ,⋯)
=µ
‫ﻭﻫﻜﺫﺍ ﺒﺸﻜل ﻋﺎﻡ‬
zn ( ℓ ) = µ , ℓ ≥ 2
‫ ﺘﻌﻁﻰ ﺒﺎﻝﻌﻼﻗﺔ‬MA(1) ‫ﻭﻫﻜﺫﺍ ﻓﺈﻥ ﺩﺍﻝﺔ ﺍﻝﺘﻨﺒﺅ ﺫﺍﺕ ﻤﺘﻭﺴﻁ ﻤﺭﺒﻊ ﺍﻷﺨﻁﺎﺀ ﺍﻷﺩﻨﻰ ﻝﻨﻤﻭﺫﺝ‬
 µ − θ1an , ℓ = 1
zn ( ℓ ) = 
ℓ≥2
 µ,
: MA(2) ‫ ﺩﺍﻝﺔ ﺍﻝﺘﻨﺒﺅ ﻝﻨﻤﻭﺫﺝ‬: ‫ﺨﺎﻤﺴﺎ‬
‫ ﻭﺍﻝﺘﻲ ﻨﻌﺘﻘﺩ ﺍﻨﻬﺎ‬n ‫{ ﺤﺘﻰ ﺍﻝﺯﻤﻥ‬z1 , z2 ,⋯ , zn−1 , zn } ‫ﻝﻨﻔﺘﺭﺽ ﺍﻨﻨﺎ ﺸﺎﻫﺩﻨﺎ ﺍﻝﻤﺘﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ‬
‫ ﻭﺍﻝﺫﻱ ﻴﻜﺘﺏ ﻋﻠﻰ ﺍﻝﺸﻜل‬MA(2) ‫ﺘﺘﺒﻊ ﻨﻤﻭﺫﺝ‬
zt = µ + at − θ1at −1 − θ 2 at −2 , at ∼ WN ( 0,σ 2 )
. zn +ℓ , ℓ ≥ 1 ‫ ﺃﻭ ﺒﺸﻜل ﻋﺎﻡ‬zn +1 , zn+2 , zn +3 ,⋯ ‫ﻨﺭﻴﺩ ﺃﻥ ﻨﺘﻨﺒﺄ ﻋﻥ ﺍﻝﻘﻴﻡ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ‬
‫ ﻨﺠﺩ‬3 ‫ﻤﻥ ﻨﻅﺭﻴﺔ‬
zn ( ℓ ) = E ( zn +ℓ zn , zn −1 ,⋯) , ℓ ≥ 1
=µ + E ( an + ℓ zn , zn −1 ,⋯) − θ1 E ( an +ℓ −1 zn , zn −1 ,⋯) − θ 2 E ( an +ℓ −2 zn , zn −1 ,⋯) , ℓ ≥ 1
2 ‫ﻨﺤل ﻫﺫﻩ ﺍﻝﻌﻼﻗﺔ ﺘﻜﺭﺍﺭﻴﺎ ﻭﺒﺈﺴﺘﺨﺩﺍﻡ ﺍﻝﻘﺎﻋﺩﺓ‬
zn ( ℓ ) =µ + E ( an + ℓ zn , zn −1 ,⋯) − θ1 E ( an + ℓ−1 zn , zn −1 ,⋯) − θ 2 E ( an + ℓ−2 zn , zn −1 ,⋯) , ℓ ≥ 1
ℓ = 1: zn (1) =µ + E ( an +1 zn , zn −1 ,⋯) − θ1 E ( an zn , zn −1 ,⋯) − θ 2 E ( an −1 zn , zn −1 ,⋯)
= µ − θ1an − θ 2 an −1
ℓ = 2 : zn ( 2 ) =µ + E ( an +2 zn , zn −1 ,⋯) − θ1E ( an +1 zn , zn −1 ,⋯) − θ 2 E ( an zn , zn −1 ,⋯)
= µ − θ 2 an
ℓ = 3 : zn ( 3) =µ + E ( an +3 zn , zn −1 ,⋯) − θ1E ( an + 2 zn , zn −1 ,⋯) − θ 2 E ( an +1 zn , zn −1 ,⋯)
=µ
‫ﻭﻫﻜﺫﺍ ﺒﺸﻜل ﻋﺎﻡ‬
79
zn ( ℓ ) = µ , ℓ ≥ 3
‫ ﺘﻌﻁﻰ ﺒﺎﻝﻌﻼﻗﺔ‬MA(2) ‫ﻭﻫﻜﺫﺍ ﻓﺈﻥ ﺩﺍﻝﺔ ﺍﻝﺘﻨﺒﺅ ﺫﺍﺕ ﻤﺘﻭﺴﻁ ﻤﺭﺒﻊ ﺍﻷﺨﻁﺎﺀ ﺍﻷﺩﻨﻰ ﻝﻨﻤﻭﺫﺝ‬
 µ − θ1an − θ 2 an −1 , ℓ = 1

z n ( ℓ ) =  µ − θ 2 an ,
ℓ=2
 µ,
ℓ≥3

: ARMA(1,1) ‫ ﺩﺍﻝﺔ ﺍﻝﺘﻨﺒﺅ ﻝﻨﻤﻭﺫﺝ‬: ‫ﺴﺎﺩﺴﺎ‬
‫ ﻭﺍﻝﺘﻲ ﻨﻌﺘﻘﺩ ﺍﻨﻬﺎ‬n ‫{ ﺤﺘﻰ ﺍﻝﺯﻤﻥ‬z1 , z2 ,⋯ , zn−1 , zn } ‫ﻝﻨﻔﺘﺭﺽ ﺍﻨﻨﺎ ﺸﺎﻫﺩﻨﺎ ﺍﻝﻤﺘﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ‬
‫ ﻭﺍﻝﺫﻱ ﻴﻜﺘﺏ ﻋﻠﻰ ﺍﻝﺸﻜل‬ARMA(1,1) ‫ﺘﺘﺒﻊ ﻨﻤﻭﺫﺝ‬
zt = µ + φ1 ( zt −1 − µ ) + at − θ1at −1 , at ∼ WN ( 0,σ 2 ) , φ1 ≠ θ1 , φ1 < 1
. zn +ℓ , ℓ ≥ 1 ‫ ﺃﻭ ﺒﺸﻜل ﻋﺎﻡ‬zn +1 , zn+2 , zn +3 ,⋯ ‫ﻨﺭﻴﺩ ﺃﻥ ﻨﺘﻨﺒﺄ ﻋﻥ ﺍﻝﻘﻴﻡ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ‬
‫ ﻨﺠﺩ‬3 ‫ﻤﻥ ﻨﻅﺭﻴﺔ‬
zn ( ℓ ) = E ( zn +ℓ zn , zn −1 ,⋯) , ℓ ≥ 1
=µ + φ1 E  ( zn + ℓ−1 − µ ) zn , zn −1 ,⋯ + E ( an +ℓ zn , zn −1 ,⋯) − θ1E ( an + ℓ−1 zn , zn −1 ,⋯) , ℓ ≥ 1
2 ‫ﻨﺤل ﻫﺫﻩ ﺍﻝﻌﻼﻗﺔ ﺘﻜﺭﺍﺭﻴﺎ ﻭﺒﺈﺴﺘﺨﺩﺍﻡ ﺍﻝﻘﺎﻋﺩﺓ‬
zn ( ℓ ) =µ + φ1 E  ( zn + ℓ−1 − µ ) zn , zn −1 ,⋯ + E ( an + ℓ zn , zn −1 ,⋯) − θ1 E ( an +ℓ −1 zn , zn −1 ,⋯) , ℓ ≥ 1
ℓ = 1: zn (1) =µ + φ1 E  ( zn − µ ) zn , zn −1 ,⋯ + E ( an +1 zn , zn −1 ,⋯) − θ1E ( an zn , zn −1 ,⋯)
= µ + φ1 ( zn − µ ) − θ1an
ℓ = 2 : zn ( 2 ) =µ + φ1E  ( zn +1 − µ ) zn , zn −1 ,⋯ + E ( an + 2 zn , zn −1 ,⋯) − θ1 E ( an +1 zn , zn −1 ,⋯)
= µ + φ1  zn (1) − µ 
ℓ = 3 : zn ( 3) =µ + φ1 E ( zn + 2 − µ ) zn , zn −1 ,⋯ + E ( an +3 zn , zn −1 ,⋯) − θ1E ( an + 2 zn , zn −1 ,⋯)
= µ + φ1  zn ( 2 ) − µ 
‫ﻭﻫﻜﺫﺍ ﺒﺸﻜل ﻋﺎﻡ‬
zn ( ℓ ) = µ + φ1  zn ( ℓ − 1) − µ  , ℓ ≥ 2
‫ ﺘﻌﻁﻰ‬ARMA(1,1) ‫ﻭﻫﻜﺫﺍ ﻓﺈﻥ ﺩﺍﻝﺔ ﺍﻝﺘﻨﺒﺅ ﺫﺍﺕ ﻤﺘﻭﺴﻁ ﻤﺭﺒﻊ ﺍﻷﺨﻁﺎﺀ ﺍﻷﺩﻨﻰ ﻝﻨﻤﻭﺫﺝ‬
‫ﺒﺎﻝﻌﻼﻗﺔ‬
 µ + φ1 ( zn − µ ) − θ1an ,
zn ( ℓ ) = 
 µ + φ1  zn ( ℓ − 1) − µ  ,
ℓ =1
ℓ≥2
80
‫ﺘﻤﺭﻴﻥ‪:‬‬
‫ﻝﻨﻤﻭﺫﺝ )‪ ARMA(1,1‬ﻭﺍﻝﺫﻱ ﻴﻜﺘﺏ ﻋﻠﻰ ﺍﻝﺸﻜل‬
‫‪zt = µ + φ1 ( zt −1 − µ ) + at − θ1at −1 , at ∼ WN ( 0,σ 2 ) , φ1 ≠ θ1 , φ1 < 1‬‬
‫ﺒﺭﻫﻥ ﺍﻥ ﻋﻨﺩﻤﺎ ﺘﺅﻭل ‪ φ1 → 1‬ﻓﺈﻥ )‪ ARMA(1,1) → IMA(1,1‬ﻭﻤﻥ ﺜﻡ ﺃﻭﺠﺩ ﺩﺍﻝﺔ ﺍﻝﺘﻨﺒﺅ‬
‫ﻝﻨﻤﻭﺫﺝ )‪. IMA(1,1‬‬
‫ﺘﻤﺭﻴﻥ‪:‬‬
‫ﺃﻭﺠﺩ ﺩﻭﺍل ﺍﻝﺘﻨﺒﺅ ﻭﺘﺒﺎﻴﻥ ﺃﺨﻁﺎﺀ ﺍﻝﺘﻨﺒﺅ ﻝﻜل ﻤﻥ ﺍﻝﻨﻤﺎﺫﺝ ﺍﻝﺘﺎﻝﻴﺔ‪:‬‬
‫‪ARIMA(1,2,0),‬‬
‫‪ARIMA(2,1,0),‬‬
‫‪ARIMA(0,1,2),‬‬
‫‪ARIMA(1,1,1),‬‬
‫‪ARIMA(0,2,1), ARIMA(0,2,0).‬‬
‫ﺤﺩﻭﺩ ﺍﻝﺘﻨﺒﺅ ‪: Forecasting Limits‬‬
‫ﺩﺍﻝﺔ ﺍﻝﺘﻨﺒﺅ ‪ zn ( ℓ ) , ℓ ≥ 1‬ﻋﻨﺩ ﻗﻴﻤﺔ ﻤﻌﻴﻨﺔ ﺘﻌﻁﻲ ﻤﺎﻴﺴﻤﻰ ﺒﺘﻨﺒﺅ ﺍﻝﻨﻘﻁﺔ ‪ Point Forecast‬ﻭﺍﻝﺫﻱ‬
‫ﻻﻴﻜﻔﻲ ﺍﻭ ﻴﻔﻴﺩ ﻓﻲ ﺇﺘﺨﺎﺫ ﻗﺭﺍﺭﺍﺕ ﺇﺤﺼﺎﺌﻴﺔ ﻋﻥ ﺍﻝﻅﺎﻫﺭﺓ ﺍﻝﻌﺸﻭﺍﺌﻴﺔ ﺍﻝﻤﺩﺭﻭﺴﺔ ﻷﻥ‬
‫‪P ( Z n + m = zn ( m ) ) = 0, for some m > 0‬‬
‫ﺃﻱ ﺃﻥ ﻤﻘﺩﺍﺭ ﺘﺄﻜﺩﻨﺎ ) ﺃﻭ ﺇﺤﺘﻤﺎل( ﻤﻥ ﺃﻥ ﺍﻝﻘﻴﻤﺔ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ ﺍﻝﻤﺭﺍﺩ ﺍﻝﺘﻨﺒﺅ ﻋﻨﻬﺎ ﺘﺴﺎﻭﻱ ﺍﻝﻘﻴﻤﺔ‬
‫ﺍﻝﻤﻌﻁﺎﺓ ﻤﻥ ﺩﺍﻝﺔ ﺍﻝﺘﻨﺒﺅ ﺘﺴﺎﻭﻱ ﺍﻝﺼﻔﺭ ﺃﻱ ﺍﻨﻨﺎ ﻏﻴﺭ ﻤﺘﺄﻜﺩﻴﻥ ﺇﻁﻼﻗﺎ ﻭﺒﺎﻝﺘﺎﻝﻲ ﻻﻓﺎﺌﺩﺓ ﻤﻥ ﺍﻝﺘﻨﺒﺅ‪.‬‬
‫ﻝﻠﺘﻐﻠﺏ ﻋﻠﻰ ﺫﻝﻙ ﻭﺃﻹﺴﺘﻔﺎﺩﺓ ﻤﻥ ﺍﻝﺘﻨﺒﺅﺍﺕ ﻨﺴﺘﺨﺩﻡ ﻤﺎﻴﺴﻤﻰ ﺒﺘﻨﺒﺅ ﺍﻝﻔﺘﺭﺓ ‪Interval Forecast‬‬
‫ﻭﻫﻲ ﻋﺒﺎﺭﺓ ﻋﻥ ﻓﺘﺭﺓ ﻤﺜل ]‪ [a, b‬ﻋﻠﻰ ﺨﻁ ﺍﻷﻋﺩﺍﺩ ﺍﻝﺤﻘﻴﻘﻴﺔ ﺒﺤﻴﺙ ﻴﻜﻭﻥ‬
‫) ‪P ( a ≤ Z n + m ≤ b ) = (1 − α‬‬
‫ﻭﺒﻬﺫﺍ ﻨﺴﺘﻁﻴﻊ ﺃﻥ ﻨﺤﺩﺩ ﺩﺭﺠﺔ ﺘﺄﻜﺩﻨﺎ ﻤﻥ ﺃﻥ ﺍﻝﻘﻴﻤﺔ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ ﺍﻝﻤﺭﺍﺩ ﺍﻝﺘﻨﺒﺅ ﻋﻨﻬﺎ ﺘﻘﻊ ﺒﻴﻥ ﺍﻝﻘﻴﻡ ‪a‬‬
‫ﻭ ‪ b‬ﺒﺩﺭﺠﺔ ﺘﺄﻜﺩ ﺃﻭ ﺇﺤﺘﻤﺎل ‪ ) 1 − α‬ﺃﻭ ‪ ( 100 × (1 − α ) %‬ﻓﻤﺜﻼ ﻝﻭ ﻜﺎﻨﺕ ‪ α = 0.05‬ﻓﺈﻨﻨﺎ‬
‫ﻨﻜﻭﻥ ﻤﺘﺄﻜﺩﻴﻥ ﻭﺒﺈﺤﺘﻤﺎل ‪ 95%‬ﺍﻥ ﺍﻝﻘﻴﻤﺔ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ ﺘﻘﻊ ﺒﻴﻥ ﺍﻝﻘﻴﻡ ‪ a‬ﻭ ‪. b‬‬
‫ﺘﻌﺭﻴﻑ ‪:21‬‬
‫ﻋﻠﻰ ﺇﻓﺘﺭﺍﺽ ﺃﻥ ) ‪ at ∼ N ( 0, σ 2‬ﻓﺈﻥ ﺤﺩﻭﺩ ‪ 100 × (1 − α ) %‬ﻓﺘﺭﺓ ﺘﻨﺒﺅ ﻝﻠﻘﻴﻤﺔ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ‬
‫‪ zn +ℓ , ℓ ≥ 1‬ﺘﻌﻁﻰ ﺒﺎﻝﻌﻼﻗﺔ‬
‫‪81‬‬
‫}‬
‫‪12‬‬
‫{‬
‫‪zn ( ℓ ) ± uα 2 V  en ( ℓ ) ‬‬
‫‪α‬‬
‫ﺤﻴﺙ ‪ uα 2‬ﺍﻝﻤﺌﻴﻥ ‪ 100  1 − ‬ﻝﻠﺘﻭﺯﻴﻊ )‪. N ( 0,1‬‬
‫‪2‬‬
‫‪‬‬
‫ﻓﻤﺜﻼ ﻋﻨﺩﻤﺎ ‪ α = 0.05‬ﻓﺈﻥ ‪. u0.025 = 1.96‬‬
‫ﻤﻼﺤﻅﺔ‪ :‬ﻓﻲ ﺍﻝﺘﻌﺭﻴﻑ ﺇﻓﺘﺭﻀﻨﺎ ﺃﻥ ﻤﺘﺴﻠﺴﻠﺔ ﺍﻝﻀﺠﺔ ﺍﻝﺒﻴﻀﺎﺀ ) ‪ at ∼ N ( 0, σ 2‬ﻭﻫﺫﺍ ﻤﻤﻜﻥ‬
‫ﺇﻋﺘﻤﺎﺩﺍ ﻋﻠﻰ ﻨﻅﺭﻴﺔ ﻨﻬﺎﻴﺔ ﻤﺭﻜﺯﻴﺔ‪.‬‬
‫ﻤﺜﺎل‪ :‬ﻤﺘﺴﻠﺴﻠﺔ ﺯﻤﻨﻴﺔ ﻤﺸﺎﻫﺩﻩ ﻭﺠﺩ ﺍﻨﻬﺎ ﺘﺘﺒﻊ ﺍﻝﻨﻤﻭﺫﺝ‬
‫) ‪zt − 0.97 = 0.85 ( zt −1 − 0.97 ) + at , at ∼ N ( 0,0.024‬‬
‫ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻝﻤﺸﺎﻫﺩﺓ ﺍﻷﺨﻴﺭﺓ ﻫﻲ ‪ ، z156 = 0.49‬ﺃﻭﺠﺩ ﺘﻨﺒﺅﺍﺕ ﻝﻠﻘﻴﻡ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ ‪z157 , z158 , z159‬‬
‫ﻭﺃﻭﺠﺩ ﺃﺨﻁﺎﺀ ﺍﻝﺘﻨﺒﺅ ﻝﻬﺎ ﻭﻤﻥ ﺜﻡ ﺃﻭﺠﺩ ﻓﺘﺭﺍﺕ ﺘﻨﺒﺅ ‪ 95%‬ﻝﻠﻘﻴﻡ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ‪.‬‬
‫ﺍﻝﺤل‪ :‬ﺴﺒﻕ ﺃﻥ ﺤﺴﺒﻨﺎ ﻓﻲ ﻤﺜﺎل ﺴﺎﺒﻕ ﺍﻝﺘﻨﺒﺅﺍﺕ ﻭ ﺃﺨﻁﺎﺀ ﺍﻝﺘﻨﺒﺅ ﻜﺎﻝﺘﺎﻝﻲ‪:‬‬
‫ﺍﻝﺘﻨﺒﺅﺍﺕ‬
‫‪z156 (1) = 0.56, z156 ( 2 ) = 0.62, z156 ( 3) = 0.68‬‬
‫ﻭﺍﻝﺘﺒﺎﻴﻨﺎﺕ‬
‫‪V  e156 (1) = 0.024, V  e156 ( 2 )  = 0.041, V  e156 ( 2 )  = 0.054‬‬
‫ﻓﺘﺭﺍﺕ ﺘﻨﺒﺅ ‪ 95%‬ﻝﻠﻘﻴﻡ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ ‪ z157 , z158 , z159‬ﻨﻭﺠﺩﻫﺎ ﻤﻥ ﺼﻴﻐﺔ ﺘﻌﺭﻴﻑ ‪21‬‬
‫}‬
‫‪12‬‬
‫‪= 0.56 ± 1.96 0.024 = 0.56 ± 0.304‬‬
‫}‬
‫‪12‬‬
‫{‬
‫‪zn ( ℓ ) ± uα 2 V  en ( ℓ )‬‬
‫{‬
‫‪{V e‬‬
‫‪{V e‬‬
‫‪1 − z156 (1) ± u0.025 V  e156 (1)‬‬
‫‪= 0.62 ± 1.96 0.041 = 0.62 ± 0.397‬‬
‫}‪( 2 )‬‬
‫‪156‬‬
‫‪2 − z156 ( 2 ) ± u0.025‬‬
‫‪= 0.68 ± 1.96 0.054 = 0.68 ± 0.455‬‬
‫}‪( 3)‬‬
‫‪156‬‬
‫‪3 − z156 ( 3) ± u0.025‬‬
‫‪12‬‬
‫‪12‬‬
‫ﺃﻱ ﺃﻥ ) ‪ z157 ∈ ( 0.256,0.864‬ﺒﺈﺤﺘﻤﺎل ‪ 0.95‬ﻭ ﻭﻜﺫﻝﻙ ) ‪ z158 ∈ ( 0.223,1.017‬ﻭ ﻜﺫﻝﻙ ﺃﻴﻀﺎ‬
‫)‪. z159 ∈ ( 0.225,1.135‬‬
‫‪82‬‬
‫ﺍﻟﻔﺼﻞ ﺍﻟﺨﺎﻣﺲ‬
‫‪ "M‬و‪$‬ء ‪!7‬م ‪ 4‬إ‪Designing and Building Statistical MK‬‬
‫‪: Forecasting System‬‬
‫( أن ذآ ان ا
[‪16‬ة او
;!) ‪I‬م ‪ :('C‬ه‪'. 7‬ء !‪1‬ذج ‪.‬إن !‪'. 4‬ء !‪1‬ذج‬
‫إ‪ 785‬ه‪3C 4! 7‬ار‪13;C Iterative 42‬ن & ‪ 2%C‬ا
'!‪1‬ذج ‪ 2JC ،‬ا
'!‪1‬ذج )و‪O. J‬‬
‫‪ )
"& 2JC‬ا
'!‪1‬ذج( و إ;(ر ا
'!‪1‬ذج‪.‬‬
‫‪ #‬أو ‪ /‬اذج )‪: Model Identification (Specification‬‬
‫‪ 2%C 45& 7N‬ا
'!‪1‬ذج ;[م ا
(ت أو ا
!‪K‬هات ا
‪ ) 4J.‬ا
;ر‪ (r2‬واي &"‪&1‬ت اى‬
‫ ا
‪ 4b3‬ا
;‪
1C 7‬ت ‪ O.‬ا
!;‪ 4‬وذ
‪;B9 f‬اح &!‪ & 41‬ا
'!ذج ا
!'(‪ .4‬و‪ "C );2‬أو‬
‫‪ 2%C‬ا
'!‪1‬ذج ‪ W5‬ا
[‪16‬ات ا
"‪ 4`2‬ا
;
‪:4‬‬
‫ا‪;:‬ة ا‪r‬و'‪ S- ./ :‬ا‪: Variance-stabilizing Transformation #‬‬
‫‪ ".‬ر) ا
!;‪ w6[& 7N 4‬ز&'‪ Time Plot 7‬وإ‪L‬اء ‪ \".‬ا‪(;9‬رات ا‪4N"!
4859‬‬
‫‪ !N‬إذا آن ا
;(‪ ،S.U 2‬و‪ 4
5 7N‬م ‪(U‬ت ا
;(‪ 2‬او إذا آن ا
;(‪1;& V& Y;2 2‬ى‬
‫ا
!;‪ (6 'FN 4‬ا
;‪ H21%‬ا
‪z1‬ر‪ 7!C‬ا
!;‪ 4‬و‪FN 2L & O%b‬ذا ‪S(]C )C‬‬
‫ا
;(‪ 2‬وإ‪ { X‬إ
‪ (6C 7‬أ‪ 5‬ا
;‪21%‬ت ا
;‪ 7‬ذآه ‪L 7N‬ول ‪.41 4%b+‬‬
‫ا‪;:‬ة ا‪ :7-‬إ?ر در‪ n‬ا‪: d =Y‬‬
‫إذا آ‪ S‬ا
!;‪ 4‬أو ‪J;& z O21%C‬ة ‪ 7N‬ا
!;‪ 2%C ' WN w1‬در‪ 4L‬ا
;‪ d 2b‬ا
;‪7‬‬
‫‪ H"C‬ا
!!;‪ 4‬أو ‪J;& O21%C‬ة ‪ 7N‬ا
!;‪ w1‬و‪1J‬م ‪ A{.‬ا
;‪ 2b‬اول ‪ o%b )U‬ا
;
‪:7‬‬
‫‪ -1‬ا
![‪66‬ت ا
&'‪ 4;!!
4‬أو ‪.O21%C‬‬
‫‪66[& -2‬ت دا
;‪ 7‬ا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬ا
"'‪ 7‬وا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬ا
‪ 78‬ا
"'‪ SACF 7‬و ‪. SPACF‬‬
‫‪ -3‬إ‪L‬اء ‪ , 2bC‬إذا ا‪;5‬ج ا& وإدة ا
[‪16‬ات ‪ 1‬و ‪ 2‬ا
‪. ;J.‬‬
‫ا
![‪66‬ت ا
&'‪;!
4‬ت ‪ z‬ا
!;‪J‬ة ‪ 7N YC (C‬ا
!;‪1‬ى ودا
‪C 4‬ا‪ w.‬ذا‪7' 7C‬‬
‫&;[&ة ‪w(.‬ء آ! ان دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬ا
‪ 78‬ا
"'‪ 4!B 76"C 7‬وا‪5‬ة ‪ & 4(2B‬ا
‪1‬ا‪5‬‬
‫ا
‪ \Y.) ^%‬ا
'‪ I‬ا‪9‬رة( و‪ 4J.‬ا
‪L 4(2B )J‬ا & ا
‪.b‬‬
‫&‪ :4I5‬در‪ 4L‬ا
;‪13C & (
z d 2b‬ن ‪ 0‬او ‪ 1‬او ‪. 2‬‬
‫‪83‬‬
: q ‫ و‬p / :--‫;ة ا‬:‫ا‬
‫ار‬%9‫ ا‬4L‫ در‬2%;. ‫م‬1J w1;!
‫ وا‬2(;
‫ & ا‬H‫ آ‬7N ‫ة‬J;& 4;& H% ‫" ان‬.
w.‫ وا
;ا‬7'"
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬7;
‫ أ!ط دا‬4‫ر‬J!. f
‫ وذ‬q ‫ك‬%;!
‫ ا‬w1;!
‫ ا‬4L‫ ودر‬p 7C‫ا‬A
‫ا‬
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬7;
‫ ا‬42I'
‫ ا!ط ا‬V& 7'"
‫ ا‬78
‫ ا‬7C‫ا‬A
‫ا‬
@A‫ ه‬76"2 7
;
‫ وا
ول ا‬38 4%b+ 7N ‫رة‬1‫آ‬A!
‫ ا‬ARMA(p,q) ‫اص !ذج‬1[. 2;&
:4"8K
‫اص ("\ ا
'!ذج ا‬1[
‫ا‬
PACF
‫ذج‬1!'
‫ا‬
ACF
φkk = 0, k > 1
‫ &;دد‬7‫ أوا‬7‫[& ا‬C
AR(1)‫( و‬1,d,0)
φkk = 0, k > 2
7(L &[C ‫ او‬7‫[& ا‬C
AR(2)‫( و‬2,d,0)
φkk = 0, k > p
7(L &[C ‫ او‬/‫ و‬7‫[& ا‬C
AR(p)‫( و‬p,d,0)
7‫[& ا‬C O 62
ρ k = 0, k > 1
MA(1) ‫( و‬0,d,1)
7(L ‫ او‬7‫[& ا‬C O 62
ρ k = 0, k > 2
MA(2) ‫( و‬0,d,2)
7(L ‫ او‬/‫ و‬7‫[& ا‬C O 62
ρ k = 0, k > q
MA(q) ‫( و‬0,d,q)
7‫[& ا‬C O 62‫ و‬oB';C
‫;[& ا‬C‫ و‬oB';C
1 e[;
‫& ا‬
ARMA(1,1) ‫( و‬1,d,1)
1 e[;
‫& ا‬
e[;
‫" ا‬. oB';C
&[;C‫ و‬q - p e[;
‫" ا‬. oB';C
62‫ و‬p – q
q – p e[;
‫" ا‬. (L ‫ او‬/ ‫ا و‬
ARMA(p,q) ‫( و‬p,d,q)
7‫[& ا‬C O
". 7(L ‫او‬/‫و‬
p – q e[;
‫ا‬
:‫اف‬V7‫ " إ‬aA‫ إ‬:$‫;ة اا‬:‫ا‬
‫م‬1"& ‫ إاف‬4NP‫! إذا آن ' إ‬N ‫ ' ا
;{آ‬WN 2bC ‫;ج إ‬%C 4;!
‫ ا‬S‫إذا آ‬
{6[
‫ ا‬V& ‫ة‬J;!
‫ ا‬4Bb!
‫ ا‬4;!
w 4'"
‫ ا‬w1;& 4‫ر‬J!. );2 ‫ا‬A‫ذج وه‬1!'
‫ إ
ا‬δ
w1;!
‫ا ا‬AO
‫ا
!"ري‬
12
c

s.e ( w ) ≅  0 (1 + 2r1 + 2 r2 + ⋯ + 2 rK ) 
n


84
‫;(ر‬9‫ن ا‬132‫ و‬. K 4L‫ ر‬421'"!
‫ ا‬4'"
‫ ا‬4C‫ا‬A
‫ت ا‬6.‫ ا
;ا‬7‫ ه‬r1 ,⋯ , rK ‫ و‬c0 = γˆ0 Q5
H0 : δ = 0
H1 : δ ± 0
.
w
> 1.96 S‫ إذاآ‬α = 0.05 ' H 0 \N‫و‬
s.e ( w )
85
: Model Estimation ‫ اذج‬
f
‫ وذ‬σ 2 ‫ و‬θ1 ,… ,θ q ‫ و‬φ1 ,… ,φ p ‫ و‬δ ‫ذج‬1!'
‫ &"
) ا‬2JC & .X ‫ذج‬1!'
‫ ا‬H3 2%C ".
.'2
‫ة‬N1;!
‫ ا‬4[2‫;[ام ا
(ت ا
;ر‬F.
‫;ح‬J!
‫ذج ا‬1!'
‫ وا‬z1 , z2 ,… , zn −1 , zn ‫هة‬K!
‫ ا‬4'&
‫ ا‬4;!
‫' ا‬2
‫;ض ان‬b'
φ p ( B ) wt = δ + θ q ( B ) at , at ∼ N ( 0, σ 2 )
‫أو‬
φ p ( B ) zt = δ + θ q ( B ) at , at ∼ N ( 0, σ 2 )
O"!L VJC φ p ( B ) = 0 4
‫ور ا
!"د‬AL‫ و‬4‫;آ‬K& ‫ور‬AL O'. L12X θ q ( B ) ‫ و‬φ p ( B ) Q5
.(‫ار‬J;9‫ة ) ط ا‬51
‫ة ا‬8‫رج دا‬
‫ر‬J!
‫ا ا‬A‫ق ه‬6 !P HC ;J2= wJN '‫ ه‬O'& ‫آ‬A' )
"!
‫ ا‬2J;
‫ه'ك =ق آ]ة‬
.4=K
‫"ت ا
ا‬.!
‫ ا‬4J2=‫ ا
"وم و‬4J2= !‫وه‬
: The Method of Moments ‫ اوم‬i :r‫أو‬
‫
"وم‬. rk 4'"
4C‫ا‬A
‫ت ا‬6.‫ وا
;ا‬z 4'"
‫ ا‬w1;& H]& 4'"
‫";! &وات وم ا‬C‫و‬
‫ !"
) ا
!اد‬4('
. 4C'
‫ت ا‬X‫ ا
!"د‬H5‫ و‬ρ k 7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ ودا‬µ w1;!
‫ ا‬H]& 42I'
‫ا‬
.‫ه‬2JC
:7
;
‫ آ‬AR(p) ‫ذج‬1!'
4J26
‫ف ;"ض ا‬1
µˆ = z = ∑ i =1 zi n ‫ اي‬z ‫ر‬J!
. µ w1;!
‫ر ا‬J2 -1
n
:4B"
‫ ;[م ا‬φ1 ,…, φ p 2J;
-2
ρ k = φ1 ρ k −1 + φ2 ρ k −2 + ⋯ + φ p ρ k − p , k > 1
7N .VB1;
‫ ا‬A‫ وأ‬zt −k − µ %
. AR(p) ‫ذج‬1!'
4N"!
‫ ا‬4
‫ب ا
!"د‬P & _;'C 7;
‫وا‬
‫ل و‬12 ‫ت‬X‫ت ا
!! &"د‬X‫م ا
!"د‬I H% k = 1,2,…, p VP1. 4J.
‫ ا‬4
‫ا
!"د‬
:7
;
‫ ا‬Yule-Walker ‫ووآ‬
ρ1 = φ1 + φ2 ρ1 + ⋯ + φ p ρ p −1
ρ 2 = φ1 ρ1 + φ2 + ⋯ + φ p ρ p −2
⋮
ρ p = φ1 ρ p −1 + φ2 ρ p −2 + ⋯ + φ p
:7
;
‫ آ‬φˆ1 ,… ,φˆp )
"!
‫رات ا
"وم‬J& H% rk ‫ر‬J!
. ρ k \21";
. ‫و‬
86
:7N1b!
‫ ا‬H3K
‫ل و ووآ ا‬12 ‫ت‬X‫ &"د‬VP1.
r1
 r1   1
r   r
1
 2= 1
⋮  ⋮
⋮
  
 rp   rp −1 rp −2
r2
⋯ rp −2
r1
⋯ rp −3
⋮
⋮
⋮
rp −3 ⋯
r1
rp −1   φˆ1 
 
rp −2   φˆ2 

⋮  ⋮ 
 
1   φˆ 
 p
)
"!
4
‫@ ا
!"د‬A‫ ه‬H%.‫و‬
 φˆ1   1
r1
  
1
 φˆ2   r1
 ⋮ = ⋮
⋮
  
 φˆ   rp −1 rp −2
 p
r2
⋯ rp −2
r1
⋯ rp −3
⋮
⋮
⋮
rp −3 ⋯
r1
rp −1 
rp −2 

⋮ 

1 
−1
 r1 
r 
 2
⋮
 
 rp 
7
;
‫ آ‬σ 2 ‫ر‬JC
(
σˆ 2 = γˆ0 1 − φˆ1r1 − φˆ2 r2 −⋯φˆp rp
)
Q5
γˆ0 =
1 n
2
( zt − z )
∑
n t =1
.4'"
‫ ا‬2(C 1‫ه‬
:‫ اذج‬v ‫ اوم‬
AR(1) ‫ذج‬7 -1
zt − µ = φ1 ( zt −1 − µ ) + at , at ∼ N ( 0,σ 2 )
1‫ ه‬φ1 )"!
‫ر ا
"وم‬J&
φˆ1 = r1
1‫ ه‬µ )"!
‫ر ا
"وم‬J&
µˆ = z
1‫ ه‬σ 2 )"!
‫ر ا
"وم‬J&
(
σˆ 2 = γˆ0 1 − φˆ1r1
)
Q5
γˆ0 =
1 n
2
( zt − z )
∑
n t =1
87
MA(1) ‫ذج‬7 -2
zt − µ = at − θ1at −1 , at ∼ N ( 0,σ 2 )
4B"
‫ ;[م ا‬θ1 )"!
‫ر ا
"وم‬J& ‫د‬29
ρ1 =
−θ1
1 + θ12
OC‫را‬J!. )
"!
‫\ ا‬21";.‫و‬
r1 =
−θˆ1
1 + θˆ12
θˆ1 ‫ر‬J!
4
‫ ا
!"د‬H%.‫و‬
−1 ± 1 − 4 r1
θˆ1 =
2 r1
‫ن‬FN r1 = −0.4 S‫ آ‬1
]!N . θˆ1 < 1 J%C 7;
‫ ا‬4!J
‫ ا‬A{ θˆ1 ‫ر‬J!
;!B 76"2 H%
‫ا ا‬A‫ه‬
. θˆ1 = −0.77 1‫ ه‬θ1 )"!
‫ر ا
"وم‬J& ‫ن‬132 7
;
.‫( و‬θˆ1 ) = 3.27 ‫( و‬θˆ1 ) = −0.77
2
1
AR(2) ‫ذج‬7 -3
zt − µ = φ1 ( zt −1 − µ ) + φ2 ( zt −2 − µ ) + at , at ∼ N ( 0,σ 2 )
7‫ ه‬φ2 ‫ و‬φ1 )
"!
‫رات ا
"وم‬J& ‫ل ووآ‬12 ‫ت‬X‫;[ام &"د‬F.
 φˆ1   1 r1  −1  r1 
 =
 φˆ   r1 1   r2 
 2
O'&‫و‬
φˆ1 =
2
r1 − r1r2
ˆ = r2 − r1
φ
,
2
1 − r12
1 − r12
1‫ ه‬µ )"!
‫ر ا
"وم‬J&
µˆ = z
1‫ ه‬σ 2 )"!
‫ر ا
"وم‬J&
(
σˆ 2 = γˆ0 1 − φˆ1r1 − φˆ2 r2
)
Q5
γˆ0 =
1 n
2
( zt − z )
∑
n t =1
88
MA(2) ‫ذج‬7 -4
zt − µ = at − θ1at −1 − θ 2 at −2 , at ∼ N ( 0, σ 2 )
‫ت‬B"
‫ ;[م ا‬θ 2 ‫ و‬θ1 )
"!
‫رات ا
"وم‬J& ‫د‬29
ρ1 =
−θ1 (1 − θ 2 )
−θ 2
, ρ2 =
2
2
1 + θ1 + θ 2
1 + θ12 + θ 22
θ 2 ‫ و‬θ1 )
"!
‫رات ا
"وم‬J& H% r2 ‫ و‬r1 ‫رات‬J!
‫\ ا‬21";.‫و‬
(
)
−θˆ1 1 − θˆ2
−θˆ2
r1 =
,
r
=
2
1 + θˆ12 + θˆ22
1 + θˆ12 + θˆ22
. θ 2 − θ1 < 1, θ 2 + θ1 < 1, θ 2 < 1 J%C 7;
‫ل ا‬1%
‫ ا‬A{‫ و‬θˆ2 ‫ و‬θˆ1 & H3
H%‫و‬
ARMA(1,1) ‫ذج‬7 -5
zt − µ = φ1 ( zt −1 − µ ) + at − θ1at −1 , at ∼ N ( 0,σ 2 )
‫ت‬B"
‫ ;[م ا‬φ1 ‫ و‬θ1 )
"!
‫رات ا
"وم‬J& ‫د‬29
ρ1 =
(1 − φ1θ1 )(φ1 − θ1 ) , ρ = (1 − φ1θ1 )(φ1 − θ1 ) φ
2
1
2
2
1 + θ1 − 2φ1θ1
1 + θ1 − 2φ1θ1
φ1 ‫ و‬θ1 )
"!
‫رات ا
"وم‬J& H% r2 ‫ و‬r1 ‫رات‬J!
‫\ ا‬21";.‫و‬
r1 =
(1 − φˆθˆ )(φˆ − θˆ ) ,
1 1
1
1
r2 =
1 + θˆ − 2φˆ1θˆ1
2
1
(1 − φˆθˆ )(φˆ − θˆ ) φˆ
1 1
1
1
1 + θˆ − 2φˆ1θˆ1
2
1
1
r1 ‫ر‬J!
4N"!
‫ ا‬4
‫ ا
!"د‬r2 ‫ر‬J!
4N"!
‫ ا‬4
‫ ا
!"د‬4!J.‫و‬
φˆ1 =
r2
r1
4N"!
‫ ا‬4
‫ ا
!"د‬7N φˆ1 ‫ض‬1" θ1 )"!
‫ر ا
"وم‬J& ‫د‬29 . φ1 )"!
‫ر ا
"وم‬J& 1‫وه‬
r1 ‫ر‬J!
 r2 ˆ   r2 ˆ 
 1 − r θ1   r − θ1 
1
 1

r1 = 
r
1 + θˆ12 − 2 2 θˆ1
r1
89
. θˆ1 < 1 J%C 7;
‫ ا‬4!J
‫ ا‬A{ ‫ و‬θˆ1 ‫ر‬J!
4C'
‫ ا‬4".;
‫ ا‬4
‫ ا
!"د‬H%‫و‬
4
;
‫رات ا
"وم !"
) ا
'!ذج ا‬J& L‫ أو‬:#‫ر‬
ARIMA(1,1,1),
ARIMA(2,1,0),
ARIMA(0,1,2),
ARIMA(1,2,0),
ARIMA(0,2,1), ARIMA(0,2,0).
.4B‫رات أآ] د‬J& ‫د‬29 4
‫) أو‬J‫;[م آ‬C ‫رات ا
"وم‬J& :!K,
: Conditional Least Square Method i‫ ا‬7‫ت ا‬$‫ ا‬i :7]
H3K
‫ ا‬W;3C 7;
‫ وا‬ARMA(p,q) ‫
'!ذج‬
φ p ( B )( zt − µ ) = θ q ( B ) at , at ∼ N ( 0,σ 2 )
O"!L VJC θ q ( B ) = 0 4
‫ور ا
!"د‬AL‫ و‬4‫;آ‬K& ‫ور‬AL O'. L12X θ q ( B ) ‫ و‬φ p ( B ) Q5
:7
;
‫ آ‬at ‫ء‬6
.
‫ذج ا‬1!'
‫ ا‬4.;‫دة آ‬F. .(‫ب‬J9‫ة ) ط ا‬51
‫ة ا‬8‫رج دا‬
at =
φp (B)
( zt − µ )
θq ( B)
µ ‫ و‬θ = {θ1 ,θ 2 ,… ,θ q } ‫ و‬φ = {φ1 ,φ2 ,… ,φ p } )
"!
‫ ا‬7N 4
‫ إ;(رة آا‬3!2 !2‫ف ا‬6
‫ا‬
W;32 ‫و‬
(1 − φ B − φ B
a ( φ, θ, µ ) =
(1 − θ B − θ B
1
2
1
2
t
2
2
−⋯ − φpB p )
−⋯ −θ pB p )
( zt − µ )
YC z = {z1 , z2 ,… , zn } ‫ة‬6"& ‫هات‬K!
‫ و‬4=K
‫"ت ا
ا‬.!
‫ ا‬4J2= !;"C
4
‫ا
ا‬
min Sc ( φ, θ, µ ) =
φ ,θ , µ
n
∑ a ( φ, θ, µ z )
t = p +1
2
t
.‫رات‬J!
4('
. 4
;
‫ ا‬4C'
‫ ا‬Normal Equations 4"(6
‫ت ا‬X‫ ا
!"د‬H5‫و‬
90
∂
∂ n 2
Sc ( φ, θ, µ )
=
∑ at ( φ, θ, µ z ) φ=φˆ = 0
φ =φˆ
∂φ
∂φ t = p +1
ˆ
ˆ
θ=θ
µ = µˆ
θ= θ
µ = µˆ
∂
∂ n 2
Sc ( φ, θ, µ )
=
∑ at ( φ, θ, µ z ) φ=φˆ = 0
φ =φˆ
∂θ
∂θ t = p +1
θ =θˆ
θ =θˆ
µ = µˆ
µ = µˆ
∂
∂ n 2
Sc ( φ, θ, µ )
=
∑ at ( φ, θ, µ z ) φ=φˆ = 0
φ= φˆ
µ
∂µ
∂
t = p +1
ˆ
θ =θ
θ = θˆ
µ = µˆ
µ = µˆ
42‫ أي &و‬a p = a p −1 = ⋯ = a p +1−q = 0 )J
‫;ط ان ا‬K '‫ ' ه‬4= !C ‫رات‬J!
‫@ ا‬A‫ه‬
.( t = p + 1 4!J
‫(أ & ا‬2 4J.
‫ت ا‬X‫ ا
!"د‬7N V!;
‫‚ أن ا‬5X ) .O"B1;
& σ 2 2(;
‫ر ا‬J2
σˆ 2 =
(
Sc φˆ , θˆ , µ
)
n − ( p + q + 1)
:‫ اذج‬v i‫ ا‬7‫ت ا‬$‫ات ا‬
AR(1) ‫ذج‬7 -1
zt − µ = φ1 ( zt −1 − µ ) + at , at ∼ N ( 0,σ 2 )
z ‫ره‬J!. µ ‫ف ;(ل‬1 ‫ت‬BJ;9‫ ا‬w(;
zt − z = φ1 ( zt −1 − z ) + at , at ∼ N ( 0,σ 2 )
‫ء‬6‫ ا‬W;3 z = {z1 , z2 ,… , zn } ‫ة‬6"& ‫هات‬K!
at (φ1 ) = ( zt − z ) − φ1 ( zt −1 − z ) , t = 2,3,⋯ , n
‫هات‬K!
‫ ا‬H‫ آ‬V!
‫ وا‬N6
‫ ا‬V.C‫و‬
at2 (φ1 ) =  ( zt − z ) − φ1 ( zt −1 − z )  , t = 2,3,⋯ , n
2
n
n
t =2
t =2
Sc (φ1 ) = ∑ at2 (φ1 ) = ∑  ( zt − z ) − φ1 ( zt −1 − z ) 
2
b
42‫ &و‬4;'
‫ن ا‬13C‫ و‬φ1 )"!
4('
. 4J.
‫ ا‬4
‫; ا
!"د‬K ، wJN φ1 )"!
4
‫@ دا‬A‫وه‬
‫ أي‬φ1 = φˆ1 &'
91
n
n
Sc (φ1 ) = ∑ at2 (φ1 ) = ∑ ( zt − z ) − φ1 ( zt −1 − z ) 
t =2
2
t =2
2
∂
∂
Sc (φ1 ) =
( zt − z ) − φ1 ( zt −1 − z ) 
∑
∂φ1
∂φ1 t =2
n
n
= ∑ −2 ( zt −1 − z )  ( zt − z ) − φ1 ( zt −1 − z ) 
t =2
n
∂
Sc (φ1 ) ˆ = ∑ −2 ( zt −1 − z )  ( zt − z ) − φˆ1 ( zt −1 − z )  = 0
φ1 =φ1
∂φ1
t =2
n
∴ ∑ ( zt −1 − z )  ( zt − z ) − φˆ1 ( zt −1 − z )  = 0


t =2
n
∑(z
t =2
n
t −1
− z )( zt − z ) − φˆ1 ∑ ( zt −1 − z ) = 0
2
t =2
‫أي‬
n
φˆ1 =
∑(z
t =2
t −1
− z )( zt − z )
n
∑(z
t =2
t −1
−z)
2
. φ1 )"!
4=K
‫"ت ا
ا‬.!
‫ر ا‬J& 1‫وه‬
. φ1 )"!
‫ر ا
"وم‬J&‫ر و‬J!
‫ا ا‬A‫ ه‬. ‫رن‬B : 2!C
MA(1) ‫ذج‬7 -2
zt − µ = at − θ1at −1 , at ∼ N ( 0, σ 2 )
w1;!
4
"!
‫ ا‬4;!
‫ ا‬H!"‫و‬
z ‫ره‬J!. µ ‫ف ;(ل‬1 ‫ت‬BJ;9‫ ا‬w(;
‫ذج‬1!'
‫(^ ا‬N xt = zt − z
xt = at − θ1at −1 , at ∼ N ( 0, σ 2 )
H3K
‫ اة ا‬4
‫ ا
!"د‬4.;3.‫و‬
at = xt − θ1at −1
‫ء‬6‫ ا‬W;3 = a0 = 0 VP1. ‫ و‬x1 , x2 ,… , xn ‫ة‬6"& ‫هات‬K!
‫و‬
a1 = x1
a2 = x2 − θ1a1
a3 = x3 − θ1a2
⋮
an = xn − θ1an−1
92
7
;
.‫و‬
n
Sc (θ1 ) = ∑ at2
t =1
Q%(
‫ق ا‬6. Sc (θ1 ) YC 7;
‫ وا‬θ1 4!B ‫د‬2‫ إ‬3!2 ‫ و‬θ1 )"!
‫ ا‬7N 46 z 4J.
‫ ا‬4
‫ا
ا‬
7N o[;C 7;
‫ وا‬C1-‫وس‬L 4J2= ‫( أو إ;[ام‬-1,1) ‫ ا
!ل‬7N 73(K
‫ ا‬Q%(
‫ ا‬H]& 42‫ا
"د‬
‫ &] أي‬θ * 4
‫ أو‬4!B ‫ل‬15 θ1 )"!
46 4
‫ا‬. at = at (θ1 ) W2JC
at (θ1 ) ≈ at (θ
*
) + (θ
1
−θ
*
)
dat (θ * )
dθ1
4('
. at = xt − θ1at −1 4
‫ ا
!"د‬7N= ‫ق‬J;F. f
‫ وذ‬2‫ار‬3C O.5 3!2
dat (θ * )
dθ1
4J;K!
‫ا‬
H%'
θ1 )"!
dat (θ1 ) θ1dat −1 (θ1 )
=
+ at −1 (θ1 )
d θ1
dθ1
4
‫ ا
!"د‬.
at (θ1 ) ≈ at (θ * ) + (θ1 − θ * )
da0 (θ1 )
= 0 4
‫ أو‬4!J. ‫و‬
dθ1
dat (θ * )
dθ1
‫"ت‬.!
‫ع ا‬1!& YC ‫ن‬3&X. 7
;
.‫ و‬θ1 )"!
‫ ا‬7N 46
n
Sc (θ1 ) = ∑ at2
t =1
‫ر‬J!
. θ * ‫;(ال‬F. 4!"
‫@ ا‬A‫ر ه‬3‫ و‬θ1 )"!
H`N‫ وأ‬2L ‫ر‬J& 7 H%'
%C
‫"ت‬.!
‫ع ا‬1!& 7N oJ'
‫ا أو ا‬L Y+ C 2‫ر‬J& . ‫ق‬b
‫(^ ا‬2 ;5 !;‫ و‬2
‫ا‬
‫رب‬JC H% 73
θ * 4
‫ أو‬4!J
‫د ا‬29 ‫ ا
"وم‬4J2= ‫ إ;[ام‬3!& .‫ا‬L Y+
.f
A
W5 ‫;ج إ‬%C H. 2‫و‬2 );CX 4J.
‫ ا‬4J26
‫ =(" ا‬.V2
7;
‫ ا‬46;[!
‫ك او ا
'!ذج ا‬%;!
‫ ا‬w1;!
‫ !ذج ا‬4
5 7N ‫ذج‬1!'
)
"!
‫ ا‬2JC ‫‚ أن‬52
76 z H3K. ‫ك‬%;!
‫ ا‬w1;!
‫ى &"
) ا‬1%C O ‫ا‬J"C H3KC ‫ك‬%;& w1;& ‫ي‬1%C
."!L O6.‫ أ‬1‫ وه‬MA(1) ‫ذج‬1!'
‫ ا‬4
5 7N ‫ آ! ه‬O%
42‫;ج إ
=ق د‬%C ‫ا‬AO
‫و‬
93
4&[;!
‫ى ا‬X‫ق ا‬6
‫"\ ا‬. ‫آ‬A 3
‫ و‬4J.
‫; ا‬J26
‫ا ا‬A‫ر ه‬J& 7N 7b;3 ‫ف‬1
:H]& ‫ذج‬1!'
‫ &"
) ا‬2JC 7N
Maximum Likelihood Method !I"
‫ ا‬4%L‫ ار‬4J2= -1
Unconditional Least Squares Method 4=K
‫ ا‬z ‫"ت ا‬.!
‫ ا‬4J2= -2
Nonlinear Estimation Methods 46[
‫ ا‬z2J;
‫ =ق ا‬-3
94
‫‪ >:‬وإ?ر اذج ‪: Model Checking and Diagnostics‬‬
‫‪ ".‬ا
;"ف !‪1‬ذج &(‪ 78‬و‪ )
"& 2JC‬ه‪A‬ا ا
'!‪1‬ذج ي ‪ \".‬ا
;‪[K‬ت ا
(‪1‬ا‪7B‬‬
‫أو أ‪6‬ء ا
;‪) (6‬ا‪'
(4 e2"C I‬ى &ى &‪ 4J.6‬ا
'!‪1‬ذج !;‪ 4‬ا
!‪K‬هة ‪ ،‬و‪;b2‬ض‬
‫أن ا
(‪1‬ا‪ 7B‬ه‪J& 7‬رات !;‪ 4‬ا
`‪ 4‬ا
(`ء ‪ at‬وا
;‪;b 7‬ض ا‪1& O‬ز‪w1;!. "(= 4‬‬
‫‪b+‬ي و‪ . σ 2 2(C‬ا
(‪1‬ا‪4B"
. 6"C 7B‬‬
‫‪et = zt − zˆt = aˆt , t = 1, 2,..., n‬‬
‫أي ان ا
(‪1‬ا‪ 7B‬ه‪ 7‬ا
‪ )J‬ا
!‪K‬هة ‪ oB‬ا
‪ )J‬ا
!‪.4J(6‬‬
‫‪1J2‬م ا
;‪ o[K‬وا‪(;9‬رات ‪ o%N‬ا
(‪1‬ا‪ 7B‬وا
'‪& 7N I‬ى ‪Pb
OJJ%C‬ت ا
'!‪1‬ذج‬
‫وا
;‪ 7‬ه‪:7‬‬
‫‪b+ w1;& -1‬ي‬
‫‪ -2‬ا
"‪1K‬ا‪48‬‬
‫‪ -3‬م ا
;ا‪w.‬‬
‫‪-4‬‬
‫&‪1‬ز‪4‬‬
‫‪1C‬ز‪V2‬‬
‫=("‪7‬‬
‫)&;‪HJ‬‬
‫و&;‪.6‬‬
‫‪w1;!.‬‬
‫‪b+‬ي‬
‫و‪2(C‬‬
‫‪σ2‬‬
‫أي ) ‪( at ∼ IIDN ( 0,σ 2‬‬
‫
‪AO‬ا ‪ 'FN‬ي ‪ o[KC‬وه‪ & 41!& 1‬ا‪(;9‬رات ‪ 7‬ا
(‪1‬ا‪'
7B‬ي ‪ !N‬إذا آ‪J%C S‬‬
‫ه‪ @A‬ا
‪K‬وط و‪ 7N‬ه‪ @A‬ا
‪ (;" 4
%‬ا
'!‪1‬ذج ا
!‪ X1(J& (6‬أ& إذا ‪ HKN‬ا‪ 5‬ه‪ @A‬ا‪(;9‬رات‬
‫‪ ' WN‬إدة ا
'‪ I‬وإ‪;B‬اح !‪1‬ذج ‪,‬‬
‫أو‪ :r‬إ?ر ا‪:\0‬‬
‫‪H 0 : E ( at ) = 0‬‬
‫‪H 1 : E ( at ) ≠ 0‬‬
‫وه‪ 1‬إ;(ر ‪ 2A.‬و;[م ‪ 4N‬ا‪4859‬‬
‫‪e‬‬
‫) ‪se ( e‬‬
‫= ‪ u‬وا
;‪1C O
7‬ز‪'"N 7B 7"(= V2‬‬
‫&;‪1‬ى &"'‪ (;" α = 0.05 421‬ان ‪ E ( at ) = 0‬إذا آ‪ ) u < 1.96 S‬ه‪A‬ا ‪ 7‬إ;(ر ان‬
‫‪ )5‬ا
"'‪ 4‬اآ( & ‪ 30‬و‪5‬ة وه‪A‬ا دا‪;!
J%;& !8‬ت ا
&'‪ 4‬ا
;‪ 7‬ر‪( O‬‬
‫‪95‬‬
:‫ إ?ر اا‬:7]
b
‫ل ا‬15‫ و‬w1;!
‫ل ا‬15 Runs test ‫ إ;(ر ا
ي‬46‫ا‬1. 7B‫ا‬1(
‫ ا‬48‫ا‬1K (;[
7N W
6
‫ ا‬O‫ر‬2 48‫ا‬1K"
‫;(رات‬9‫ آ] & ا‬L12 ) 4!"&
‫;(رات ا‬9‫ ا‬5‫ ا‬1‫وه‬
.(‫;(ر‬9‫ا ا‬AO. '‫ ه‬7b;3 3
‫ و‬Q%. 241 ‫ر‬J!
‫ا‬
:‫ل‬,0j‫\ أو ا‬$‫ إ?ر اا‬:-]
Autocorrelation
7C‫ا‬A
‫ ا‬w.‫ إ;(ر ا
;ا‬46‫ا‬1. 7B‫ا‬1(
‫ل ا‬J;‫ أو إ‬w.‫ا‬C (;[2
4
‫ دا‬V& O;‫ر‬J&‫ و‬7B‫ا‬1(
SACF 4'"
‫ ا‬4C‫ا‬A
‫ت ا‬6.‫ب ور) ا
;ا‬%. f
‫ وذ‬test
.‫ ا
(`ء‬4`
‫ ا‬4;!
7C‫ا‬A
‫ ا‬w.‫ا
;ا‬
‫;(ر‬9‫ا‬
H 0 : ρ1 = 0
H1 : ρ1 ≠ 0
(;" α = 0.05 421'"& ‫ى‬1;& '"N 7B 7"(= V2‫ز‬1C O
u =
r1
4859‫ ا‬Q5
se ( r1 )
. u < 1.96 S‫ إذا آ‬ρ1 = 0 ‫ان‬
:I‫ اا‬i ‫ إ?ر‬:$‫را‬
:H]& ‫"ة =ق‬. f
‫ =(" وذ‬4‫ز‬1& 7B‫ا‬1(
‫ ا‬S‫ & إذا آ‬7N (;[
7!"&
‫;(ر ا‬9‫ و;[م ا‬Goodness of Fit Test .6;
‫ ا‬5 ‫ إ;(ر‬-1
. Kolmogorov-Smirnov Test ‫ف‬1! -‫روف‬1L1!
1‫آ‬
. Normal Probability Plot 7"(6
‫;!ل ا‬59‫ ا‬w6[& -2
. Q-Q Plot ‫"ت‬.
‫ا‬-‫"ت‬.
‫ ا‬w6[& -3
:N0‫ذج ا‬7 ‫?ر‬j ‫?ى‬r‫ ا ا‬v$
‫;[م‬C‫ و‬LBQ ;[C‫ و‬Ljung-Box Q statistc ~‫آ‬1.-'
‫ ـ‬1‫ آ‬485‫( إ‬1
:4Pb
‫;(ر ا‬9
H 0 : ρ1 = ρ 2 = ⋯ = ρ K = 0
:4B"
. 6"C‫و‬
rk2
∼ χ 2 ( K − m)
k =1 n − k
K
Q = n (n + 2) ∑
.‫ذج‬1!'
‫ ا‬7N ‫رة‬J!
‫ د ا
!"
) ا‬m Q5
96
6"C‫ و‬AIC ;[C‫ و‬Automatic Information Criteria 7C‫ا‬A
‫&ت ا‬1"!
‫( &"ر ا‬2
:4B"
.
AIC ( m ) = n ln σ a2 + 2m
min AIC ( m )
m
76"2 ‫ي‬A
‫ذج ا‬1!'
‫ذج و[;ر ا‬1!'
‫ ا‬7N ‫رة‬J!
‫ د ا
!"
) ا‬m Q5
: Examples and Case Studies 0‫ت درا‬rK‫ و‬-
‫أ‬
‫هة‬K& 4'&‫ ز‬4;!
4
;
‫ ا
(ت ا‬-1
z(t)
60.1815 59.5257 58.9275 56.4828 56.1346 57.2318 60.7196 59.9315
61.0640 61.4230 63.1547 63.9622 63.5049 64.6886 62.8556 61.0344
58.0059 58.7108 57.9813 59.1721 62.4654 60.5820 59.3191 60.6643
61.2223 61.4761 61.1856 60.9225 59.3054 58.3755 59.5353 60.5777
61.9753 62.1789 61.8108 58.1483 58.4174 60.1325 59.6004 59.9086
60.4833 61.7008 59.1609 59.4554 59.0903 58.0151 59.1455 62.2658
63.4411 60.5918 65.1325 61.7122 58.8802 59.5333 60.9492 61.9013
59.3478 59.4444 62.6899 61.6708 63.7261 55.7339 58.1690 54.5045
56.7241 57.3334 57.9363 58.5870 61.8370 58.9585 56.7437 55.8451
58.1281 62.1017 59.9443 60.2990 61.6337 61.1520 63.8189 59.3572
61.7840 57.3292 54.7163 58.2273 58.7564 59.0087 59.3402 61.8956
60.9021 63.1070 60.0538 63.6776 60.8942 60.5289 59.9246 59.7252
60.7001 58.1895 54.5550 54.6083 56.5413 59.1567 57.9624 58.4651
61.9462 61.9205 63.3933 62.3827 61.4310 60.3373 57.8803 61.2797
61.9448 56.2599 59.9569 57.8763 59.2086 55.4219 54.2185 58.0143
60.9805 62.1362 60.0855 60.3843 60.8605 62.3728 57.0642 56.6085
57.5151 58.4221 60.6919 63.5907 61.4451 60.1458 57.3940 56.8697
59.2145 60.8962 61.1852 58.1711 53.8560 57.5307 59.3236 57.2961
58.5278 60.3030 60.6201 59.9346 59.4119 61.5614 61.1107 59.6266
60.3550 60.7021 60.7227 58.0423 59.3488 60.0377 58.7336 58.1105
59.4242 58.5790 58.6501 55.4010 59.3839 60.8256 62.1957 61.9152
60.3319 57.1459 59.0970 59.0997 59.8597 59.0780 56.9972 59.0778
97
61.5555 60.9815 60.3563 59.5097 58.3583 63.1777 61.8685 58.2759
59.7755 60.2052 60.2513 59.2927 56.1494 56.0309 56.6666 59.5015
59.4755 60.9013 61.2179 61.1168 61.7218 59.2298 60.7356 63.4124
MINITAB 4859‫ ا‬4&%
‫;[ام ا‬F. Time Plot 7'&‫ ز‬w6[& 7N 4;!
‫ ) ا‬X‫او‬
:7
;
‫آ‬
MTB > TSPlot 'z(t)';
SUBC>
Index;
SUBC>
SUBC>
SUBC>
TDisplay 11;
Symbol;
Connect;
SUBC>
Title "An obseved Time Series".
A n o b s e v e d T im e S e r ie s
z(t)
65
60
55
In d e x
50
100
150
200
&‫;[ام ا‬F. 7'"
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ و) ا
;ا‬W% U
MTB > %ACF 'z(t)';
SUBC>
MAXLAG 20;
SUBC>
TITLE"SACF of observed Time Series".
Executing from file: H:\MTBWIN\MACROS\ACF.MAC
98
Autocorrelation
S A C F o f o b s e rv e d T im e S e rie s
1 .0
0 .8
0 .6
0 .4
0 .2
0 .0
-0 .2
-0 .4
-0 .6
-0 .8
-1 .0
5
L a g C o rr
1
2
3
4
5
6
7
0 .5 1
0 .2 0
-0 .0 0
-0 .0 5
-0 .0 8
-0 .1 8
-0 .1 9
10
T
LBQ
7 .1 9
2 .3 2
-0 .0 1
-0 .5 9
-0 .9 5
-2 .0 5
-2 .0 9
5 2 .4 8
6 0 .7 8
6 0 .7 8
6 1 .3 4
6 2 .8 2
6 9 .9 2
7 7 .5 8
L a g C o rr
8
9
10
11
12
13
14
-0 .1 4
-0 .1 4
-0 .0 9
-0 .0 7
-0 .0 8
-0 .0 2
0 .0 3
15
T
LBQ
-1 .5 0
-1 .5 2
-0 .9 0
-0 .7 1
-0 .7 9
-0 .2 1
0 .3 2
8 1 .7 6
8 6 .1 4
8 7 .7 3
8 8 .7 3
8 9 .9 7
9 0 .0 5
9 0 .2 7
L a g C o rr
15
16
17
18
19
20
0 .0 7
0 .1 3
0 .1 7
0 .2 0
0 .1 2
0 .0 6
20
T
LBQ
0 .6 8
1 .3 3
1 .7 5
2 .0 6
1 .2 1
0 .6 1
9 1 .2 3
9 4 .8 6
1 0 1 .3 3
1 1 0 .6 3
1 1 3 .9 8
1 1 4 .8 6
&‫;[ام ا‬F. 7'"
‫ ا‬78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ و) ا
;ا‬W% ]
U
MTB > %PACF 'z(t)';
SUBC>
MAXLAG 20;
SUBC>
TITLE"SPACF of obseved Time Series".
Executing from file: H:\MTBWIN\MACROS\PACF.MAC
Partial Autocorrelation
S P A C F o f o b se ve d T im e S e rie s
1 .0
0 .8
0 .6
0 .4
0 .2
0 .0
-0 .2
-0 .4
-0 .6
-0 .8
-1 .0
5
L a g P AC
1
2
3
4
5
6
7
0 .5 1
-0 .0 8
-0 .1 0
0 .0 0
-0 .0 5
-0 .1 6
-0 .0 4
10
T
7 .1 9
-1 .0 7
-1 .3 8
0 .0 4
-0 .7 3
-2 .3 4
-0 .5 0
L a g P AC
8
9
10
11
12
13
14
-0 .0 1
-0 .1 2
0 .0 1
-0 .0 4
-0 .0 9
0 .0 3
0 .0 2
15
T
-0 .1 2
-1 .6 3
0 .1 6
-0 .6 0
-1 .3 4
0 .3 9
0 .3 2
L a g P AC
15
16
17
18
19
20
-0 .0 2
0 .0 9
0 .0 8
0 .0 6
-0 .0 3
0 .0 4
20
T
-0 .2 3
1 .2 8
1 .2 0
0 .8 6
-0 .4 5
0 .5 2
‫ذج‬1! V(;C 4;!
‫‚ ان ا‬5 7'"
‫ ا‬78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ و ا
;ا‬7C‫ا‬A
‫ ا‬w.‫& أ!ط ا
;ا‬
&‫;[ام ا‬F. ‫هات‬K!
‫ ا‬7 ‫;ح‬J!
‫ذج ا‬1!'
‫( ا‬6 ‫ا‬AO
‫ و‬AR(1)
MTB > Name c7 = 'RESI1'
MTB > ARIMA 1 0 0 'z(t)' 'RESI1';
99
SUBC>
Constant;
SUBC>
Forecast 5 c4 c5 c6;
SUBC>
SUBC>
GACF;
GPACF;
SUBC>
GHistogram;
SUBC>
GNormalplot.
ARIMA Model
ARIMA model for z(t)
Estimates at each iteration
Iteration
SSE
Parameters
0
839.667
0.100
53.870
1
746.819
0.250
44.876
2
695.840
0.400
35.883
3
685.086
0.502
29.769
4
685.054
0.507
29.458
5
685.054
0.507
29.443
Relative change in each estimate less than
Final Estimates of Parameters
Type
Coef
StDev
AR
1
0.5073
0.0611
Constant
29.4429
0.1309
Mean
59.7571
0.2656
0.0010
T
8.30
224.98
Number of observations: 201
Residuals:
SS = 685.020 (backforecasts excluded)
MS =
3.442 DF = 199
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
36
48
Chi-Square
10.8(DF=11)
27.6(DF=23)
35.9(DF=35)
45.0(DF=47)
100
Forecasts from period 201
95 Percent Limits
Period
Actual
Forecast
Lower
Upper
202
59.7079
56.0707
63.3451
203
59.7322
55.6537
63.8106
204
59.7445
55.5600
63.9290
205
59.7507
55.5394
63.9620
206
59.7539
55.5357
63.9721
:7
;
‫و;';_ ا‬
1‫;ح ه‬J!
‫ذج ا‬1!'
‫ ا‬-1
zt = 59.76 + 0.51( zt −1 − 59.76) + at , at ∼ WN ( 0,3.44 )
:7‫ ه‬O
t 4!B ‫ ا
!"ري و‬ON‫ا‬%‫رة وإ‬J!
‫ ا
!"
) ا‬-2
( )
φˆ1 = 0.51, s.e. φˆ1 = 0.061, t = 8.3
µˆ = 59.76, s.e. ( µˆ ) = 0.66
( )
δˆ = 29.44, s.e. δˆ = 0.131, t = 224.98
σˆ 2 = 3.44, with d . f . = 199
:7B‫ا‬1(
‫ ا‬o%b ".‫را‬
7B‫ا‬1(
‫ ا‬w1;& ‫ إ;(ر‬-1
MTB > ZTest 0.0 1.855 'RESI1';
SUBC>
Alternative 0;
SUBC> GHistogram;
SUBC> GDotplot;
SUBC> GBoxplot.
Z-Test
Test of mu = 0.000 vs mu not = 0.000
The assumed sigma = 1.85
Variable
RESI1
N
Mean
StDev
SE Mean
Z
P
201
-0.002
1.851
0.131
-0.01
0.99
b
‫وي ا‬2 w1;!
‫{ن ا‬. 42b
‫ ا‬4Pb
‫\ ا‬NX
7B‫ا‬1(
‫ ا‬48‫ا‬1K ‫ إ;(ر‬-2
101
MTB > Runs 0 'RESI1'.
Runs Test
RESI1
K =
0.0000
The observed number of runs =
94
The expected number of runs = 101.0796
107 Observations above K
94 below
The test is significant at 0.3149
Cannot reject at alpha = 0.05
48‫ا‬1K 7B‫ا‬1(
‫{ن ا‬. 42b
‫ ا‬4Pb
‫\ ا‬NX
7B‫ا‬1(
7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬-3
ACF of Residuals for z(t)
(with 95% confidence limits for the autocorrelations)
1.0
0.8
Autocorrelation
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
5
10
15
20
25
30
35
40
45
50
Lag
7B‫ا‬1(
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬-4
102
PACF of Residuals for z(t)
(with 95% confidence limits for the partial autocorrelations)
1.0
Partial Autocorrelation
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
5
10
15
20
25
30
35
40
45
50
Lag
‫ ا
(`ء‬4`
‫ ا‬4;& ‫ أ!ط‬V(;C 78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫‚ ان أ!ط ا
;ا‬5
: 7B‫ا‬1(
‫ ا‬4"(= ‫ إ;(ر‬-5
7B‫ا‬1(
‫اري‬3;
‫ ا‬V`!
‫ ) ا‬-‫ا‬
Histogram of the Residuals
(response is z(t))
Frequency
30
20
10
0
-5
0
5
Residual
:
‫ ا‬I' ‫ ان‬W2 H. 7b32X ‫ا‬A‫ وه‬.(2JC 7"(6
‫ ا‬V2‫ز‬1;
‫ ا‬H3 4
‫‚ أ* &;'‘ و‬5
Normal Probability Plot 7"(6
‫;!ل ا‬5X‫ ر) ا‬-‫ب‬
103
Normal Probability Plot for RESI1
99
Mean:
-1.6E-03
StDev:
1.85070
95
90
Percent
80
70
60
50
40
30
20
10
5
1
-5.0
-2.5
0.0
2.5
5.0
Data
:‫م‬1J ‫ و
;{آ‬4"(= 7B‫ا‬1(
‫^ & ا
) أن ا‬P‫وا‬
7B‫ا‬1(
‫ ا‬4"(6
K-S Test ‫;(ر‬F. -‫ج‬
MTB > %NormPlot 'RESI1';
SUBC>
Kstest;
SUBC>
Title "Normal Test for Residuals".
Executing from file: H:\MTBWIN\MACROS\NormPlot.MAC
Normal Test for Residuals
.999
.99
Probability
.95
.80
.50
.20
.05
.01
.001
-5
0
5
RESI1
Average: -0.0016272
StDev: 1.85070
N: 201
Kolmogorov-Smirnov Normality Test
D+: 0.045 D-: 0.060 D : 0.060
Approximate P-Value: 0.074
:7
;
‫‚ ا‬5‫و‬
1‫;(ر ه‬9‫ا‬
H 0 : Residuals ∼ N ( 0,3.44 )
H1 : Residuals§N ( 0,3.44 )
6‫ف ا‬1!-‫روف‬1L1!
1‫إ;(ر آ‬
D + = 0.045, D − = 0.06, D = 0.06
104
4Pb
‫\ ا‬NX '‫ أي ا‬α = 0.05
& (‫ أآ‬7‫ وه‬0.074 7‫ Œ;(ر ه‬P-Value ‫ا
ـ‬
.42b
‫ا‬
:‫ات‬4 4(J;& )B 5 :(';
‫ذج‬1!'
‫ا;[&' ا‬
Forecasts from period 201
95 Percent Limits
Period
Forecast
Lower
Upper
Actual
202
203
59.7079
59.7322
56.0707
55.6537
63.3451
63.8106
204
205
206
59.7445
59.7507
59.7539
55.5600
55.5394
55.5357
63.9290
63.9620
63.9721
7
;
‫& ا‬. O!‫و‬
Plot C4*C8 C5*C8 C6*C8;
SUBC>
Connect;
SUBC>
Type 1;
SUBC>
Color 1;
SUBC>
Size 1;
SUBC>
Title "Forecast
limits";
SUBC>
Overlay.
of
5
future
Forecast of 5 future value with 95% limits
64
63
62
C4
61
60
59
58
57
56
55
1
2
3
C8
105
4
5
value
with
95%
.:(';
‫;ات ا‬N‫ات و‬:(';
‫ ا‬V& 4;!
‫ ا
ء ا & ا‬76"2 7
;
‫وا
) ا‬
Forecast of 5 future value with 95% limits
64
63
62
C9
61
60
59
58
57
56
55
180
190
200
C8
‫هة‬K& 4'&‫ ز‬4;!
4
;
‫ ا
(ت ا‬-2
z(t)
499.148 496.650 511.026 488.539 498.440 507.382 496.208 494.948
503.975 501.649 489.348 506.040 496.678 502.233 498.429 503.170
498.758 502.969 498.229 501.605 493.371 505.884 496.227 496.806
493.057 506.459 502.545 497.785 506.329 496.665 491.923 504.340
499.890 494.559 503.107 502.891 498.598 500.074 499.260 496.372
507.416 500.508 496.830 491.981 516.373 492.286 500.356 503.506
498.090 498.319 507.020 493.161 499.217 508.489 494.033 496.062
504.877 498.304 495.355 505.581 495.000 504.965 497.393 501.521
494.918 501.527 504.712 501.064 492.352 500.664 495.431 507.886
499.173 494.833 504.072 497.883 495.423 507.072 496.285 506.345
496.765 504.129 495.737 500.744 505.577 485.991 507.673 507.735
482.567 507.594 503.580 493.866 501.819 500.921 503.415 497.295
500.989 498.294 501.700 495.868 501.175 503.852 499.783 497.642
501.331 496.932 507.582 494.885 504.666 498.380 496.181 510.287
489.314 504.394 501.928 494.814 509.407 498.060 497.133 496.029
502.720 499.982 503.325 495.954 504.408 500.199 494.878 503.134
502.489 498.640 500.484 493.552 501.417 504.785 497.943 501.634
495.691 502.173 502.066 497.130 492.318 505.517 499.299 499.611
106
‫‪496.252 504.346 501.082 497.626 496.757 505.475 498.787 500.388‬‬
‫‪499.279 504.913 493.843 506.259 498.403 497.462 499.467 505.987‬‬
‫‪498.169 500.712 498.571 504.085 491.707 504.817 502.933 493.858‬‬
‫‪497.015 504.204 501.703 490.683 505.429 504.336 495.430 494.857‬‬
‫‪503.195 506.403 498.599 487.344 514.220 490.887 511.741 497.861‬‬
‫‪500.252 502.721 500.256 494.614 502.414 503.465 501.999 493.017‬‬
‫‪498.158 503.746 497.643 507.438 491.418 506.649 496.078 498.931‬‬
‫‪500.409 506.001 490.619 512.122 496.150 505.218 497.413 497.794‬‬
‫‪496.225 501.827 500.324 505.367 498.016 498.477 495.353 513.900‬‬
‫‪491.726 496.063 499.779 504.012 501.542 496.680 499.134 504.717‬‬
‫‪489.032 505.709 497.956 497.231 507.590 491.202 503.130 502.209‬‬
‫‪500.024 493.502 502.681 505.234 497.647 495.699 504.174 497.992‬‬
‫‪505.194 497.421 502.823 496.877 504.640 492.716 501.701 501.387‬‬
‫‪499.574 497.048‬‬
‫ﺍﻭﻻ ‪ :‬ﺴﻭﻑ ﻨﺭﺴﻡ ﻓﻘﻁ ‪ 50‬ﻤﺸﺎﻫﺩﺓ ﻤﻥ ﻫﺫﻩ ﺍﻝﻤﺘﺴﻠﺴﻠﺔ‬
‫‪510‬‬
‫)‪z(t‬‬
‫‪500‬‬
‫‪490‬‬
‫‪50‬‬
‫‪40‬‬
‫‪20‬‬
‫‪30‬‬
‫‪ W% :U‬و) ا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬ا
"'‪:7‬‬
‫‪107‬‬
‫‪10‬‬
‫‪In d e x‬‬
Autocorrelation
Autocorrelation Function for z(t)
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
5
Lag Corr
10
T
LBQ
1 -0.53 -8.38
2 -0.05 -0.64
3 0.12 1.52
4 0.04 0.52
5 -0.13 -1.61
6 0.11 1.39
7 -0.09 -1.13
71.03
71.68
75.39
75.83
80.08
83.33
85.52
Lag Corr
T
15
LBQ
8 0.10 1.19 87.98
9 -0.11 -1.31 91.01
10 0.15 1.77 96.64
11 -0.18 -2.16 105.32
12 0.11 1.25 108.35
13 0.05 0.56 108.97
14 -0.12 -1.36 112.61
Lag Corr
20
T
LBQ
15 0.05 0.60 113.33
16 -0.02 -0.26 113.47
17 0.07 0.82 114.85
18 -0.10 -1.16 117.65
19 0.07 0.75 118.81
20 -0.06 -0.73 119.93
:7'"
‫ ا‬78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ و) ا
;ا‬W% :]
U
Partial Autocorrelation
Partial Autocorrelation Function for z(t)
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
5
10
15
Lag PAC
T
Lag PAC
T
1 -0.53
2 -0.46
3 -0.29
4 -0.07
5 -0.11
6 0.02
7 -0.09
-8.38
-7.28
-4.52
-1.08
-1.71
0.30
-1.36
8 0.04
9 -0.07
10 0.12
11 -0.07
12 -0.04
13 0.08
14 -0.04
0.65
-1.09
1.94
-1.15
-0.71
1.19
-0.59
Lag PAC
20
T
15 0.03 0.49
16 -0.13 -2.09
17 0.06 1.01
18 -0.08 -1.32
19 0.03 0.44
20 -0.13 -2.07
‫ذج‬1!'
‫ا ا‬A‫( ه‬6;.‫ و‬MA(1) ‫ذج‬1! V(;C B 4;!
‫‚ ان ا‬5 ‫هة‬K!
‫& ا!ط ا‬
MTB > Name c7 = 'RESI1'
MTB > ARIMA 0 0 1 'z(t)' 'RESI1';
SUBC>
Constant;
SUBC>
Forecast 5 c4 c5 c6;
SUBC> GACF;
SUBC> GPACF;
SUBC> GHistogram;
SUBC> GNormalplot.
ARIMA Model
108
ARIMA model for z(t)
Estimates at each iteration
Iteration
SSE
Parameters
0
6081.19
0.100
500.046
1
5265.34
0.250
500.004
2
4615.22
0.400
499.980
3
4109.70
0.550
499.967
4
5
3766.60
3727.32
0.700
0.841
499.960
499.959
6
3687.70
0.797 499.963
7
3687.08
0.790 499.962
8
3687.07
0.791 499.962
9
3687.07
0.790 499.962
Relative change in each estimate less than
Final Estimates of Parameters
Type
Coef
StDev
MA
1
0.7905
0.0386
Constant
499.962
0.051
Mean
499.962
0.051
0.0010
T
20.50
9708.40
Number of observations: 250
Residuals:
SS = 3684.13 (backforecasts excluded)
MS =
14.86 DF = 248
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
36
48
Chi-Square
26.7(DF=11)
35.9(DF=23)
63.1(DF=35)
82.8(DF=47)
Forecasts from period 250
Period
251
252
253
254
Forecast
502.256
499.962
499.962
499.962
95 Percent Limits
Lower
Upper
494.700
509.812
490.330
509.593
490.330
509.593
490.330
509.593
109
Actual
255
499.962
490.330
509.593
:7
;
‫و;';_ ا‬
1‫;ح ه‬J!
‫ذج ا‬1!'
‫ ا‬-1
zt = 499.962 + at − 0.7905at −1 , at ∼ WN ( 0,14.86 )
:7‫ ه‬O
t 4!B ‫ ا
!"ري و‬ON‫ا‬%‫رة وإ‬J!
‫ ا
!"
) ا‬-2
( )
θˆ1 = 0.7905, s.e. θˆ1 = 0.0386, t = 20.50
( )
µˆ = δˆ = 499.962, s.e. δˆ = 0.051, t = 9708.40
σˆ 2 = 14.86, with d . f . = 248
:7B‫ا‬1(
‫ ا‬o%b ".‫را‬
7B‫ا‬1(
‫ ا‬w1;& ‫ إ;(ر‬-1
MTB > ZTest 0.0 3.847 'RESI1';
SUBC>
Alternative 0.
Z-Test
Test of mu = 0.000 vs mu not = 0.000
The assumed sigma = 3.85
Variable
RESI1
N
Mean
StDev
SE Mean
Z
P
250
-0.007
3.847
0.243
-0.03
0.98
b
‫وي ا‬2 w1;!
‫{ن ا‬. 42b
‫ ا‬4Pb
‫\ ا‬NX
7B‫ا‬1(
‫ ا‬48‫ا‬1K ‫ إ;(ر‬-2
MTB > Runs 0 'RESI1'.
Runs Test
RESI1
K =
0.0000
110
The observed number of runs = 134
The expected number of runs = 125.9920
126 Observations above K 124 below
The test is significant at
0.3103
Cannot reject at alpha = 0.05
48‫ا‬1K 7B‫ا‬1(
‫{ن ا‬. 42b
‫ ا‬4Pb
‫\ ا‬NX
7B‫ا‬1(
7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬-3
A C F o f R e s id u a ls fo r z (t)
( w it h 9 5 % c o n f id e n c e l im it s f o r t h e a u t o c o r r e l a t io n s )
1 .0
0 .8
Autocorrelation
0 .6
0 .4
0 .2
0 .0
-0 .2
-0 .4
-0 .6
-0 .8
-1 .0
5
10
15
20
25
30
35
40
45
50
55
60
Lag
7B‫ا‬1(
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬-4
P A C F o f R e s id u a ls f o r z (t)
( w ith 9 5 % c o n f id e n c e l im it s f o r t h e p a r t ia l a u to c o r r e l a t io n s )
1 .0
Partial Autocorrelation
0 .8
0 .6
0 .4
0 .2
0 .0
-0 .2
-0 .4
-0 .6
-0 .8
-1 .0
5
10
15
20
25
30
35
40
45
50
55
60
Lag
‫ ا
(`ء‬4`
‫ ا‬4;& ‫ أ!ط‬V(;C 78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫‚ ان أ!ط ا
;ا‬5
: 7B‫ا‬1(
‫ ا‬4"(= ‫ إ;(ر‬-5
7B‫ا‬1(
‫اري‬3;
‫ ا‬V`!
‫ ) ا‬-‫ا‬
111
H istogram of the R esiduals
(resp on se is z(t))
Frequency
30
20
10
0
-10
0
10
R esidual
:
‫ ا‬I' ‫ ان‬W2 H. 7b32X ‫ا‬A‫ وه‬.(2JC 7"(6
‫ ا‬V2‫ز‬1;
‫ ا‬H3 4
‫‚ أ* &;'‘ و‬5
Normal Probability Plot 7"(6
‫;!ل ا‬5X‫ ر) ا‬-‫ب‬
Normal Probability Plot for RESI1
99
Mean:
-6.9E-03
StDev:
3.84651
95
90
Percent
80
70
60
50
40
30
20
10
5
1
-10
-5
0
5
10
Data
:‫م‬1J ‫ و
;{آ‬4"(= 7B‫ا‬1(
‫^ & ا
) أن ا‬P‫وا‬
7B‫ا‬1(
‫ ا‬4"(6
K-S Test ‫;(ر‬F. -‫ج‬
MTB > %Qqplot 'RESI1';
SUBC>
Conf 95;
SUBC>
Ci.
Executing from file: H:\MTBWIN\MACROS\Qqplot.MAC
Distribution Function Analysis
Normal Dist. Parameter Estimates
112
Data
Mean:
: RESI1
-6.9E-03
StDev:
3.84651
MTB > %NormPlot 'RESI1';
SUBC>
Kstest.
Executing from file: H:\MTBWIN\MACROS\NormPlot.MAC
Normal Probability Plot
.999
.99
Probability
.95
.80
.50
.20
.05
.01
.001
-10
0
10
RESI1
Average: -0.0069004
StDev: 3.84651
N: 250
Kolmogorov-Smirnov Normality Test
D+: 0.034 D-: 0.051 D : 0.051
Approximate P-Value: 0.105
6‫ف ا‬1!-‫روف‬1L1!
1‫إ;(ر آ‬
D + = 0.034, D − = 0.051, D = 0.051
‫ ان‬4Pb
‫\ ا‬NX '‫ أي ا‬α = 0.05
& (‫ أآ‬7‫ وه‬0.105 7‫ Œ;(ر ه‬P-Value ‫ا
ـ‬
."(= 4‫ز‬1& 7B‫ا‬1(
‫ا‬
:‫ات‬4 4(J;& )B 5 :(';
‫ذج‬1!'
‫ا;[&' ا‬
Forecasts from period 250
Period
251
252
253
254
255
Forecast
502.256
499.962
499.962
499.962
499.962
95 Percent Limits
Lower
Upper
494.700
509.812
490.330
509.593
490.330
509.593
490.330
509.593
490.330
509.593
Actual
:('C 95% ‫;ات‬N V& ‫ات‬:(';
‫ ا‬76"2 7
;
‫وا
) ا‬
113
Forecast of 5 future values with 95% limits
C4
510
500
490
1
2
3
4
5
C8
‫هة‬K& 4'&‫ ز‬4;!
4
;
‫ ا
(ت ا‬-3
z(t)
229.574 227.346 230.260 229.903 226.778 226.641 226.760 224.678
224.077 225.772 223.390 222.482 221.562 222.515 224.063 227.500
230.713 234.323 236.033 236.488 232.308 229.136 225.663 221.632
215.405 213.619 217.433 223.408 232.653 239.577 238.463 234.178
228.758 221.484 217.123 218.067 222.156 227.621 232.209 233.005
234.678 236.419 235.744 229.359 229.331 229.564 230.102 232.432
234.155 233.918 235.767 234.668 231.319 231.633 231.121 228.189
227.075 226.765 224.927 225.721 225.734 227.982 229.848 231.718
230.421 228.200 228.472 230.888 230.122 227.859 223.115 222.468
224.663 225.799 228.227 229.851 228.225 228.618 228.418 231.163
233.335 236.399 236.659 235.024 235.122 228.989 224.483 226.479
223.571 222.523 225.196 226.724 228.198 229.792 232.738 234.207
234.561 232.976 231.266 227.812 224.928 225.447 228.163 230.455
232.473 232.067 233.891 233.841 234.707 234.825 232.232 233.640
231.653 230.148 230.327 228.922 231.665 235.224 236.562 233.725
230.146 227.077 227.032 227.089 229.575 233.044 233.427 233.089
233.444 233.256 232.820 228.954 224.747 224.207 225.484 228.655
230.076 231.062 232.461 232.152 226.865 222.819 220.782 220.958
221.171 224.050 228.727 232.135 232.027 232.315 232.030 231.531
230.582 232.032 231.411 232.684 233.852 233.127 230.938 231.363
114
232.344 233.622 233.799 235.038 232.160 229.733 229.757 228.285
224.880 223.599 225.273 223.994 224.258 227.948 230.636 229.320
227.449 229.100 231.898 228.203 228.606 227.046 230.713 235.587
239.660 242.860 243.963 239.883 234.243 230.662 230.360 228.729
225.860 225.123 225.070 229.486 231.265 234.107 234.625 232.700
229.792 230.082 227.643 230.342 233.628 238.762 241.821 240.884
235.112 228.468 223.381 223.795 226.994 230.499 230.865 236.017
238.292 235.623 230.088 226.271 225.616 225.771 226.222 229.321
227.805 226.745 225.447 223.250 225.291 225.358 225.985 228.141
230.794 229.727 227.934 228.920 230.296 229.369 229.352 228.958
231.092 232.891 235.210 235.339 236.029 232.881 228.837 226.114
225.020 224.096
MINITAB 4859‫ ا‬4&%
‫;[ام ا‬F. Time Plot 7'&‫ ز‬w6[& 7N 4;!
‫ ) ا‬X‫او‬
(wJN ‫هة‬K& 50) :7
;
‫آ‬
z(t)
2 4 2
2 3 2
2 2 2
In d e x
1 0
2 0
3 0
4 0
5 0
7'"
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ و) ا
;ا‬W% U
115
Autocorrelation
A u t o c o r r e la t io n F u n c t io n f o r z ( t )
1 .0
0 .8
0 .6
0 .4
0 .2
0 .0
-0 .2
-0 .4
-0 .6
-0 .8
-1 .0
5
Lag
1
2
3
4
5
6
7
C o rr
0
0
0
-0
-0
-0
-0
.8
.5
.1
.1
.3
.3
.2
4
1
5
6
3
3
0
T
13
5
1
-1
-2
-2
-1
.2
.2
.3
.4
.9
.8
.7
7
0
5
6
8
7
3
10
LBQ
1
2
2
2
2
3
3
7
4
4
5
8
1
2
8
4
9
6
3
1
1
.2
.2
.7
.2
.7
.2
.9
Lag
1
9
1
1
5
3
5
1
1
1
1
1
C o rr
T
8 -0 .0 2 -0
9 0 .1 4 1
0 0 .2 3 1
1 0 .2 3 1
2 0 .1 5 1
3 0 .0 2 0
4 -0 .1 2 -0
.1
.1
.9
.8
.2
.1
.9
7
8
5
8
2
5
6
15
LBQ
3
3
3
3
3
3
3
2
2
4
5
6
6
6
2
7
1
5
1
1
5
.0
.2
.4
.1
.1
.2
.0
5
4
8
6
7
5
4
Lag
1
1
1
1
1
2
5
6
7
8
9
0
C o rr
-0
-0
-0
-0
0
0
.2
.2
.1
.1
.0
.0
1
2
8
0
0
8
20
T
-1
-1
-1
-0
0
0
.6
.7
.4
.7
.0
.6
5
9
2
6
2
1
LBQ
3
3
3
4
4
4
7
8
9
0
0
0
6
9
8
1
1
3
.3
.9
.8
.3
.3
.0
2
3
1
7
7
5
7'"
‫ ا‬78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ و) ا
;ا‬W% ]
U
Partial Autocorrelation
P a r t ia l A u t o c o r r e la t io n F u n c t io n f o r z ( t )
1 .0
0 .8
0 .6
0 .4
0 .2
0 .0
-0 .2
-0 .4
-0 .6
-0 .8
-1 .0
5
Lag
1
2
3
4
5
6
7
PAC
10
T
0 .8 4 1 3 .2 7
-0 .6 6 - 1 0 .3 9
-0 .0 7
-1 .1 3
-0 .0 6
-1 .0 0
0 .1 1
1 .7 8
0 .1 4
2 .1 8
-0 .0 1
-0 .2 2
Lag
15
PAC
T
8 0 .0 7
9 -0 .0 7
1 0 0 .0 5
1 1 -0 .0 7
1 2 0 .0 6
1 3 -0 .1 5
1 4 0 .0 1
1 .0 6
-1 .1 2
0 .7 3
-1 .1 8
0 .9 0
-2 .4 1
0 .1 8
Lag
20
PAC
T
1 5 0 .0 4
1 6 -0 .0 6
1 7 0 .0 4
1 8 -0 .0 7
1 9 0 .0 9
2 0 -0 .0 9
0 .6 7
-0 .9 3
0 .6 0
-1 .1 4
1 .4 4
-1 .3 9
‫ذج‬1! V(;C 4;!
‫‚ ان ا‬5 7'"
‫ ا‬78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ و ا
;ا‬7C‫ا‬A
‫ ا‬w.‫& أ!ط ا
;ا‬
‫هات‬K!
‫ ا‬7 ‫;ح‬J!
‫ذج ا‬1!'
‫( ا‬6 ‫ا‬AO
‫ و‬AR(2)
MTB > Name c7 = 'RESI1'
MTB > ARIMA 2 0 0 'z(t)' 'RESI1';
SUBC>
Constant;
SUBC>
Forecast 10 c4 c5 c6;
SUBC> GACF;
SUBC> GPACF;
SUBC> GHistogram;
SUBC> GNormalplot.
116
ARIMA Model
ARIMA model for z(t)
Estimates at each iteration
Iteration
0
SSE
4257.23
Parameters
0.100
0.100
183.784
1
3528.31
0.250
0.012
169.535
2
3
2889.23
2338.97
0.400
0.550
-0.076
-0.165
155.360
141.201
4
5
1877.39
1504.46
0.700
0.850
-0.253
-0.342
127.051
112.913
6
1220.13
1.000
7
1024.34
1.150
8
916.97
1.300
9
894.38
1.402
10
894.31
1.408
11
894.31
1.408
Relative change in each estimate
Final Estimates of Parameters
Type
Coef
StDev
AR
1
1.4079
0.0473
AR
2
-0.6720
0.0474
Constant
60.6458
0.1203
Mean
229.638
0.456
Number of observations:
Residuals:
-0.430
98.789
-0.519
84.690
-0.608
70.623
-0.668
61.154
-0.672
60.670
-0.672
60.646
less than 0.0010
T
29.78
-14.19
504.11
250
SS = 893.567
MS =
3.618
(backforecasts excluded)
DF = 247
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
36
Chi-Square 17.5(DF=10) 27.2(DF=22) 49.7(DF=34)
48
67.7(DF=46)
Forecasts from period 250
Period
251
252
Forecast
224.939
226.747
95 Percent Limits
Lower
Upper
221.211
228.668
220.308
233.186
117
Actual
253
228.725
220.642
236.808
254
230.296
221.546
239.045
255
256
231.177
231.363
222.311
222.494
240.044
240.233
257
231.033
222.070
239.996
258
230.442
221.327
239.558
259
229.833
220.600
239.067
260
229.372
220.090
238.655
:7
;
‫و;';_ ا‬
1‫;ح ه‬J!
‫ذج ا‬1!'
‫ ا‬-1
zt = 60.6458 + 1.4079 zt −1 − 0.672 zt − 2 + at , at ∼ WN ( 0,3.618)
:7‫ ه‬O
t 4!B ‫ ا
!"ري و‬ON‫ا‬%‫رة وإ‬J!
‫ ا
!"
) ا‬-2
( )
s.e. (φˆ ) = 0.0474,
φˆ1 = 1.4079, s.e. φˆ1 = 0.0473, t = 29.78
φˆ2 = −0.672,
2
t = −14.19
µˆ = 229.638, s.e. ( µˆ ) = 0.456
( )
δˆ = 60.6458, s.e. δˆ = 0.1203, t = 504.11
σˆ 2 = 3.618, with d . f . = 247
:I‫> اا‬/Y7 $‫را‬
7B‫ا‬1(
‫ ا‬w1;& ‫ إ;(ر‬-1
MTB > ZTest 0.0 3.618 'RESI1';
SUBC>
Alternative 0.
Z-Test
Test of mu = 0.000 vs mu not = 0.000
The assumed sigma = 3.62
Variable
RESI1
N
250
Mean
-0.005
StDev
1.894
SE Mean
0.229
Z
-0.02
P
0.98
b
‫وي ا‬2 w1;!
‫{ن ا‬. 42b
‫ ا‬4Pb
‫\ ا‬NX
118
7B‫ا‬1(
‫ ا‬48‫ا‬1K ‫ إ;(ر‬-2
MTB > Runs 0 'RESI1'.
Runs Test
RESI1
K =
0.0000
The observed number of runs = 125
The expected number of runs = 125.8720
129 Observations above K 121 below
The test is significant at 0.9119
Cannot reject at alpha = 0.05
48‫ا‬1K 7B‫ا‬1(
‫{ن ا‬. 42b
‫ ا‬4Pb
‫\ ا‬NX
7B‫ا‬1(
7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬-3
A C F o f R e s id u a ls f o r z (t)
( w it h 9 5 % c o n f id e n c e l im it s f o r t h e a u t o c o r r e l a t io n s )
1 .0
0 .8
Autocorrelation
0 .6
0 .4
0 .2
0 .0
- 0 .2
- 0 .4
- 0 .6
- 0 .8
- 1 .0
5
10
15
20
25
30
35
40
45
50
55
60
Lag
7B‫ا‬1(
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬-4
119
P A C F o f R e s id u a ls f o r z ( t)
( w it h 9 5 % c o n f id e n c e l im it s f o r t h e p a r t ia l a u t o c o r r e l a t io n s )
1 .0
Partial Autocorrelation
0 .8
0 .6
0 .4
0 .2
0 .0
- 0 .2
- 0 .4
- 0 .6
- 0 .8
- 1 .0
5
10
15
20
25
30
35
40
45
50
55
60
Lag
‫ ا
(`ء‬4`
‫ ا‬4;& ‫ أ!ط‬V(;C 78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫‚ ان أ!ط ا
;ا‬5
: 7B‫ا‬1(
‫ ا‬4"(= ‫ إ;(ر‬-5
7B‫ا‬1(
‫اري‬3;
‫ ا‬V`!
‫ ) ا‬-‫ا‬
H istogram of th e R esiduals
(resp on s e is z(t))
Frequency
30
20
10
0
-5
0
5
R es idual
:
‫ ا‬I' ‫ ان‬W2 H. 7b32X ‫ا‬A‫ وه‬.(2JC 7"(6
‫ ا‬V2‫ز‬1;
‫ ا‬H3 4
‫‚ أ* &;'‘ و‬5
Normal Probability Plot 7"(6
‫;!ل ا‬5X‫ ر) ا‬-‫ب‬
120
N orm al P rob ab ility P lot for R E S I1
99
M e a n:
-4 .6 E -03
S tD e v :
1 .8 94 3 6
95
90
Percent
80
70
60
50
40
30
20
10
5
1
-6
-4
-2
0
2
4
D ata
:‫م‬1J ‫ و
;{آ‬4"(= 7B‫ا‬1(
‫^ & ا
) أن ا‬P‫وا‬
7B‫ا‬1(
‫ ا‬4"(6
K-S Test ‫;(ر‬F. -‫ج‬
Normal Probability Plot
.999
.99
Probability
.95
.80
.50
.20
.05
.01
.001
-5
0
5
RESI1
Average: -0.0046305
StDev: 1.89436
N: 250
Kolmogorov-Smirnov Normality Test
D+: 0.020 D-: 0.029 D : 0.029
Approximate P-Value > 0.15
& (‫ أآ‬7‫ وه‬0.15 7‫ Œ;(ر ه‬P-Value ‫ ا
ـ‬6‫ف ا‬1!-‫روف‬1L1!
1‫إ;(ر آ‬
.7B‫ا‬1(
‫ ا‬4"(= 4PN \NX '‫ أي ا‬α = 0.05
:‫ات‬4 4(J;& )B 10 :(';
‫ذج‬1!'
‫ا;[&' ا‬
Forecasts from period 250
Period
251
252
Forecast
224.939
226.747
95 Percent Limits
Lower
Upper
221.211
228.668
220.308
233.186
121
Actual
253
228.725
220.642
236.808
254
230.296
221.546
239.045
255
256
231.177
231.363
222.311
222.494
240.044
240.233
257
231.033
222.070
239.996
258
230.442
221.327
239.558
259
229.833
220.600
239.067
260
229.372
220.090
238.655
:('C ‫;ات‬N 95% ‫ات و‬:(';
‫ ا‬76"2 7
;
‫وا
) ا‬
Forecast of 10 future values with 95% limits
C4
240
230
220
0
1
2
3
4
5
6
7
8
9
10
C8
Forecast of 10 future values with 95% limits
245
C9
235
225
215
0
100
200
C8
122
Forecast of 10 future values with 95% limits
C9
240
230
220
0
10
20
30
40
50
60
C8
V& ‫ اة‬4!B ![
7]
‫ ا‬H3K
‫ات وا‬:(';
‫ ا‬V& O&3. 4'&
‫ ا‬4;!
‫( ا‬2 ‫ اول‬H3K
‫ا‬
.:(';
‫ ا‬4
‫ دا‬H3 ^P1;
‫ات‬:(';
‫ا‬
:0‫ درا‬K
‫ا‬6 ‫أ‬B‫ & )إ‬V'& ‫ إ;ج‬w 7N 4("!
‫ت ا‬12b;
‫ "د ا‬7&1
‫ ا‬w1;!
‫ ا‬4
;
‫ ا‬4;!
‫ا‬
(6.
Defects
1.20
1.50
1.54
2.70
1.95
2.40
3.44
2.83
1.76
2.00
2.09
1.89
1.80
1.25
1.58
2.25
2.50
2.05
1.46
1.54
1.42
1.57
1.40
1.51
1.08
1.27
1.18
1.39
1.42
2.08
1.85
1.82
2.07
2.32
1.23
2.91
1.77
1.61
1.25
1.15
1.37
1.79
1.68
1.78
1.84
4;!
7'&
‫ ا‬w6[!
‫ا‬
123
3 .5
Defects
3 .0
2 .5
2 .0
1 .5
1 .0
In d e x
10
20
30
40
78
‫ ا‬7C‫ا‬A
‫ وا‬7C‫ا‬A
‫ ا‬w.‫ا
;ا‬
Autocorrelation
Autocorrelation Function for Defects
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
2
3
Lag
Corr
4
5
6
7
8
T
LBQ
Lag
Corr
T
LBQ
1 0.43 2.88
2 0.26 1.49
3 0.14 0.77
4 0.08 0.43
5 -0.09 -0.46
6 -0.07 -0.39
7 -0.21 -1.10
8.84
12.18
13.18
13.50
13.89
14.18
16.57
8
9
10
11
-0.11
-0.05
-0.01
-0.04
-0.57
-0.27
-0.04
-0.19
17.25
17.41
17.41
17.50
9
10
11
Partial Autocorrelation
Partial Autocorrelation Function for Defects
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
2
3
Lag PAC
4
5
T
1 0.43 2.88
2 0.09 0.63
3 -0.00 -0.01
4 0.00 0.00
5 -0.16 -1.07
6 0.00 0.02
7 -0.18 -1.19
6
Lag PAC
7
8
T
8 0.07 0.44
9 0.05 0.35
10 0.01 0.09
11 -0.03 -0.23
124
9
10
11
:4B"
. 6"2 ‫ي‬A
‫ وا‬AIC 7C‫ا‬A
‫&ت ا‬1"!
‫ف ;[م &"ر ا‬1 W'!
‫ذج ا‬1!'
‫;ر ا‬9
AIC ( m ) = n ln σ a2 + 2m
min AIC ( m )
m
76"2 ‫ي‬A
‫ذج ا‬1!'
‫ذج و[;ر ا‬1!'
‫ ا‬7N ‫رة‬J!
‫ د ا
!"
) ا‬m Q5
:7
‫ا‬1;
‫ ا‬7 ‫( ا
'!ذج‬6 ‫ف‬1
MTB > ARIMA 1 0 0 'Defects' 'RESI1';
SUBC>
Constant;
ARIMA Model
ARIMA model for Defects
Final Estimates of Parameters
Type
Coef
StDev
T
AR
1
0.4421
0.1365
3.24
Constant
0.99280
0.06999
14.19
Mean
1.7795
0.1254
Number of observations: 45
Residuals:
SS = 9.47811 (backforecasts excluded)
MS = 0.22042 DF = 43
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
48
Chi-Square
* (DF= *)
12
24
4.9(DF=11)
8.9(DF=23)
MTB > ARIMA 2 0 0 'Defects' 'RESI2';
SUBC>
Constant;
ARIMA Model
ARIMA model for Defects
125
36
30.9(DF=35)
Final Estimates of Parameters
Type
AR
1
Coef
0.3999
StDev
0.1533
T
2.61
AR
0.0989
0.1531
0.65
0.89019
0.07047
12.63
1.7762
0.1406
2
Constant
Mean
Number of observations: 45
Residuals:
SS = 9.38567 (backforecasts excluded)
MS = 0.22347
DF = 42
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
36
48
Chi-Square
4.0(DF=10)
8.1(DF=22)
28.8(DF=34)
* (DF= *)
MTB > ARIMA 1 0 1 'Defects' 'RESI3';
SUBC>
Constant;
ARIMA Model
ARIMA model for Defects
Final Estimates of Parameters
Type
Coef
StDev
AR
1
0.5983
0.2691
MA
1
0.1926
0.3294
Constant
0.71334
0.05693
Mean
1.7759
0.1417
T
2.22
0.58
12.53
Number of observations: 45
Residuals:
SS = 9.39423 (backforecasts excluded)
MS = 0.22367 DF = 42
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
126
Lag
12
24
36
48
Chi-Square
* (DF= *)
4.1(DF=10)
8.3(DF=22)
29.1(DF=34)
MTB > ARIMA 0 0 1 'Defects' 'RESI4';
SUBC>
Constant;
ARIMA Model
ARIMA model for Defects
Final Estimates of Parameters
Type
Coef
StDev
MA
1
-0.3409
0.1431
Constant
1.78480
0.09651
Mean
1.78480
0.09651
T
-2.38
18.49
Number of observations: 45
Residuals:
SS = 10.0362 (backforecasts excluded)
MS = 0.2334 DF = 43
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
36
48
Chi-Square
8.0(DF=11)
13.2(DF=23)
35.7(DF=35)
* (DF= *)
MTB > ARIMA 0 0 2 'Defects' 'RESI5';
SUBC>
Constant;
ARIMA Model
ARIMA model for Defects
127
Final Estimates of Parameters
Type
Coef
StDev
T
-0.3869
-0.1816
0.1516
0.1516
-2.55
-1.20
Constant
1.7839
0.1118
15.96
Mean
1.7839
0.1118
MA
MA
1
2
Number of observations:
Residuals:
45
SS = 9.61059
MS = 0.22882
(backforecasts excluded)
DF = 42
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
36
48
Chi-Square
4.6(DF=10)
9.2(DF=22)
31.0(DF=34)
* (DF= *)
MTB > ARIMA 2 0 1 'Defects' 'RESI6';
SUBC>
Constant;
ARIMA Model
ARIMA model for Defects
Final Estimates of Parameters
Type
Coef
StDev
AR
1
0.4134
1.5680
AR
2
0.0929
0.7113
MA
1
0.0136
1.5749
Constant
0.87675
0.07036
Mean
1.7761
0.1425
T
0.26
0.13
0.01
12.46
Number of observations: 45
Residuals:
SS = 9.38561 (backforecasts excluded)
MS = 0.22892 DF = 41
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
128
Lag
12
24
36
48
Chi-Square
* (DF= *)
4.0(DF= 9)
8.1(DF=21)
28.8(DF=33)
MTB > ARIMA 1 0 2 'Defects' 'RESI7';
SUBC>
Constant;
ARIMA Model
ARIMA model for Defects
* ERROR * Model cannot be estimated with these data
MTB > ARIMA 2 0 2 'Defects' 'RESI8';
SUBC>
Constant;
ARIMA Model
ARIMA model for Defects
Final Estimates of Parameters
Type
Coef
StDev
AR
1
1.6720
0.1165
AR
2
-0.7263
0.1251
MA
1
1.3199
0.0184
MA
2
-0.3196
0.0731
Constant 0.096224
0.003323
Mean
1.77238
0.06121
T
14.35
-5.80
71.63
-4.37
28.95
Number of observations: 45
Residuals:
SS = 8.33225 (backforecasts excluded)
MS = 0.20831 DF = 40
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
48
129
36
Chi-Square
4.7(DF= 8)
8.9(DF=20)
29.7(DF=32)
* (DF= *)
:7
;
‫
ول ا‬. f
‫ ذ‬o[‫و‬
Model
σˆ 2
m
AIC
__________
________
___
_________
AR (1)
0.22042
3
−62.0499
0.22347
4
−59.4315
0.23340
3
−59.4751
0.22882
4
−58.3669
0.22367
4
−59.3913
0.22892
5
−56.3472
−
−
−
0.20831
6
−58.5928
AR ( 2 )
MA (1)
MA ( 2 )
ARMA (1,1)
ARMA ( 2,1)
ARMA (1, 2 )
ARMA ( 2, 2 )
min AIC ( m ) = −62.0499
m
. AR(1) 1‫ذج ه‬1! H`N‫أي ان أ‬
.‫ات‬:('C 1C‫ و‬7B‫ا‬1(
‫ ا‬o%N 2!;‫ آ‬W
6
‫;ك‬2
130
‫‪ K‬درا‪:0‬‬
‫ا
!;‪ 4‬ا
;
‪ 4‬ه‪ 7‬د‪ H‬ا
!("ت ا
'‪ 2!. 421‬ا
‪X2‬ت ‪K‬آ‪& 4‬‬
‫‪Sales‬‬
‫‪3.49 5.74 5.51 3.99 3.45 4.77 4.14 4.60 3.80 5.43‬‬
‫‪3.96 2.54 4.05 6.16 3.78 5.07 5.42 3.91 4.30 3.88‬‬
‫‪2.89 4.61 4.08 4.05 3.28 2.65 1.22 3.98 3.45 3.57‬‬
‫‪2.52 1.58 4.00 5.14 3.84 4.40 3.08 5.43 4.80 2.75‬‬
‫‪5.77 4.99 4.31 6.46 6.11 4.79 5.65 5.52 6.12 6.06‬‬
‫‪3.20 5.05 6.23 6.12 4.99 4.89 4.78 5.67 6.08 5.80‬‬
‫‪5.13 7.07 8.02 6.36 5.75 5.70 5.61 5.63 5.71 5.16‬‬
‫‪7.20 6.87 7.56 6.57 6.08 4.72 6.09 6.64 7.49 6.64‬‬
‫‪7.26 7.22 6.69 7.49 9.01 7.27 5.62 7.59 7.53 6.43‬‬
‫‪6.42 8.22 7.67 7.53 7.23 8.50 8.27 8.75 7.50 7.86‬‬
‫&[‪ w6‬ز&'‪4;!
7‬‬
‫‪9‬‬
‫‪8‬‬
‫‪7‬‬
‫‪6‬‬
‫‪Sales‬‬
‫‪5‬‬
‫‪4‬‬
‫‪3‬‬
‫‪2‬‬
‫‪1‬‬
‫‪100‬‬
‫‪90‬‬
‫‪80‬‬
‫‪70‬‬
‫‪60‬‬
‫‪50‬‬
‫دوال ا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬وا
‪A‬ا‪ 7C‬ا
‪ 78‬ا
"'‪4‬‬
‫‪131‬‬
‫‪40‬‬
‫‪30‬‬
‫‪20‬‬
‫‪10‬‬
‫‪In d e x‬‬
Autocorrelation
Autocorrelation Function for Sales
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
5
Lag Corr
1
2
3
4
5
6
7
0.71
0.60
0.65
0.64
0.59
0.59
0.51
T
LBQ
7.10 51.97
4.26 89.85
3.94 134.64
3.36 177.75
2.83 215.72
2.63 253.97
2.12 282.61
15
Lag Corr
8
9
10
11
12
13
14
0.56
0.49
0.49
0.51
0.42
0.38
0.45
T
LBQ
Lag Corr
2.22 317.32
1.87 344.49
1.79 371.67
1.82 401.71
1.46 422.60
1.29 439.91
1.50 464.06
15
16
17
18
19
20
21
0.41
0.35
0.31
0.30
0.36
0.31
0.26
T
25
LBQ
1.32 483.85
1.13 499.04
0.97 510.68
0.92 521.52
1.11 537.81
0.95 550.11
0.77 558.52
Lag Corr
22
23
24
25
0.22
0.17
0.21
0.25
T
LBQ
0.67 565.04
0.50 568.77
0.64 574.90
0.75 583.43
Partial Autocorrelation
Partial Autocorrelation Function for Sales
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
5
Lag PAC
T
1 0.71 7.10
2 0.20 1.99
3 0.35 3.53
4 0.15 1.49
5 0.09 0.92
6 0.10 1.03
7 -0.13 -1.27
15
Lag PAC
25
T
Lag PAC
T
8 0.19 1.93
9 -0.17 -1.70
10 0.14 1.44
11 0.03 0.34
12 -0.15 -1.52
13 0.02 0.25
14 0.04 0.39
15 0.03
16 -0.10
17 -0.08
18 -0.01
19 0.14
20 -0.04
21 0.00
0.32
-0.96
-0.84
-0.10
1.43
-0.44
0.04
Lag PAC
T
22 -0.17 -1.68
23 -0.10 -1.00
24 0.15 1.55
25 0.03 0.34
.w1;!
‫ ا‬7N ‫ار‬J;‫ل م إ‬2 B !& |6. &[C ‫ل‬C 7'"
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫دا‬
O!‫ و‬wt = ∇zt 4;!
‫ اول‬2b;
‫
'ب ا‬
3
2
w(t)
1
0
-1
-2
-3
In d e x
10
20
30
40
50
132
60
70
80
90
100
‫ة‬J;!
‫ ا‬4;!
78
‫ ا‬7C‫ا‬A
‫ وا‬7C‫ا‬A
‫ ا‬w.‫ دوال ا
;ا‬.‫ن‬s‫ة ا‬J;& 4;!
‫(و ا‬C
Autocorrelation
Autocorrelation Function for w(t)
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
2
Lag Corr
12
T
LBQ
1 -0.30 -3.00
2 -0.31 -2.86
3 0.11 0.90
4 0.04 0.31
5 -0.04 -0.33
6 0.14 1.15
7 -0.24 -1.98
9.26
19.32
20.49
20.63
20.80
22.80
29.02
Lag Corr
T
LBQ
8 0.19 1.53
9 -0.07 -0.53
10 -0.07 -0.52
11 0.16 1.27
12 -0.07 -0.53
13 -0.14 -1.04
14 0.15 1.10
33.07
33.58
34.08
37.12
37.67
39.85
42.37
Lag Corr
22
T
LBQ
15 0.00 0.00
16 0.02 0.13
17 -0.07 -0.52
18 -0.15 -1.09
19 0.20 1.48
20 0.01 0.05
21 -0.04 -0.25
42.37
42.40
42.99
45.65
50.73
50.74
50.90
Lag Corr
T
LBQ
22 0.05 0.35 51.22
23 -0.18 -1.28 55.44
24 0.03 0.20 55.55
Partial Autocorrelation
Partial Autocorrelation Function for w(t)
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
2
12
22
Lag PAC
T
Lag PAC
T
Lag PAC
T
1 -0.30
2 -0.44
3 -0.22
4 -0.21
5 -0.17
6 0.06
7 -0.26
-3.00
-4.41
-2.23
-2.05
-1.72
0.59
-2.55
8 0.12
9 -0.16
10 -0.06
11 0.09
12 -0.06
13 -0.02
14 -0.07
1.17
-1.59
-0.60
0.93
-0.59
-0.17
-0.71
15 0.06
16 0.07
17 -0.03
18 -0.17
19 -0.03
20 -0.10
21 0.09
0.59
0.70
-0.32
-1.65
-0.31
-0.95
0.85
Lag PAC
T
22 0.08 0.80
23 -0.15 -1.53
24 -0.05 -0.55
:4B"
. 6"2 ‫ي‬A
‫ وا‬AIC 7C‫ا‬A
‫&ت ا‬1"!
‫ف ;[م &"ر ا‬1 W'!
‫ذج ا‬1!'
‫;ر ا‬9
AIC ( m ) = n ln σ a2 + 2m
min AIC ( m )
m
76"2 ‫ي‬A
‫ذج ا‬1!'
‫ذج و[;ر ا‬1!'
‫ ا‬7N ‫رة‬J!
‫ د ا
!"
) ا‬m Q5
:7
‫ا‬1;
‫ ا‬7 ‫( ا
'!ذج‬6 ‫ف‬1
MTB > ARIMA 1 1 0 'Sales';
SUBC>
NoConstant.
133
ARIMA Model
ARIMA model for Sales
Final Estimates of Parameters
Type
Coef
StDev
AR
1
-0.3114
0.0959
T
-3.25
Differencing: 1 regular difference
Number of observations:
differencing 99
Residuals:
SS = 133.134
MS =
1.359
Original
series
100,
after
(backforecasts excluded)
DF = 98
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
36
48
Chi-Square
31.9(DF=11)
51.2(DF=23)
62.8(DF=35)
81.0(DF=47)
MTB > ARIMA 2 1 0 'Sales';
SUBC>
NoConstant.
ARIMA Model
ARIMA model for Sales
Final Estimates of Parameters
Type
Coef
StDev
AR
1
-0.4532
0.0897
AR
2
-0.4656
0.0901
T
-5.05
-5.17
Differencing: 1 regular difference
Number of observations:
Original series 100, after
differencing 99
Residuals:
SS = 104.715 (backforecasts excluded)
MS =
1.080 DF = 97
134
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
48
12
Chi-Square
21.8(DF=10)
24
36
40.9(DF=22)
49.4(DF=34)
59.9(DF=46)
MTB > ARIMA 0 1 1 'Sales';
SUBC>
NoConstant.
ARIMA Model
ARIMA model for Sales
Final Estimates of Parameters
Type
Coef
StDev
MA
1
0.7636
0.0648
T
11.78
Differencing: 1 regular difference
Number of observations:
Original series 100, after
differencing 99
Residuals:
SS = 101.411 (backforecasts excluded)
MS =
1.035 DF = 98
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
36
48
Chi-Square
12.6(DF=11)
27.8(DF=23)
35.9(DF=35)
48.5(DF=47)
MTB > ARIMA 0 1 2 'Sales';
SUBC>
NoConstant.
ARIMA Model
ARIMA model for Sales
135
Final Estimates of Parameters
Type
MA
1
Coef
0.5756
StDev
0.0990
T
5.81
MA
0.2029
0.0998
2.03
2
Differencing: 1 regular difference
Number
of
observations:
differencing 99
Residuals:
SS = 99.2463
MS =
1.0232
Original
series
100,
after
(backforecasts excluded)
DF = 97
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
36
48
Chi-Square
14.3(DF=10)
28.3(DF=22)
36.5(DF=34)
47.0(DF=46)
MTB > ARIMA 1 1 1 'Sales';
SUBC>
NoConstant.
ARIMA Model
ARIMA model for Sales
Final Estimates of Parameters
Type
Coef
StDev
AR
1
0.1283
0.1334
MA
1
0.8027
0.0799
T
0.96
10.04
Differencing: 1 regular difference
Number of observations:
Original series 100, after
differencing 99
Residuals:
SS = 100.421 (backforecasts excluded)
MS =
1.035 DF = 97
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
136
Lag
12
24
36
27.9(DF=22)
36.1(DF=34)
48
Chi-Square
48.2(DF=46)
13.3(DF=10)
MTB > ARIMA 2 1 1 'Sales';
SUBC>
NoConstant.
ARIMA Model
ARIMA model for Sales
* WARNING * Back forecasts not dying out rapidly
Final Estimates of Parameters
Type
Coef
StDev
AR
1
-1.1389
0.0987
AR
2
-0.1440
0.0983
MA
1
-0.9889
0.0002
T
-11.53
-1.47
-3987.49
Differencing: 1 regular difference
Number of observations:
Original series 100, after
differencing 99
Residuals:
SS = 134.250 (backforecasts excluded)
MS =
1.398 DF = 96
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
36
48
Chi-Square
35.1(DF= 9)
53.5(DF=21)
66.6(DF=33)
83.2(DF=45)
MTB > ARIMA 1 1 2 'Sales';
SUBC>
NoConstant.
137
ARIMA Model
ARIMA model for Sales
Final Estimates of Parameters
Type
Coef
StDev
T
AR
1
-0.3476
0.4077
-0.85
MA
MA
1
2
0.2422
0.4506
0.3771
0.2656
0.64
1.70
Differencing: 1 regular difference
Number of observations:
differencing 99
Residuals:
SS = 97.2357
MS = 1.0129
Original
series
100,
after
(backforecasts excluded)
DF = 96
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
36
48
Chi-Square
11.9(DF= 9)
25.0(DF=21)
32.1(DF=33)
41.8(DF=45)
MTB > ARIMA 2 1 2 'Sales';
SUBC>
NoConstant.
ARIMA Model
ARIMA model for Sales
Final Estimates of Parameters
Type
Coef
StDev
AR
1
-0.0691
0.3618
AR
2
-0.2941
0.1450
MA
1
0.5637
0.3737
MA
2
0.0840
0.3266
Differencing: 1 regular difference
138
T
-0.19
-2.03
1.51
0.26
Number
of
observations:
Original
series
100,
after
differencing 99
Residuals:
SS = 93.6368
MS = 0.9857
(backforecasts excluded)
DF = 95
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
36
48
Chi-Square
36.5(DF=44)
11.0(DF= 8)
23.4(DF=20)
30.1(DF=32)
:7
;
‫
ول ا‬. f
‫ ذ‬o[‫و‬
Model
σˆ 2
m
AIC
__________
________
___
_________
ARI (1,1)
1.359
2
34.368
1.080
3
13.619
1.035
2
7.4057
1.023
3
8.2706
1.035
3
9.4057
1.398
4
41.169
1.013
4
9.2689
0.986
5
8.5741
ARI ( 2,1)
IMA (1,1)
IMA (1, 2 )
ARIMA (1,1,1)
ARIMA ( 2,1,1)
ARIMA (1,1, 2 )
ARIMA ( 2,1, 2 )
min AIC ( m ) = 7.406
m
.‫ات‬:('C 1C‫ و‬7B‫ا‬1(
‫ ا‬o%N 2!;‫ آ‬W
6
‫;ك‬2 . IMA(1,1) 1‫ذج ه‬1! H`N‫أي ان أ‬
139
‫ﺍﻟﻔﺼﻞ ﺍﻟﺴﺎﺩﺱ‬
0‫ك ا‬/‫\ ا‬0‫ا ا)
ا‬9‫ار ا‬/7j‫ذج ا‬7
Seasonal Autoregressive Integrated Moving Average Models
H]& "(
‫ ا‬42‫ &;و‬4'&‫;ات ز‬N ‫ر‬3;C 4O.K;& ‫ ا!ط‬76"C 4!1!
‫ ا‬4'&
‫ا
!;ت ا‬
.4' ‫ او‬O‫ ا‬4UU ‫ او‬O H‫م او آ‬2‫ ا‬4"( H‫ او آ‬4 ‫ون‬K‫ و‬4".‫ ار‬H‫ آ‬w!'
‫ر ا‬3;2 ‫ان‬
‫@ ا
!;ت‬A‫ ه‬H]& (C 4
;
‫ل ا‬3‫ا‬
S e a s o n a l T im e S e r ie s
z(t)
70
60
50
In d e x
50
100
150
S e a s o n a l T im e S e r ie s
1000
z(t)
900
800
700
600
In d e x
50
100
150
46‫ا‬1. O;LA! ‫ و=ق‬4!1!
‫ ا‬4'&
‫اص ا
!;ت ا‬1 ‫ف ;"ض‬1 Hb
‫ا ا‬A‫ ه‬7N
]!N SARIMA(p,d,q)(P,D,Q)s ‫ك‬%;!
‫ ا‬w1;!
‫ ا‬7&3;
‫ ا‬7C‫ا‬A
‫ار ا‬%9‫!ذج ا‬
H3K
‫ ا‬W;32 SARIMA(0,1,1)(1,1,0)12 ‫ذج‬1!'
‫ا‬
140
(1 − Φ B ) (1 − B ) z = (1 − θ B ) a ,
s
t
1
t
1
at ∼ WN ( 0, σ 2 )
(p,d,q)(P,D,Q)s 4L‫
ر‬. ‫ك‬%;!
‫ ا‬w1;!
‫ ا‬7&3;
‫ ا‬7C‫ا‬A
‫ار ا‬%9‫ذج ا‬1! ‫ن‬FN ‫ م‬H3K.‫و‬
H3K
‫ ا‬W;32 SARIMA(p,d,q)(P,D,Q)s
φ p ( B ) Φ P ( B s ) (1 − B ) (1 − B s ) zt = δ + θ q ( B ) ΘQ ( B s ) at , at ∼ WN ( 0,σ 2 )
D
d
‫ &ت‬7;
‫ وا‬4!1!
‫ ا‬z ‫ك‬%;!
‫ ا‬w1;!
‫ وا‬7C‫ا‬A
‫ار ا‬%9‫ !ل ا‬θ q ( B ) ‫ و‬φ p ( B ) Q5
‫ و‬7!1!
‫ ا‬7C‫ا‬A
‫ار ا‬%9‫ ا‬H& Φ P ( B s ) = 1 + Φ1B s + Φ 2 B 2 s + ⋯ + Φ P B Ps ‫ و‬J. '
‫ا‬A‫! ه‬2‫ و‬7!1!
‫ك ا‬%;!
‫ ا‬w1;!
‫ ا‬H& ΘQ ( B s ) = 1 + Θ1B s + Θ2 B 2 s + ⋯ + ΘQ B Qs
.Multiplicative Seasonal Models 7b`;
‫ ا‬7!1!
‫ذج ا‬1!'
.
at ∼ WN ( 0, σ 2 ) ‫!' أن‬P &1Ob& ‫ن‬13 4&‫د‬J
‫ ا
'!ذج ا‬V!L 7N :4I5&
:0‫ اذج ا‬v V‫ا ا‬9‫\ ا‬$‫ا واا‬9‫\ ا‬$‫دوال اا‬
wt = (1 − B ) (1 − B s ) zt ‫ة‬J;!
‫ ا‬4!1!
‫ ا‬4;!
‫ف ;[م ا‬1 4
;
‫ت ا‬BJ;9‫ ا‬7N
d
D
SARMA(p,q)(P,Q)s ‫ذج‬1!'
‫ ا‬V(;C 7;
‫وا‬
φ p ( B ) Φ P ( B s ) wt = δ + θ q ( B ) ΘQ ( B s ) at , at ∼ WN ( 0, σ 2 )
SARMA(0,1)(1,1)12 7b`;
‫ ا‬7!1!
‫ذج ا‬1!'
7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫; دا‬K ‫ف‬1
wt = Φ wt −12 + at − θ at −1 − Θat −12 + θ Θat −13 , at ∼ WN ( 0,σ 2 )
VB1;
‫ ا‬A‫ وأ‬wt 7N 4N"!
‫ ا‬4
‫ ا
!"د‬7N= ‫`ب‬.
γ 0 = Φ γ 12 + σ 2 + θ 2σ 2 − Θ ( Φ − Θ ) σ 2 + θ Θ ( −Φ θ + θ Θ ) σ 2
=Φ γ 12 + σ 2  (1 + θ 2 ) + Θ ( Φ − Θ ) (1 + θ 2 )
=Φ γ 12 + σ 2 (1 + θ 2 ) 1 + Θ ( Φ − Θ ) 
VB1;
‫ ا‬A‫ وأ‬wt −12 7N 4N"!
‫ ا‬4
‫ ا
!"د‬7N= ‫`ب‬.‫و‬
γ 12 = Φ γ 0 − Θσ 2 + θ Θ ( −θ ) σ 2
=Φ γ 0 − Θσ 2 (1 + θ 2 )
;J.
‫; ا‬B"
‫ ا‬H%.‫و‬
1 + Θ2 − 2ΦΘ
1 − Φ2
2

Φ (Θ − Φ ) 
2
2
γ 12 = σ (1 + θ ) Φ − Θ +

1 − Φ 2 

γ 0 = σ 2 (1 + θ 2 )
141
`2‫أ‬
γ 1 = E ( wt wt −1 )
=Φ γ 11 − θσ 2 − ΘE ( at −12 wt −1 ) + θ ΘE ( at −13wt −1 )
=Φ γ 11 − θσ 2 + θ Θ ( Φ − Θ ) σ 2
‫و‬
γ 11 = E ( wt wt −11 ) = Φ γ 1 + Θθσ 2
;J.
‫; ا‬B"
‫ ا‬H%.‫و‬
 ( Θ − Φ )2 
γ 1 = −θσ 1 +

1 − Φ 2 

2
2

Φ (Θ − Φ ) 
γ 11 = θσ  Θ − Φ −

1 − Φ 2 

2
‫(ت أن‬U‫ إ‬3!2 4J26
‫~ ا‬b'.‫و‬
γ 2 = γ 3 = ⋯ = γ 10 = 0
γ 13 = γ 11
γ k = Φ γ k −12 , k > 13
7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ دا‬L1 4J.
‫ت ا‬B"
‫ ا‬V!L &‫و‬
k =0
 1,

θ
 −
,
k =1
2
 1+θ
 0,
k = 2,...,10

γ
 θ ( Θ − Φ )(1 − ΦΘ )
ρk = k = 
, k = 11
γ 0 1 + θ 2 1 + Θ2 − 2ΦΘ
 ( Θ − Φ )(1 − ΦΘ )
,
k = 12
−
1 + Θ2 − 2ΦΘ

k = 13
 ρ11 ,
 Φρ ,
k > 13

k −12
142
:0‫ اذج ا‬v ‫ا‬9‫\ ا‬$‫دوال اا‬
wt = (1 − ΘB s ) at SARIMA(0,d,0)(0,D,1)s ‫ذج‬1! -1
k =0
 1,

Θ
ρk = −
,
k=s
2
 1+ Θ
otherwise
 0,
(1 − ΦB ) w
= at
s
t
SARIMA(0,d,0)(1,D,1)s ‫ذج‬1! -2
k =0
1,
 ks
ρ k = Φ , k = s, 2 s,...
 0,
otherwise

wt = (1 − θ B ) (1 − ΘB s ) at
SARIMA(0,d,1)(0,D,1)s ‫ذج‬1! -3
k =0
 1,

θ
−
,
k =1
2
 1+θ

θΘ
, k = s −1

2
2
ρ k =  (1 + θ )(1 + Θ )

Θ
−
,
k=s
2
 1+ Θ
 ρ s −1 ,
k = s +1

otherwise
 0,
(1 − ΦB ) w = (1 − ΘB ) a
s
SARIMA(0,d,0)(1,D,1)s ‫ذج‬1! -4
s
t
t
k =0
 1,

 ( Θ − Φ )(1 − ΦΘ ) k s −1
ρk =  −
Φ , k = s, 2 s,...
2
 1 + Θ − 2ΦΘ
otherwise
 0,
(1 − ΦB ) w = (1 − θ B ) a
s
t
t
143
SARIMA(0,d,1)(1,D,0)s ‫ذج‬1! -5
k =0
 1,

θ
−
, k =1
2
 1+θ
 0,
k = 2,..., s − 2

ρk =  θ Φ
−
, k = s −1
 1+θ 2

k=s
 Φ,
 ρ s −1 ,
k = s +1

k > s +1
 Φ ρ k − s ,
wt = (1 − θ1B − θ 2 B 2 )(1 − ΘB12 ) at
 1,

 − θ1 (1 − θ 2 ) ,
 1 + θ12 + θ 22

θ2
−
,
 1 + θ12 + θ 22

θ 2Θ

,
2
 (1 + θ1 + θ 22 )(1 + Θ2 )
ρk = 
θ1Θ (1 − θ 2 )

,
 (1 + θ 2 + θ 2 )(1 + Θ2 )
1
2


Θ
,
−
2
 1+ Θ
 ρ s −1 ,
 ρ ,
 s −2
 0,
SARIMA(0,d,2)(0,D,1)s ‫ذج‬1! -6
k =0
k =1
k =2
k = s−2
k = s −1
k=s
k = s +1
k = s+2
otherwise
‫ء‬6 4!1!
‫ ا‬4'&
‫ !;ت ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫&ت ا‬1
‫"\ ا‬. ‫ف ;"ض‬1
.O
3‫ة أ‬3N
: SARIMA(0,d,1)(1,D,0)12 ‫ذج‬1!'
4
;
‫ل ا‬3‫ا‬
144
(1) H3
Φ = 0.6, θ = 0.5
A C F
o f S A R I M
A ( 0 ,d ,1 ) ( 1 ,D ,0 ) 1 2
C1
0 .5
0 .0
-0 .5
0
1 0
2 0
3 0
4 0
5 0
L a g
( 2) H3
Φ = 0.6, θ = −0.5
A C F
o f S A R I M
A (0 ,d ,1 ) ( 1 ,D ,0 ) 1 2
0 .7
0 .6
C1
0 .5
0 .4
0 .3
0 .2
0 .1
0 .0
0
1 0
2 0
3 0
4 0
5 0
L a g
(3) H3
Φ = −0.6, θ = 0.5
A C F o f S A R IM A (0 ,d ,1 )(1 ,D ,0 )1 2
C1
0 .5
0 .0
-0 .5
0
10
20
30
Lag
145
40
50
‫‪(4) H3‬‬
‫‪Φ = −0.6, θ = −0.5‬‬
‫‪A C F o f S A R IM A (0 ,d ,1 )(1 ,D ,0 )1 2‬‬
‫‪0 .5‬‬
‫‪C1‬‬
‫‪0 .0‬‬
‫‪-0 .5‬‬
‫‪5 0‬‬
‫‪4 0‬‬
‫‪20‬‬
‫‪3 0‬‬
‫‪1 0‬‬
‫‪0‬‬
‫‪L ag‬‬
‫دا اا‪ \$‬ا‪9‬ا ا‪ V‬ذج ا‪ 0‬ا‪:YO‬‬
‫& ا
"‪ 4.1‬إ;‪J‬ق و‪ bC‬أ!ط دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬ا
‪!'
78‬ذج ا
!‪ 4!1‬ا
;`‪4b‬‬
‫و
‪ O'3‬و‪ H3K.‬م ‪FN‬ن أ‪L‬اء ا
'!‪1‬ذج ا
!‪ 4!1‬و‪ z‬ا
!‪ 4!1‬وا
;‪A!'C 7‬ج ا
!;‪ w1‬ا
!;‪%‬ك‬
‫‪&[C 76"C‬ات ا‪ 4‬و‪&[C‬ات ‪ ' 4(L‬ا
;[‪b‬ت ا
!‪ 4!1‬و‪z‬ا
!‪ 4!1‬و‪ 7N‬ا
'!ذج ا
;‪7‬‬
‫‪1%C‬ي إ‪%‬ار ذا‪FN 7C‬ن ا
;ا‪6.‬ت ا
‪A‬ا‪ 4C‬ا
‪. cut off "6B 76"C 48‬‬
‫ا‪3‬ل ا
;
‪69 4‬ء ‪3N‬ة ‪ \".‬دوال ا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬ا
‪ \"(
78‬ا
'!ذج ‪:‬‬
‫‪ H3 -1‬دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬ا
‪1!'
78‬ذج ‪wt = (1 − ΘB12 ) at‬‬
‫ا( ‪Θ = 0.6‬‬
‫‪A C F o f S A R IM A (0 ,d ,0 )(0 ,D ,1 )1 2‬‬
‫‪0 .0‬‬
‫‪-0 .1‬‬
‫‪-0 .2‬‬
‫‪-0 .4‬‬
‫‪-0 .5‬‬
‫‪-0 .6‬‬
‫‪5 0‬‬
‫‪4 0‬‬
‫‪2 0‬‬
‫‪3 0‬‬
‫‪L a g‬‬
‫ب(‬
‫‪Θ = −0.6‬‬
‫‪146‬‬
‫‪1 0‬‬
‫‪0‬‬
‫‪C1‬‬
‫‪-0 .3‬‬
‫‪A C F o f S A R IM A (0 ,d ,0 )(0 ,D ,1 )1 2‬‬
‫‪0 .6‬‬
‫‪0 .5‬‬
‫‪0 .4‬‬
‫‪0 .3‬‬
‫‪C1‬‬
‫‪0 .2‬‬
‫‪0 .1‬‬
‫‪0 .0‬‬
‫‪-0 .1‬‬
‫‪-0 .2‬‬
‫‪4 0‬‬
‫‪5 0‬‬
‫‪2 0‬‬
‫‪3 0‬‬
‫‪0‬‬
‫‪1 0‬‬
‫‪L ag‬‬
‫‪ H3 -2‬دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬ا
‪1!'
78‬ذج ‪= at‬‬
‫‪(1 − ΦB ) w‬‬
‫‪12‬‬
‫‪t‬‬
‫ا( ‪Φ = 0.6‬‬
‫‪A C F o f S A R IM A (0 ,d ,1 )(0 ,D ,0 )1 2‬‬
‫‪0 .6‬‬
‫‪0 .5‬‬
‫‪0 .4‬‬
‫‪C1‬‬
‫‪0 .3‬‬
‫‪0 .2‬‬
‫‪0 .1‬‬
‫‪0 .0‬‬
‫‪4 0‬‬
‫‪5 0‬‬
‫‪2 0‬‬
‫‪3 0‬‬
‫‪0‬‬
‫‪1 0‬‬
‫‪L a g‬‬
‫ب( ‪Φ = −0.6‬‬
‫‪A C F o f S A R IM A (0 ,d ,1 )(0 ,D ,0 )1 2‬‬
‫‪0 .0‬‬
‫‪-0 .1‬‬
‫‪-0 .2‬‬
‫‪C1‬‬
‫‪-0 .3‬‬
‫‪-0 .4‬‬
‫‪-0 .5‬‬
‫‪-0 .6‬‬
‫‪4 0‬‬
‫‪5 0‬‬
‫‪2 0‬‬
‫‪3 0‬‬
‫‪0‬‬
‫‪1 0‬‬
‫‪L a g‬‬
‫ﺃﻤﺜﻠﺔ‪ :‬ﻝﻠﻤﺘﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ ﺍﻝﻤﻭﺴﻤﻴﺔ )ﻓﻲ ﺠﻤﻴﻊ ﺍﻷﻤﺜﻠﺔ ﺍﻝﺘﺎﻝﻴﺔ ﺇﻗﺭﺃ ﺴﻁﺭﺍ ﺒﺴﻁﺭ(‬
‫)‪z(t‬‬
‫‪56.9‬‬
‫‪57.4‬‬
‫‪61.5‬‬
‫‪72.7‬‬
‫‪72.2‬‬
‫‪71.5‬‬
‫‪59.1‬‬
‫‪57.2‬‬
‫‪56.3‬‬
‫‪55.8‬‬
‫‪55.7‬‬
‫‪56.3‬‬
‫‪54.4‬‬
‫‪56.0‬‬
‫‪60.0‬‬
‫‪71.0‬‬
‫‪70.6‬‬
‫‪68.2‬‬
‫‪57.7‬‬
‫‪54.6‬‬
‫‪54.9‬‬
‫‪54.9‬‬
‫‪54.9‬‬
‫‪55.3‬‬
‫‪54.6‬‬
‫‪55.6‬‬
‫‪59.4‬‬
‫‪69.8‬‬
‫‪71.0‬‬
‫‪67.4‬‬
‫‪58.2‬‬
‫‪54.3‬‬
‫‪53.4‬‬
‫‪53.0‬‬
‫‪52.8‬‬
‫‪53.3‬‬
‫‪147‬‬
53.4
53.0
53.0
53.2
54.2
58.0
67.5
70.1
68.2
56.6
54.9
54.0
52.9
52.6
52.8
53.0
53.6
56.1
66.1
69.8
69.3
61.2
57.5
54.9
53.4
52.7
53.0
52.9
55.4
58.7
67.9
70.0
68.7
59.3
56.4
54.5
52.8
52.8
53.2
55.3
55.8
58.2
65.3
67.9
68.3
61.7
56.4
53.9
52.6
52.1
52.4
51.6
52.7
57.3
65.1
71.5
69.9
61.9
57.3
55.1
53.6
53.4
53.5
53.3
53.9
52.7
61.0
69.9
70.4
59.4
56.3
54.3
53.5
53.0
53.2
52.5
53.4
56.5
65.3
70.7
66.9
58.2
55.3
53.4
52.1
51.5
51.5
52.4
53.3
55.5
64.2
69.6
69.3
58.5
55.3
53.6
52.3
51.5
51.7
51.5
52.2
57.1
63.6
68.8
68.9
60.1
55.6
53.9
53.3
53.1
53.5
53.5
53.9
57.1
64.7
69.4
70.3
62.6
57.9
55.8
54.8
54.2
54.6
54.3
54.8
58.1
68.1
73.3
75.5
66.4
60.5
57.7
55.8 54.7 55.0 55.6 56.4 60.6 70.8 76.4 74.8 62.2
1‫ ه‬4;!
‫ ا‬H3
z(t)
7 0
6 0
5 0
In d e x
5 0
1 0 0
1 5 0
7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫دا‬
Autocorrelation
A u t o c o r r e la t io n F u n c t io n f o r z ( t )
1 .0
0 .8
0 .6
0 .4
0 .2
0 .0
-0 .2
-0 .4
-0 .6
-0 .8
-1 .0
2
Lag
1
2
3
4
5
6
7
8
9
10
11
12
C o rr
12
T
LBQ
Lag
C o rr
0 .7 7 1 0 .3 1
0 .3 3
2 .9 3
-0 .1 1 - 0 .9 9
-0 .3 8 - 3 .2 8
-0 .5 2 - 4 .2 2
-0 .5 6 - 4 .1 6
-0 .5 2 - 3 .5 0
-0 .3 8 - 2 .3 9
-0 .1 2 - 0 .7 1
0 .2 9
1 .7 6
0 .6 9
4 .1 5
0 .8 8
4 .8 6
1 0 8 .1 0
1 2 7 .3 4
1 2 9 .7 4
1 5 6 .8 3
2 0 7 .2 4
2 6 6 .5 5
3 1 6 .8 0
3 4 3 .7 1
3 4 6 .2 5
3 6 2 .0 8
4 5 3 .5 8
6 0 3 .8 7
13
14
15
16
17
18
19
20
21
22
23
24
0 .6 8
0 .2 8
-0 .1 2
-0 .3 6
-0 .4 9
-0 .5 3
-0 .4 9
-0 .3 7
-0 .1 4
0 .2 3
0 .6 1
0 .7 9
22
T
32
42
LBQ
Lag
C o rr
T
LBQ
Lag
C o rr
T
LBQ
3 .3 4 6 9 4 .2 8
1 .3 0 7 0 9 .8 2
-0 .5 3 7 1 2 .4 3
-1 .6 5 7 3 8 .3 0
-2 .2 1 7 8 6 .2 8
-2 .3 3 8 4 3 .0 4
-2 .1 0 8 9 2 .3 6
-1 .5 4 9 2 0 .3 9
-0 .5 6 9 2 4 .2 4
0 .9 5 9 3 5 .3 7
2 .4 6 1 0 1 1 .3 1
3 .1 0 1 1 4 0 .9 0
25
26
27
28
29
30
31
32
33
34
35
36
0 .6 1
0 .2 5
-0 .1 1
-0 .3 4
-0 .4 7
-0 .5 1
-0 .4 8
-0 .3 6
-0 .1 4
0 .1 9
0 .5 4
0 .7 2
2 .3 0
0 .9 1
-0 .4 2
-1 .2 4
-1 .6 7
-1 .8 0
-1 .6 5
-1 .2 3
-0 .4 9
0 .6 6
1 .8 2
2 .3 7
1 2 2 0 .0 7
1 2 3 3 .1 8
1 2 3 5 .9 8
1 2 6 1 .2 9
1 3 0 8 .3 2
1 3 6 4 .7 2
1 4 1 4 .0 8
1 4 4 2 .7 1
1 4 4 7 .3 4
1 4 5 5 .7 9
1 5 2 0 .8 9
1 6 3 6 .4 9
37
38
39
40
41
42
43
44
0 .5 7
0 .2 3
-0 .1 1
-0 .3 3
-0 .4 4
-0 .4 8
-0 .4 5
-0 .3 4
1 .8 2
0 .7 3
-0 .3 4
-1 .0 2
-1 .3 8
-1 .4 8
-1 .3 7
-1 .0 4
1 7 0 9 .3 6
1 7 2 1 .7 0
1 7 2 4 .4 3
1 7 4 9 .0 6
1 7 9 5 .0 0
1 8 4 9 .4 1
1 8 9 7 .0 5
1 9 2 5 .3 0
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫وا
;ا‬
148
Partial Autocorrelation
P a r t ia l A u t o c o r r e la t io n F u n c t io n f o r z ( t )
1 .0
0 .8
0 .6
0 .4
0 .2
0 .0
- 0 .2
- 0 .4
- 0 .6
- 0 .8
- 1 .0
2
12
22
32
42
Lag
PAC
T
Lag
P AC
T
Lag
P AC
T
Lag
P AC
T
1
2
3
4
5
6
7
8
9
10
11
12
0 .7 7
-0 .6 8
-0 .0 6
0 .0 1
-0 .4 2
-0 .1 8
-0 .1 1
-0 .2 2
0 .1 8
0 .5 7
0 .2 6
0 .1 6
1 0 .3 1
- 9 .0 1
- 0 .8 2
0 .0 7
- 5 .5 5
- 2 .4 5
- 1 .4 8
- 2 .9 6
2 .3 9
7 .6 5
3 .5 0
2 .1 6
13
14
15
16
17
18
19
20
21
22
23
24
- 0 .4 2
0 .2 9
0 .0 1
- 0 .0 7
0 .0 7
- 0 .0 1
- 0 .0 9
- 0 .0 5
- 0 .0 8
0 .1 0
- 0 .0 3
0 .0 3
- 5 .6 2
3 .8 9
0 .1 6
- 0 .9 2
0 .9 5
- 0 .1 1
- 1 .1 5
- 0 .7 2
- 1 .1 1
1 .3 8
- 0 .3 5
0 .3 7
25
26
27
28
29
30
31
32
33
34
35
36
- 0 .1 3
- 0 .0 0
0 .0 4
- 0 .1 0
- 0 .0 3
0 .0 1
0 .0 1
- 0 .0 4
- 0 .0 4
0 .0 1
- 0 .0 2
0 .0 7
- 1 .7 5
- 0 .0 5
0 .5 0
- 1 .3 0
- 0 .3 4
0 .1 9
0 .0 7
- 0 .5 5
- 0 .5 2
0 .1 5
- 0 .3 2
0 .9 0
37
38
39
40
41
42
43
44
- 0 .0 6
- 0 .0 5
0 .0 1
0 .0 0
- 0 .0 5
0 .0 5
- 0 .0 5
- 0 .0 3
- 0 .7 4
- 0 .6 2
0 .1 7
0 .0 0
- 0 .6 3
0 .6 6
- 0 .6 4
- 0 .4 2
.4J.
‫ل ا‬3‫ ا‬7N 4%P‫ وا‬4!1!
‫‚ ا!ط ا‬5
‫ﻤﺜﺎل ﺁﺨﺭ‬
z(t)
589
561
640
656
727
697
640
599
568
577
553
582
600
566
653
673
742
716
660
617
583
587
565
598
628
618
688
705
770
736
678
639
604
611
594
634
658
622
709
722
782
756
702
653
615
621
602
635
677
635
736
755
811
798
735
697
661
667
645
688
713
667
762
784
837
817
767
722
681
687
660
698
717
696
775
796
858
826
783
740
701
706
677
711
734
690
785
805
871
845
801
764
725
723
690
734
750
707
807
824
886
859
819
783
740
747
711
751
804
756
860
878
942
913
869
834
790
800
763
800
826
799
890
900
961
935
894
855
809
810
766
805
821
773
883
898
957
924
881
837
784
791
760
802
828
778
889
902
969
947
908
867
815
812
773
813
834
782
892
903
966
937
896
858
817
827
797
843
4;!
‫ ا‬H3
149
1000
900
z(t)
800
700
600
In d e x
50
100
150
7C‫ا‬A
‫ ا‬w.‫ا
;ا‬
Autocorrelation
A u t o c o r r e la t io n F u n c t io n f o r z ( t )
1
0
0
0
0
0
-0
-0
-0
-0
-1
.0
.8
.6
.4
.2
.0
.2
.4
.6
.8
.0
2
L ag
1
2
3
4
5
6
7
8
9
10
11
12
C o rr
0
0
0
0
0
0
0
0
0
0
0
0
.8
.7
.6
.4
.4
.3
.4
.4
.5
.6
.7
.8
T
12
LB Q
9 1 1 .5 6 1 3 5 .9 4
8
6 .2 7 2 4 0 .1 3
2
4 .1 2 3 0 6 .7 2
9
2 .9 5 3 4 7 .9 7
3
2 .4 7 3 8 0 .0 9
8
2 .1 0 4 0 5 .0 2
1
2 .2 5 4 3 5 .5 4
5
2 .4 0 4 7 2 .3 7
6
2 .8 7 5 2 9 .0 7
9
3 .3 4 6 1 4 .2 7
7
3 .5 2 7 2 1 .7 2
4
3 .6 1 8 5 2 .4 1
Lag
1
1
1
1
1
1
1
2
2
2
2
2
3
4
5
6
7
8
9
0
1
2
3
4
22
C o rr
0
0
0
0
0
0
0
0
0
0
0
0
.7
.6
.4
.3
.3
.2
.2
.3
.4
.5
.6
.6
4
4
9
6
1
5
9
2
2
3
0
7
T
2
2
1
1
1
0
1
1
1
1
2
2
.9
.4
.7
.3
.0
.9
.0
.1
.4
.8
.0
.2
6
11
91
11
91
01
11
21
41
11
31
11
LB Q
9
0
0
0
1
1
1
1
1
2
3
4
5
3
7
9
1
2
4
6
9
5
2
1
4
0
4
9
7
9
5
5
9
3
5
5
.6
.0
.8
.6
.3
.7
.5
.4
.1
.8
.5
.2
8
9
5
8
9
6
9
2
3
1
1
9
Lag
2
2
2
2
2
3
3
3
3
3
3
3
5
6
7
8
9
0
1
2
3
4
5
6
32
C o rr
0
0
0
0
0
0
0
0
0
0
0
0
.5
.4
.3
.2
.1
.1
.1
.2
.2
.3
.4
.5
8
9
5
4
9
4
7
0
8
8
5
2
T
1
1
1
0
0
0
0
0
0
1
1
1
.8
.5
.0
.7
.5
.4
.5
.6
.8
.1
.3
.5
61
21
91
31
71
31
11
01
51
51
51
31
LB Q
4
5
5
5
5
5
5
5
6
6
6
7
8
3
5
6
7
7
8
9
1
4
8
4
3
0
6
8
5
9
5
3
0
1
5
2
.1
.9
.4
.2
.4
.5
.5
.6
.3
.5
.2
.9
1
9
5
0
4
5
2
2
5
7
7
5
Lag
3
3
3
4
4
4
7
8
9
0
1
2
42
C o rr
0
0
0
0
0
0
.4
.3
.2
.1
.0
.0
3
5
2
2
6
2
T
1
1
0
0
0
0
.2
.0
.6
.3
.1
.0
71
01
41
31
81
51
LB Q
7
8
8
8
8
8
8
1
2
2
2
2
4
0
1
4
5
5
.1
.6
.6
.6
.5
.6
7
0
8
7
6
2
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫وا
;ا‬
Partial Autocorrelation
P a r t ia l A u t o c o r r e la t io n F u n c t io n f o r z ( t )
1 .0
0 .8
0 .6
0 .4
0 .2
0 .0
-0 .2
-0 .4
-0 .6
-0 .8
-1 .0
2
12
22
32
42
Lag
PAC
T
L ag
PAC
T
L ag
PAC
T
Lag
PAC
T
1
2
3
4
5
6
7
8
9
10
11
12
0 .8 9
-0 .0 8
-0 .2 8
0 .0 3
0 .3 5
-0 .0 8
0 .2 8
0 .0 9
0 .4 0
0 .3 0
0 .0 6
0 .2 2
1 1 .5 6
-1 .0 6
-3 .6 5
0 .4 2
4 .5 4
-1 .0 7
3 .6 7
1 .1 9
5 .1 7
3 .9 5
0 .8 1
2 .8 8
13
14
15
16
17
18
19
20
21
22
23
24
-0 .6 3
-0 .0 2
0 .0 7
-0 .0 4
-0 .0 9
-0 .0 4
-0 .0 5
0 .0 3
0 .0 4
0 .0 5
0 .0 5
0 .0 5
-8 .1 9
-0 .2 1
0 .9 5
-0 .5 2
-1 .1 2
-0 .4 9
-0 .6 0
0 .3 8
0 .4 6
0 .6 7
0 .6 0
0 .5 9
25
26
27
28
29
30
31
32
33
34
35
36
-0 .1 8
0 .0 8
0 .0 6
-0 .0 3
-0 .0 4
0 .0 0
-0 .0 6
-0 .0 1
-0 .0 1
0 .0 3
0 .0 0
0 .0 1
-2 .3 6
1 .0 6
0 .7 3
-0 .4 4
-0 .4 7
0 .0 2
-0 .7 2
-0 .1 1
-0 .1 8
0 .3 8
0 .0 3
0 .0 9
37
38
39
40
41
42
-0 .1 1
-0 .0 2
0 .0 4
-0 .0 3
-0 .0 8
0 .0 1
-1 .3 7
-0 .2 2
0 .5 1
-0 .4 2
-1 .0 6
0 .0 8
150
?z ‫ل‬-
z(t)
302
262 218 175 100 077
242 181 107
056 049 047 047 071 151 244 280 230 185 148
098 061 046 045 055
049
042
043 047 049 069 152 205 246 294
046
074
048 115 185 276 220 181 151 083 055
103
200
237
247
215
040 044 063 085 185 247 231 167 117 079
182
080
046
065
045 040 038 041
069 152 232 282 255 161 107 053 040 039 034 035
056 097
210 260 257 210 125 080 042 035 031 032 050 092 189
256
250 198 136 073 039 032 030 031 045
H3K
‫ ا‬O
‫و‬
3 0 0
z(t)
2 0 0
1 0 0
0
In d e x
10
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
1 0 0
7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ودا‬
Autocorrelation
A u t o c o r r e la t io n F u n c t io n f o r z ( t )
1
0
0
0
0
0
-0
-0
-0
-0
-1
.0
.8
.6
.4
.2
.0
.2
.4
.6
.8
.0
5
L a g
1
2
3
4
5
6
7
C o rr
0
0
-0
-0
-0
-0
-0
.8
.4
.0
.4
.6
.7
.6
1
3
3
3
9
8
8
T
8
2
-0
-2
-4
-3
-3
.3
.8
.1
.7
.0
.9
.0
8
9
7
0
3
9
9
L B Q
1
1
2
2
7
9
9
1
6
3
8
2
2
2
3
6
5
9
.2
.3
.4
.1
.3
.1
.3
2
2
0
3
7
7
3
1 5
L a g
1
1
1
1
1
C o rr
T
8 -0 .4 3 -1 .7 8 3 1
9 -0 .0 4 -0 .1 8 3 1
0 0 .3 8 1 .5 4 3 2
1 0 .7 1 2 .8 2 3 8
2 0 .8 4 3 .1 0 4 7
3 0 .7 1 2 .4 2 5 3
4 0 .3 7 1 .2 0 5 5
L B Q
0
0
8
9
6
8
6
.6
.8
.2
.7
.2
.8
.1
6
8
2
2
2
4
0
L a g
1
1
1
1
1
2
2
5
6
7
8
9
0
1
2 5
C o rr
-0
-0
-0
-0
-0
-0
-0
.0
.3
.6
.6
.5
.3
.0
3
8
0
7
9
7
4
T
-0
-1
-1
-2
-1
-1
-0
.0
.1
.8
.0
.7
.0
.1
8
9
8
3
2
5
0
L B Q
5
5
6
6
7
7
7
5
7
2
7
2
4
4
6
4
0
8
4
2
2
.1
.0
.2
.3
.1
.2
.3
8
7
2
6
7
1
8
L a g
2
2
2
2
2
2
3
4
5
6
C o rr
0
0
0
0
0
.3
.6
.7
.5
.3
3
1
1
9
1
T
0
1
1
1
0
.9
.7
.9
.5
.8
2
1
3
5
0
L B Q
7
8
8
9
9
5
0
7
2
4
6
8
9
8
2
.9
.9
.4
.4
.4
8
7
2
1
6
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ودا‬
151
Partial Autocorrelation
P a r t ia l A u t o c o r r e la t io n F u n c t io n f o r z ( t )
1
0
0
0
0
0
-0
-0
-0
-0
-1
.0
.8
.6
.4
.2
.0
.2
.4
.6
.8
.0
5
L a g
1
2
3
4
5
6
7
P A C
0
-0
-0
-0
-0
-0
-0
.8
.7
.2
.2
.1
.3
.1
1
0
9
2
6
2
6
T
8
-7
-2
-2
-1
-3
-1
.3
.1
.9
.2
.6
.2
.6
1 5
L a g
8
7
8
8
1
9
0
1
1
1
1
1
P A C
8 -0 .0 3
9 0 .1 9
0 0 .2 7
1 0 .1 8
2 0 .0 7
3 -0 .1 0
4 -0 .1 5
-0
1
2
1
0
-0
-1
.3
.9
.7
.8
.7
.9
.5
T
L a g
1
1
6
2
4
9
2
1
1
1
1
1
2
2
2 5
P A C
5
0 .1
6
0 .0
7
0 .1
8
0 .0
9 -0 .0
0 -0 .0
1
0 .0
9
8
1
4
2
3
4
1
0
1
0
-0
-0
0
.9
.8
.1
.3
.2
.2
.4
T
L a g
3
4
0
9
2
9
6
2
2
2
2
2
P A C
2 0 .0
3 0 .0
4 -0 .0
5 -0 .0
6 0 .1
1
7
7
2
0
T
0
0
-0
-0
1
.1
.7
.7
.2
.0
5
0
2
3
1
.4%P‫ وا‬4!1& ‫(ي ا!ط‬C ‫@ ا
!;ت‬A‫ ه‬H‫وآ‬
:YO‫ ا‬0‫ت ا
ا‬,‫ذج ا‬7 v 4 ‫إ{ق دوال‬
‫ن =ق‬FN ARIMA ‫ & !ذج‬4+ 4
5 7‫ ه‬4!1!
‫ ا‬4'&
‫! ان !ذج ا
!;ت ا‬.
‫ذج‬1!'
‫ &"
) ا‬2JC‫ذج و‬1!'
‫ ا‬H3 7 ‫ ا
;"ف‬Q5 & 4J.
‫ق ا‬6
‫~ ا‬b 7‫ ه‬O"& H&";
‫ا‬
z ‫ '!ذج‬J. ‫ در'ه‬7;
‫ت ا‬X‫ق وا
!"د‬6
‫ ا‬V!L .:(';
‫) ا‬U &‫ و‬4%b;
‫;(رات ا‬9‫وا‬
.wJN ^P1;
‫ ("\ ا
'!ذج‬:(';
‫; دوال ا‬K ‫ف‬1 .'‫( ه‬6'C 4!1!
‫ا‬
: SARIMA(0,0,0)(0,1,1)12 ‫ذج‬1!'
:(';
‫ ا‬4
‫ دا‬-1
H3K
‫ذج ا‬1!'
‫ ا‬W;32‫و‬
(1 − B ) z = (1 − ΘB ) a
12
12
t
t
4B‫و‬b
‫ ا‬4
‫& ا
!"د‬
zn +ℓ = zn +ℓ−12 + an +ℓ − Θan + ℓ−12
7
;
‫ات آ‬:(';
‫ل ا‬1%
‫ ا‬3!2
zn (1) = zn −11 − Θan −11
zn ( 2 ) = zn −10 − Θan −10
⋮
zn (12 ) = zn − Θan
zn ( ℓ ) = zn ( ℓ − 12 ) , ℓ ≥ 12
‫أو‬
 zn +ℓ −12 − Θan + ℓ−12 ,
zn ( ℓ ) = 
 zn ( ℓ − 12 ) ,
ℓ = 1, 2,...,12
ℓ > 12
‫^ أن‬P‫وا‬
152
zn (1) = zn (13) = zn ( 25 ) = ⋯
zn ( 2 ) = zn (14 ) = zn ( 26 ) = ⋯
⋮
zn (12 ) = zn ( 24 ) = zn ( 36 ) = ⋯
:(';
‫ء ا‬6‫ أ‬2(C
V  en ( ℓ ) = σ 2 (1 + ψ 12 + ⋯ + ψ ℓ2−1 )
(f
‫ه ذ‬.) 4B"
. 6"C ‫ اوزان‬4
‫ودا‬
1 − Θ,
 0,
ψj =
j = 12, 24,...
otherwise
:(';
‫ء ا‬6‫ أ‬2(C 4Y+ 7N ‫\ اوزان‬21";.‫و‬
  ℓ − 1
2
V  en ( ℓ )  = σ 2 1 + 
(1 − Θ ) 

  12 

. x & ^%
‫ ا
ء ا‬7'"C  x  Q5
: SARIMA(0,1,1)(0,1,1)12 ‫ذج‬1!'
:(';
‫ ا‬4
‫ دا‬-2
H3K
‫ذج ا‬1!'
‫ ا‬W;32‫و‬
(1 − B ) (1 − B12 ) zt = (1 − θ B ) (1 − ΘB12 ) at
4B‫و‬b
‫ ا‬4
‫& ا
!"د‬
zn +ℓ = zn +ℓ −1 + zn +ℓ −12 − zn +ℓ −13 + an + ℓ − θ an +ℓ −1 − Θan + ℓ−12 + θ Θan + ℓ−13
7
;
‫ات آ‬:(';
‫ل ا‬1%
‫ ا‬3!2
zn (1) = zn + zn −11 − zn −13 − θ an − Θan −11 + θ Θan −12
zn ( 2 ) = zn (1) + zn −10 − zn −11 − Θan −10 + θ Θan −11
⋮
zn (12 ) = zn (11) + zn − zn −1 − Θan + θ Θan −1
zn (13) = zn (12 ) + zn (1) − zn + θ Θan
zn ( ℓ ) = zn ( ℓ − 1) + zn ( ℓ − 12 ) − zn ( ℓ − 13)
4
‫) أو‬J. ‫ا‬A3‫وه‬
153
zn (1) = zn + zn −11 − zn −13 − θ an − Θan −11 + θ Θan −12
zn ( 2 ) = zn (1) + zn −10 − zn −11 − Θan −10 + θ Θan −11
⋮
zn (12 ) = zn (11) + zn − zn −1 − Θan + θ Θan −1
zn (13) = zn (12 ) + zn (1) − zn + θ Θan
42‫ار‬3C 4B‫و‬
zn ( ℓ ) = zn ( ℓ − 1) + zn ( ℓ − 12 ) − zn ( ℓ − 13) , ℓ > 13
.‫ات‬:(';
‫ب & ا‬16!
‫
ا
"د ا‬1C 3!2
:0‫ت ا
ا‬,‫ ا‬v 0‫ت درا‬rK‫ و‬-
‫أ‬
:4
;
‫هات ا‬K!
‫( ا‬6'2 SARIMA 48 & ‫ذج‬1! ‫د‬2‫ول إ‬% ‫ف‬1 : (1) ‫ل‬-
z(t)
589
561
640
656
727
697
640
599
568
577
553
582
600
566
653
673
742
716
660
617
583
587
565
598
628
618
688
705
770
736 678
639
604
611
594
634
658
622
709
722
782
756
653
615
621
602
635
677
635
736
755
688
713
667
762
784
837
817
767
722
681
687
660
698
717
696
775
796
858
826
783
740
701
706
677
711
734
690
785
805
871
845
801
764
725
723
690
734
750
707
807
824
886
859
819
783
740
747
711
751
804
756
860
878
942
913
869
834
790
800
763
800 826
799
890
900
961
935
894
855
809
810
766
805
821
773
883
898
957
924
881
837
784
791
760
802
828
778
889
902
969
947
908
867
815
812
773
813
834
782
892
903
966
937
896
858
817
827
797
811
702
798
735
697
661
667
645
843
‫هات‬K!
7'&
‫ ا‬w6[!
‫وا‬
154
1 00 0
z(t)
90 0
80 0
70 0
60 0
In d e x
5 0
1 00
15 0
7!U‫ر‬z1
H21%;. X‫ أو‬2(;
‫ ا‬S(] f
A
w1;!
‫ وا‬2(;
‫ ا‬7N ‫ة‬J;& z 4;!
‫‚ ان ا‬52
O
7'&
‫ ا‬w6[!
‫ و) ا‬yt = ln ( zt ) ‫أي‬
6 .9
6 .8
y(t)
6 .7
6 .6
6 .5
6 .4
6 .3
In d e x
5 0
1 0 0
1 5 0
‫ق‬b
‫ ا‬A{ f
A
w1;!
‫ ا‬7N ‫ة‬J;& z ‫ال‬CX 3
‫ و‬2(;
‫ ا‬7N ‫ت‬J;‫ ا‬4;!
‫‚ ان ا‬5
7
;
‫ ا‬H3K
‫ ا‬O
‫ و‬xt = (1 − B ) yt = (1 − B ) ln ( zt ) ‫اول‬
0 .1 5
y(t)-y(t-1)
0 .1 0
0 .0 5
0 .0 0
-0 .0 5
-0 .1 0
In d e x
5 0
1 0 0
1 5 0
w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫ إ
دوال ا
;ا‬I''
.w1;!
‫ وا‬2(;
‫ & ا‬H‫ آ‬7N ‫ة‬J;& ‫ن‬s‫ ا‬4;!
‫ا‬
O
78
‫ ا‬7C‫ا‬A
‫ا‬
155
Autocorrelation
A u t o c o r r e la t io n F u n c t io n f o r y ( t ) - y ( t
1 .0
0 .8
0 .6
0 .4
0 .2
0 .0
-0 .2
-0 .4
-0 .6
-0 .8
-1 .0
10
20
30
L ag
C o rr
T
LB Q
Lag
C o rr
T
LBQ
L ag
C o rr
T
LBQ
1
2
3
4
5
6
7
8
9
10
11
12
0 .0 1
0 .2 5
- 0 .0 8
- 0 .3 7
- 0 .0 6
- 0 .5 0
- 0 .0 4
- 0 .3 5
- 0 .0 5
0 .2 3
0 .0 1
0 .9 0
0 .1 2
3 .2 3
-1 .0 1
-4 .4 8
-0 .6 8
-5 .4 1
-0 .3 3
-3 .3 0
-0 .4 3
2 .0 1
0 .1 1
7 .7 4
0 .0 2
1 0 .7 0
1 1 .8 8
3 5 .6 0
3 6 .2 8
7 9 .9 7
8 0 .1 9
1 0 2 .3 7
1 0 2 .8 0
1 1 2 .2 9
1 1 2 .3 2
2 6 1 .4 1
13
14
15
16
17
18
19
20
21
22
23
24
0 .0 2
0 .2 3
- 0 .0 7
- 0 .3 4
- 0 .0 6
- 0 .4 6
- 0 .0 3
- 0 .3 2
- 0 .0 5
0 .2 1
0 .0 1
0 .8 2
0 .1 2
1 .5 1
- 0 .4 7
- 2 .1 8
- 0 .3 9
- 2 .8 8
- 0 .2 0
- 1 .9 3
- 0 .2 6
1 .2 0
0 .0 8
4 .7 6
2 6 1 .4 7
2 7 1 .2 9
2 7 2 .3 0
2 9 3 .7 3
2 9 4 .4 5
3 3 4 .6 7
3 3 4 .8 8
3 5 4 .9 6
3 5 5 .3 6
3 6 3 .5 5
3 6 3 .5 8
4 9 7 .3 0
25
26
27
28
29
30
31
32
33
34
35
36
0 .0 2
0 .2 1
-0 .0 6
-0 .3 1
-0 .0 6
-0 .4 2
-0 .0 2
-0 .3 0
-0 .0 5
0 .1 8
0 .0 0
0 .7 6
0 .0 8
1 .1 0
- 0 .2 9
- 1 .5 7
- 0 .2 9
- 2 .0 9
- 0 .1 2
- 1 .4 7
- 0 .2 4
0 .8 9
0 .0 2
3 .6 3
4 9 7 .3 5
5 0 6 .5 0
5 0 7 .1 6
5 2 6 .4 5
5 2 7 .1 4
5 6 3 .0 5
5 6 3 .1 6
5 8 2 .0 5
5 8 2 .5 8
5 8 9 .8 4
5 8 9 .8 5
7 1 3 .1 4
40
L ag
C o rr
T
LBQ
3 7 0 .0 1 0 .0 5
3 8 0 .2 0 0 .9 0
3 9 - 0 .0 4 -0 .1 9
4 0 - 0 .2 7 -1 .2 1
4 1 - 0 .0 5 -0 .2 4
7 1 3 .1 6
7 2 2 .0 6
7 2 2 .4 5
7 3 8 .8 6
7 3 9 .5 1
Partial Autocorrelation
P a r t ia l A u t o c o r r e la t io n F u n c t io n f o r y ( t ) - y ( t
1 .0
0 .8
0 .6
0 .4
0 .2
0 .0
- 0 .2
- 0 .4
- 0 .6
- 0 .8
- 1 .0
10
20
30
40
L ag
PAC
T
L ag
PAC
T
L ag
PAC
T
L ag
PAC
T
1
2
3
4
5
6
7
8
9
10
11
12
0 .0 1
0 .2 5
-0 .0 9
-0 .4 6
-0 .0 2
-0 .3 5
-0 .1 4
-0 .4 8
-0 .4 1
-0 .2 3
-0 .5 8
0 .6 3
0 .1 2
3 .2 3
- 1 .2 0
- 5 .9 7
- 0 .2 2
- 4 .5 2
- 1 .8 2
- 6 .2 6
- 5 .3 6
- 2 .9 9
- 7 .5 5
8 .0 8
13
14
15
16
17
18
19
20
21
22
23
24
- 0 .0 4
- 0 .3 3
0 .0 0
0 .1 8
0 .0 1
0 .0 8
- 0 .0 8
0 .0 8
0 .0 2
- 0 .0 4
0 .0 2
0 .0 8
- 0 .4 8
- 4 .2 6
0 .0 6
2 .2 9
0 .0 7
1 .0 6
- 1 .0 4
0 .9 8
0 .2 9
- 0 .5 3
0 .2 9
1 .0 4
25
26
27
28
29
30
31
32
33
34
35
36
-0 .1 3
-0 .0 5
0 .0 6
0 .0 0
-0 .0 7
0 .0 3
0 .0 7
-0 .0 1
-0 .1 0
0 .0 6
0 .0 3
0 .0 1
- 1 .6 7
- 0 .6 1
0 .8 4
0 .0 5
- 0 .9 4
0 .3 4
0 .9 3
- 0 .0 9
- 1 .3 1
0 .8 0
0 .3 9
0 .1 3
37
38
39
40
41
-0 .0 4
0 .0 2
0 .0 4
0 .0 6
-0 .0 2
-0 .5 1
0 .3 0
0 .4 8
0 .8 1
-0 .2 0
‫ و‬12 ‫ت‬b[;
‫ ' ا‬O!B ‫! ن‬1& ‫ة‬J;& z 4;!
‫ ان ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫‚ & دا‬52
wt = (1 − B12 ) (1 − B ) ln ( zt ) ‫ اول‬7!1!
‫ق ا‬b
‫ ا‬A{ f
A
‫ء‬w(. &[;C 36 ‫ و‬24
2b;
‫ا ا‬A‫" ه‬. O!‫و‬
y(t)-y(t-1)12
0 .0 5
0 .0 0
-0 .0 5
In d e x
50
100
150
O
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫ دوال ا
;ا‬L1
156
Autocorrelation
A u t o c o r r e la t io n F u n c t io n f o r y ( t ) - y ( t
1 .0
0 .8
0 .6
0 .4
0 .2
0 .0
-0 .2
-0 .4
-0 .6
-0 .8
-1 .0
5
15
25
Lag
C o rr
T
LBQ
Lag
C o rr
T
LBQ
Lag
C o rr
T
LBQ
1
2
3
4
5
6
7
8
9
10
11
12
- 0 .2 1
- 0 .0 1
0 .1 0
- 0 .1 3
- 0 .1 0
- 0 .0 2
0 .1 2
0 .0 5
- 0 .0 5
0 .1 3
- 0 .0 1
- 0 .4 4
-2 .6 5
-0 .1 3
1 .1 4
-1 .4 9
-1 .1 1
-0 .2 8
1 .3 3
0 .5 4
-0 .5 8
1 .4 5
-0 .0 9
-4 .9 0
7 .1 5
7 .1 7
8 .6 3
1 1 .2 0
1 2 .6 7
1 2 .7 7
1 4 .9 5
1 5 .3 1
1 5 .7 5
1 8 .4 9
1 8 .5 0
5 0 .8 8
13
14
15
16
17
18
19
20
21
22
23
24
0 .1 8
-0 .0 7
-0 .0 5
0 .0 3
0 .1 2
-0 .0 0
-0 .1 1
0 .0 3
-0 .0 2
-0 .0 9
0 .1 1
-0 .0 4
1 .8 0
-0 .7 0
-0 .4 8
0 .2 6
1 .1 3
-0 .0 2
-1 .0 8
0 .2 5
-0 .2 0
-0 .8 0
0 .9 9
-0 .3 8
5 6 .6 4
5 7 .5 4
5 7 .9 7
5 8 .1 0
6 0 .5 8
6 0 .5 8
6 2 .9 1
6 3 .0 4
6 3 .1 2
6 4 .4 5
6 6 .5 2
6 6 .8 2
25
26
27
28
29
30
31
32
33
34
35
36
0 .0 7
- 0 .0 0
- 0 .0 6
0 .0 3
- 0 .1 0
0 .0 1
0 .0 4
0 .0 0
0 .0 2
0 .0 0
0 .0 9
- 0 .0 6
0 .6 2
- 0 .0 2
- 0 .5 7
0 .3 0
- 0 .9 0
0 .0 8
0 .3 8
0 .0 4
0 .1 9
0 .0 3
0 .8 0
- 0 .5 1
6 7 .6 7
6 7 .6 7
6 8 .3 8
6 8 .5 8
7 0 .4 0
7 0 .4 1
7 0 .7 4
7 0 .7 4
7 0 .8 3
7 0 .8 3
7 2 .3 6
7 2 .9 9
35
L ag
C o rr
T
LBQ
3 7 - 0 .0 6 - 0 .5 4
3 8 0 .0 3 0 .2 6
7 3 .7 1
7 3 .8 8
Partial Autocorrelation
P a r t ia l A u t o c o r r e la t io n F u n c t io n f o r y ( t ) - y ( t
1 .0
0 .8
0 .6
0 .4
0 .2
0 .0
- 0 .2
- 0 .4
- 0 .6
- 0 .8
- 1 .0
5
15
25
35
L ag
PAC
T
L ag
PAC
T
L ag
PAC
T
L ag
PAC
T
1
2
3
4
5
6
7
8
9
10
11
12
-0 .2 1
-0 .0 6
0 .0 8
-0 .0 9
-0 .1 5
-0 .1 0
0 .1 1
0 .1 1
-0 .0 4
0 .0 6
0 .0 5
-0 .4 2
- 2 .6 5
- 0 .7 3
1 .0 6
- 1 .1 6
- 1 .8 2
- 1 .1 9
1 .4 1
1 .4 2
- 0 .5 1
0 .8 0
0 .5 9
- 5 .2 3
13
14
15
16
17
18
19
20
21
22
23
24
- 0 .0 0
- 0 .0 2
0 .0 0
- 0 .1 1
0 .0 4
0 .0 1
- 0 .0 4
- 0 .0 3
- 0 .0 3
0 .0 3
0 .0 7
- 0 .2 7
- 0 .0 3
- 0 .2 5
0 .0 0
- 1 .4 0
0 .4 7
0 .1 2
- 0 .5 2
- 0 .3 5
- 0 .3 1
0 .3 2
0 .9 1
- 3 .4 1
25
26
27
28
29
30
31
32
33
34
35
36
0 .1 2
-0 .0 1
-0 .1 2
-0 .0 7
0 .0 4
-0 .0 4
-0 .0 5
0 .0 2
-0 .0 1
-0 .0 2
0 .1 8
-0 .2 1
1 .5 1
- 0 .1 5
- 1 .4 4
- 0 .9 1
0 .4 4
- 0 .5 3
- 0 .6 0
0 .1 9
- 0 .1 2
- 0 .1 9
2 .2 1
- 2 .5 7
37
38
0 .1 0
-0 .0 6
1 .2 3
-0 .7 9
wt = (1 − B12 ) (1 − B ) ln ( zt ) 4;!
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫& ا!ط دوال ا
;ا‬
‫ذج‬1!'
‫( ا‬6 ‫ اي‬0 ‫ و‬0 7‫ ه‬4'3!!
‫ ا‬q ‫ و‬p )B ‫ ان‬
(1 − B ) (1 − B ) ln ( z ) = (1 − ΘB ) a
12
12
t
t
‫ذج‬1!'
‫ا ا‬A‫( ه‬62 MINITAB 7N 7
;
‫ ا& ا‬SARIMA(0,1,0)(0,1,1)12 1‫ه‬
ARIMA 0 1 0 0 1 1 12 'y(t)' ;
NoConstant.
zt = e yt H21%;
‫ ي ا‬48O'
‫_ ا‬8;'
‫ل ا‬1%
‫ و‬yt = ln ( zt ) '&[;‫‚ ا' ا‬5X
:f‫ا‬
MTB > Name c14 = 'RESI3' c15 = 'FITS3'
MTB > ARIMA 0 1 0 0 1 1 12 'y(t)' 'RESI3' 'FITS3';
SUBC>
NoConstant;
SUBC>
Forecast 24 c7 c8 c9;
157
SUBC>
GACF;
SUBC>
GPACF;
SUBC>
SUBC>
GHistogram;
GNormalplot.
ARIMA Model
ARIMA model for y(t)
Estimates at each iteration
Iteration
SSE
Parameters
0
0.0228597
0.100
1
0.0204943
0.250
2
0.0187066
0.400
3
0.0174234
0.550
4
0.0169841
0.684
5
0.0169841
0.683
6
0.0169841
0.683
Relative change in each estimate less than
Final Estimates of Parameters
Type
Coef
StDev
SMA 12
0.6831
0.0610
0.0010
T
11.20
Differencing: 1 regular, 1 seasonal of order 12
Number of observations:
Original series 168, after
differencing 155
Residuals:
SS = 0.0165799 (backforecasts excluded)
MS = 0.0001077 DF = 154
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
36
48
Chi-Square
9.0(DF=11)
29.9(DF=23)
44.5(DF=35)
59.4(DF=47)
Forecasts from period 168
95 Percent Limits
158
Period
Forecast
Lower
Upper
Actual
169
170
6.76750
6.70901
6.74716
6.68024
6.78784
6.73778
171
6.83815
6.80292
6.87338
172
6.85381
6.81313
6.89450
173
6.92288
6.87739
6.96836
174
6.89349
6.84366
6.94331
175
176
6.84654
6.80008
6.79272
6.74255
6.90035
6.85761
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
6.74395
6.75028
6.70664
6.75999
6.79052
6.73203
6.86117
6.87684
6.94590
6.91651
6.86956
6.82310
6.76697
6.77330
6.72966
6.78301
6.68293
6.68596
6.63918
6.68952
6.71514
6.65203
6.77680
6.78832
6.85342
6.82023
6.76962
6.71963
6.66009
6.66312
6.61627
6.66649
6.80497
6.81461
6.77410
6.83045
6.86590
6.81203
6.94554
6.96535
7.03838
7.01279
6.96950
6.92657
6.87385
6.88349
6.84305
6.89952
1‫ ه‬4;!
‫@ ا‬AO
‫;ح‬J!
‫ذج ا‬1!'
‫أي أن ا‬
(1 − B ) (1 − B ) ln ( z ) = (1 − 0.683B ) a ,
12
12
t
t
at ∼ N ( 0, 0.0001077 )
‫‚ ان‬5X
Θ = 0.683, s.e. ( Θ ) = 0.061, t = 11.2
.421'"!
‫ ا‬7
)"!
‫أي ان ا‬
:I‫> اا‬/a
\0‫إ?ر ا‬
MTB > ZTest 0.0 0.0103778 'RESI3';
159
SUBC>
Alternative 0.
Z-Test
Test of mu = 0.000000 vs mu not = 0.000000
The assumed sigma = 0.0104
Variable
RESI3
StDev
SE Mean
Z
P
155 -0.000111 0.010375
N
Mean
0.000834
-0.13
0.89
‫ا‬b+ 7B‫ا‬1(
‫ ا‬w1;& ‫\ أن‬NX ‫ اي‬0.05 & (‫ اآ‬7‫ وه‬P-value=0.89 ‫‚ ان ا
ـ‬5X
I‫إ?ر ا اا‬
MTB > Runs 0 'RESI3'.
Runs Test
RESI3
K =
0.0000
The observed number of runs = 70
The expected number of runs = 78.1097
72 Observations above K
83 below
The test is significant at 0.1893
Cannot reject at alpha = 0.05
7B‫ا‬1(
‫ ا‬48‫ا‬1K 4PN \NX '‫ اي ا‬0.1893 ' ‫ي‬1'"& ‫;(ر‬9‫ا‬
:I‫ل اا‬,0‫إ?ر إ‬
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫دوال ا
;ا‬
160
A C F o f R e s id u a ls f o r y ( t )
( w it h 9 5 % c o n f id e n c e l im it s f o r t h e a u t o c o r r e l a t io n s )
1 .0
0 .8
Autocorrelation
0 .6
0 .4
0 .2
0 .0
-0 .2
-0 .4
-0 .6
-0 .8
-1 .0
3
6
9
12
15
18
21
24
27
30
33
36
39
Lag
P A C F o f R e s id u a ls f o r y ( t )
( w it h 9 5 % c o n f id e n c e l im it s f o r t h e p a r t ia l a u t o c o r r e l a t io n s )
1 .0
Partial Autocorrelation
0 .8
0 .6
0 .4
0 .2
0 .0
-0 .2
-0 .4
-0 .6
-0 .8
-1 .0
3
6
9
12
15
18
21
24
27
30
33
36
39
Lag
.4J;& 7ON 4"(= S‫ وإذا آ‬46.‫ &;ا‬z O‫ ا
(`ء أي ا‬4`
‫ ا!ط ا‬76"C O‫‚ ا‬5
:I‫ اا‬i ‫إ?ر‬
161
Histogram of the Residuals
(response is y(t))
Frequency
30
20
10
0
-0.03
-0.02
-0.01
0.00
0.01
0.02
0.03
0.04
Residual
Normal Probability Plot of the Residuals
(response is y(t))
0.04
0.03
Residual
0.02
0.01
0.00
-0.01
-0.02
-0.03
-3
-2
-1
0
1
2
3
Normal Score
K-S test for Residuals
.999
.99
Probability
.95
.80
.50
.20
.05
.01
.001
-0.03
-0.02
-0.01
0.00
0.01
0.02
0.03
RESI3
Average: -0.0001115
StDev: 0.0103754
N: 155
Kolmogorov-Smirnov Normality Test
D+: 0.074 D-: 0.045 D : 0.074
Approximate P-Value: 0.041
' ‫ي‬1'"& ‫;(ر‬9‫ اذا ا‬0.05 & HB‫ ا‬7‫ وه‬0.041 76"2 K-S ‫;(ر‬9 P-value ‫‚ ان ا
ـ‬5X
.7B‫ا‬1(
‫ ا‬4"(= 4PN \NX ‫ اي‬α = 0.05
162
:‫ام اذج‬:0c$ 4‫ا‬
)
. O!‫ و‬:('C ‫;ات‬N 95% V& 4(J;& 4!B 24 :(';
. '!B 4J.
‫ت ا‬L[!
‫ ا‬7N
:7
;
‫ا‬
1150
Forecast
1050
950
850
750
0
5
10
15
20
25
T im e
:(';
‫ود ا‬5‫ات و‬:(';
‫ ا‬V& 4;!
7
;
‫وا
) ا‬
1150
Forecast
1050
950
850
750
650
550
0
100
200
Time
: 0‫ درا‬K
:4
;
‫هات ا‬K!
‫( ا‬6'2 SARIMA 48 & ‫ذج‬1! ‫د‬2‫ول إ‬% ‫ف‬1
z(t)
56.3
55.7
55.8
56.3
57.2
59.1
71.5
72.2
72.7
61.5
57.4
56.9
55.3
54.9
54.9
54.9
54.6
57.7
68.2
70.6
71.0
60.0
56.0
54.4
163
53.3
52.8
53.0
53.4
54.3
58.2
67.4
71.0
69.8
59.4
55.6
54.6
53.4
53.0
53.0
53.2
54.2
58.0
67.5
70.1
68.2
56.6
54.9
54.0
52.9
52.6
52.8
53.0
53.6
56.1
66.1
69.8
69.3
61.2
57.5
54.9
53.4
52.7
53.0
52.9
55.4
58.7
67.9
70.0
68.7
59.3
56.4
54.5
52.8
52.8
53.2
55.3
55.8
58.2
65.3
67.9
68.3
61.7
56.4
53.9
52.6
52.1
52.4
51.6
52.7
57.3
65.1
71.5
69.9
61.9
57.3
55.1
53.6
53.4
53.5
53.3
53.9
52.7
61.0
69.9
70.4
59.4
56.3
54.3
53.5
53.0
53.2
52.5
53.4
56.5
65.3
70.7
66.9
58.2
55.3
53.4
52.1
51.5
51.5
52.4
53.3
55.5
64.2
69.6
69.3
58.5
55.3
53.6
52.3
51.5
51.7
51.5
52.2
57.1
63.6
68.8
68.9
60.1
55.6
53.9
53.3
53.1
53.5
53.5
53.9
57.1
64.7
69.4
70.3
62.6
57.9
55.8
54.8
54.2
54.6
54.3
54.8
58.1
68.1
73.3
75.5
66.4
60.5
57.7
55.8
54.7
55.0
55.6
56.4
60.6
70.8
76.4
62.2
7'&
‫ ا‬w6[!
‫ا‬
7 0
z(t)
74.8
6 0
5 0
In d e x
5 0
1 0 0
1 5 0
wt = (1 − B ) zt w1;!
‫ار ا‬J;9 ‫ق اول‬b
‫ ا‬A{.
164
y(t)
1 0
0
-1 0
In d e x
5 0
1 0 0
1 5 0
78L 7C‫ ذا‬w.‫ا‬C‫ و‬7C‫ ذا‬w.‫ا‬C ‫ دوال‬O
‫و‬
Autocorrelation
Autocorrelation Function for y(t)
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
Lag
Corr
T
LBQ
Lag
Corr
T
LBQ
Lag
Corr
T
LBQ
Lag
Corr
T
LBQ
1
2
3
4
5
6
7
8
9
10
11
12
0.47
-0.02
-0.37
-0.28
-0.21
-0.19
-0.21
-0.27
-0.32
-0.00
0.46
0.86
6.32
-0.22
-4.10
-2.82
-2.00
-1.77
-1.92
-2.46
-2.85
-0.02
3.91
6.71
40.60
40.67
65.83
80.10
87.92
94.41
102.29
115.89
135.47
135.48
176.37
318.37
13
14
15
16
17
18
19
20
21
22
23
24
0.43
-0.01
-0.33
-0.25
-0.19
-0.17
-0.19
-0.25
-0.31
-0.01
0.42
0.79
2.76
-0.03
-2.00
-1.49
-1.12
-0.97
-1.09
-1.42
-1.76
-0.06
2.35
4.28
354.69
354.69
375.77
388.04
395.15
400.68
407.71
419.89
439.21
439.24
475.10
602.75
25
26
27
28
29
30
31
32
33
34
35
36
0.41
-0.00
-0.29
-0.23
-0.17
-0.16
-0.17
-0.23
-0.28
-0.01
0.37
0.72
2.06
-0.01
-1.43
-1.08
-0.82
-0.78
-0.83
-1.06
-1.31
-0.06
1.70
3.27
638.60
638.60
656.89
667.77
674.14
679.93
686.56
697.63
714.89
714.93
745.11
860.42
37
38
39
40
41
42
43
44
0.40
0.02
-0.27
-0.21
-0.17
-0.15
-0.16
-0.20
1.72
0.07
-1.14
-0.89
-0.71
-0.61
-0.65
-0.83
896.48
896.54
913.29
923.75
930.47
935.55
941.37
950.82
2
12
22
32
42
Partial Autocorrelation
Partial Autocorrelation Function for y(t)
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
2
Lag PAC
1
2
3
4
5
6
7
8
9
10
11
12
0.47
-0.32
-0.30
0.09
-0.23
-0.25
-0.16
-0.43
-0.64
-0.31
-0.16
0.41
12
T
6.32
-4.21
-4.00
1.22
-3.05
-3.33
-2.09
-5.67
-8.56
-4.11
-2.18
5.42
Lag PAC
13
14
15
16
17
18
19
20
21
22
23
24
-0.27
-0.01
0.01
-0.07
-0.01
0.02
0.03
0.07
-0.12
-0.02
-0.06
0.13
22
T
-3.62
-0.17
0.13
-0.95
-0.16
0.24
0.44
0.89
-1.62
-0.26
-0.86
1.74
32
Lag PAC
25
26
27
28
29
30
31
32
33
34
35
36
-0.02
-0.06
0.07
-0.00
-0.02
-0.04
0.01
0.03
-0.02
0.00
-0.09
0.05
T
-0.33
-0.74
0.99
-0.05
-0.26
-0.60
0.20
0.37
-0.25
0.06
-1.17
0.61
42
Lag PAC
37
38
39
40
41
42
43
44
0.03
-0.03
-0.01
0.02
-0.04
0.03
-0.00
0.03
T
0.38
-0.35
-0.17
0.23
-0.56
0.35
-0.00
0.43
4;!
‫';_ ا‬2‫ و‬wt = (1 − B12 ) (1 − B ) zt ‫ أي‬12 4(C
‫ & ا‬7!1& 2bC ‫;ج إ‬%C O‫ى ا‬
4
;
‫ا‬
165
5
w(t)
0
-5
In d e x
50
100
150
78L 7C‫ ذا‬w.‫ا‬C‫ و‬7C‫ ذا‬w.‫ا‬C ‫ دوال‬O
‫و‬
Autocorrelation
A u t o c o r r e la t io n F u n c t io n f o r w ( t )
1 .0
0 .8
0 .6
0 .4
0 .2
0 .0
- 0 .2
- 0 .4
- 0 .6
- 0 .8
- 1 .0
10
20
30
L ag
C o rr
T
LBQ
L ag
C o rr
T
LBQ
L ag
C o rr
T
LBQ
1
2
3
4
5
6
7
8
9
10
11
12
-0 .0 1
-0 .1 9
-0 .2 4
-0 .0 0
0 .0 0
-0 .0 4
-0 .0 4
-0 .0 3
0 .2 2
0 .1 0
0 .0 8
-0 .4 2
-0 .1 9
-2 .4 8
-2 .9 7
-0 .0 3
0 .0 3
-0 .5 0
-0 .4 9
-0 .3 1
2 .5 6
1 .1 6
0 .9 3
-4 .6 3
0 .0 4
6 .3 1
1 6 .1 0
1 6 .1 0
1 6 .1 0
1 6 .4 1
1 6 .7 1
1 6 .8 3
2 5 .2 6
2 7 .1 3
2 8 .3 7
5 9 .4 0
13
14
15
16
17
18
19
20
21
22
23
24
-0 . 0 8
0 .1 0
0 .1 2
-0 . 0 2
-0 . 0 3
0 .1 0
0 .0 7
-0 . 0 1
-0 . 2 0
-0 . 0 2
0 .1 0
0 .1 4
-0 .8 4
0 .9 8
1 .1 5
-0 .1 7
-0 .2 8
1 .0 1
0 .7 0
-0 .0 5
-1 .9 4
-0 .2 3
0 .9 5
1 .3 0
6 0 .6 9
6 2 .5 0
6 5 .0 1
6 5 .0 7
6 5 .2 2
6 7 .2 4
6 8 .2 3
6 8 .2 4
7 5 .9 4
7 6 .0 5
7 8 .0 2
8 1 .7 8
25
26
27
28
29
30
31
32
33
34
35
36
-0 .0 8
-0 .1 3
-0 .0 1
0 .0 6
0 .1 2
-0 .1 5
-0 .0 8
-0 .0 3
0 .1 9
0 .1 7
-0 .1 0
-0 .2 2
-0 .7 6
-1 .1 8
-0 .1 3
0 .5 6
1 .0 9
-1 .3 6
-0 .7 2
-0 .2 8
1 .6 6
1 .4 9
-0 .8 6
-1 .9 2
8 3 .0 9
8 6 .2 8
8 6 .3 3
8 7 .0 7
8 9 .9 4
9 4 .4 7
9 5 .8 0
9 6 .0 1
1 0 3 .2 0
1 0 9 .1 9
1 1 1 .2 4
1 2 1 .7 7
40
Lag
C o rr
T
LBQ
3 7 0 .0 5 0 .4 6
3 8 0 .1 0 0 .8 4
3 9 0 .0 2 0 .1 5
4 0 -0 .0 2 -0 .1 6
4 1 -0 .1 2 -1 .0 1
1 2 2 .4 0
1 2 4 .5 2
1 2 4 .5 9
1 2 4 .6 7
1 2 7 .8 4
Partial Autocorrelation
P a r t ia l A u t o c o r r e la t io n F u n c t io n f o r w ( t )
1 .0
0 .8
0 .6
0 .4
0 .2
0 .0
-0 .2
-0 .4
-0 .6
-0 .8
-1 .0
10
20
30
L ag
PAC
T
L ag
PAC
T
L ag
PAC
T
1
2
3
4
5
6
7
8
9
10
11
12
-0 .0 1
-0 .1 9
-0 .2 6
-0 .0 7
-0 .1 1
-0 .1 4
-0 .1 1
-0 .1 3
0 .1 4
0 .0 7
0 .1 7
-0 .3 2
-0 .1 9
-2 .4 8
-3 .2 8
-0 .8 5
-1 .4 3
-1 .8 4
-1 .4 6
-1 .6 6
1 .7 6
0 .9 5
2 .1 9
-4 .0 8
13
14
15
16
17
18
19
20
21
22
23
24
-0 .0 5
0 .0 1
-0 .0 4
-0 .0 3
-0 .0 2
0 .0 6
0 .0 5
-0 .0 3
-0 .0 5
0 .0 5
0 .1 9
0 .0 1
-0 .6 9
0 .1 5
-0 .5 0
-0 .3 3
-0 .2 3
0 .7 8
0 .6 2
-0 .4 2
-0 .6 8
0 .6 3
2 .5 0
0 .0 9
25
26
27
28
29
30
31
32
33
34
35
36
-0 .1 2
-0 .0 8
-0 .0 3
-0 .0 3
0 .0 7
-0 .1 1
-0 .0 2
-0 .1 0
-0 .0 1
0 .1 8
0 .0 7
-0 .0 9
-1 .4 9
-0 .9 7
-0 .3 2
-0 .3 6
0 .8 7
-1 .3 9
-0 .2 9
-1 .2 9
-0 .0 9
2 .3 1
0 .9 5
-1 .1 8
Lag
40
PAC
T
3 7 0 .0 2
3 8 -0 .0 8
3 9 0 .0 3
4 0 0 .0 5
4 1 -0 .0 3
0 .2 4
- 1 .0 6
0 .4 4
0 .6 3
- 0 .3 6
1‫ ه‬W'!
‫ذج ا‬1!'
‫ن ا‬132 B 78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫هة وال ا
;ا‬K!
‫& ا!ط ا‬
‫ أي‬SARIMA(1,1,1)(0,1,1)12
166
(1 − φ B ) (1 − B12 ) (1 − B ) zt = (1 − θ B ) (1 − ΘB12 ) at
:7
;
‫ آ‬4;!
‫ذج ا‬1!'
‫ا ا‬A‫( ه‬6
MTB > ARIMA 1 1 1 0 1 1 12 'z(t)' 'RESI2';
SUBC>
NoConstant;
SUBC>
GACF;
SUBC>
SUBC>
GPACF;
GHistogram;
SUBC>
GNormalplot.
ARIMA Model
ARIMA model for z(t)
Estimates at each iteration
Iteration
SSE
Parameters
0
307.653
0.100
0.100
1
281.217
0.100
0.100
2
262.275
0.226
0.231
3
262.027
0.376
0.381
4
261.770
0.526
0.531
5
261.426
0.675
0.681
6
260.905
0.824
0.831
7
260.036
0.970
0.981
8
227.926
0.835
0.980
9
221.838
0.748
0.980
10
221.665
0.738
0.980
11
221.637
0.738
0.980
12
221.610
0.737
0.980
13
221.585
0.737
0.980
Relative change in each estimate less than
Final Estimates of Parameters
Type
Coef
StDev
AR
1
0.7374
0.0620
MA
1
0.9796
0.0017
SMA 12
0.5898
0.0736
167
T
11.89
582.86
8.01
0.100
0.250
0.400
0.401
0.401
0.402
0.403
0.405
0.536
0.576
0.586
0.589
0.589
0.590
0.0010
Differencing: 1 regular, 1 seasonal of order 12
Number
of
observations:
Original
series
178,
after
differencing 165
Residuals:
SS = 214.393
MS =
1.323
(backforecasts excluded)
DF = 162
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
36
48
Chi-Square
67.1(DF=45)
15.7(DF= 9)
30.9(DF=21)
61.6(DF=33)
1‫ ه‬4;!
‫@ ا‬AO
‫;ح‬J!
‫ذج ا‬1!'
‫أي أن ا‬
(1 − 0.74 B ) (1 − B12 ) (1 − B ) zt = (1 − 0.98B ) (1 − 0.59 B12 ) at ,
at ∼ N ( 0,1.323)
‫‚ ان‬5X
φ = 0.74, s.e. (φ ) = 0.062, t = 11.89
θ = 0.96, s.e. (θ ) = 0.0017, t = 582.86
Θ = 0.59, s.e. ( Θ ) = 0.074, t = 8.01
.421'"!
‫ ا‬4
)
"!
‫أي ان ا‬
:I‫> اا‬/a
\0‫إ?ر ا‬
MTB > ZTest 0.0 1.15 'RESI1';
SUBC>
Alternative 0.
Z-Test
Test of mu = 0.0000 vs mu not = 0.0000
The assumed sigma = 1.15
Variable
RESI1
N
165
Mean
-0.0144
StDev
1.1433
SE Mean
0.0895
Z
-0.16
P
0.87
‫ا‬b+ 7B‫ا‬1(
‫ ا‬w1;& ‫\ أن‬NX ‫ اي‬0.05 & (‫ اآ‬7‫ وه‬P-value=0.87 ‫‚ ان ا
ـ‬5X
I‫إ?ر ا اا‬
168
MTB > Runs 0 'RESI1'.
Runs Test
RESI1
K =
0.0000
The observed number of runs =
67
The expected number of runs =
82.4061
73 Observations above K
92 below
The test is significant at
0.0149
‫اء‬L‫;ج إ
إ‬%2 ‫ا‬A‫ وه‬7B‫ا‬1(
‫ ا‬48‫ا‬1K 4PN \N '‫ اي ا‬0.05 ' ‫ي‬1'"&z ‫;(ر‬9‫ا‬
:7
;
‫ ا‬w1
‫ ا‬Sign Test ‫رة‬9‫ إ;(ر ا‬H]& ‫ة & إ;(ر ا
ي‬1B ]‫ أآ‬, ‫إ;(ر‬
MTB > STest 0.0 'RESI1';
SUBC>
Alternative 0.
Sign Test for Median
Sign test of median = 0.00000 versus
RESI1
N
165
N*
13
Below
92
Equal
0
not =
Above
73
0.00000
P
0.1611
Median
-0.08139
w1
‫ ا‬WC
‫رات ا‬9 ‫ن‬1‫آ‬13
‫ و
;{آ ي إ;(ر و‬0.1611 ' ‫ي‬1'"& ‫;(ر‬9‫وا‬
7
;
‫ا‬
MTB > WTest 0.0 'RESI1';
SUBC>
Alternative 0.
Wilcoxon Signed Rank Test
Test of median = 0.000000 versus median not = 0.000000
RESI1
N
165
Number
N for
Wilcoxon
Missing
13
Test
165
Statistic
6321.0
Estimated
P
0.392
Median
-0.05940
0.392 ' ‫ي‬1'"& `2‫;(ر ا‬9‫وا‬
:I‫ل اا‬,0‫إ?ر إ‬
169
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫دوال ا
;ا‬
A C F o f R e s id u a ls f o r z ( t)
( w it h 9 5 % c o n f id e n c e l im it s f o r t h e a u t o c o r r e l a t io n s )
1 .0
0 .8
Autocorrelation
0 .6
0 .4
0 .2
0 .0
-0 .2
-0 .4
-0 .6
-0 .8
-1 .0
3
6
9
12
15
18
21
24
27
30
33
36
39
Lag
P A C F o f R e s id u a ls f o r z ( t)
( w it h 9 5 % c o n f id e n c e l im it s f o r t h e p a r t ia l a u t o c o r r e l a t io n s )
1 .0
Partial Autocorrelation
0 .8
0 .6
0 .4
0 .2
0 .0
-0 .2
-0 .4
-0 .6
-0 .8
-1 .0
3
6
9
12
15
18
21
24
27
30
33
36
39
Lag
.4J;& 7ON 4"(= S‫ وإذا آ‬46.‫ &;ا‬z O‫ ا
(`ء أي ا‬4`
‫ ا!ط ا‬76"C O‫‚ ا‬5
:I‫ اا‬i ‫إ?ر‬
Histogram of the Residuals
(response is z(t))
50
Frequency
40
30
20
10
0
-6
-5
-4
-3
-2
-1
Residual
170
0
1
2
3
4
Normal Probability Plot of the Residuals
(response is z(t))
4
3
2
Residual
1
0
-1
-2
-3
-4
-5
-3
-2
-1
0
1
2
3
Normal Score
K-S Test for Residuals
.999
Probability
.99
.95
.80
.50
.20
.05
.01
.001
-5
-4
-3
-2
-1
0
1
2
3
RESI1
Average: -0.0144171
StDev: 1.14327
N: 165
Kolmogorov-Smirnov Normality Test
D+: 0.117 D-: 0.140 D : 0.140
Approximate P-Value < 0.01
‫ اي‬α = 0.05 ' ‫ي‬1'"& ‫;(ر‬9‫ اذا ا‬0.01 & HB‫ أ‬K-S ‫;(ر‬9 P-value ‫‚ ان ا
ـ‬5X
.7B‫ا‬1(
‫ ا‬4"(= 4PN \NX
:‫ام اذج‬:0c$ 4‫ا‬
:('C ‫;ات‬N 95% V& 4(J;& 4!B 36 :(';
. ‫م‬1J'
Forecasts from period 178
Period
179
180
181
182
Forecast
57.7885
55.8516
54.7429
54.1820
95 Percent Limits
Lower
Upper
55.5332
60.0437
53.0220
58.6812
51.6264
57.8594
50.9063
57.4578
171
Actual
‫‪57.9994‬‬
‫‪51.2601‬‬
‫‪54.6298‬‬
‫‪183‬‬
‫‪58.3430‬‬
‫‪51.4875‬‬
‫‪54.9152‬‬
‫‪184‬‬
‫‪59.1294‬‬
‫‪62.8688‬‬
‫‪52.1986‬‬
‫‪55.8869‬‬
‫‪55.6640‬‬
‫‪59.3778‬‬
‫‪185‬‬
‫‪186‬‬
‫‪72.2015‬‬
‫‪65.1833‬‬
‫‪68.6924‬‬
‫‪187‬‬
‫‪77.5925‬‬
‫‪70.5472‬‬
‫‪74.0698‬‬
‫‪188‬‬
‫‪77.4983‬‬
‫‪70.4317‬‬
‫‪73.9650‬‬
‫‪189‬‬
‫‪67.1286‬‬
‫‪60.0447‬‬
‫‪63.5866‬‬
‫‪190‬‬
‫‪62.6347‬‬
‫‪60.6128‬‬
‫‪55.1843‬‬
‫‪52.9407‬‬
‫‪58.9095‬‬
‫‪56.7768‬‬
‫‪191‬‬
‫‪192‬‬
‫‪59.4305‬‬
‫‪58.8105‬‬
‫‪59.2131‬‬
‫‪59.4653‬‬
‫‪60.1905‬‬
‫‪63.8885‬‬
‫‪73.1929‬‬
‫‪78.5647‬‬
‫‪78.4575‬‬
‫‪68.0793‬‬
‫‪63.5664‬‬
‫‪61.5364‬‬
‫‪60.3514‬‬
‫‪59.7315‬‬
‫‪60.1357‬‬
‫‪60.3903‬‬
‫‪61.1184‬‬
‫‪64.8194‬‬
‫‪74.1270‬‬
‫‪79.5021‬‬
‫‪79.3983‬‬
‫‪69.0235‬‬
‫‪51.6169‬‬
‫‪50.9022‬‬
‫‪51.2380‬‬
‫‪51.4409‬‬
‫‪52.1278‬‬
‫‪55.7947‬‬
‫‪65.0729‬‬
‫‪70.4217‬‬
‫‪70.2940‬‬
‫‪59.8968‬‬
‫‪55.0418‬‬
‫‪52.7962‬‬
‫‪51.4676‬‬
‫‪50.7472‬‬
‫‪51.0774‬‬
‫‪51.2749‬‬
‫‪51.9568‬‬
‫‪55.6189‬‬
‫‪64.8927‬‬
‫‪70.2374‬‬
‫‪70.1057‬‬
‫‪59.7046‬‬
‫‪55.5237‬‬
‫‪54.8564‬‬
‫‪55.2256‬‬
‫‪55.4531‬‬
‫‪56.1592‬‬
‫‪59.8416‬‬
‫‪69.1329‬‬
‫‪74.4932‬‬
‫‪74.3758‬‬
‫‪63.9881‬‬
‫‪59.3041‬‬
‫‪57.1663‬‬
‫‪55.9095‬‬
‫‪55.2394‬‬
‫‪55.6066‬‬
‫‪55.8326‬‬
‫‪56.5376‬‬
‫‪60.2191‬‬
‫‪69.5099‬‬
‫‪74.8697‬‬
‫‪74.7520‬‬
‫‪64.3640‬‬
‫‪193‬‬
‫‪194‬‬
‫‪195‬‬
‫‪196‬‬
‫‪197‬‬
‫‪198‬‬
‫‪199‬‬
‫‪200‬‬
‫‪201‬‬
‫‪202‬‬
‫‪203‬‬
‫‪204‬‬
‫‪205‬‬
‫‪206‬‬
‫‪207‬‬
‫‪208‬‬
‫‪209‬‬
‫‪210‬‬
‫‪211‬‬
‫‪212‬‬
‫‪213‬‬
‫‪214‬‬
‫و!‪ )
. O‬ا
;
‪:7‬‬
‫‪172‬‬
Forecast
8 0
7 0
6 0
5 0
0
1 0
2 0
3 0
4 0
T im e
:(';
‫;ات ا‬N‫ات و‬:(';
‫ ا‬V& O&3. 4;!
7
;
‫ا
) ا‬
Forecast
80
70
60
50
0
100
T im e
173
200
‫ﺍﻟﻔﺼﻞ ﺍﻟﺴﺎﺑﻊ‬
‫ا‬9‫ار ا‬/7j‫ا‬-‫ك‬/‫\ ا‬0‫ذج ا‬7 ;0‫ا‬$ 4‫ ا‬N‫ ر‬I‫ور‬
Forecasting By ARMA Models
4'&‫ ز‬4;& H3 7 4& 48‫ا‬1K ‫هة‬I
4
;
‫هات ا‬K!
‫ا‬
12.0
20.5
21.0
15.5
15.3
23.5
24.5
21.3
23.5
28.0
24.0
15.5
17.3
25.3
25.0
36.5
36.5
29.6
30.5
28.0
26.0
21.5
19.7
19.0
16.0
20.7
26.5
30.6
32.3
29.5
28.3
31.3
32.2
26.4
23.4
16.4
:7
;
‫ ا‬H3K
‫ ا‬O
‫و‬
MTB > TSPlot C1;
SUBC>
Index;
SUBC>
TDisplay 11;
SUBC>
Symbol;
SUBC>
Connect.
C
1
30
20
10
Index
10
20
30
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫ دوال ا
;ا‬L1 X‫او‬
174
MTB > %ACF C1.
Autocorrelation
Autocorrelation Function for C1
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
2
3
4
Lag
Corr
T
LBQ
1
2
3
4
5
6
7
0.63
0.30
0.14
-0.05
-0.24
-0.30
-0.24
3.79
1.35
0.59
-0.20
-1.01
-1.22
-0.94
15.62
19.27
20.07
20.17
22.71
26.71
29.40
5
Lag
6
Corr
7
T
LBQ
8 -0.20 -0.78
9 -0.12 -0.44
31.42
32.10
8
9
MTB > %PACF C1.
Executing from file: E:\MTBWIN\MACROS\PACF.MAC
Partial Autocorrelation
Partial Autocorrelation Function for C1
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
2
3
Lag PAC
1
2
3
4
5
6
7
0.63
-0.16
0.04
-0.20
-0.18
-0.04
0.02
4
5
6
T
Lag PAC
T
3.79
-0.98
0.22
-1.20
-1.09
-0.23
0.12
8 -0.07
9 0.05
-0.39
0.29
7
8
9
ARMA (1,1) ‫ذج‬1! & ‫ن‬13C B ‫هات‬K!
‫‚ & ا!ط ا
ا
; ان ا‬5
‫;ح‬J!
‫ذج ا‬1!'
‫( ا‬6
MTB > Name c17 = 'RESI1'
MTB > ARIMA 1 0 1 C1 'RESI1';
SUBC>
Constant;
SUBC>
Forecast 5 c14 c15 c16;
SUBC> GACF;
SUBC> GPACF;
SUBC> GNormalplot.
ARIMA Model
175
ARIMA model for C1
Estimates at each iteration
Iteration
SSE
Parameters
0
1337.71
0.100
0.100
21.918
1
936.95
0.250
-0.049
18.193
2
849.78
0.211
-0.199
19.106
3
751.53
0.215
-0.349
18.941
4
5
658.66
592.30
0.266
0.372
-0.499
-0.649
17.594
14.890
6
580.80
0.433
7
579.30
0.455
8
579.11
0.464
9
579.08
0.467
10
579.08
0.468
11
579.08
0.468
Relative change in each estimate
Final Estimates of Parameters
Type
Coef
StDev
AR
1
0.4684
0.1755
MA
1
-0.7221
0.1380
Constant
12.345
1.154
Mean
23.221
2.170
-0.699
13.314
-0.714
12.698
-0.719
12.470
-0.721
12.386
-0.722
12.356
-0.722
12.345
less than 0.0010
T
2.67
-5.23
10.70
Number of observations: 36
Residuals:
SS = 523.365 (backforecasts excluded)
MS = 15.860 DF = 33
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
36
48
Chi-Square 7.2(DF=10)
15.9(DF=22) * (DF= *)
* (DF=
*)
Forecasts from period 36
Period
Actual
37
Forecast
14.7649
95 Percent Limits
Lower
6.9578
176
22.5720
Upper
38
19.2606
7.1228
31.3985
39
21.3663
8.4715
34.2610
40
41
22.3524
22.8143
9.2975
9.7245
35.4074
35.9041
:1‫;ح ه‬J!
‫ذج ا‬1!'
‫ا‬
zt = 12.345 + 0.4684 zt −1 + at − 0.7221at −1 , at ∼ WN ( 0,15.86 ) ∀t
Q5
( )
θˆ = −0.7221 se (θˆ ) = 0.1380 t = −5.23
δˆ = 12.345 se (δˆ ) = 1.154 t = 10.70
φˆ1 = 0.4684 se φˆ1 = 0.1755 t = 2.67
1
1
σˆ 2 = 15.86 df = 33
4Pb
‫!] ا‬N α = 0.05 ' 421'"& ‫رات‬J!
‫ ا‬V!L ‫‚ ان‬5‫و‬
H 0 : φ1 = 0
H1 : φ1 ≠ 0
‫ أي‬α = 0.05 ' 421'"& 7‫ وه‬t =
φˆ1
0.4684
=
= 2.6689 4859. ‫[;(ه‬
0.1755
se φˆ1
( )
‫ى‬X‫رات ا‬J
‫ ا‬V!
H]!
.‫ و‬φ1 = 0 ‫\ ان‬N '‫ا‬
I‫> اا‬/a 7]
:7B‫ا‬1(
‫ ا‬w1;& ‫إ;(ر‬
1‫;(ر ه‬9‫ا‬
H 0 : µ a = 0, H1 : µa ≠ 0
MTB > TTest 0.0 'RESI1';
SUBC>
Alternative 0.
T-Test of the Mean
Test of mu = 0.000 vs mu not = 0.000
Variable
N
Mean
StDev
177
SE Mean
T
P
RESI1
36
0.344
3.851
0.642
0.54
‫ أي ان‬α = 0.05 & (‫ اآ‬7‫ وه‬0.6 7‫ ه‬O
P-Value
0.60
‫ وا
ـ‬t = 0.54 ‫‚ ان‬5X
b
‫وي ا‬2 7B‫ا‬1(
‫ ا‬w1;& ‫ إ;(ر‬3!2 ‫ي أي‬1'"& z ‫;(ر‬9‫ا‬
:I‫إ?را اا‬
Runs Test ‫ إ;(ر ا
ي‬f
A
‫و;[م‬
MTB > Runs 'RESI1'.
Runs Test
RESI1
K =
0.3443
The observed number of runs = 21
The expected number of runs = 19.0000
18 Observations above K
18 below
The test is significant at 0.4989
Cannot reject at alpha = 0.05
α = 0.05 ' 7B‫ا‬1(
‫ ا‬48‫ا‬1K \N‫'' ر‬3!2X
:I‫\ اا‬$‫إ?ر ا‬
7C‫ا‬A
‫ ا‬w.‫ إ;(ر ا
;ا‬f
A
‫و;[م‬
ACF of Residuals for C1
(with 95% confidence limits for the autocorrelations)
1.0
0.8
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
2
3
4
5
6
7
8
9
Lag
PACF of Residuals for C1
(with 95% confidence limits for the partial autocorrelations)
1.0
0.8
Partial Autocorrelation
Autocorrelation
0.6
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
2
3
4
5
Lag
178
6
7
8
9
7K!;C ‫ ا!ط‬OIC O‫ أي ا‬7B‫ا‬1(
4b;[!
‫) ا‬J
‫ ا‬. 4L‫ & أي در‬w.‫ا‬C ‫ أي‬L12X *‫‚ ا‬5
‫`ء‬. 4P 4;& O1‫ آ‬V&
Normal Probability Plot ‫
ـ‬. 7B‫ا‬1(
‫ ا‬4"(= (;[ ‫واا‬
Normal Probability Plot of the Residuals
(response is C1)
Residual
10
0
-10
-2
-1
0
1
2
Normal Score
( 1 ) ‫ل‬1(J& 1‫وه‬
('& ‫;ح‬J!
‫ذج ا‬1!'
‫ إ;(ر ا‬3!2 ‫إذا‬
O
:('C 95% ‫;ات‬N‫ و‬4(J;& )B 4![
‫ات‬:(';
7
;
‫ا
) ا‬
MTB > TSPlot C14 C15 C16;
SUBC>
Index;
SUBC>
TDisplay 11;
SUBC>
Symbol;
SUBC>
Connect;
SUBC> overlay.
Time Series Plot for C1
(with forecasts and their 95% confidence limits)
36
C1
26
16
6
5
10
15
20
Time
179
25
30
35
:?z ‫ل‬-
4'&‫ ز‬4;& H3 7 4& 48‫ا‬1K ‫هة‬I
4
;
‫هات ا‬K!
‫ا‬
10.38
11.86
10.97
10.80
9.79
10.39
10.42
10.82
11.40
11.32
11.44
11.68
11.17
10.53
10.01
9.91
9.14
9.16
9.55
9.67
8.44
8.24
9.10
9.09
9.35
8.82
9.32
9.01
9.00
9.80
9.83
9.72
9.89
10.01
9.37
8.69
8.19
8.67
9.55
8.92
8.09
9.37
10.13
10.14
9.51
9.24
8.66
8.86
8.05
7.79
6.75
6.75
7.82
8.64
10.58
9.48
7.38
6.90
6.94
6.24
6.84
6.85
6.90
7.79
8.18
7.51
7.23
8.42
9.61
9.05
9.26
9.22
9.38
9.10
7.95
8.12
9.75
10.85
10.41
9.96
9.61
8.76
8.18
7.21
7.13
9.10
8.25
7.91
6.89
5.96
6.80
7.68
8.38
8.52
9.74
9.31
9.89
9.96
MTB > TSPlot C10;
SUBC>
Index;
SUBC>
TDisplay 11;
SUBC>
Symbol;
SUBC>
Connect.
12
11
C
1
0
10
9
8
7
6
Index
10
20
30
40
50
60
70
80
90
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫ دوال ا
;ا‬o%b
180
Autocorrelation
Autocorrelation Function for C10
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
2
Lag Corr
1
2
3
4
5
6
7
0.83
0.61
0.46
0.37
0.33
0.28
0.26
T
12
LBQ
Lag Corr
8.24 69.92
3.91 107.90
2.56 129.56
1.95 143.87
1.65 155.04
1.40 163.68
1.28 171.23
8
9
10
11
12
13
14
0.26
0.26
0.18
0.09
0.04
0.03
0.04
T
LBQ
1.26 178.83
1.21 186.14
0.84 189.86
0.43 190.87
0.20 191.09
0.13 191.19
0.19 191.39
22
Lag Corr
T
LBQ
Lag Corr
15 0.05 0.21 191.63
16 0.04 0.16 191.78
17 0.00 0.02 191.78
18 -0.03 -0.15 191.91
19 -0.05 -0.24 192.26
20 -0.05 -0.24 192.60
21 0.01 0.07 192.63
T
LBQ
22 0.10 0.47 194.02
23 0.18 0.81 198.12
24 0.20 0.89 203.24
Partial Autocorrelation
Partial Autocorrelation Function for C10
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
2
12
Lag PAC
T
Lag PAC
T
1 0.83
2 -0.27
3 0.13
4 0.03
5 0.06
6 -0.02
7 0.09
8.24
-2.64
1.29
0.34
0.61
-0.21
0.91
8 0.05
9 0.00
10 -0.20
11 0.02
12 0.01
13 0.01
14 0.03
0.45
0.03
-1.98
0.19
0.09
0.12
0.34
22
Lag PAC
15
16
17
18
19
20
21
-0.01
-0.03
-0.07
-0.03
0.06
0.02
0.21
T
Lag PAC
T
-0.15
-0.25
-0.73
-0.26
0.60
0.20
2.03
22 0.05
23 0.06
24 -0.07
0.51
0.59
-0.65
AR ( 2 ) 4]
‫ ا‬4L‫ & ا
ر‬7C‫ار ذا‬%‫ذج إ‬1! ‫;ح‬JC ‫‚ ان ا!ط‬5
‫;ح‬J!
‫ذج ا‬1!'
‫( ا‬6
MTB > Name c17 = 'RESI1'
MTB > ARIMA 2 0 0 C10 'RESI1';
SUBC>
Constant;
SUBC>
Forecast 5 c14 c15 c16;
SUBC> GSeries;
SUBC> GACF;
SUBC> GPACF;
SUBC> GNormalplot.
ARIMA Model
181
ARIMA model for C10
Estimates at each iteration
Iteration
SSE
Parameters
0
126.398
0.100
0.100
7.283
1
2
103.515
84.535
0.250
0.400
0.043
-0.014
6.434
5.586
3
4
69.407
58.132
0.550
0.700
-0.071
-0.128
4.738
3.887
-0.184
-0.239
-0.256
-0.255
-0.255
-0.255
less than
3.030
2.163
1.838
1.816
1.814
1.814
0.0010
5
50.724
0.850
6
47.212
1.000
7
46.918
1.053
8
46.916
1.054
9
46.916
1.054
10
46.916
1.054
Relative change in each estimate
Final Estimates of Parameters
Type
Coef
StDev
AR
1
1.0542
0.0992
AR
2
-0.2547
0.0993
Constant
1.81360
0.07092
Mean
9.0480
0.3538
Number of observations:
Residuals:
T
10.63
-2.56
25.57
98
SS = 46.7518
MS = 0.4921
(backforecasts excluded)
DF = 95
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
36
48
Chi-Square
7.2(DF=10)
13.7(DF=22)
21.3(DF=34)
28.8(DF=46)
Forecasts from period 98
Period
Actual
Forecast
95 Percent Limits
Lower
182
Upper
99
9.7950
8.4198
11.1703
100
9.6033
7.6050
11.6016
101
102
9.4432
9.3232
7.1234
6.8446
11.7629
11.8018
103
9.2375
6.6825
11.7925
1‫;ح ه‬J!
‫ذج ا‬1!'
‫ا‬
zt = 1.8136 + 1.0542 zt −1 − 0.2547 zt −2 + at , at ∼ WN ( 0,0.4921) ∀t
7‫ ه‬O
t )B‫ و‬42‫ ا
!"ر‬OCN‫ا‬%‫رات ا
!"
) وإ‬J&
( )
φˆ = −0.2547 se (φˆ ) = 0.0993 t = −2.56
δˆ = 1.8136 se (δˆ ) = 0.07092 t = 25.57
φˆ1 = 1.0542 se φˆ1 = 0.0992 t = 10.63
2
2
σˆ 2 = 0.4921 df = 95
α = 0.05 ' 421'"& ‫رات‬J!
‫ ا‬V!L ‫‚ ان‬5
7B‫ا‬1(
‫ ا‬7 ‫ ي إ;(رات‬:(';
W'& *‫ ا‬7 ‫ذج‬1!'
‫ا ا‬AO. H(J 73
MTB > TTest 0.0 'RESI1';
SUBC>
Alternative 0.
T-Test of the Mean
Test of mu = 0.0000 vs mu not = 0.0000
Variable
RESI1
N
98
Mean
StDev
-0.0082 0.6942
SE Mean
0.0701
T
-0.12
P
0.91
42b
‫ ا‬4Pb
‫;!ل ان ا‬5‫ إ‬7‫ ه‬P-Value ‫ ا
ـ‬4I5& ) ‫ي‬1'"& z ‫ا ان ا;(ر‬L ^P‫وا‬
( 4%%+
7B‫ا‬1(
‫ ا‬48‫ا‬1K (;[
MTB > Runs 'RESI1'.
Runs Test
RESI1
K =
-0.0082
The observed number of runs = 47
The expected number of runs = 49.9184
183
47 Observations above K
51 below
The test is significant at
0.5529
Cannot reject at alpha = 0.05
7B‫ا‬1(
‫ ا‬48‫ا‬1K 4PN \N‫'' ر‬3!2X ‫أي‬
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬o%b
ACF of Residuals for C10
(with 95% confidence limits for the autocorrelations)
1.0
0.8
Autocorrelation
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
2
4
6
8
10
12
14
16
18
20
22
24
Lag
PACF of Residuals for C10
(with 95% confidence limits for the partial autocorrelations)
1.0
Partial Autocorrelation
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
2
4
6
8
10
12
14
Lag
16
18
20
‫ ا
(`ء‬4`
‫ا ا!ط ا‬L ^P‫وا‬
22
24
7B‫ا‬1(
‫ ا‬4"(= o%N 7J(2
184
Normal Probability Plot of the Residuals
(response is C10)
2
Residual
1
0
-1
-2
-3
-2
-1
0
1
2
3
Normal Score
( at ∼ IIDN ( 0,0.4921) ‫ ) أي‬7"(= V2‫ز‬1C O
7B‫ا‬1(
‫ل ان ا‬1J ‫ ان‬V6;‫و‬
O
:('C 95% ‫;ات‬N‫ و‬4(J;& )B 4![
‫ات‬:(';
7
;
‫ا
) ا‬
MTB > TSPlot C14 C15 C16;
SUBC>
Index;
SUBC>
TDisplay 11;
SUBC>
Symbol;
SUBC>
Connect;
SUBC> overlay.
Time Series Plot for C10
(with forecasts and their 95% confidence limits)
12
11
C10
10
9
8
7
6
10
20
30
40
50
60
70
80
90
Time
_8;'
‫ ا‬. ‫رن‬B‫ و‬AR (1) ‫ذج‬1! 4J.
‫هات ا‬K!
‫ ا‬7 (= : 2!C
185
186
‫ﺍﻟﻔﺼﻞ ﺍﻟﺜﺎﻣﻦ‬
N0‫ و
إ?ر اذج ا‬I‫ اا‬./ ' ‫ل‬-
: Example on Residual Analysis and Model Selection Criteria
‫ة‬6"& ‫هات‬K& !N 4J(6!
‫) ا‬J
‫ ا‬oB ‫هة‬K!
‫) ا‬J
‫ ا‬O‫ ا‬7 7B‫ا‬1(
‫ ا‬J. 'N J
:7B‫ا‬1(
‫ ا‬W;3C‫ و‬zˆ1 , zˆ2 ,..., zˆn 4J(6& )B '2
_;'2 (6& ‫ذج‬1!‫ و‬z1 , z2 ,..., zn
ei = zi − zˆi , i = 1,2,..., n
J%C ‫ ان‬W2 ‫ا‬AO
‫ و‬aˆi = ei , i = 1,2,..., n ‫ذج أي‬1!'
‫ ا‬7N ‫ء‬6‫رات ا‬J& 7‫ ه‬7B‫ا‬1(
‫وا‬
:O'& 7;
‫ذج وا‬1!'
‫ا ا‬A‫ ه‬7N ‫ء‬6‫ ا‬7 4P‫و‬b!
‫وط ا‬K
‫ا‬
b
‫وي ا‬2 ‫ء‬6‫ ا‬w1;& -1
‫ء‬6‫;ض ان ا‬b ‫ آ] & ا
'!ذج‬7N‫ ) و‬4J;& ‫ أو‬46.‫ &;ا‬z ‫ و‬48‫ا‬1K ‫ء‬6‫ ا‬-2
( at ∼ IIDN ( 0,σ 2 ) ‫ أي‬σ 2 2(C‫ي و‬b+ w1;!. .6;&‫ و‬HJ;& 7"(= V2‫ز‬1C O
@A‫ ه‬J%C S‫! إذا آ‬N ‫ 'ي‬7B‫ا‬1(
‫ ا‬7 ‫;(رات‬9‫ & ا‬41!& 1‫ وه‬%C ‫' ي‬FN ‫ا‬AO
WN ‫;(رات‬9‫@ ا‬A‫ ه‬5‫ ا‬HKN ‫ أ& إذا‬X1(J& (6!
‫ذج ا‬1!'
‫ ";( ا‬4
%
‫@ ا‬A‫ ه‬7N‫وط و‬K
‫ا‬
, ‫ذج‬1! ‫;اح‬B‫ وإ‬I'
‫' إدة ا‬
w1;!
‫ إ;(ر ا‬:X‫أو‬
H 0 : E ( at ) = 0
H 1 : E ( at ) ≠ 0
'"N 7B 7"(= V2‫ز‬1C O
7;
‫ وا‬u =
e
se ( e )
4859‫ ا‬4N ‫ و;[م‬2A. ‫ إ;(ر‬1‫وه‬
‫ إ;(ر ان‬7 ‫ا‬A‫ ) ه‬u < 1.96 S‫ إذا آ‬E ( at ) = 0 ‫ ";( ان‬α = 0.05 421'"& ‫ى‬1;&
( O‫ ر‬7;
‫ ا‬4'&
‫ !;ت ا‬J%;& !8‫ا دا‬A‫ة وه‬5‫ و‬30 & (‫ اآ‬4'"
‫) ا‬5
:‫ل‬-
Metals Y;!
‫ ا‬7 4]
]
‫ ا‬4L‫ك & ا
ر‬%;& w1;& (6C ‫ &]ل‬7
‫د ا‬1" ‫ف‬1
MTB > RETR 'E:\Mtbwin\DATA\EMPLOY.MTW'.
Retrieving worksheet from file: E:\Mtbwin\DATA\EMPLOY.MTW
Worksheet was saved on
6/ 5/1996
MTB > TSPlot 'Metals';
SUBC>
Index;
187
SUBC>
TDisplay 11;
SUBC>
Symbol;
SUBC>
Connect.
M
e
ta
ls
50
45
40
Index
10
20
30
40
50
60
MTB > Name c4 = 'AVER1' c5 = 'FITS1' c6 = 'RESI1'
MTB > %MA 'Metals' 3;
SUBC>
Averages 'AVER1';
SUBC>
Fits 'FITS1';
SUBC>
Residuals 'RESI1'.
Executing from file: E:\MTBWIN\MACROS\MA.MAC
Moving average
Data
Metals
Length
60.0000
NMissing
0
Moving Average
Length: 3
Accuracy Measures
MAPE: 1.55036
MAD:
0.70292
MSD:
0.76433
188
Moving Average
Actual
Predicted
M
etals
50
Actual
Predicted
45
Moving Average
Length:
40
0
10
20
30
40
50
3
MAPE:
1.55036
MAD:
0.70292
MSD:
0.76433
60
Time
~&[
‫د ا‬1!"
‫ ا‬7N 4J(6!
‫) ا‬J
‫د ا
دس وا‬1!"
‫ ا‬7N 7B‫ا‬1(
‫‚ ا' ا‬5X
MTB > print c3 c6 c5
Data Display
Row
Metals
RESI1
FITS1
1
44.2
*
*
2
44.3
*
*
3
44.4
*
*
4
43.4
-0.90000
44.3000
5
42.8
-1.23333
44.0333
6
44.3
0.76667
43.5333
7
44.4
0.90000
43.5000
8
44.8
0.96667
43.8333
9
44.4
-0.10000
44.5000
10
43.1
-1.43333
44.5333
11
42.6
-1.50000
44.1000
12
42.4
-0.96667
43.3667
13
42.2
-0.50000
42.7000
14
41.8
-0.60000
42.4000
15
40.1
-2.03333
42.1333
189
16
42.0
0.63333
41.3667
17
42.4
1.10000
41.3000
18
43.1
1.60000
41.5000
19
42.4
-0.10000
42.5000
20
43.1
0.46667
42.6333
21
43.2
0.33333
42.8667
22
42.8
-0.10000
42.9000
23
43.0
-0.03333
43.0333
24
42.8
-0.20000
43.0000
25
42.5
-0.36667
42.8667
26
42.6
-0.16667
42.7667
27
42.3
-0.33333
42.6333
28
42.9
0.43333
42.4667
29
43.6
1.00000
42.6000
30
44.7
1.76667
42.9333
31
44.5
0.76667
43.7333
32
45.0
0.73333
44.2667
33
44.8
0.06667
44.7333
34
44.9
0.13333
44.7667
35
45.2
0.30000
44.9000
36
45.2
0.23333
44.9667
37
45.0
-0.10000
45.1000
38
45.5
0.36667
45.1333
39
46.2
0.96667
45.2333
40
46.8
1.23333
45.5667
41
47.5
1.33333
46.1667
42
48.3
1.46667
46.8333
43
48.3
0.76667
47.5333
44
49.1
1.06667
48.0333
45
48.9
0.33333
48.5667
46
49.4
0.63333
48.7667
47
50.0
0.86667
49.1333
48
50.0
0.56667
49.4333
49
49.6
-0.20000
49.8000
190
50
49.9
0.03333
49.8667
51
49.6
-0.23333
49.8333
52
50.7
1.00000
49.7000
53
50.7
0.63333
50.0667
54
50.9
0.56667
50.3333
55
50.5
-0.26667
50.7667
56
51.2
0.50000
50.7000
57
50.7
-0.16667
50.8667
58
50.3
-0.50000
50.8000
59
49.2
-1.53333
50.7333
60
48.1
-1.96667
50.0667
7B‫ا‬1(
‫ ا‬w1;& (;[ ‫ن‬s‫ا‬
MTB > TTest 0.0 'RESI1';
SUBC>
Alternative 0.
T-Test of the Mean
Test of mu = 0.000 vs mu not = 0.000
Variable
N
RESI1
57
Mean
StDev
SE Mean
T
0.158
0.868
0.115
1.37
P
0.17
z ( 2(;
‫اف ا
!"ري ) او ا‬%9‫ن ا‬132 &' ‫&_ م‬. ‫;[م‬2 Minitab 7N :4I5&
‫ أي‬1.96
& HB‫ ا‬7‫ وه‬T=1.37 7‫ ه‬4859‫ ا‬4!B ‫‚ ان‬5X . Ttest * 62‫&"وف و‬
42b
‫ ا‬4Pb
‫\ ا‬NX
b
‫ل ا‬15‫ و‬w1;!
‫ل ا‬15 Runs test ‫ إ;(ر ا
ي‬46‫ا‬1. 7B‫ا‬1(
‫ ا‬48‫ا‬1K (;[ :U
:‫ ا
!]ل‬V.C
MTB > Runs 'RESI1'.
Runs Test
191
RESI1
K =
0.1579
The observed number of runs =
17
The expected number of runs =
29.4211
30 Observations above K
27 below
The test is significant at
0.0009
MTB > Runs 0 'RESI1'.
Runs Test
RESI1
K =
0.0000
The observed number of runs =
17
The expected number of runs =
28.7895
33 Observations above K
24 below
The test is significant at
0.0013
7B‫ا‬1(
‫ ا‬48‫ا‬1K \NX ;
%
‫ آ; ا‬7N *‫‚ ا‬5
Autocorrelation test 7C‫ا‬A
‫ ا‬w.‫ إ;(ر ا
;ا‬46‫ا‬1. 7B‫ا‬1(
‫ل ا‬J;‫ أو إ‬w.‫ا‬C (;[ :]
U
:‫ ا
!]ل‬V.C
MTB > %ACF 'RESI1'.
Executing from file: E:\MTBWIN\MACROS\ACF.MAC
192
Autocorrelation Function for RESI1
Autocorrelation
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
4
9
14
Lag
Corr
T
LBQ
Lag
Corr
T
LBQ
1
2
3
4
5
6
7
0.56
0.24
-0.01
0.04
0.02
-0.07
-0.14
4.24
1.39
-0.06
0.21
0.11
-0.38
-0.81
18.93
22.31
22.32
22.40
22.42
22.72
24.07
8
9
10
11
12
13
14
-0.04
0.12
0.29
0.24
0.20
0.05
0.03
-0.22
0.68
1.64
1.30
1.05
0.25
0.17
24.17
25.21
31.36
35.67
38.71
38.90
38.99
‫ أي‬ρ1 = 0 ‫\ ان‬N '‫ أي ا‬4.24 ‫وي‬C ‫ اول‬e[;
‫ ' ا‬7C‫ا‬A
‫ ا‬w.‫ ;ا‬T ‫‚ ان ا
ـ‬5X
‫;(ر‬9‫ ا‬7N ‫و‬X‫ ا‬4L‫ & ا
ر‬7B‫ا‬1(
‫ ا‬. w.‫ا‬C L12
H 0 : ρ1 = 0
H1 : ρ1 ± 0
r1
= 4.24 7‫ ه‬4859‫ ا‬Q5
se ( r1 )
"(= 4‫ز‬1& 7B‫ا‬1(
‫ ا‬S‫ & إذا آ‬7N (;[ :".‫را‬
:‫ ا
!]ل‬V.C
MTB > %NormPlot 'RESI1';
SUBC>
Kstest.
Executing from file: E:\MTBWIN\MACROS\NormPlot.MAC
Normal Probability Plot
.999
P
ro
b
a
b
ility
.99
.95
.80
.50
.20
.05
.01
.001
-2
-1
0
1
RESI1
Average: 0.157895
StDev: 0.867525
N: 57
Kolmogorov-Smirnov Normality Test
D+: 0.054 D-: 0.084 D : 0.084
Approximate P-Value > 0.15
193
V2‫ز‬1;
‫ ا‬4PN \NX ‫ أي‬0.05 & (‫ اآ‬7‫ وه‬0.15 ‫وي‬C 4C'
‫ ا‬P-Value ‫‚ ا
ـ‬5X
‫( &ي‬2 ‫ي‬A
‫ وا‬Q-Q Plot ‫ ا
ـ‬1‫ ه‬4"(6
, ‫` إ;(ر‬2‫ ه'ك ا‬α = 0.05 ' 7"(6
‫ا‬
"& V2‫ز‬1C V& & ‫هات‬K& .6C
MTB > %Qqplot 'RESI1';
SUBC>
Table;
SUBC>
Conf 95;
SUBC>
Ci.
Executing from file: E:\MTBWIN\MACROS\Qqplot.MAC
Distribution Function Analysis
Normal Dist. Parameter Estimates
Data
: RESI1
Mean:
0.157895
StDev:
0.867525
Normal Probability Plot for RESI1
99
Mean:
0.157895
StDev:
0.867525
95
90
Percent
80
70
60
50
40
30
20
10
5
1
-2
-1
0
1
2
Data
7"(= V2‫ز‬1C O
7B‫ا‬1(
‫\ ان ا‬NX 'FN ;
%
‫ آ; ا‬7N ‫‚ ان‬5X
194
‫&‪ 4I5‬اة‪(2 :‬و ان ا
(‪1‬ا‪ )I"& J%C 7B‬ا
‪K‬وط ‪ !N‬ي ا
;ا‪ w.‬ا
‪A‬ي ‪ . L12‬ا
‪)J‬‬
‫ا
!;;
‪ 4‬وه‪A‬ا ‪1L \N '"2‬دة ا
;‪ 4J26
(6‬ا
!;‪ w1‬ا
!;‪%‬ك & ا
ر‪ 4L‬ا
]
]‪Q5 4‬‬
‫ادي ا
‪1. 7‬ا‪;& 7B‬ا‪.46.‬‬
‫‪195‬‬
‫ﺍﻟﻔﺼﻞ ﺍﻟﺘﺎﺳﻊ‬
:Decomposition Method ‫)| ا ا آت‬Y ‫ او‬./
213;
O`". V& ‫ة‬%;& ‫اء‬L‫ & ة &آ(ت أو ا‬413& O‫ ا‬4'&
‫ ا‬4;!
‫ إ
ا‬I'2
،4;!
‫@ ا‬A‫ه‬
O;LA! 3!2 *‫ أ‬4.;
. L‫ و‬J
. z1 , z2 ,..., zn @‫ه‬K!
‫ ا‬4'&
‫ ا‬4;!
‫' ا‬2
‫;ض ان‬b'
H3K
‫ ا‬
zt = Tt + St + Ct + Et , t = 1, 2,..., n
‫ي‬A
‫@ ا
"م ا‬C9‫ج ا‬A!'C 7;
‫ ا‬7‫اف وه‬9‫ ا‬4(‫ &آ‬Tt ‫هة و‬K!
‫ ا‬4'&
‫ ا‬4;!
‫ ا‬Zt Q5
1‫( وه‬L‫ )إذا و‬7!1!
‫ ا‬U{;
‫ج ا‬A!'C‫ و‬4!1& 4(‫ &آ‬St ‫ و‬4;!
‫'ف ا
* ا‬C ‫ أو‬7%'C
4(‫ &آ‬Ct ‫ و‬421'
‫ وا‬42OK
‫ ا‬H]& 4!1!
‫ات ا‬U{;
‫ ا‬4; 4;!
‫ث‬%2 ‫ي‬A
‫ ا‬Y;
‫ا‬
Et ‫ و‬4!1& z 421= 4'&‫;ات ز‬N ". ‫ر‬3;2 ‫ة‬C‫ أو إ‬%'& ‫ج‬A!'C ‫ت( و‬L‫ )إذا و‬42‫دور‬
O;LA! 3!2X 7;
‫ وا‬4;!
‫ ا‬U:C 7;
‫ى ا‬X‫ ا‬H&‫ا‬1"
‫ ا‬V!L H!KC‫{ و‬6[
‫ ا‬4(‫&آ‬
Additive 7NP9‫ذج ا‬1!'
. 7!2 .
‫ذج ا‬1!'
‫ ا‬.OB ‫ او‬OC‫ه‬K& 3!2X 7;
‫!' أو ا‬P
H]& ‫ل اى‬3‫ ه'ك أ‬.‫ذج‬1!'
‫ ا‬7N 7NP‫ إ‬H3K. HC ‫ ا
!آ(ت‬H‫ ن آ‬f
‫ وذ‬Model
zt = Tt St + Ct + Et , t = 1, 2,..., n
zt = Tt St Ct + Et , t = 1, 2,..., n
. Multiplicative Models 4b`;
‫
'!ذج ا‬. !C 7;
‫وا‬
‫ن‬13C& ‫ درا‬42‫ ا
ور‬4(‫ ن ا
!آ‬f
‫ وذ‬Ct 42‫ ا
ور‬4(‫ ا
!آ‬H!O ‫ف‬1 ‫ى‬1;!
‫ا ا‬A‫ ه‬7N
‫ا‬L 421= ‫هات‬K& ‫;ج ا‬%C O ( 4216
‫ة أو ا‬J
‫ ا
!;ت ا‬7N ‫دة‬1L1&
.‫د‬1J"
‫&ي د آ( & ا‬
H3K
‫ ا‬7 ‫
'!ذج‬. 7b;3‫و‬
zt = Tt + St + Et , t = 1, 2,..., n
zt = Tt St + Et , t = 1, 2,..., n
b
:!
FORECASTING: METHODS AND APPLICATIONS ‫ آ;ب‬I‫أ‬
141-131 ‫ ص‬MAKRIDAKIS/ WHEELWRIGHT/ McGEE
‫ أي‬42‫ ا
ور‬4(‫ون ا
!آ‬. 4b`;
‫ وا‬4NP9‫ ا‬H%;
‫ =ق ا‬7
;
‫ ا
!]ل ا‬7N ‫ف ;"ض‬1
‫ا
'!ذج‬
196
zt = Tt + St + Et , t = 1, 2,..., n
zt = Tt St + Et , t = 1, 2,..., n
1960 4' & ‫'ة‬3. 12‫ او;ر‬4'2& 7N ‫ ا
;ات‬2!. 2'(
‫ ا‬7 W6
‫ ا‬7‫ ه‬4
;
‫ا
(ت ا‬
1975 4' ;5‫و‬
GasDemand
MONTHLY GASOLINE DEMAND ONTARIO GALLON MILLIONS 1960-1975
87695
86890
107677 108087
140735
96442
98133 113615 123924 128924 134775 117357 114626
92188
88591
98683
99207 125485 124677 132543
124008 121194 111634 111565 101007
140318
94228 104255 106922
130621
125251
146174
122318
128770
117518
115492
108497
100482
106140
118581
132371
132042
151938
150997
130931
137018
121271
123548
109894
106061
112539
125745
136251
140892
158390
148314
144148
140138
124075
136485
109895
109044
122499
124264
142296
150693
163331
165837
151731
142491
140229
140463
116963
118049
137869
127392
154166
160227
165869
173522
155828
153771
143963
143898
124046
121260
138870
129782
162312
167211
189689
166496
160754
155582
145936
139625
137361
138963
172897
155301
172026 165004 185861 190270 163903 174270 160272 165614 146182 137728
148932 156751 177998 174559 198079 189073 175702 180097 155202 174508
154277 144998 159644 168646 166273 190176 205541 193657 182617 189614
174176 184416 158167 156261 176353 175720 193939 201269 218960 209861
198688 190474 194502 190755 166286 170699 181468 174241 210802 212262
218099 229001 203200 212557 197095 193693 188992 175347 196265 203526
227443 233038 234119 255133 216478 232868 221616 209893 194784 189756
193522 212870 248565 221532 252642 255007 206826 233231 212678 217173
199024 191813 195997 208684 244113 243108 255918 244642 237579 237579
217775 227621
7'&‫ ز‬w6[& 7N 4;!
‫ ) ا‬X‫أو‬
MTB > TSPlot 'GasDemand';
SUBC>
Index;
SUBC>
TDisplay 11;
SUBC>
Symbol;
SUBC>
Connect.
197
G
asD
em
and
250
200
150
100
Index
50
100
150
X‫ ا
ا‬4N'&‫ و‬4!1& 4'&
‫ ا‬4;!
‫‚ ان ا‬5
zt = Tt + St + Et , t = 1, 2,..., n
:7NP9‫ذج ا‬1!'
‫( ا‬6C :X‫او‬
MTB > %Decomp 'GasDemand' 12;
SUBC> Additive ;
SUBC>
Forecasts 24;
SUBC>
Title "Forecast of Gasoline Demand";
SUBC> Start 1.
Time Series Decomposition
Data
Length
NMissing
GasDeman
192.000
0
Trend Line Equation
Yt = 96.4074 + 0.680579*t
Seasonal Indices
Period
1
2
3
4
Index
-20.5625
-26.8125
-14.8958
-11.0625
198
5
9.89583
6
11.8958
7
8
22.7708
25.1875
9
5.64583
10
7.27083
11
-4.81250
12
-4.52083
Accuracy of Model
MAPE:
3.6952
MAD:
5.6622
MSD:
52.7851
Forecasts
Row Period Forecast
1
193
207.197
2
194
201.627
3
195
214.225
4
196
218.738
5
197
240.377
6
198
243.058
7
199
254.614
8
200
257.711
9
201
238.850
10
202
241.155
11
203
229.753
12
204
230.725
13
205
215.364
14
206
209.794
15
207
222.391
16
208
226.905
17
209
248.544
18
210
251.225
19
211
262.780
20
212
265.878
21
213
247.017
22
214
249.322
23
215
237.919
24
216
238.892
199
(1) H3
Forecast of Gasoline Demand
Seasonal Indices
Original Data, by Seasonal Period
30
250
20
10
200
0
150
-10
-20
100
-30
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12
Percent Variation, by Seasonal Period
Residuals, by Seasonal Period
30
20
10
10
0
5
-10
-20
0
-30
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12
(2) H3
Forecast of Gasoline Demand
Original Data
Detrended Data
50
40
30
20
10
0
-10
-20
-30
-40
250
200
150
100
0
100
200
0
Seasonally Adjusted Data
100
200
Seasonally Adj. and Detrended Data
250
30
20
200
10
150
-10
0
-20
100
-30
0
100
200
0
100
200
(3) H3
200
Forecast of Gasoline Demand
Actual
Predicted
250
GasDeman
Forecast
Actual
Predicted
Forecast
200
150
100
MAPE:
MAD:
MSD:
0
100
3.6952
5.6622
52.7851
200
Time
:_8;'
‫ ا‬4KB'&
(2 ‫ ا & ا
ر‬H3K
N ، Seasonal Indices 4!1!
‫ات ا‬:!
‫^ ا‬P12 (1) H3
oJ ‫ث‬%2 4 ‫ و‬3 ‫ و‬2 ‫ و‬1 ‫ و‬12 ‫ و‬11 O‫ ا‬7bN 4'
‫ & ا‬4b;[!
‫ ا‬O‫ ا‬7N W6
‫ا‬U{C
^(2 ;5 2‫;ا‬2 )U 2 OK
‫ ا‬7N *
‫ &"ل‬HB‫ إ
أ‬H2 ;5 2‫ر‬C oB';2 ‫ إذ‬W6
‫ ا‬7N
(‫ آ‬H3K. oJ'2 )U 8 OK
‫ ا‬7N 4(L1& 4!B B‫ ا‬H2 ;5 2‫;ا‬2‫ و‬5 OK
‫ ا‬7N (L1&
4‫ز‬1& 4+‫هات ا‬K!
Box Plot ‫ ر) ا
'وق‬76"2 !
‫ ا & ا‬H3K
‫ ا‬.A8".
. Out Liers 4L‫) ا
[ر‬J
‫ وا‬O H‫هات آ‬K!
‫ر ا‬K;‫ وإ‬V2‫ز‬1C ^P12 1‫ وه‬O‫ ا‬
H3K
‫ ا‬.(O‫ )ا‬4!1!
‫;ات ا‬b
‫ي ا‬1€!
‫ ا‬7('
‫ ا‬Y;
‫ ا‬76"2 ‫ & ا
ر‬Hb‫ ا‬H3K
‫ا‬
.O‫ ا‬4‫ز‬1& ‫ء‬6‫ أو ا‬7B‫ا‬1(
‫ ر) ا
'وق‬76"2 !2‫ ا‬Hb‫ا‬
76"2 ‫ ا & ا
ر‬H3K
‫ ا‬،4+‫هات ا‬K!
‫ ا‬76"2 !
‫ ا & ا‬H3K
‫( ا‬2) H3
‫اف أي‬9‫ ا‬4(‫ &آ‬45‫" إزا‬. ‫هات‬K!
‫ا‬
wt = zt − Tt , t = 1, 2,..., n
=St + Et , t = 1, 2,..., n
‫ أي‬4!1!
‫ ا‬4(‫ ا
!آ‬45‫" إزا‬. 4+‫هات ا‬K!
‫ ا‬76"2 ‫ & ا
ر‬Hb‫ ا‬H3K
‫ا‬
yt = zt − St , t = 1, 2,..., n
=Tt + Et , t = 1, 2,..., n
‫اف‬9‫ ا‬7;(‫ &آ‬45‫" إزا‬. 7B‫ا‬1(
‫أو ا‬
Et {6[
‫ ا‬4(‫ &آ‬76"2
!2‫ ا‬Hb‫ ا‬H3K
‫ا‬
‫ أي‬4+‫هات ا‬K!
‫ & ا‬4!1!
‫وا‬
et = zt − Tt − St , t = 1, 2,..., n
=Et , t = 1, 2,..., n
.(6;
‫ ا‬4B‫~ د‬2J& V& 4(J;!
‫ ا‬24 )J
‫ات‬:(';
‫ ا‬76"2 (3) H3
201
zt = Tt St + Et , t = 1, 2,..., n
:7b`;
‫ذج ا‬1!'
‫( ا‬6C :U
MTB > %Decomp 'GasDemand' 12;
SUBC>
Forecasts 24;
SUBC>
Title "Forecast of Gasoline Demand";
SUBC> Start 1.
Executing from file: D:\MTBWIN\MACROS\Decomp.MAC
Macro is running ... please wait
Time Series Decomposition
Data
Length
NMissing
GasDeman
192.000
0
Trend Line Equation
Yt = 96.4074 + 0.680579*t
Seasonal Indices
Period
Index
1
2
3
4
5
6
7
8
9
10
11
12
0.860355
0.828555
0.892431
0.936273
1.06124
1.07274
1.15775
1.17075
1.03409
1.05059
0.966300
0.968923
202
Accuracy of Model
MAPE:
MAD:
3.6338
5.7720
MSD:
56.8996
Forecasts
Row
1
Period
193
Forecast
195.954
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
189.275
204.474
215.156
244.596
247.977
268.415
272.227
241.154
245.718
226.660
227.935
202.980
196.042
211.762
222.803
253.263
256.738
277.870
281.789
249.599
254.298
234.552
235.848
(4) H3
203
Forecast of Gasoline Demand
Seasonal Indices
Original Data, by Seasonal Period
1.2
250
1.1
200
1.0
150
0.9
100
0.8
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12
Percent Variation, by Seasonal Period
Residuals, by Seasonal Period
14
12
10
8
6
4
2
0
20
10
0
-10
(5) H3
-20
-30
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12
Forecast of Gasoline Demand
Original Data
Detrended Data
250
1.3
1.2
200
1.1
1.0
150
0.9
100
0.8
0
100
200
0
Seasonally Adjusted Data
100
200
Seasonally Adj. and Detrended Data
240
220
200
180
160
140
120
100
20
10
0
-10
(6) H3
-20
-30
0
100
200
0
100
200
Forecast of Gasoline Demand
Actual
280
Predicted
GasDeman
Forecast
Actual
Predicted
Forecast
180
MAPE:
MAD:
MSD:
80
0
100
3.6338
5.7720
56.8996
200
Time
:_8;'
‫ ا‬4KB'&
.(3) ‫( و‬2) ‫( و‬1) ‫ل‬3‫ ا‬7N !‫ آ‬b;
‫~ ا‬b O
(6) ‫( و‬5) ‫( و‬4) ‫ل‬3‫ا‬
204
‫ دور‬7C{2 '‫ وه‬،‫ذج‬1! H`N‫ أن [;ر ا‬WN ‫هة‬K!
‫ ا‬4;!
‫ ا‬L‫ذ‬1! 'J(= '‫! ا‬.
:4B‫~ د‬2J& 4UU '2
،_&(
‫';_ & ا‬C 7;
‫( وا‬6;
‫ ا‬4B‫~ د‬2J&
MAPE ‫ أو‬Mean Absolute Percentage Error 6!
‫ ا‬7('
‫{ ا‬6[
‫ ا‬w1;& -1
4B"
. 6"2‫و‬
zt − zˆt
zt
× 100, zt ≠ 0
n
n
∑
t =1
MAPE =
4B"
. 6"2‫ و‬MAD ‫ أو‬Mean Absolute Deviation 6!
‫اف ا‬%9‫ ا‬w1;& -2
n
MAD =
∑z
t =1
− zˆt
t
n
4B"
. 6"2‫ ( و‬MSE ‫ )أو‬MSD (V.!
‫{ ا‬6[
‫ ا‬w1;& ‫ )أو‬V.!
‫اف ا‬%9‫ أ‬w1;& -3
n
MSD =
∑( z
t =1
t
− zˆt )
2
n
]‫س اآ‬J!
‫ ا‬،‫س‬J!
‫ا ا‬AO
4!B HB‫ أ‬76"2 ‫ي‬A
‫ذج ا‬1!'
‫~ [;ر ا‬2J!
‫ة ا‬A‫ ه‬5‫;ر أ‬F.
.'‫ف ه‬1 ‫ي‬A
‫ ا‬1‫ وه‬MSE ‫ أو‬MSD 1‫ ه‬1‫إ;[ا& و‬
:7‫ ه‬4B
‫~ ا‬2J& 7NP9‫ذج ا‬1!'
MAPE:
3.6952
MAD:
5.6622
MSD:
52.7851
:7b`;
‫ذج ا‬1!'
‫و‬
MAPE:
3.6338
MAD:
5.7720
MSD:
56.8996
‫ذج‬1!'
‫ا ا‬A‫ر إ;[ام ه‬J f
A
‫ و‬MSD ‫س‬J!
4!B HB‫ ا‬6‫ ا‬7NP9‫ذج ا‬1!'
‫‚ أن ا‬5
.W6
‫ ا‬4;!
4(J;!
‫) ا‬J
‫ ا‬:(';
205
:Decomposition Method ‫)| ا ا آت‬Y ‫ او‬./ i }A
‫ إ;ج‬4
;
‫ ا
(ت ا‬.‫ إ
&آ(ت‬4;!
‫ ا‬f3bC ‫ أو‬H%C 4J2= 7
;
‫
!]ل ا‬. ^P1 ‫ف‬1
‫ام‬L 13
. ‫ ا
!ارع‬5‫ أ‬7N W%
&12 168
MTB > Read "E:\Mtbwin\milk.dat" c1.
Entering data from file: E:\Mtbwin\milk.dat
168 rows read.
MTB > name c1='MilkProd'
MTB > print c1
Data Display
MilkProd
589
561
553
582
583
587
678
639
782
756
736
755
713
667
660
698
701
706
801
764
886
859
860
878
826
799
766
805
784
791
908
867
966
937
640
600
565
604
702
811
762
717
677
725
819
942
890
821
760
815
896
656
566
598
611
653
798
784
696
711
723
783
913
900
773
802
812
858
727
653
628
594
615
735
837
775
734
690
740
869
961
883
828
773
817
697
673
618
634
621
697
817
796
690
734
747
834
935
898
778
813
827
640
742
688
658
602
661
767
858
785
750
711
790
894
957
889
834
797
599
716
705
622
635
667
722
826
805
707
751
800
855
924
902
782
843
568
660
770
709
677
645
681
783
871
807
804
763
809
881
969
892
577
617
736
722
635
688
687
740
845
824
756
800
810
837
947
903
:&‫وا‬. 4J.
‫و) ا
(ت ا‬
MTB > TSPlot 'MilkProd';
SUBC>
Index;
SUBC>
TDisplay 11;
SUBC>
Symbol;
SUBC>
Connect.
206
1000
MilkProd
900
800
700
600
Index
50
100
150
:7NP9‫ذج ا‬1!'
‫( ا‬6C :X‫او‬
73
zt = Tt + St + Et , t = 1, 2,..., n H3K
‫ذج ا‬1!'
‫ ا‬W;3 z1 , z2 ,..., zn ‫هات‬K!
:4'3!& ;J2= ‫ف ;"ض‬1 4J.
‫ ا
!آ(ت ا‬7
‫ ا‬4'&
‫ ا‬4;!
‫@ ا‬A‫ ه‬f3b;. ‫م‬1J
:7
‫و‬X‫ ا‬4J26
‫ا‬
:‫ أي‬Tt ‫اف‬X‫ ا‬4(‫ &آ‬2J;
&
‫ ا‬7 ‫هات‬K!
w. 76 ‫ار‬%‫( إ‬6 -1
Tˆt ≡ zˆt = a + bt , t = 1, 2,...,168
:‫أي‬
MTB > set c2
DATA> 1:168
DATA> end
MTB
>
name
c1='MilkProd'
c2='Time'
c3='Trend'
c5='Detrend' c6='Index' c8='Fitted' c9='Resid'
MTB > regr c1 1 c2;
SUBC> fits c3.
Regression Analysis
The regression equation is
MilkProd = 612 + 1.69 Time
Predictor
Constant
Time
Coef
611.682
1.69262
StDev
9.414
0.09663
207
T
64.97
17.52
P
0.000
0.000
S = 60.74
R-Sq = 64.9%
R-Sq(adj) = 64.7%
Analysis of Variance
Source
DF
SS
MS
F
1
1132003
1132003
306.83
P
Regression
0.000
Error
166
612439
Total
167
1744443
3689
1‫اف ه‬9‫ ا‬H3‫و‬
900
Trend
800
700
600
Index
50
100
150
4
‫ &ا‬4;!
. 7!2& 7 H%'N 4+X‫هات ا‬K!
‫اف & ا‬9‫ ا‬4(‫ح &آ‬6 -2
zt − zˆt = zt − Tˆt , t = 1,2,...,168 ‫ أي‬Detrended Series ‫اف‬9‫ا‬
MTB > let c5=c1-c3
:7
;
‫ ا‬H3K
‫ ا‬O
‫و‬
Detrend
100
0
-100
Index
50
100
208
150
zt − Tˆt = St + Et , t = 1, 2,...,168 ‫ ن‬wJN 4!1& S%(+‫ ا‬O‫‚ ا‬5
:7
;
‫ آ‬Seasonal Indices 4!1!
‫ات ا‬:!
‫ ا‬L1 4!1!
‫ ا‬4(‫ ا
!آ‬2J;
-3
OK
7!1!
‫ ا‬:!
‫ ا‬I1 Q5 I s , s = 1,2,...,12 &
. 4!1!
‫ات ا‬:!
&'
d t = zt − Tˆt , t = 1, 2,...,168 ‫ـ‬. &'
‫ا و‬A3‫ وه‬7]
‫ ا‬OK
7!1!
‫ ا‬:!
‫ ا‬I 2 ‫اول و‬
:7
;
‫ات آ‬:!
‫@ ا‬A‫ر ه‬JC
1
( d1 + d13 + d 25 + ⋯ + d157 )
14
1
I 2 = ( d 2 + d14 + d 26 + ⋯ + d158 )
14
⋮
I1 =
I12 =
1
( d12 + d 24 + d 36 + ⋯ + d168 )
14
:4
;
‫;[ام اوا& ا‬F. f
‫;) ذ‬2‫و‬
MTB > set c4
DATA> 14(1:12)
DATA> end
MTB > stat c5;
SUBC> by c4;
SUBC> mean c6.
MTB > Stack 'Index' 'Index' 'Index' 'Index' 'Index'
'Index' 'Index' &
CONT>
'Index' 'Index' 'Index' 'Index' 'Index' 'Index'
'Index' c7.
MTB > let c8=c3+c7
MTB > let c9=c1-c8
MTB > set c10
DATA> 1:12
DATA> end
MTB > print c10 c6
Data Display
209
‫‪Index‬‬
‫‪Season‬‬
‫‪Row‬‬
‫‪-18.328‬‬
‫‪-57.806‬‬
‫‪1‬‬
‫‪2‬‬
‫‪1‬‬
‫‪2‬‬
‫‪34.716‬‬
‫‪3‬‬
‫‪3‬‬
‫‪49.595‬‬
‫‪110.616‬‬
‫‪4‬‬
‫‪5‬‬
‫‪4‬‬
‫‪5‬‬
‫‪82.281‬‬
‫‪32.517‬‬
‫‪6‬‬
‫‪7‬‬
‫‪6‬‬
‫‪7‬‬
‫‪-9.747‬‬
‫‪-52.297‬‬
‫‪-48.775‬‬
‫‪-79.754‬‬
‫‪-43.018‬‬
‫‪8‬‬
‫‪9‬‬
‫‪10‬‬
‫‪11‬‬
‫‪12‬‬
‫‪8‬‬
‫‪9‬‬
‫‪10‬‬
‫‪11‬‬
‫‪12‬‬
‫‪ -4‬ا
;'(‪:‬ات ‪ 1C‬آ
;
‪:7‬‬
‫‪z168 ( ℓ ) = 612 + 1.69 ( ℓ + 168 ) + I ( ℓ mod 12 ) , ℓ = 1, 2,...‬‬
‫‪ ]!N‬ا
;'(‪ ' :‬ا
‪1‬م ‪ 169‬ه‪1‬‬
‫‪z168 (1) = 612 + 1.69 (169 ) + I1‬‬
‫‪=897.61 + ( −18.328 ) = 879.282‬‬
‫ا
‪ 4J26‬ا
]‪:4‬‬
‫وه‪ 7‬ا
;‪: Minitab _&. O&[;2 7‬‬
‫‪ -1‬آ
‪ 4J26‬ا‪X‬و
‪ (6‬إ‪%‬ار ‪K!
w. 76‬هات ‪ 7‬ا
& ;‪& 2J‬آ(‪ 4‬ا‪X‬اف‬
‫‪ ~b H%'N Tt‬ا
';‪ 4‬آ! ‪ 7N‬ا
‪ 4J26‬ا‪X‬و
)‪(1‬‬
‫‪ -2‬ا‪ `2‬ه' ‪6‬ح &آ(‪ 4‬ا‪9‬اف & ا
!‪K‬هات ا‪ 7 H%'N 4+X‬ا
!;‪& 4‬ا
‪4‬‬
‫ا‪9‬اف ‪Detrended Series‬‬
‫‪ (6 -3‬ا‪s‬ن &;‪%;& w1‬ك & در‪ 4L‬ا
!‪ )1‬و‪ *61‬اذا ا‪;5‬ج ا‪&X‬‬
‫‪6 -4‬ح ا
!;‪61‬ت ا
!;‪%‬آ‪I & 4‬ا‪ 7N OC‬ا
!;‪& 4‬ا
‪ 4‬ا‪9‬اف ‪7 H%'N‬‬
‫&;‪1%C 4‬ي ا
!آ(ت ا
!‪4!1‬‬
‫‪JC -5‬ر ا
!آ(ت ا
!‪ 4!1‬آ
;
‪:7‬‬
‫‪210‬‬
I1 = Median ( d1 , d13 , d 25 ,⋯, d157 )
I 2 = Median ( d 2 , d14 , d 26 ,⋯, d158 )
⋮
I12 = Median ( d12 , d 24 , d 36 ,⋯ , d168 )
.
‫ات آ‬:(';
‫
ا‬1C -6
:7
;
‫ا آ‬A‫ف ;"ض ه‬1‫و‬
MTB > Read "E:\Mtbwin\milk.dat" c1.
Entering data from file: E:\Mtbwin\milk.dat
168 rows read.
MTB > name c1='MilkProd'
MTB > set c2
DATA> 1:168
DATA> end
MTB > name c2='Time'
MTB > regr c1 1 c2;
SUBC> fits c3.
Regression Analysis
The regression equation is
MilkProd = 612 + 1.69 Time
Predictor
Constant
Time
Coef
611.682
1.69262
S = 60.74
StDev
9.414
0.09663
R-Sq = 64.9%
T
64.97
17.52
P
0.000
0.000
R-Sq(adj) = 64.7%
Analysis of Variance
Source
P
Regression
0.000
Error
Total
DF
SS
MS
F
1
1132003
1132003
306.83
166
167
612439
1744443
3689
211
Unusual Observations
Obs
Time
St Resid
113
MilkProd
Fit
StDev Fit
Residual
113
942.00
802.95
5.44
139.05
125
961.00
823.26
6.11
137.74
2.30R
125
2.28R
R
denotes
an
observation
with
a
large
standardized
residual
MTB
MTB
MTB
MTB
>
>
>
>
name c3='Trend'
let c4=c1-c3
name c4='Detrend'
Name c5 = 'AVER1'
:*61‫ و‬12 4L‫ك & ا
ر‬%;& w1;& (6 4
;
‫ة ا‬16[
‫ ا‬7N
MTB > %MA 'Detrend' 12;
SUBC> Center;
SUBC>
Averages 'AVER1'.
Executing from file: E:\MTBWIN\MACROS\MA.MAC
Macro is running ... please wait
Moving average
Data
Length
NMissing
Detrend
168.000
0
Moving Average
Length: 12
Accuracy Measures
MAPE: 111.68
MAD:
52.36
MSD: 3564.77
ON‫ ا
!ال إا‬4;!
‫ & ا‬461!
‫ ا‬4‫آ‬%;!
‫ت ا‬61;!
‫ح ا‬6
212
MTB > let c6=c4-c5
MTB > name c6='DeSeason'
MTB > set c2
DATA> 14(1:12)
DATA> end
MTB > stat c6;
SUBC> by c2;
SUBC> median c7.
MTB > name c7='SeasInx'
Data Display
Row
Season
SeasInx
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
-20.750
-58.958
35.625
50.083
109.542
81.292
33.917
-10.000
-52.792
-50.250
-79.958
-44.375
:7+‫ ا
(&_ ا‬V& ‫'ه‬2L‫ ا‬7;
‫ت ا‬.%
‫رن ا‬J
MTB > %Decomp 'MilkProd' 12;
SUBC> Additive ;
SUBC> Start 1.
Executing from file: E:\MTBWIN\MACROS\Decomp.MAC
Macro is running ... please wait
Time Series Decomposition
213
Data
Length
MilkProd
168.000
NMissing
0
Trend Line Equation
Yt = 611.682 + 1.69262*t
Seasonal Indices
Period
1
2
3
4
5
6
7
8
9
10
11
12
Index
-20.1979
-58.4062
36.1771
50.6354
110.094
81.8437
34.4687
-9.44792
-52.2396
-49.6979
-79.4063
-43.8229
Accuracy of Model
MAPE:
MAD:
MSD:
1.583
12.088
244.406
.‫;ن‬2‫( &;و‬2JC !O‫ ا
';; ا‬4‫ر‬J!.‫و‬
:7
;
‫ آ‬%Decomp _&(
‫;[ام ا‬. ‫ات‬:('C 1 ‫ف‬1
MTB > %Decomp 'MilkProd' 12;
SUBC> Additive ;
214
SUBC>
SUBC>
Forecasts 12;
Start 1.
:‫ات‬:(';
‫ ا‬76"C 7;
‫وا‬
Forecasts
Row
Period
Forecast
1
169
877.54
2
170
841.02
3
4
5
6
7
8
9
10
11
12
171
172
173
174
175
176
177
178
179
180
937.30
953.45
1014.60
988.04
942.36
900.13
859.04
863.27
835.25
872.53
‫) اة‬J
. O‫ر‬B‫ة و‬6"!
‫; ا‬J26
‫;[ام ا‬F. 7&1
‫ ا‬W%
‫;ج ا‬9 ‫ات‬:('C ‫ و‬: 2!C
_&(
‫ & ا‬4C'
‫ا‬
215
‫ﺍﻟﻔﺼﻞ ﺍﻟﻌﺎﺷﺮ‬
Using Moving Average Smoothing ‫ك‬/‫\ ا‬0‫; ا‬0‫ا‬$ 4‫ و ا‬L‫ا‬
for Forecasting
'2
‫ آن‬1
]!N ‫ء‬6‫ ا‬2(C HJ;. f
‫هات وذ‬K!
‫ ا‬O!;
‫ك‬%;!
‫ ا‬w1;!
‫;[م ا‬2
m 4L‫ك & ا
ر‬%;!
‫ ا‬w1;!
N z1 , z2 , z3 ,… , zn −2 , zn −1 , zn 4'&‫ ز‬4;& & ‫هات‬K&
4B"
‫ & ا‬W%2 ‫هات‬K!
zˆt =
1
( zt + zt −1 + zt −2 + ⋯ + zt −m+1 ) , t = m, m + 1,..., n
m
‫أو‬
zˆt = zˆt −1 +
1
( zt − zt −m ) , t = m, m + 1,..., n
m
. n − m + 1 O!;
‫" ا‬. ^(+‫هات ا‬K!
‫‚ ان د ا‬5X
1‫ ه‬4]
]
‫ ا‬4L‫ك & ا
ر‬%;!
‫ ا‬w1;!
‫ن ا‬FN m=3 S‫ آ‬1
]!N
1
( z3 + z2 + z1 )
3
1
zˆ4 = ( z4 + z3 + z2 ) or
3
⋮
zˆ3 =
zˆn =
zˆ4 = zˆ3 +
1
( zn + zn−1 + zn −2 ) or
3
1
( z4 − z1 )
3
zˆn = zˆn −1 +
1
( z n − zn − 3 )
3
‫ذج‬1!'
‫ ا‬V(;C ‫هات‬K!
‫;ض ان ا‬b'
‫ء‬6‫ ا‬2(C HJ;
O!;
‫ ا‬H!"2 e‫ ى آ‬73
‫و‬
zt = µ + at , at ∼ WN ( 0,σ 2 ) , t = 1, 2,..., n
‫ن‬13N
V ( zt ) = σ 2 , ∀t
7
;
.‫و‬
V ( zˆt ) =
σ2
m
, t = m, m + 1,..., n
216
O!;
‫ا ا‬A‫ وه‬4+‫هات ا‬K!
‫ & ا‬e"P m ‫ـ‬. Y+‫ أ‬O'2(C ^(+‫ة ا‬O!!
‫هات ا‬K!
‫أي ان ا‬
.‫ء‬6‫ ا‬U{C & 6Y& ‫ او‬1N& ‫ آن‬4;!
‫ ا‬7N w! ‫ أي‬OI2 ‫ء‬6
.‫ة‬O!!
‫) ا‬J
‫ ا‬w1C W';'
f
‫ وذ‬42‫د‬N !8‫ دا‬m A:C :4I5&
:‫ك‬/‫\ ا‬0‫ام ا‬:0c$ 4‫ا‬
:‫ك‬%;!
‫ ا‬w1;!
‫ ا‬4(J;!
‫) ا‬J
|(';!‫ آ‬A:2
zn ( ℓ ) = zˆn −1 , ℓ > 0
:‫ل‬-
EMPLOY.MTW H!"
‫ ا‬4B‫ ا
(ت & ور‬H!% MINITAB 485‫ ا‬4&%
‫;[ام ا‬F.
MTB > Retrieve
'E:\Mtbwin\DATA\EMPLOY.MTW'.
‫ات‬Y;& & ‫ي‬1%C ‫ &ذا‬I'
MTB > info
Information on the Worksheet
Column
C1
C2
C3
Count
60
60
60
Name
Trade
Food
Metals
Metals Y;!
‫هات‬K!
‫ف ;[م ا‬1
Metals
44.2
44.8
40.1
42.8
43.6
45.2
48.3
49.9
50.7
44.3
44.4
42.0
43.0
44.7
45.0
49.1
49.6
50.3
44.4
43.1
42.4
42.8
44.5
45.5
48.9
50.7
49.2
43.4
42.6
43.1
42.5
45.0
46.2
49.4
50.7
48.1
42.8
42.4
42.4
42.6
44.8
46.8
50.0
50.9
44.3
42.2
43.1
42.3
44.9
47.5
50.0
50.5
44.4
41.8
43.2
42.9
45.2
48.3
49.6
51.2
:‫هات‬K!
‫@ ا‬A‫) ه‬
217
MTB > TSPlot 'Metals';
SUBC>
Index;
SUBC>
SUBC>
TDisplay 11;
Symbol;
SUBC>
Connect.
Metals
50
45
40
Index
10
20
30
40
50
60
‫ات‬:('C L1‫ و‬m=3 4L‫ك & ا
ر‬%;!
‫ ا‬w1;!
‫;[ام ا‬F. ‫هات‬K!
‫@ ا‬AO
‫ا‬O!C ‫ن‬s‫( ا‬6
:*(J;& )B 6 ‫
ـ‬
MTB > %MA 'Metals' 3;
SUBC>
Forecasts 6;
SUBC>
Title "Smoothing and Forecasting Metals".
Executing from file: E:\MTBWIN\MACROS\MA.MAC
Moving average
Data
Metals
Length
60.0000
NMissing
0
Moving Average
Length: 3
Accuracy Measures
MAPE: 1.55036
218
MAD:
0.70292
MSD:
0.76433
Row
Period
Forecast
Lower
Upper
1
61
49.2
47.4865
50.9135
2
3
62
63
49.2
49.2
47.4865
47.4865
50.9135
50.9135
4
5
64
65
49.2
49.2
47.4865
47.4865
50.9135
50.9135
6
66
49.2
47.4865
50.9135
Smoothing and Forecasting Metals
Actual
Predicted
Metals
50
Forecast
Actual
Predicted
Forecast
45
Moving Average
Length:
3
MAPE: 1.55036
40
0
10
20
30
40
50
MAD:
0.70292
MSD:
0.76433
_8;'
‫ ا‬4KB'& :U
60
Time
zˆ59 =
7
%
‫ ا
!]ل ا‬7N
50.3 + 49.2 + 48.1 147.6
=
= 49.2
3
3
‫ا ا
!]ل‬A‫ ه‬7N ‫ أو‬zn +1 , zn + 2 ,..., zn +6 )J
‫ أي‬4(J;!
‫ ا‬6 ‫) ا
ـ‬J
‫ات‬:(';
‫ ا‬A:C
:7
;
‫ آ‬z61 , z62 ,..., z66
z60 (1) = z60 ( 2 ) = ⋯ = z60 ( 6 ) = 49.2
‫أي‬
 zn ( ℓ ) ± 1.96σˆ  , ℓ > 0 ‫!ت‬3
‫ا‬
W%
95% :('C
‫;ات‬N
‫ب‬%
‫ر ـ‬J!‫ آ‬MSD = 0.76433 4!J
‫ ا‬A{ ، 4(J;!
‫ات ا‬:(';
‫) ا‬B V!
[49.2 ± 1.96σˆ ]
219
)J
‫ ا‬V!
95% :('C ‫;ة‬N ‫ن‬13C *‫ و‬σˆ = 0.8743 ‫ن‬13N σˆ 2 = 0.76433 ‫ أي‬σ 2
:7‫ ه‬4(J;!
‫ا‬
 49.2 ± 1.96 ( 0.8743)  = [ 49.2 ± 1.7135] = [47.4865,50.9135]
:‫أي‬
z60+ℓ ∈ [47.4865,50.9135] , ℓ > 0 with probability 0.95
7Cs‫ آ‬MSD W%C :4I5&
n −1
MSD = σˆ =
2
∑( z
− zˆi )
i
i =2
n−2
: 2!C
:(';
H`N‫ ا‬O2‫ر ا‬B‫ و‬4J.
‫هات ا‬K!
‫ ا‬7 7 ‫ و‬5 ‫ت‬L‫ & ا
ر‬4‫آ‬%;& ‫ت‬61;& (=
.‫؟‬4(J;!
‫) ا‬J
‫ا‬
Running Median ‫ري‬V‫\ ا‬0‫ا‬
4N6;!
‫ ا‬4!J
N 4N6;!
‫ او ا‬Outliers 4L‫هات ا
[ر‬K!
. ‫ آ]ا‬U{;2 ‫ك‬%;!
‫ ا‬w1;!
‫ا‬
‫هات‬K!
‫ ا‬2
S‫آ‬1
]!N 4
;;!
‫ ا‬4‫آ‬%;!
‫ت ا‬61;!
‫ & ا‬m 7 U:C ‫ة‬5‫ا‬1
‫ا‬
z(t)
5
7
3
13
18
8
20
9
6
10
12
1500
11
15
H3K
‫ ا‬O
‫و‬
1500
z(t)
1000
500
0
In d e x
5
10
220
3 4L‫ك & ا
ر‬%;& w1;& A{.
M o v in g A v e r a g e
A c tu a l
1500
P re d ic te d
A c tu a l
P re d ic te d
z(t)
1000
M o v in g A v e ra g e
500
L e n gth:
M APE:
0
0
5
10
3
1081
M AD :
273
MSD:
268811
15
T im e
.4N6;!
‫ ا‬4!J
. )B 4UU 4N ‫ت‬U{C _C'
‫ك ا‬%;!
‫ ا‬w1;!
‫‚ ان ا‬5X
76 z O!!‫دي آ‬b
‫ل ا‬16
‫ ا
ري ذا ا‬w1
‫;[م ا‬2 ‫ت‬.1"
‫@ ا‬A‫ ه‬H]& WY;
.4N6;!
‫) ا‬B. U{;2X ‫ي‬A
‫وا‬
W%2 z1 , z2 , z3 ,… , zn −2 , zn −1 , zn ‫هات‬K!
j = 2i + 1 ‫دي‬b
‫ل ا‬16
‫ ا
ري ذا ا‬w1
‫ا‬
4B"
‫& ا‬
zɶt = med ( zt −i ,..., zt ,..., zt +i ) , j = 2i + 1
3 ‫ل‬16
‫ري ذا ا‬L w‫ و‬A{.‫ و‬zɶt = med ( zt −1 , zt , zt +1 ) 4B"
‫(^ ا‬C j = 3 4!J
]!N
4J.
‫هات ا‬K!
smoothz(t)
15
10
5
In d e x
2
4
6
8
10
12
7
;
‫ ا‬H3K
‫ ا‬O
4JJ%
‫هات ا‬K!
‫ن ا‬FN 1500 ~
‫ و‬15 7‫ ه‬z9 ‫ ـ‬4JJ%
‫ ا‬4!J
‫ ا‬S‫واذا آ‬
221
20
z(t)
15
10
5
Index
5
10
. ;;'
‫ ا‬. ‫رن‬B
222
‫ﺍﻟﻔﺼﻞ ﺍﻟﺤﺎﺩﻱ ﻋﺸﺮ‬
Using Single Exponential \‫ ا‬0r‫ ا‬L‫; ا‬0‫ا‬$ 4‫ و ا‬L‫ا‬
: Smoothing for Forecasting
4!2J
‫) ا‬J
‫ن ا‬FN 7
;
.‫ و‬4!‫~ اه‬b ‫ ا
(ت‬V!L 76"2 ‫ك‬%;!
‫ ا‬w1;!
‫ ا‬46‫ا‬1. O!;
‫ا‬
7X‫ ا‬O!;
‫ ا‬،%%+ 4!"
‫ ا‬45'
‫ن & ا‬132X B ‫ا‬A‫ وه‬4]2%
‫) ا‬J
‫ آ‬U{;
‫~ ا‬b U:C 1
]‫) اآ‬J
‫ ا‬76"2 ~3"
‫ ا‬
'2
‫ آن‬1
]!N .O&B V& ‫ ا‬oB';C 4!‫ اه‬6"C ‫ي‬X‫) ا‬J
‫ أآ( وا‬4!‫ أه‬4U‫ا‬5
m 4L‫ك & ا
ر‬%;!
‫ ا‬w1;!
N z1 , z2 , z3 ,… , zn −2 , zn −1 , zn 4'&‫ ز‬4;& & ‫هات‬K&
4B"
‫ & ا‬W%2 ‫هات‬K!
zˆt =
1
( zt + zt −1 + zt −2 + ⋯ + zt −m+1 ) , t = m, m + 1,..., n
m
O;.;‫ آ‬3!2 7;
‫وا‬
zˆt =
1
1
1
1
zt + zt −1 + zt −2 + ⋯ + zt −m+1 , t = m, m + 1,..., n
m
m
m
m
zˆt = β zt + β zt −1 + β zt −2 + ⋯ + β zt −m+1 , t = m, m + 1,..., n, β =
1
m
β ‫زن‬1
‫~ ا‬b ‫ ا
(ت‬V!L 76"2 ‫ك‬%;!
‫ ا‬w1;!
‫أي ان ا‬
7
;
‫ آ‬zn ‫ة‬P%
‫ ا‬4!J
‫هات ا‬K!
‫ُ" ا‬. V& ‫ ا‬oB';C ‫' ا
(ت اوزان‬6‫ أ‬1
‫ن‬s‫ا‬
st = α zt + α (1 − α ) zt −1 + α (1 − α ) zt −2 + ⋯ , t = 1, 2,..., n, 0 < α < 1
2
O!;
. !2& ‫ا‬A‫ وه‬4J.
‫) ا‬J
‫ ا‬V!
‫ ا‬oB';C ‫{وزان‬. ‫زون‬1& w1;& 7‫ ه‬st 4!J
‫ا‬
‫اري‬3C H3K. W;32‫ و‬w(
‫ ا‬7X‫ا‬
st = α zt + (1 − α ) st −1 , t = 1, 2,..., n, s0 = z
‫ات‬:(';
‫ ا‬A:C‫و‬
zn ( ℓ ) = sn , ℓ ≥ 1
223
:‫ل‬-
EMPLOY.MTW H!"
‫ ا‬4B‫ ا
(ت & ور‬H!%C
MTB > Retrieve
'E:\Mtbwin\DATA\EMPLOY.MTW'.
Metals Y;
‫ ا‬7N ‫هات‬K!
‫ف ;[م ا‬1
Metals
44.2
44.3
44.4
43.4
42.8
44.3
44.4
44.8
44.4
43.1
42.6
42.4
42.2
41.8
40.1
42.0
42.4
43.1
42.4
43.1
43.2
42.8
43.0
42.8
42.5
42.6
42.3
42.9
43.6
44.7
44.5
45.0
44.8
44.9
45.2
45.2
45.0
45.5
46.2
46.8
47.5
48.3
48.3
49.1
48.9
49.4
50.0
50.0
49.6
49.9
49.6
50.7
50.7
50.9
50.5
51.2
50.7
50.3
49.2
48.1
:‫هات‬K!
‫@ ا‬A‫) ه‬
MTB > TSPlot 'Metals';
SUBC>
Index;
SUBC>
TDisplay 11;
SUBC>
Symbol;
SUBC>
Connect.
M
etals
50
45
40
Index
10
20
30
224
40
50
60
α = 0.2 O!C S.U A{‫ و‬w(
‫ ا‬7X‫ ا‬O!;
‫;[ام ا‬F. ‫هات‬K!
‫@ ا‬AO
‫ا‬O!C ‫ن‬s‫( ا‬6
:*(J;& )B 6 ‫ات ـ‬:('C L1‫و‬
MTB > %SES 'Metals';
SUBC>
Weight 0.2;
SUBC>
Forecasts 6;
SUBC>
Title "Smoothing and Forecasting Metals";
SUBC>
Initial 6.
Single Exponential Smoothing
Data
Metals
Length
60.0000
NMissing
0
Smoothing Constant
Alpha: 0.2
Accuracy Measures
MAPE: 2.17304
MAD:
1.00189
MSD:
1.45392
Row
Period
Forecast
Lower
Upper
1
61
49.7216
47.2670
52.1763
2
62
49.7216
47.2670
52.1763
3
63
49.7216
47.2670
52.1763
4
64
49.7216
47.2670
52.1763
5
65
49.7216
47.2670
52.1763
6
66
49.7216
47.2670
52.1763
225
Smoothing and Forecasting Metals
Actual
Predicted
Forecast
Metals
50
Actual
Predicted
Forecast
45
Smoothing Constant
Alpha:
40
0
10
20
30
40
50
0.200
MAPE:
2.17304
MAD:
1.00189
MSD:
1.45392
60
Time
_8;'
‫ ا‬4KB'& :U
α = 0.2 O!C S.]. z1 , z2 ,… , zn −1 , zn −2 ‫هات‬K!
w(
‫ ا‬7X‫ ا‬O!;
‫ ا‬W%2 -1
:42‫ار‬3;
‫ ا‬4B"
‫& ا‬
si = α zi + (1 − α ) si −1 , i = 1,2,..., n
W%C 7;
‫ وا‬s0 4
‫و‬X‫ ا‬4!J
‫ ا‬7
‫;ج ا‬% ‫ة ا‬O!!
‫) ا‬J
‫ب ا‬%
42‫ار‬3;
‫ ا‬4B"
‫ (أ ا‬73
w1;!
42‫ &و‬s0 VP‫ و‬7‫ ه‬O&[;' 7;
‫ق وا‬6
‫@ ا‬A‫ ه‬5‫ أ‬،‫"ة =ق‬.
m
'
]& 7bN s0 =
s0 =
∑z
i
i =1
m
, m = 6 ( or n, if n<6 )
44.2 + 44.3 + 44.4 + 43.4 + 42.8 + 44.3
= 43.9
6
‫ن‬132 7
;
.‫و‬
s1 = α z1 + (1 − α ) s0 = 0.2 ( 44.2 ) + 0.8 ( 43.9 ) = 8.84 + 35.12 = 43.96
s2 = α z2 + (1 − α ) s1 = 0.2 ( 44.3) + 0.8 ( 43.96 ) = 8.86 + 35.168 = 44.028
:7
;
‫';_ ا‬N ‫هة‬K& , 7;5 !; ‫ا‬A3‫وه‬
Time
Metals
SMOO1
FITS1
RESI1
1
44.2
43.9600
43.9000
0.30000
2
44.3
44.0280
43.9600
0.34000
3
44.4
44.1024
44.0280
0.37200
4
43.4
43.9619
44.1024
-0.70240
226
5
42.8
43.7295
43.9619
-1.16192
6
44.3
43.8436
43.7295
0.57046
7
44.4
43.9549
43.8436
0.55637
8
44.8
44.1239
43.9549
0.84510
9
44.4
44.1791
44.1239
0.27608
10
43.1
43.9633
44.1791
-1.07914
11
42.6
43.6906
43.9633
-1.36331
12
42.4
43.4325
43.6906
-1.29065
13
42.2
43.1860
43.4325
-1.23252
14
41.8
42.9088
43.1860
-1.38601
15
40.1
42.3470
42.9088
-2.80881
16
42.0
42.2776
42.3470
-0.34705
17
42.4
42.3021
42.2776
0.12236
18
43.1
42.4617
42.3021
0.79789
19
42.4
42.4494
42.4617
-0.06169
20
43.1
42.5795
42.4494
0.65065
21
43.2
42.7036
42.5795
0.62052
22
42.8
42.7229
42.7036
0.09642
23
43.0
42.7783
42.7229
0.27713
24
42.8
42.7826
42.7783
0.02171
25
42.5
42.7261
42.7826
-0.28264
26
42.6
42.7009
42.7261
-0.12611
27
42.3
42.6207
42.7009
-0.40089
28
42.9
42.6766
42.6207
0.27929
29
43.6
42.8613
42.6766
0.92343
30
44.7
43.2290
42.8613
1.83875
31
44.5
43.4832
43.2290
1.27100
32
45.0
43.7866
43.4832
1.51680
33
44.8
43.9892
43.7866
1.01344
34
44.9
44.1714
43.9892
0.91075
35
45.2
44.3771
44.1714
1.02860
36
45.2
44.5417
44.3771
0.82288
37
45.0
44.6334
44.5417
0.45830
38
45.5
44.8067
44.6334
0.86664
227
39
46.2
45.0853
44.8067
1.39331
40
46.8
45.4283
45.0853
1.71465
41
47.5
45.8426
45.4283
2.07172
42
48.3
46.3341
45.8426
2.45738
43
48.3
46.7273
46.3341
1.96590
44
49.1
47.2018
46.7273
2.37272
45
48.9
47.5415
47.2018
1.69818
46
49.4
47.9132
47.5415
1.85854
47
50.0
48.3305
47.9132
2.08683
48
50.0
48.6644
48.3305
1.66947
49
49.6
48.8515
48.6644
0.93557
50
49.9
49.0612
48.8515
1.04846
51
49.6
49.1690
49.0612
0.53877
52
50.7
49.4752
49.1690
1.53101
53
50.7
49.7202
49.4752
1.22481
54
50.9
49.9561
49.7202
1.17985
55
50.5
50.0649
49.9561
0.54388
56
51.2
50.2919
50.0649
1.13510
57
50.7
50.3735
50.2919
0.40808
58
50.3
50.3588
50.3735
-0.07353
59
49.2
50.1271
50.3588
-1.15883
60
48.1
49.7216
50.1271
-2.02706
FITS1 ~&[
‫د ا‬1!"
‫ ا‬si , i = 1,2,...,60 ‫ة أي‬O!!
‫) ا‬J
‫ى ا‬1%2 SMOO1 V.‫د ا
ا‬1!"
‫ا‬
‫ء‬6‫ي ا‬1%2 RESI1 ~&[
‫د ا‬1!"
‫ ا‬zˆi = si −1 , i = 1, 2,...,60 ‫ أي‬4J(6!
‫) ا‬J
‫ى ا‬1%2
ei = zi − zˆi , i = 1, 2,...,60 ‫( أي‬Residuals 7B‫ا‬1(
‫)ا‬
:‫ة أي‬O!& 4!B , 4(J;!
‫) ا‬J
|(';!‫ آ‬A:2 -2
zn ( ℓ ) = sn , ℓ > 0
7
%
‫ ا
!]ل ا‬7bN
z60 ( ℓ ) = 49.7216, ℓ > 0
228
‫ا ا
!]ل‬A‫ ه‬7N ‫ أو‬zn +1 , zn +2 ,..., zn +6 )J
‫ أي‬4(J;!
‫ ا‬6 ‫) ا
ـ‬J
‫ات‬:(';
‫ ا‬A:C
:7
;
‫ آ‬z61 , z62 ,..., z66
z60 (1) = z60 ( 2 ) = ⋯ = z60 ( 6 ) = 49.7216
‫أي‬
 zn ( ℓ ) ± 1.96σˆ  , ℓ > 0 ‫!ت‬3
‫ا‬
W%
95% :('C
‫;ات‬N
‫ب‬%
-3
MSD = 1.45392 4!J
‫ ا‬A{ ، 4(J;!
‫ات ا‬:(';
‫) ا‬B V!
[49.7216 ± 1.96σˆ ]
95% :('C ‫;ة‬N ‫ن‬13C *‫ و‬σˆ = 1.205786 ‫ن‬13N σˆ 2 = 1.45392 ‫ أي‬σ 2 ‫ر ـ‬J!‫آ‬
:7‫ ه‬4(J;!
‫) ا‬J
‫ ا‬V!
 49.7216 ± 1.96 (1.205786 )  = [49.7216 ± 2.3633] = [47.35826,52.08494]
:‫أي‬
z60+ℓ ∈ [47.3582,50.0849] , ℓ > 0 with probability 0.95
7Cs‫ آ‬MSD W%C :4I5&
n
MSD = σˆ =
2
∑( z
i
i =1
− zˆi )
n −1
: 2!C
H`N‫ ا‬O2‫ر ا‬B‫ و‬α = 0.3,0.4,0.5 &[;& 4J.
‫هات ا‬K!
‫ ا‬7 w. 7‫ ا‬O!C (=
.‫؟‬4(J;!
‫) ا‬J
‫ ا‬:(';
229
‫ﺍﻟﻔﺼﻞ ﺍﻟﺜﺎﻧﻲ ﻋﺸﺮ‬
Using Double Exponential ‫ ادوج‬0r‫ ا‬L‫; ا‬0‫ا‬$ 4‫ و ا‬L‫ا‬
: Smoothing for Forecasting
:Brown’s Method ‫اون‬. 4J2= :X‫أو‬
:7
;
‫ ا‬L1 0 < α < 1 O!C S.]
‫ و‬z1 , z2 ,… , zn −1 , zn −2 ‫هات‬K!
st( ) = α zt + (1 − α ) st(−1) , t = 1,2,..., n
1
1
‫ا‬A‫ ه‬4L‫ در‬7
‫& ا‬C (1) ‫( و‬w(
‫ ا‬7X‫ ا‬O!;
‫ ا‬I‫ )ا‬st( ) = st w. 7‫ ا‬O!C st( ) Q5
1
1
O!;
‫ا‬
st( ) = α st( ) + (1 − α ) st(−1) , t = 1, 2,..., n
2
1
2
O!;
‫ا ا‬A‫ ه‬4L‫ در‬7
‫& ا‬C ( 2 ) ‫ &دوج و‬7‫ ا‬O!C st( ) Q5
2
at = 2 st( ) − st( ) , t = 1, 2,..., n
1
bt =
2
α
1
2
st( ) − st( ) , t = 1, 2,..., n
1−α
(
)
4
‫ & ا
!"د‬4J(6!
‫) ا‬J
‫ ا‬W%C
zˆt = at + bt t ,
t = 1, 2,..., n
& zn +ℓ , ℓ > 0 4(J;!
‫) ا‬J
‫ات‬:(';
‫ ا‬W%C‫و‬
zn ( ℓ ) = an + bn ℓ, ℓ > 0
4J.
‫ت ا‬B"
‫ & ا‬: s0( ) ‫ و‬s0( ) 4
‫و‬X‫) ا‬J
‫ب ا‬5
2
s0( ) = a0 −
1
1−α
s0( ) = a0 − 2
2
α
b0
1−α
α
1
b0
‫ن‬132‫ و‬zt = α + β t + et ,
t = 1,2,..., n
&
‫ ا‬7 ‫هات‬K!
‫ار ا‬%F. b0 ‫ و‬a0 L1
b0 = βˆ ‫ و‬a0 = αˆ
230
:Holt’s Method S
1‫ ه‬4J2= :U
:7
;
‫ ا‬L1 0 < γ < 1 ‫ و‬0 < α < 1 O!C 7;.]
‫ و‬z1 , z2 ,… , zn −1 , zn −2 ‫هات‬K!
st = α zt + (1 − α )( st −1 + bt −1 ) ,
bt = γ ( st − st −1 ) + (1 − γ ) bt −1 ,
t = 1, 2,..., n
t = 1, 2,..., n
& 4J(6!
‫) ا‬J
‫ ا‬W%
zˆt = st + bt t ,
t = 1, 2,..., n
& 4(J;!
‫) ا‬J
‫ات‬:(';
‫وا‬
zn ( ℓ ) = sn + bn ℓ, ℓ > 0
& b0 ‫ و‬s0 4
‫و‬X‫) ا‬J
‫ ا‬W%
s0 = z1
b0 = z2 − z1
b0 =
or
( z2 − z1 ) + ( z3 − z2 ) ( z3 − z1 )
=
or
2
2
( z − z ) + ( z3 − z2 ) + ( z4 − z3 ) ( z4 − z1 )
b0 = 2 1
=
3
3
:‫ل‬-
EMPLOY.MTW H!"
‫ ا‬4B‫ ا
(ت & ور‬H!%C
MTB > Retrieve 'E:\Mtbwin\DATA\EMPLOY.MTW'.
Metals Y;
‫ ا‬7N ‫هات‬K!
‫ف ;[م ا‬1
Metals
44.2
44.3
44.4
43.4
42.8
44.3
44.4
44.8
44.4
43.1
42.6
42.4
42.2
41.8
40.1
42.0
42.4
43.1
42.4
43.1
43.2
42.8
43.0
42.8
42.5
42.6
42.3
42.9
43.6
44.7
44.5
45.0
44.8
44.9
45.2
45.2
45.0
45.5
46.2
46.8
47.5
48.3
48.3
49.1
48.9
49.4
50.0
50.0
49.6
49.9
49.6
50.7
50.7
50.9
50.5
51.2
50.7
50.3
49.2
48.1
231
:‫هات‬K!
‫@ ا‬A‫) ه‬
MTB > TSPlot 'Metals';
SUBC>
Index;
SUBC>
TDisplay 11;
SUBC>
Symbol;
SUBC>
Connect.
Metals
50
45
40
Index
10
20
30
40
50
60
‫ن‬s‫ ;[م ا‬،‫اون‬. 4J26. ‫ ا
!دوج‬7X‫ ا‬O!;
‫;[ام ا‬F. ‫هات‬K!
‫@ ا‬AO
‫ا‬O!C ‫ن‬s‫( ا‬6
‫ه‬A{ ‫ف‬1 42‫{وزان &;و‬. WEIGHT 7b
‫& ا‬X‫ ا‬V& %DES (Macro) _&(
‫ا‬
0.2
MTB > %DES 'Metals';
SUBC>
Weight 0.2 0.2;
SUBC>
Forecasts 6;
SUBC>
Title "Brown's Double Exponential Smoothing";
SUBC>
Table.
Double Exponential Smoothing
Data
Metals
Length
60.0000
232
NMissing
0
Smoothing Constants
Alpha (level): 0.2
Gamma (trend): 0.2
Accuracy Measures
MAPE: 2.16187
MAD:
0.97032
MSD:
1.62936
Time Metals
Smooth
Predict
Error
1
44.2
41.7739
41.1674
3.03257
2
44.3
42.4976
42.0470
2.25303
3
44.4
43.1686
42.8607
1.53927
4
43.4
43.5546
43.5933
-0.19330
5
42.8
43.7373
43.9716
-1.17163
6
44.3
44.1459
44.1074
0.19257
7
44.4
44.4990
44.5238
-0.12377
8
44.8
44.8575
44.8719
-0.07189
9
44.4
45.0620
45.2275
-0.82751
10
43.1
44.9391
45.3989
-2.29891
11
42.6
44.6673
45.1841
-2.58407
12
42.4
44.3271
44.8088
-2.40884
13
42.2
43.9378
44.3723
-2.17229
14
41.8
43.4769
43.8962
-2.09617
15
40.1
42.7011
43.3514
-3.25142
16
42.0
42.3565
42.4456
-0.44557
17
42.4
42.1465
42.0831
0.31694
18
43.1
42.1286
41.8857
1.21426
19
42.4
42.0132
41.9164
0.48355
233
20
43.1
42.0763
41.8204
1.27964
21
43.2
42.1877
41.9347
1.26533
22
42.8
42.2374
42.0967
0.70327
23
43.0
42.3396
42.1745
0.82549
24
42.8
42.4078
42.3098
0.49024
25
42.5
42.4181
42.3976
0.10244
26
42.6
42.4495
42.4119
0.18809
27
42.3
42.4207
42.4509
-0.15090
28
42.9
42.5129
42.4161
0.48394
29
43.6
42.7420
42.5276
1.07245
30
44.7
43.1797
42.7996
1.90036
31
44.5
43.5507
43.3133
1.18668
32
45.0
43.9854
43.7317
1.26826
33
44.8
44.3338
44.2172
0.58280
34
44.9
44.6511
44.5889
0.31112
35
45.2
44.9749
44.9187
0.28133
36
45.2
45.2430
45.2538
-0.05376
37
45.0
45.4157
45.5197
-0.51967
38
45.5
45.6373
45.6716
-0.17162
39
46.2
45.9491
45.8863
0.31368
40
46.8
46.3285
46.2106
0.58938
41
47.5
46.7909
46.6136
0.88637
42
48.3
47.3492
47.1115
1.18850
43
48.3
47.8339
47.7173
0.58266
44
49.1
48.4002
48.2253
0.87469
45
48.9
48.8413
48.8267
0.07332
46
49.4
49.2966
49.2707
0.12930
47
50.0
49.7849
49.7311
0.26890
48
50.0
50.1841
50.2302
-0.23017
49
49.6
50.4162
50.6202
-1.02022
50
49.9
50.6292
50.8114
-0.91145
51
49.6
50.7104
50.9880
-1.38797
52
50.7
50.9509
51.0137
-0.31368
53
50.7
51.1334
51.2417
-0.54169
234
54
50.9
51.3019
51.4024
-0.50244
55
50.5
51.3407
51.5509
-1.05093
56
51.2
51.4782
51.5477
-0.34770
57
50.7
51.4770
51.6712
-0.97120
58
50.3
51.3649
51.6311
-1.33115
59
49.2
51.0127
51.4659
-2.26587
60
48.1
50.4384
51.0230
-2.92300
Row
Period
Forecast
Lower
Upper
1
61
50.3318
47.9545
52.7091
2
62
50.2252
47.7984
52.6520
3
63
50.1186
47.6384
52.5987
4
64
50.0120
47.4749
52.5490
5
65
49.9054
47.3080
52.5027
6
66
49.7988
47.1381
52.4594
Brown's Double Exponential Smoothing
Actual
Predicted
Forecast
Metals
50
Actual
Predicted
Forecast
45
Smoothing Constants
Alpha (level): 0.200
Gamma (trend):0.200
MAPE:
MAD:
MSD:
40
0
10
20
30
Time
235
40
50
60
2.16187
0.97032
1.62936
: b0 ‫ و‬a0 ‫د‬2‫إ‬
MTB > set c4
DATA> 1:60
DATA> end
MTB > regr c3 1 c4
Regression Analysis
The regression equation is
Metals = 41.0 + 0.152 C4
W% O'&‫ و‬b0 = 0.152 ‫ و‬a0 = 41.0 ‫إذا‬
1
s0(
2)
1−α
0.8
( 0.152 ) = 41.608
α
0.2
1−α
 0.8 
= a0 − 2
b0 = 41.0 − 2 
 ( 0.152 ) = 42.216
α
 0.2 
s0( ) = a0 −
b0 = 41.0 −
s1( ) = ( 0.2 )( 44.2 ) + ( 0.8 )( 41.608 ) = 42.1264
1
s1( ) = ( 0.2 )( 42.1264 ) + ( 0.8 )( 42.216 ) = 42.19808
2
a1 = ( 2 )( 42.1264 ) − 42.19808 = 42.05472
( 0.2 )
( 42.19808 − 42.05472 ) = 0.03584
( 0.8 )
zˆ1 = 42.05472 + ( 0.03584 )(1) = 42.09056
b1 =
… r
‫ا ا‬A3‫وه‬
.4J.
‫ ا‬4]&‫ ا‬7N !‫ آ‬MSD ‫;[ام‬F. :(';
‫;ات ا‬N W%C
:‫ل‬-
WEIGHT 7b
‫& ا‬X‫ ا‬V& %DES (Macro) _&(
‫ن ا‬s‫ ;[م ا‬S
1‫ ه‬4J2= (6;
γ = 0.3 ‫ و‬α = 0.2 A{ ‫ف‬1 4b;[& ‫{وزان‬.
MTB > RETR 'E:\Mtbwin\DATA\EMPLOY.MTW'.
Retrieving worksheet from file: E:\Mtbwin\DATA\EMPLOY.MTW
Worksheet was saved on
6/ 5/1996
236
MTB > %DES 'Metals';
SUBC>
Weight 0.2 0.3;
SUBC>
Forecasts 6;
SUBC>
Title "Holt's Double Exponential Smoothing";
SUBC>
Table.
Double Exponential Smoothing
Data
Metals
Length
60.0000
NMissing
0
Smoothing Constants
Alpha (level): 0.2
Gamma (trend): 0.3
Accuracy Measures
MAPE: 2.15656
MAD:
0.96328
MSD:
1.56274
Time
Metals
Smooth
Predict
Error
1
44.2
41.7739
41.1674
3.03257
2
44.3
42.5461
42.1076
2.19238
3
44.4
43.2891
43.0113
1.38868
4
43.4
43.7501
43.8376
-0.43760
5
42.8
43.9779
44.2724
-1.47237
6
44.3
44.3895
44.4118
-0.11184
7
44.4
44.7334
44.8167
-0.41671
8
44.8
45.0685
45.1356
-0.33560
9
44.4
45.2405
45.4506
-1.05057
237
10
43.1
45.0676
45.5595
-2.45952
11
42.6
44.7113
45.2391
-2.63911
12
42.4
44.2595
44.7244
-2.32443
13
42.2
43.7466
44.1332
-1.93322
14
41.8
43.1634
43.5043
-1.70426
15
40.1
42.2751
42.8188
-2.71884
16
42.0
41.8139
41.7674
0.23263
17
42.4
41.5361
41.3202
1.07985
18
43.1
41.5057
41.1072
1.99283
19
42.4
41.4371
41.1964
1.20365
20
43.1
41.5799
41.1999
1.90008
21
43.2
41.8054
41.4568
1.74322
22
42.8
41.9895
41.7869
1.01314
23
43.0
42.2254
42.0317
0.96829
24
42.8
42.4205
42.3257
0.47431
25
42.5
42.5395
42.5493
-0.04933
26
42.6
42.6522
42.6653
-0.06528
27
42.3
42.6793
42.7741
-0.47413
28
42.9
42.7982
42.7728
0.12724
29
43.6
43.0394
42.8993
0.70070
30
44.7
43.4861
43.1826
1.51743
31
44.5
43.8762
43.7202
0.77977
32
45.0
44.3257
44.1571
0.84285
33
44.8
44.6858
44.6573
0.14275
34
44.9
45.0007
45.0259
-0.12590
35
45.2
45.3066
45.3333
-0.13327
36
45.2
45.5449
45.6312
-0.43116
37
45.0
45.6749
45.8436
-0.84361
38
45.5
45.8384
45.9230
-0.42295
39
46.2
46.0888
46.0610
0.13895
40
46.8
46.4159
46.3199
0.48014
41
47.5
46.8406
46.6757
0.82428
42
48.3
47.3799
47.1499
1.15014
43
48.3
47.8665
47.7582
0.54181
238
44
49.1
48.4419
48.2774
0.82265
45
48.9
48.9016
48.9020
-0.00205
46
49.4
49.3693
49.3617
0.03832
47
50.0
49.8653
49.8317
0.16832
48
50.0
50.2702
50.3378
-0.33779
49
49.6
50.4979
50.7224
-1.12240
50
49.9
50.6862
50.8827
-0.98275
51
49.6
50.7296
51.0121
-1.41206
52
50.7
50.9166
50.9708
-0.27079
53
50.7
51.0532
51.1415
-0.44152
54
50.9
51.1813
51.2516
-0.35162
55
50.5
51.1869
51.3586
-0.85860
56
51.2
51.2901
51.3127
-0.11267
57
50.7
51.2673
51.4092
-0.70916
58
50.3
51.1350
51.3438
-1.04381
59
49.2
50.7591
51.1489
-1.94889
60
48.1
50.1448
50.6560
-2.55603
Row
Period
Forecast
Lower
Upper
1
61
49.8884
47.5283
52.2484
2
62
49.6319
47.1597
52.1041
3
63
49.3755
46.7803
51.9707
4
64
49.1190
46.3915
51.8466
5
65
48.8626
45.9946
51.7306
6
66
48.6061
45.5908
51.6215
239
Holt's Double Exponential Smoothing
Actual
Predicted
Forecast
Metals
50
Actual
Predicted
Forecast
45
Smoothing Constants
Alpha (level): 0.200
Gamma (trend):0.300
MAPE:
MAD:
MSD:
40
0
10
20
30
40
50
2.15656
0.96328
1.56274
60
Time
.6C ‫ م‬VB1;2 :4I5& ) 2‫و‬2 )J
‫"\ ا‬. V(;;. 4J.
‫ت ا‬.%
‫ ا‬4%+ & J%C : 2!C
7N f
A‫ وآ‬4(%
‫ ا‬4
s‫ وا‬W%
‫ ا‬. ‫ ااد‬H]!C 2= ‫;ف‬9 f
‫!& وذ‬C ‫ت‬.%
‫ا‬
(!O'& H‫ ذاآت آ‬7N ‫م‬B‫ ار‬2[C
240
‫ﺍﻟﻔﺼﻞ ﺍﻟﺜﺎﻟﺚ ﻋﺸﺮ‬
aV‫ ا‬0‫ت ا‬, ‫ز‬7‫ و‬i ;0‫ا‬$ 4‫] و ا‬,-‫ ا‬0r‫ ا‬L‫ا‬
Triple Exponential Smoothing: Winters' Three-Parameter Trend
and Seasonality Smoothing Method
‫ &ى‬4!1!
‫اه ا‬1I
‫ ا‬H%;
Vb'C X Hb
‫ا ا‬A‫ ه‬7N ‫ در'ه‬7;
‫ ا‬4J.
‫ق ا‬6
‫ ا‬V!L
Winters' trend and
‫ و;ز‬4J2=‫ و‬Decomposition Method
f3b;
‫ ا‬4J2=
'‫ ه‬OP"; ‫ف‬1 7;
‫ ا‬seasonal smoothing
4N'!
‫ ا‬4!1!
‫ و;ز !;ت ا‬4J2=
4B"
. ‫ا آ‬O!C ‫هات‬K!
‫ ا‬O!C :X‫أو‬
st = α
zt
+ (1 − α )( st −1 + bt −1 ) , t = 1,2,..., n
St − s
‫اف‬9‫ ا‬O!C :U
bt = γ ( st − st −1 ) + (1 − γ ) bt −1 , t = 1,2,..., n
4!1!
‫ ا‬O!C :]
U
St = β
zt
+ (1 − β ) St −s , t = 1, 2,..., n
st
4!1!
‫ دورة ا‬7‫ ه‬s ‫ و‬i &
‫ ' ا‬4!1!
‫ ا‬4(‫ ا
!آ‬7‫ ه‬Si Q5
4B"
. 76"C 4J(6!
‫) ا‬J
‫ا‬
zˆt = ( st + bt t ) St −s , t = 1, 2,..., n
4B"
‫ات & ا‬:(';
‫وا‬
zn ( ℓ ) = ( sn + bn ℓ ) Sn −s +ℓ , ℓ > 0
‫ارز&ت‬1[. W%C 4
‫و‬X‫) ا‬J
‫ ان ا‬Q5 42‫ت ا
و‬.%
. ‫ و;ز‬4J2= V(;C ‫ا‬L W"
‫& ا‬
.W%
‫ & ا‬4L[!
‫_ ا‬8;'
. 7b;3‫ ه' و‬OP"; ‫ا‬AO
‫ و‬W%
‫;[ام ا‬F. 46 z
:‫ل‬-
EMPLOY.MTW H!"
‫ ا‬4B‫ ا
(ت & ور‬H!%C
241
MTB > Retrieve
'E:\Mtbwin\DATA\EMPLOY.MTW'.
Food Y;!
‫ ا‬7N ‫هات‬K!
‫ف ;[م ا‬1
Food
53.5
53.0
53.2
52.5
53.4
56.5
65.3
70.7
66.9
58.2
55.3
53.4
52.1
51.5
51.5
52.4
53.3
55.5
64.2
69.6
69.3
58.5
55.3
53.6
52.3
51.5
51.7
51.5
52.2
57.1
63.6
68.8
68.9
60.1
55.6
53.9
53.3
53.1
53.5
53.5
53.9
57.1
64.7
69.4
70.3
62.6
57.9
55.8
54.8 54.2 54.6 54.3 54.8 58.1 68.1 73.3 75.5 66.4 60.5 57.7
‫هات‬K!
‫و) ا‬
75
Food
70
65
60
55
50
Index
10
20
30
40
50
60
:7
;
‫ و;ز آ‬4J2= ‫ن‬s‫( ا‬6 12 ‫ورة‬. 4!1& ‫هة‬I
‫‚ ان ا‬5
Additive Model 7NP9‫ذج ا‬1!'
:X‫أو‬
zt = bt + St + et , t = 1, 2,..., n
MTB > %Wintadd 'Food' 12;
SUBC>
Weight 0.2 0.2 0.2;
SUBC>
Forecasts 12;
SUBC>
Title "Wintrs' Trend and Seasonal Smoothing";
242
SUBC>
Table.
Winters' additive model
Data
Food
Length
60.0000
NMissing
0
Smoothing Constants
Alpha (level):
0.2
Gamma (trend):
0.2
Delta (seasonal): 0.2
Accuracy Measures
MAPE: 1.94769
MAD:
1.15100
MSD:
2.66711
Time
Food
Smooth
Predict
Error
1
53.5
48.7755
49.4303
4.06965
2
53.0
49.6020
50.4197
2.58027
3
53.2
51.0736
51.9944
1.20556
4
52.5
52.0733
53.0424
-0.54244
5
53.4
53.5117
54.4591
-1.05914
6
56.5
57.4851
58.3901
-1.89013
7
65.3
66.2299
67.0593
-1.75932
8
70.7
71.7852
72.5443
-1.84430
9
66.9
71.8932
72.5785
-5.67851
10
58.2
62.3206
62.7787
-4.57874
11
55.3
57.5208
57.7958
-2.49577
12
53.4
55.1544
55.3296
-1.92957
13
52.1
55.0393
55.1373
-3.03734
14
51.5
53.6493
53.6258
-2.12584
243
15
51.5
53.1185
53.0100
-1.50996
16
52.4
52.2661
52.0971
0.30287
17
53.3
52.6528
52.4960
0.80401
18
55.5
55.7616
55.6369
-0.13695
19
64.2
63.8483
63.7181
0.48187
20
69.6
68.8787
68.7678
0.83218
21
69.3
68.0386
67.9610
1.33902
22
58.5
59.2825
59.2585
-0.75851
23
55.3
55.0979
55.0435
0.25650
24
53.6
53.0432
52.9991
0.60092
25
52.3
53.0377
53.0177
-0.71765
26
51.5
52.1394
52.0907
-0.59067
27
51.7
51.9889
51.9165
-0.21651
28
51.5
51.7214
51.6403
-0.14031
29
52.2
52.1875
52.1009
0.09913
30
57.1
55.0750
54.9923
2.10774
31
63.6
63.7515
63.7531
-0.15314
32
68.8
68.8427
68.8382
-0.03822
33
68.9
68.0160
68.0099
0.89007
34
60.1
58.9061
58.9356
1.16436
35
55.6
55.3220
55.3981
0.20190
36
53.9
53.4419
53.5262
0.37384
37
53.3
53.3084
53.4076
-0.10757
38
53.1
52.6717
52.7666
0.33345
39
53.5
52.9095
53.0177
0.48233
40
53.5
52.9745
53.1020
0.39803
41
53.9
53.7952
53.9386
-0.03858
42
57.1
57.2065
57.3484
-0.24838
43
64.7
65.2747
65.4066
-0.70661
44
69.4
70.4039
70.5076
-1.10758
45
70.3
69.6200
69.6794
0.62065
46
62.6
60.5655
60.6497
1.95031
47
57.9
57.0392
57.2014
0.69858
48
55.8
55.3721
55.5623
0.23773
244
49
54.8
55.2403
55.4399
-0.63993
50
54.2
54.6681
54.8422
-0.64220
51
54.6
54.8138
54.9622
-0.36218
52
54.3
54.7366
54.8705
-0.57048
53
54.8
55.3001
55.4112
-0.61119
54
58.1
58.5310
58.6176
-0.51765
55
68.1
66.4168
66.4827
1.61731
56
73.3
71.8806
72.0112
1.28878
57
75.5
71.8794
72.0616
3.43843
58
66.4
63.7240
64.0437
2.35629
59
60.5
60.3141
60.7281
-0.22810
60
57.7
58.6397
59.0446
-1.34455
Row
Period
Forecast
Lower
Upper
1
61
58.6167
55.7968
61.4366
2
62
58.3236
55.4449
61.2023
3
63
58.8195
55.8775
61.7614
4
64
58.9840
55.9746
61.9935
5
65
59.8723
56.7913
62.9532
6
66
63.4804
60.3243
66.6365
7
67
72.0757
68.8410
75.3104
8
68
77.4486
74.1321
80.7651
9
69
77.7540
74.3528
81.1552
10
70
68.9067
65.4180
72.3954
11
71
64.6434
61.0647
68.2221
12
72
62.7731
59.1020
66.4441
245
Wintrs' Trend and Seasonal Smoothing
Actual
80
Predicted
Forecast
Actual
Predicted
Forecast
Food
70
60
Smoothing Constants
Alpha (level): 0.200
Gamma (trend):0.200
Delta (season):0.200
50
MAPE:
MAD:
MSD:
0
10
20
30
40
50
60
1.94769
1.15100
2.66711
70
Time
Multiplicative Model 7b`;
‫ذج ا‬1!'
:U
zt = bt St + et , t = 1, 2,..., n
MTB > %Wintmult 'Food' 12;
SUBC>
Weight 0.2 0.2 0.2;
SUBC>
Forecasts 12;
SUBC>
Title "Winters' Trend and Seasonal Smoothing";
SUBC>
Table.
Winters' multiplicative model
Data
Food
Length
60.0000
NMissing
0
Smoothing Constants
Alpha (level):
0.2
Gamma (trend):
0.2
Delta (seasonal): 0.2
Accuracy Measures
MAPE: 1.88377
MAD:
1.12068
MSD:
2.86696
246
Time
Food
Smooth
Predict
Error
1
53.5
48.7870
49.3853
4.11470
2
53.0
49.6755
50.4303
2.56966
3
53.2
51.1521
52.0132
1.18677
4
52.5
52.1675
53.0746
-0.57458
5
53.4
53.6181
54.5132
-1.11323
6
56.5
57.6509
58.5541
-2.05414
7
65.3
66.6199
67.5607
-2.26072
8
70.7
72.4105
73.3280
-2.62800
9
66.9
72.5679
73.3777
-6.47768
10
58.2
62.7837
63.2634
-5.06337
11
55.3
57.9154
58.1732
-2.87320
12
53.4
55.5108
55.6485
-2.24849
13
52.1
54.4920
54.5392
-2.43920
14
51.5
53.2117
53.1621
-1.66212
15
51.5
52.8118
52.6957
-1.19573
16
52.4
52.0929
51.9302
0.46985
17
53.3
52.5894
52.4439
0.85611
18
55.5
55.7388
55.6209
-0.12087
19
64.2
63.7189
63.5782
0.62178
20
69.6
68.7087
68.5838
1.01617
21
69.3
67.9722
67.8890
1.41104
22
58.5
59.4594
59.4361
-0.93606
23
55.3
55.4037
55.3468
-0.04680
24
53.6
53.4103
53.3536
0.24639
25
52.3
52.6818
52.6356
-0.33562
26
51.5
51.8659
51.8071
-0.30705
27
51.7
51.8002
51.7290
-0.02902
28
51.5
51.6271
51.5549
-0.05492
29
52.2
52.1643
52.0890
0.11103
247
30
57.1
55.0424
54.9676
2.13244
31
63.6
63.6079
63.6199
-0.01988
32
68.8
68.6702
68.6823
0.11774
33
68.9
67.9561
67.9727
0.92727
34
60.1
59.1021
59.1487
0.95133
35
55.6
55.6210
55.7003
-0.10032
36
53.9
53.7881
53.8609
0.03912
37
53.3
53.0479
53.1211
0.17892
38
53.1
52.4502
52.5294
0.57055
39
53.5
52.7444
52.8467
0.65329
40
53.5
52.8747
53.0029
0.49714
41
53.9
53.7689
53.9188
-0.01879
42
57.1
57.2790
57.4374
-0.33743
43
64.7
65.4702
65.6357
-0.93567
44
69.4
70.6713
70.8095
-1.40954
45
70.3
69.8908
69.9719
0.32815
46
62.6
60.7552
60.8370
1.76302
47
57.9
57.1925
57.3348
0.56523
48
55.8
55.5181
55.6775
0.12253
49
54.8
54.8764
55.0383
-0.23826
50
54.2
54.3244
54.4749
-0.27486
51
54.6
54.5372
54.6769
-0.07694
52
54.3
54.5298
54.6661
-0.36612
53
54.8
55.1925
55.3155
-0.51551
54
58.1
58.6054
58.7141
-0.61410
55
68.1
66.7739
66.8698
1.23016
56
73.3
72.4056
72.5622
0.73784
57
75.5
72.3385
72.5236
2.97638
58
66.4
63.6729
63.9378
2.46217
59
60.5
60.0395
60.3781
0.12191
60
57.7
58.3023
58.6338
-0.93381
Row
Period
Forecast
Lower
248
Upper
1
61
57.8102
55.0645
60.5558
2
62
57.3892
54.5864
60.1921
3
63
57.8332
54.9687
60.6977
4
64
57.9307
55.0005
60.8609
5
65
58.8311
55.8313
61.8309
6
66
62.7415
59.6686
65.8145
7
67
72.1849
69.0354
75.3344
8
68
78.1507
74.9215
81.3798
9
69
78.5092
75.1976
81.8208
10
70
68.6689
65.2721
72.0657
11
71
63.9258
60.4414
67.4103
12
72
61.8189
58.2446
65.3933
Winters' Trend and Seasonal Smoothing
Actual
80
Predicted
Forecast
Actual
Predicted
Forecast
Food
70
60
Smoothing Constants
Alpha (level): 0.200
Gamma (trend):0.200
Delta (season):0.200
50
MAPE:
MAD:
MSD:
0
10
20
30
40
50
60
1.88377
1.12068
2.86696
70
Time
:‫ت‬I5&
S.U γ ‫ و‬73
‫ ا‬O!;
‫ ا‬S.U α 7‫ &"
) ه‬4UU )B ‫ إ;ر‬7
‫;ج ا‬% ‫ و;ز‬4J2= (6;
4UU 7N Optimization 4`N‫ أ‬4! @A‫ وه‬4!1!
‫ ا‬O!C S.U β ‫اف و‬9‫ ا‬O!C
‫;[ام‬F. 8JC O.5 ‫ ا
!;[م‬7859‫`ء ا
!"
) ( إ& أن ;ك (&_ ا‬N ) ‫"د‬.‫ا‬
.)J
‫ ا‬f;. _&(
‫&اد ا‬F. % ‫م‬1J ‫ ا
(&_ أو‬H‫ دا‬4'(& 46 z ‫ارز&ت‬1
Q
]
‫ ا‬z‫ &ة &"! و‬H‫ آ‬7N S(U . α = γ = β = 0.2 A‫ ا‬4J.
‫ ا‬4]&‫ ا‬7N : 2!C
MSD HB‫ أ‬7 H%C 7;5
249
:4 ‫ذج‬7 ‫ل ء‬-
MINITAB _&(
‫ ا
(ت‬41!& & CPI.MTW H!"
‫ ا‬4B‫ف ;[م ور‬1
MTB > Retrieve
'C:\MTBWIN\STUDENT9\CPI.MTW'.
CPIChange Y;!
‫ ا‬A{ ‫ف‬1
CPIChnge
1.7
1.0
1.0
1.3
1.3
1.6
2.9
3.1
4.2
5.5
5.7
4.4
3.2
6.2
11.0
9.1
5.8
6.5
7.6
11.3
13.5
10.3
6.2
3.2
4.3
3.6
1.9
3.6
4.1
4.8
5.4
4.2
3.0
4'"
‫ ا‬48
‫ ا‬4C‫ا‬A
‫ت ا‬6.‫ وا
;ا‬4C‫ا‬A
‫ت ا‬6.;
‫ ا‬L1‫ و‬4;!
‫) ا‬
MTB > TSPlot
14
12
CPIChnge
10
8
6
4
2
0
Index
5
10
15
20
25
30
MTB > %acf c2
Autocorrelation
Autocorrelation Function for CPIChnge
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
2
Lag
3
Corr
4
T
LBQ
1 0.79 4.53
2 0.46 1.77
3 0.29 1.02
4 0.26 0.88
5 0.26 0.86
6 0.16 0.52
7 -0.02 -0.06
22.42
30.32
33.59
36.24
38.97
40.05
40.07
5
Lag
Corr
6
T
LBQ
8 -0.16 -0.51
41.23
250
7
8
MTB > %pacf c2
Partial Autocorrelation
Partial Autocorrelation Function for CPIChnge
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
2
3
4
Lag PAC
1
2
3
4
5
6
7
0.79
-0.42
0.35
-0.04
0.08
-0.28
-0.05
5
6
T
Lag PAC
T
4.53
-2.44
2.01
-0.24
0.43
-1.62
-0.29
8 -0.09
-0.52
7
8
ARMA(1,1) ‫ذج‬1!'
‫ن ا‬132 B 4'"
‫ ا‬48
‫ ا‬4C‫ا‬A
‫ت ا‬6.‫ وا
;ا‬4C‫ا‬A
‫ت ا‬6.;
‫& ا!ط ا‬
4(J;!
‫) ا‬J
‫ات‬:('C 5 1C‫;ح و‬J!
‫ذج ا‬1!'
‫( ا‬6C 4
;
‫ اوا& ا‬،4;!
‫( ا‬6'2
MTB >
SUBC>
SUBC>
SUBC>
SUBC>
SUBC>
SUBC>
arima 1 0 1 c2;
fore 5 c3 c4 c5;
gser;
gacf;
gpacf;
ghist;
gnormal.
ARIMA Model
ARIMA model for CPIChnge
Estimates at each iteration
Iteration
SSE
Parameters
0
323.251
0.100
0.100
1
200.616
0.250
-0.050
2
182.146
0.184
-0.200
3
163.067
0.135
-0.350
251
4.522
3.745
4.067
4.308
4
142.864
0.107
-0.500
4.434
5
121.402
0.111
-0.650
4.407
6
7
99.668
77.036
0.150
0.268
-0.800
-0.950
4.197
3.590
8
67.550
0.418
-0.956
2.828
9
62.802
0.568
-0.964
2.062
10
62.108
0.637
-0.973
1.687
11
62.030
0.644
-0.979
1.619
12
13
62.003
61.996
0.647
0.651
-0.982
-0.985
1.584
1.549
14
61.996
0.651
-0.986
1.539
Unable to reduce sum of squares any further
Final Estimates of Parameters
Type
Coef
StDev
AR
1
0.6513
0.1434
MA
1
-0.9857
0.0516
Constant
1.5385
0.4894
Mean
4.412
1.403
T
4.54
-19.11
3.14
Number of observations: 33
Residuals:
SS = 61.8375 (backforecasts excluded)
MS = 2.0613 DF = 30
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
36
Chi-Square 9.6(DF=10)
17.0(DF=22)
* (DF= *)
(DF= *)
48
*
Forecasts from period 33
Period
34
35
36
37
38
Forecast
3.1362
3.5810
3.8708
4.0594
4.1823
95 Percent Limits
Lower
Upper
0.3216
5.9507
-1.8180
8.9801
-2.3061
10.0476
-2.4192
10.5380
-2.4201
10.7848
Actual
1‫;ح ه‬J!
‫ذج ا‬1!'
‫أي ان ا‬
252
zt = 1.54 + 0.65zt −1 + at − 0.99at −1 , at ∼ N ( 0, 2.06 )
7‫ ه‬t ‫ إ;(ر‬4!B‫ و‬42‫ ا
!"ر‬OCN‫ا‬%‫رات ا
!"
) وإ‬J&
( )
θˆ = −0.9857, s.e. (θˆ ) = 0.0516, t = −19.11
δˆ = 1.5385, s.e. (δˆ ) = 0.4894, t = 3.14
φˆ1 = 0.6513, s.e. φˆ1 = 0.1434, t = 4.54
1
1
σˆ 2 = 2.0613, with d . f . = 30
.421'"& )
"!
‫ ا‬V!L ‫‚ ان‬5
:7B‫ا‬1(
‫ ا‬o%b ‫ن‬s‫ا‬
ACF of Residuals for CPIChnge
(with 95% confidence limits for the autocorrelations)
1.0
0.8
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
2
3
4
5
6
7
8
Lag
PACF of Residuals for CPIChnge
(with 95% confidence limits for the partial autocorrelations)
1.0
0.8
Partial Autocorrelation
Autocorrelation
0.6
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
2
3
4
5
Lag
253
6
7
8
4P V2‫ز‬1C V(;C 7B‫ا‬1(
‫ل أن ا‬C 7B‫ا‬1(
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫أ!ط ا
;ا‬
:7B‫ا‬1(
‫ ا‬4"(= o%b'
،46.‫ &;ا‬z ‫`ء أي‬.
‫اري‬3;
‫ر) ا
!رج ا‬
Histogram of the Residuals
(response is CPIChnge)
8
7
Frequency
6
5
4
3
2
1
0
-3
-2
-1
0
1
2
3
4
Residual
.|K
‫"\ ا‬. ‘';& ‫(و‬2
:7B‫ا‬1(
7"(6
‫;!ل ا‬59‫ ا‬w6[& ‫ إ‬I''
Normal Probability Plot of the Residuals
(response is CPIChnge)
4
3
Residual
2
1
0
-1
-2
-3
-2
-1
0
Normal Score
254
1
2
.(2JC 4"(= 7B‫ا‬1(
‫ل ان ا‬1J ‫ أن‬V6;
.4(J;!
‫) ا‬J
‫ات‬:('C 5 V& 4;!
7
;
‫ا
) ا‬
Time Series Plot for CPIChnge
(with forecasts and their 95% confidence limits)
CPIChnge
10
5
0
5
10
15
20
25
30
Time
:7
;
‫ آ‬4;!
‫ ا‬AR(2) ‫ذج‬1! (6C ‫ول‬% '‫د‬
MTB > arima 2 0 0 c2
Type
AR
1
AR
2
Constant
Mean
Coef
1.1872
-0.4657
1.3270
4.765
StDev
0.1625
0.1624
0.2996
1.076
T
7.31
-2.87
4.43
Number of observations: 33
Residuals:
SS = 88.6206 (backforecasts excluded)
MS = 2.9540 DF = 30
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
36
Chi-Square 19.8(DF=10)
25.4(DF=22)
* (DF= *)
(DF= *)
255
48
*
1‫;ح ه‬J!
‫ذج ا‬1!'
‫أي ان ا‬
zt = 1.33 + 1.187 zt −1 − 0.4657 zt −1 + at , at ∼ N ( 0, 2.95)
7‫ ه‬t ‫ إ;(ر‬4!B‫ و‬42‫ ا
!"ر‬OCN‫ا‬%‫رات ا
!"
) وإ‬J&
( )
φˆ = −0.4657, s.e. (θˆ ) = 0.1624, t = −2.87
δˆ = 1.327, s.e. (δˆ ) = 0.2996, t = 4.43
φˆ1 = 1.1872, s.e. φˆ1 = 0.1625, t = 7.31
2
1
σˆ 2 = 2.954, with d . f . = 30
‫;(ر‬9‫ إ
ا‬I''
H 0 : φ2 = 0
H1 : φ2 ± 0
4859‫ا‬
t0 =
φˆ2
−0.4657
=
= −2.8676
ˆ
0.1624
s.e. φ2
( )
&. O
P-value ‫ ا
ـ‬L1
MTB > cdf -2.8676;
SUBC> t 30.
Cumulative Distribution Function
Student's t distribution with 30 DF
x
-2.8676
P( X <= x)
0.0037
φ2 = 0 ‫\ ان‬NX ‫ أي‬0.05
& HB‫ أ‬7‫ وه‬0.0037 ‫وي‬C O
P-value ‫أي ا
ـ‬
. AR(2) ‫ذج‬1!'
‫\ ا‬N 7
;
.‫و‬
:#
‫ي‬L‫ أ‬،‫ذج‬1! H`N‫ وإ;ر أ‬4J.
‫ ا‬4;!
‫ ا‬4('& ‫( !ذج اى‬6C ‫ول‬5
. AIC ‫` ا
!"ر‬2‫ وا;[م ا‬4('!
‫;(رات ا‬9‫ا‬
256
‫
‪-‬ل ‪ ?z‬ء ‪7‬ذج ‪:4‬‬
‫‪1‬ف ‪%‬ول ‪'.‬ء !‪1‬ذج !;‪4‬‬
‫)‪z(t‬‬
‫‪-9.1‬‬
‫‪-2.5‬‬
‫‪-103.2‬‬
‫‪-76.7‬‬
‫‪-52.8‬‬
‫‪-33.1‬‬
‫‪-391.4‬‬
‫‪-339.9‬‬
‫‪-291.3‬‬
‫‪-246.0‬‬
‫‪-204.0‬‬
‫‪-165.9‬‬
‫‪-132.4‬‬
‫‪-836.1‬‬
‫‪-766.7‬‬
‫‪-698.2‬‬
‫‪-631.6‬‬
‫‪-566.7‬‬
‫‪-504.8‬‬
‫‪-446.4‬‬
‫‪-1307.3‬‬
‫‪-1242.9‬‬
‫‪-1177.4‬‬
‫‪-1111.3‬‬
‫‪-1044.2‬‬
‫‪-975.1‬‬
‫‪-905.3‬‬
‫‪-1736.9‬‬
‫‪-1679.0‬‬
‫‪-1620.8‬‬
‫‪-1561.5‬‬
‫‪-1500.0‬‬
‫‪-1436.5‬‬
‫‪-1371.8‬‬
‫‪-2097.5‬‬
‫‪-2055.4‬‬
‫‪-2010.0‬‬
‫‪-1960.6‬‬
‫‪-1906.9‬‬
‫‪-1851.1‬‬
‫‪-1794.5‬‬
‫‪-2363.4‬‬
‫‪-2328.5‬‬
‫‪-2290.6‬‬
‫‪-2250.5‬‬
‫‪-2210.8‬‬
‫‪-2173.3‬‬
‫‪-2136.4‬‬
‫‪-2721.4‬‬
‫‪-2651.9‬‬
‫‪-2589.5‬‬
‫‪-2533.0‬‬
‫‪-2482.0‬‬
‫‪-2437.6‬‬
‫‪-2398.7‬‬
‫‪-3353.3‬‬
‫‪-3253.4‬‬
‫‪-3156.1‬‬
‫‪-3060.8‬‬
‫‪-2968.6‬‬
‫‪-2880.4‬‬
‫‪-2797.6‬‬
‫‪-4153.0‬‬
‫‪-4028.2‬‬
‫‪-3906.6‬‬
‫‪-3788.7‬‬
‫‪-3675.0‬‬
‫‪-3564.3‬‬
‫‪-3456.9‬‬
‫‪-5068.7‬‬
‫‪-4937.2‬‬
‫‪-4805.0‬‬
‫‪-4673.3‬‬
‫‪-4542.3‬‬
‫‪-4412.0‬‬
‫‪-4281.7‬‬
‫‪-5848.8‬‬
‫‪-5760.6‬‬
‫‪-5663.8‬‬
‫‪-5558.0‬‬
‫‪-5444.4‬‬
‫‪-5323.6‬‬
‫‪-5197.8‬‬
‫‪-6387.3‬‬
‫‪-6317.8‬‬
‫‪-6244.3‬‬
‫‪-6167.9‬‬
‫‪-6090.4‬‬
‫‪-6011.8‬‬
‫‪-5931.6‬‬
‫‪-6834.5‬‬
‫‪-6773.3‬‬
‫‪-6711.8‬‬
‫‪-6649.0‬‬
‫‪-6584.6‬‬
‫‪-6518.9‬‬
‫‪-6453.5‬‬
‫‪-7259.9‬‬
‫‪-7193.3‬‬
‫‪-7131.7‬‬
‫‪-7073.1‬‬
‫‪-7015.6‬‬
‫‪-6957.1‬‬
‫‪-6896.0‬‬
‫‪-7891.4‬‬
‫‪-7784.7‬‬
‫‪-7683.2‬‬
‫‪-7586.4‬‬
‫‪-7495.3‬‬
‫‪-7411.2‬‬
‫‪-7332.9‬‬
‫‪-8791.2‬‬
‫‪-8649.8‬‬
‫‪-8512.3‬‬
‫‪-8379.1‬‬
‫‪-8249.2‬‬
‫‪-8124.0‬‬
‫‪-8004.6‬‬
‫‪-9878.4‬‬
‫‪-9713.3‬‬
‫‪-9552.0‬‬
‫‪-9394.6‬‬
‫‪-9239.6‬‬
‫‪-9086.3‬‬
‫‪-8936.4‬‬
‫‪-11071.9‬‬
‫‪-10903.2‬‬
‫‪-10734.0‬‬
‫‪-10564.0‬‬
‫‪-10392.1‬‬
‫‪-10219.0‬‬
‫‪-10047.2‬‬
‫‪-12157.5‬‬
‫‪-12011.7‬‬
‫‪-11863.9‬‬
‫‪-11713.8‬‬
‫‪-11560.2‬‬
‫‪-11402.0‬‬
‫‪-11238.9‬‬
‫‪-13190.3‬‬
‫‪-13039.8‬‬
‫‪-12889.7‬‬
‫‪-12740.8‬‬
‫‪-12593.4‬‬
‫‪-12447.5‬‬
‫‪-12302.5‬‬
‫‪-14196.3‬‬
‫‪-14051.7‬‬
‫‪-13910.1‬‬
‫‪-13769.9‬‬
‫‪-13629.3‬‬
‫‪-13486.3‬‬
‫‪-13339.6‬‬
‫‪-15335.9‬‬
‫‪-15158.3‬‬
‫‪-14986.4‬‬
‫‪-14819.8‬‬
‫‪-14657.5‬‬
‫‪-14499.7‬‬
‫‪-14345.9‬‬
‫‪-16697.1‬‬
‫‪-16492.7‬‬
‫‪-16290.9‬‬
‫‪-16091.5‬‬
‫‪-15895.8‬‬
‫‪-15705.0‬‬
‫‪-15518.4‬‬
‫‪-18155.6‬‬
‫‪-17951.5‬‬
‫‪-17745.2‬‬
‫‪-17535.7‬‬
‫‪-17324.4‬‬
‫‪-17113.5‬‬
‫‪-16904.2‬‬
‫‪-19547.0‬‬
‫‪-19356.3‬‬
‫‪-19161.7‬‬
‫‪-18965.1‬‬
‫‪-18766.2‬‬
‫‪-18564.2‬‬
‫‪-18360.1‬‬
‫‪-20827.7‬‬
‫‪-20655.7‬‬
‫‪-20478.0‬‬
‫‪-20294.5‬‬
‫‪-20107.3‬‬
‫‪-19919.5‬‬
‫‪-19733.5‬‬
‫‪-21908.3‬‬
‫‪-21762.1‬‬
‫‪-21614.0‬‬
‫‪-21463.7‬‬
‫‪-21310.9‬‬
‫‪-21154.4‬‬
‫‪-20993.7‬‬
‫‪-22474.4‬‬
‫‪-22335.1‬‬
‫‪-22195.6‬‬
‫‪-22053.2‬‬
‫و
‪ O‬ا
) ا
&'‪ 7‬ا
;
‪:7‬‬
‫‪257‬‬
‫‪-19.2‬‬
O r ig in a l T im e S e r ie s
-1 0 0 0 0
-2 0 0 0 0
In d e x
50
100
150
200
:7‫ ه‬48
‫ ا‬4C‫ا‬A
‫ت ا‬6.‫ وا
;ا‬4C‫ا‬A
‫ت ا‬6.‫ا
;ا‬
Autocorrelation
Autocorrelation Function for z(t)
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
10
Lag Corr
1
2
3
4
5
6
7
8
9
10
11
12
T
LBQ
0.9813.93 196.91
0.97 8.00 388.73
0.95 6.15 575.44
0.94 5.15 757.06
0.92 4.50 933.59
0.91 4.041105.06
0.89 3.681271.47
0.88 3.391432.85
0.86 3.151589.23
0.84 2.951740.66
0.83 2.781887.17
0.81 2.622028.81
Lag Corr
13
14
15
16
17
18
19
20
21
22
23
24
0.80
0.78
0.76
0.75
0.73
0.72
0.70
0.68
0.67
0.65
0.64
0.62
20
T
LBQ
2.492165.64
2.372297.73
2.252425.14
2.152547.94
2.062666.22
1.972780.05
1.892889.51
1.822994.69
1.753095.67
1.683192.54
1.623285.39
1.563374.32
30
Lag Corr
25
26
27
28
29
30
31
32
33
34
35
36
0.61
0.59
0.58
0.56
0.55
0.53
0.52
0.50
0.49
0.47
0.46
0.45
T
LBQ
1.503459.42
1.453540.78
1.403618.50
1.353692.67
1.303763.38
1.263830.74
1.213894.84
1.173955.76
1.134013.61
1.094068.47
1.054120.44
1.014169.59
40
Lag Corr
37
38
39
40
41
42
43
44
45
46
47
48
0.43
0.42
0.41
0.39
0.38
0.36
0.35
0.34
0.32
0.31
0.30
0.28
T
LBQ
0.984216.02
0.944259.81
0.914301.04
0.874339.79
0.844376.14
0.814410.16
0.774441.93
0.744471.52
0.714498.99
0.684524.43
0.654547.90
0.624569.48
50
Lag Corr
T
LBQ
49 0.27 0.594589.24
50 0.26 0.564607.24
P artial A utocorrelation Function for z(t)
Partial Autocorrelation
z(t)
0
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
10
20
30
Lag
PAC
T
Lag
PAC
T
Lag
PAC
T
1
2
3
4
5
6
7
8
9
10
11
12
0.98
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
13.93
-0.17
-0.17
-0.16
-0.16
-0.16
-0.15
-0.15
-0.15
-0.14
-0.14
-0.13
13
14
15
16
17
18
19
20
21
22
23
24
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.13
-0.12
-0.12
-0.11
-0.11
-0.11
-0.11
-0.10
-0.10
-0.09
-0.09
-0.09
25
26
27
28
29
30
31
32
33
34
35
36
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.09
-0.09
-0.09
-0.08
-0.08
-0.08
-0.08
-0.08
-0.08
-0.08
-0.09
-0.09
40
Lag PAC
37
38
39
40
41
42
43
44
45
46
47
48
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
T
-0.09
-0.09
-0.10
-0.10
-0.11
-0.11
-0.12
-0.12
-0.12
-0.13
-0.13
-0.13
50
Lag
PAC
T
49 -0.01
50 -0.01
-0.14
-0.14
.w1;!
‫ ا‬7N ‫ة‬J;& z zt 4;!
‫ا ان ا‬L ^P‫وا‬
O!‫ و‬wt = zt − zt −1 ‫و‬X‫وق ا‬b
‫ ا‬A{
258
F irs t D if f e re n c e s w (t)= z (t)-z (t-1 )
w(t)
0
-1 0 0
-2 0 0
In d e x
50
100
150
200
:7‫ ه‬4Bb!
‫ ا‬4;!
48
‫ ا‬4C‫ا‬A
‫ت ا‬6.‫ وا
;ا‬4C‫ا‬A
‫ت ا‬6.‫ا
;ا‬
Autocorrelation
Autocorrelation Function for w(t)
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
5
Lag Corr
1
2
3
4
5
6
7
8
9
10
11
12
T
LBQ
0.9913.93 197.10
0.97 7.98 389.03
0.95 6.12 574.74
0.93 5.10 753.55
0.91 4.43 924.81
0.89 3.941087.93
0.86 3.561242.44
0.83 3.251388.10
0.81 2.981524.83
0.78 2.761652.58
0.75 2.561771.42
0.72 2.381881.49
15
Lag Corr
13
14
15
16
17
18
19
20
21
22
23
24
0.69
0.66
0.63
0.60
0.57
0.54
0.52
0.49
0.47
0.45
0.43
0.41
T
LBQ
2.211983.03
2.072076.38
1.932161.98
1.812240.33
1.702311.99
1.602377.42
1.502437.13
1.412491.57
1.332541.23
1.262586.61
1.192628.22
1.132666.48
25
Lag Corr
25
26
27
28
29
30
31
32
33
34
35
36
0.39
0.38
0.37
0.36
0.35
0.34
0.34
0.34
0.34
0.34
0.34
0.34
T
LBQ
1.082701.91
1.032734.99
1.002766.16
0.962795.84
0.942824.46
0.922852.35
0.912879.79
0.902907.03
0.892934.32
0.892961.85
0.892989.82
0.893018.34
35
Lag Corr
37
38
39
40
41
42
43
44
45
46
47
48
0.34
0.35
0.35
0.35
0.35
0.35
0.35
0.34
0.34
0.33
0.33
0.32
T
45
LBQ
0.903047.50
0.903077.32
0.903107.68
0.903138.42
0.903169.33
0.893200.21
0.883230.81
0.873260.99
0.853290.64
0.843319.59
0.823347.55
0.793374.17
Lag Corr
T
LBQ
49 0.31 0.763399.16
Partial Autocorrelation
P a rtia l A u to c o rre la tio n F un c tio n fo r w (t)
1 .0
0 .8
0 .6
0 .4
0 .2
0 .0
-0 .2
-0 .4
-0 .6
-0 .8
-1 .0
5
Lag
P AC
T
1
2
3
4
5
6
7
8
9
10
11
12
0 .9 9
-0 .1 4
-0 .1 1
-0 .0 7
-0 .0 6
-0 .0 7
-0 .0 6
-0 .0 3
-0 .0 3
-0 .0 3
-0 .0 2
-0 .0 2
1 3 .9 3
-1 .9 7
-1 .5 1
-0 .9 6
-0 .9 0
-0 .9 7
-0 .7 8
-0 .4 8
-0 .3 7
-0 .3 7
-0 .3 4
-0 .2 2
15
Lag
P AC
T
1 3 -0 .0 1
1 4 -0 .0 0
1 5 0 .0 1
1 6 0 .0 2
1 7 0 .0 2
1 8 0 .0 1
1 9 0 .0 1
2 0 0 .0 1
2 1 0 .0 1
2 2 0 .0 3
2 3 0 .0 2
2 4 0 .0 2
-0 .1 6
-0 .0 2
0 .1 0
0 .2 3
0 .2 5
0 .1 0
0 .1 2
0 .1 1
0 .1 6
0 .3 5
0 .3 1
0 .2 7
25
Lag
35
45
P AC
T
Lag
P AC
T
2 5 0 .0 4
2 6 0 .0 4
2 7 0 .0 3
2 8 0 .0 4
2 9 0 .0 4
3 0 0 .0 2
3 1 0 .0 2
3 2 0 .0 1
3 3 0 .0 1
3 4 0 .0 1
3 5 0 .0 0
3 6 -0 .0 0
0 .5 2
0 .6 2
0 .4 7
0 .5 5
0 .5 6
0 .3 4
0 .2 2
0 .1 6
0 .1 8
0 .1 5
0 .0 4
-0 .0 7
37
38
39
40
41
42
43
44
45
46
47
48
-0 .0 1
-0 .0 2
-0 .0 4
-0 .0 4
-0 .0 4
-0 .0 4
-0 .0 3
-0 .0 0
0 .0 1
-0 .0 1
-0 .0 4
-0 .0 5
-0 .0 7
-0 .2 9
-0 .6 3
-0 .6 0
-0 .5 4
-0 .5 5
-0 .4 2
-0 .0 7
0 .0 8
-0 .1 8
-0 .5 6
-0 .7 6
Lag
P AC
T
4 9 -0 .0 3
-0 .4 8
.w1;!
‫ ا‬7N ‫ة‬J;& z ‫ال‬CX wt 4;!
‫ا ان ا‬L ^P‫وا‬
O!‫( و‬4+‫ ا‬4;!
7]
‫ق ا‬b
‫ا ا‬A‫‚ ان ه‬5X) yt = wt − wt −1 ‫و‬X‫وق ا‬b
‫ ا‬A{
259
F ir s t D if f e r e n c e s
y (t)= w (t)-w (t-1 )
1 0
y(t)
5
0
-5
In d e x
5 0
1 0 0
1 5 0
2 0 0
:7‫ ه‬4Bb!
‫ ا‬4;!
‫@ ا‬AO
48
‫ ا‬4C‫ا‬A
‫ت ا‬6.‫ وا
;ا‬4C‫ا‬A
‫ت ا‬6.‫ا
;ا‬
Autocorrelation
A utocorrelation Function for y(t)
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
5
Lag C orr
1
2
3
4
5
6
7
8
9
10
11
12
T
LB Q
0.9313.08 173.62
0.80 6.83 303.36
0.70 4.89 401.81
0.62 3.89 479.62
0.56 3.26 542.93
0.50 2.77 593.77
0.43 2.32 632.35
0.36 1.90 659.84
0.29 1.50 677.66
0.22 1.11 687.71
0.15 0.75 692.41
0.08 0.41 693.82
15
Lag C orr
T
LBQ
13 0.01 0.06 693.85
14 -0.05 -0.23 694.31
15 -0.09 -0.46 696.12
16 -0.14 -0.70 700.34
17 -0.19 -0.97 708.51
18 -0.25 -1.24 722.16
19 -0.31 -1.53 743.30
20 -0.37 -1.83 774.40
21 -0.44 -2.13 818.29
22 -0.51 -2.40 876.73
23 -0.56 -2.57 948.00
24 -0.60 -2.671030.79
25
Lag Corr
T
LBQ
25 -0.64 -2.731124.21
26 -0.66 -2.721224.05
27 -0.66 -2.621324.28
28 -0.63 -2.441418.06
29 -0.59 -2.221500.63
30 -0.55 -2.011572.45
31 -0.50 -1.801632.42
32 -0.43 -1.531677.44
33 -0.36 -1.251708.46
34 -0.29 -1.001728.63
35 -0.22 -0.761740.51
36 -0.16 -0.531746.42
35
Lag C orr
T
45
LB Q
37 -0.09 -0.301748.28
38 -0.01 -0.031748.29
39 0.08 0.261749.70
40 0.15 0.501755.14
41 0.20 0.681765.20
42 0.23 0.781778.55
43 0.24 0.821793.44
44 0.25 0.861810.08
45 0.28 0.961831.09
46 0.34 1.131860.92
47 0.40 1.341903.36
48 0.45 1.491956.81
Lag Corr
T
LBQ
49 0.48 1.562017.77
Partial Autocorrelation
P artial A utocorrelation Function for y(t)
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
5
Lag PAC
1
2
3
4
5
6
7
8
9
10
11
12
0.93
-0.46
0.33
-0.14
0.12
-0.13
0.00
-0.06
-0.08
-0.04
-0.04
-0.09
T
13.08
-6.44
4.71
-1.97
1.72
-1.78
0.01
-0.81
-1.11
-0.55
-0.58
-1.21
15
25
Lag PAC
T
Lag
PAC
T
-0.05
0.05
-0.07
-0.09
-0.04
-0.08
-0.12
-0.11
-0.15
-0.07
-0.06
-0.15
-0.75
0.67
-0.95
-1.30
-0.55
-1.11
-1.71
-1.50
-2.12
-0.93
-0.87
-2.12
25
26
27
28
29
30
31
32
33
34
35
36
-0.03
-0.03
0.00
0.08
-0.01
-0.04
0.15
0.06
-0.00
0.04
0.03
0.04
-0.46
-0.44
0.04
1.13
-0.14
-0.56
2.17
0.88
-0.05
0.49
0.46
0.50
13
14
15
16
17
18
19
20
21
22
23
24
35
45
Lag PAC
T
0.08
0.11
0.04
0.04
-0.05
-0.05
-0.14
-0.01
0.07
0.06
-0.01
-0.09
1.16
1.56
0.51
0.52
-0.74
-0.66
-1.95
-0.10
0.92
0.79
-0.17
-1.24
37
38
39
40
41
42
43
44
45
46
47
48
Lag PAC
T
0.07
1.00
49
‫ة‬J;& S%(+‫ ا‬O‫ ا‬48
‫ ا‬4C‫ا‬A
‫ت ا‬6.‫ وا
;ا‬4C‫ا‬A
‫ت ا‬6.‫ و ا
;ا‬4;!
‫ ا‬H3 & ‚5
. d=2 ‫ اي ان‬w1;!
‫ ا‬7N
260
!& ‫ اول‬e[;
‫;[& & ا‬C O‫ ى ا‬48
‫ ا‬4C‫ا‬A
‫ت ا‬6.‫ وا
;ا‬4C‫ا‬A
‫ت ا‬6.‫& ا!ط ا
;ا‬
&. ‫ذج‬1!'
‫ا ا‬A‫( ه‬6 ‫ف‬1‫ و‬zt 4+‫ ا‬4;!
ARIMA(1,2,1) ‫ذج‬1! ^2
MTB > ARIMA 1 2 1 'z(t)' 'RESI2' 'FITS2';
SUBC>
NoConstant;
SUBC>
Forecast 10 c4 c5 c6;
SUBC>
GACF;
SUBC>
GPACF;
SUBC>
GHistogram;
SUBC>
GNormalplot.
ARIMA Model
ARIMA model for z(t)
Estimates at each iteration
Iteration
SSE
Parameters
0
2462.77
0.100
0.100
1
1345.58
0.250
-0.050
2
1170.63
0.203
-0.200
3
984.83
0.182
-0.350
4
782.47
0.200
-0.500
5
560.15
0.278
-0.650
6
363.93
0.428
-0.765
7
259.20
0.578
-0.814
8
202.76
0.728
-0.842
9
185.51
0.861
-0.859
10
185.36
0.873
-0.860
11
185.36
0.875
-0.860
12
185.36
0.875
-0.860
Relative change in each estimate less than
Final Estimates of Parameters
Type
Coef
StDev
261
T
0.0010
AR
1
0.8749
0.0353
24.75
MA
1
-0.8599
0.0357
-24.12
Differencing: 2 regular differences
Number
of
observations:
Original
series
200,
after
differencing 198
Residuals:
SS = 183.717
(backforecasts excluded)
MS =
DF = 196
0.937
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag
12
24
Chi-Square
3.9(DF=10)
36
48
13.0(DF=22)
33.1(DF=34)
46.0(DF=46)
Forecasts from period 200
95 Percent Limits
Period
Forecast
Lower
Upper
Actual
201
-22615.2
-22617.1
-22613.3
202
-22757.2
-22764.6
-22749.9
203
-22900.4
-22917.2
-22883.5
204
-23044.5
-23075.3
-23013.7
205
-23189.5
-23238.8
-23140.1
206
-23335.2
-23407.8
-23262.6
207
-23481.5
-23582.1
-23380.9
208
-23628.4
-23761.8
-23495.0
209
-23775.8
-23946.7
-23605.0
210
-23923.7
-24136.6
-23710.7
1‫;ح ه‬J!
‫ذج ا‬1!'
‫ا‬
zt = 0.875t −1 z + at − 0.859at −1 , at ∼ N ( 0,0.937 )
7‫ ه‬t ‫ إ;(ر‬4!B‫ و‬42‫ ا
!"ر‬OCN‫ا‬%‫رات ا
!"
) وإ‬J&‫و‬
( )
s.e. (θˆ ) = 0.0357,
φˆ1 = 0.8749, s.e. φˆ1 = 0.0353, t = 24.75
θˆ1 = −0.8599,
1
t = −24.12
σˆ 2 = 0.937, with d . f . = 196
262
.421'"& )
"!
‫‚ ان ا‬5
:7B‫ا‬1(
‫ ا‬o%b ‫ن‬s‫ا‬
ACF of Residuals for z(t)
(with 95% confidence limits for the autocorrelations)
1.0
0.8
Autocorrelation
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
5
10
15
20
25
30
35
40
45
Lag
PACF of Residuals for z(t)
(with 95% confidence limits for the partial autocorrelations)
1.0
Partial Autocorrelation
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
5
10
15
20
25
30
35
40
45
Lag
4P V2‫ز‬1C V(;C 7B‫ا‬1(
‫ل أن ا‬C 7B‫ا‬1(
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫أ!ط ا
;ا‬
:7B‫ا‬1(
‫ ا‬4"(= o%b'
،46.‫ &;ا‬z ‫`ء أي‬.
‫اري‬3;
‫ر) ا
!رج ا‬
263
Histogram of the Residuals
(response is z(t))
Frequency
20
10
0
-3
-2
-1
0
1
2
Residual
.|K
‫"\ ا‬. ‘';& ‫(و‬2
:7B‫ا‬1(
7"(6
‫;!ل ا‬59‫ ا‬w6[& ‫ إ‬I''
Normal Probability Plot of the Residuals
(response is z(t))
2
Residual
1
0
-1
-2
-3
-3
-2
-1
0
1
2
3
Normal Score
.(2JC 4"(= 7B‫ا‬1(
‫ل ان ا‬1J ‫ أن‬V6;
.:('C ‫;ات‬N 95% V& 4(J;!
‫) ا‬J
‫ات‬:('C 10 ‫ ـ‬7
;
‫ا
) ا‬
Forecast of 20 Future values with 95% limits
-22500
z(t)
-23000
-23500
-24000
0
1
2
3
4
5
Time
264
6
7
8
9
10
‫ﻤﻠﺤﻕ )‪(1‬‬
‫أ‪ v$ ~0‬ا‪?j‬رات ا‪ $‬و‪ v$‬ا‪$nj‬ت ا‪L /‬‬
‫‪265‬‬
‫ﺒﺴﻡ ﺍﷲ ﺍﻝﺭﺤﻤﻥ ﺍﻝﺭﺤﻴﻡ‬
‫ﻗﺴﻡ ﺍﻻﺤﺼﺎﺀ ﻭﺒﺤﻭﺙ ﺍﻝﻌﻤﻠﻴﺎﺕ‬
‫ﻜﻠﻴﺔ ﺍﻝﻌﻠﻭﻡ ﺠﺎﻤﻌﺔ ﺍﻝﻤﻠﻙ ﺴﻌﻭﺩ‬
‫ﺍﻻﺨﺘﺒﺎﺭ ﺍﻝﻨﻬﺎﺌﻰ ﻝﻠﻔﺼل ﺍﻻﻭل ‪ 1420/1419‬ﻫـ‬
‫ﺍﻝﻤﺎﺩﺓ ‪ 221‬ﺒﺤﺙ ﻁﺭﻕ ﺍﻝﺘﻨﺒﺅ ﺍﻻﺤﺼﺎﺌﻰ‬
‫ﺍﺠﺏ ﻋﻠﻰ ﺠﻤﻴﻊ ﺍﻻﺴﺌﻠﺔ ﺍﻝﺘﺎﻝﻴﺔ‪:‬‬
‫ﺍﻝﺴﺅﺍل ﺍﻻﻭل‪:‬‬
‫ﺍﻝﺒﻴﺎﻨﺎﺕ ﺍﻝﺘﺎﻝﻴﺔ ﺘﻤﺜل ﻋﺩﺩ ﺍﻝﺴﻴﺎﺭﺍﺕ ﺍﻝﻤﺒﺎﻋﺔ ﺍﺴﺒﻭﻋﻴﺎ ﻝﺩﻱ ﻤﻭﺯﻉ ﻤﺎ‬
‫ﺍﻻﺴﺒﻭﻉ‬
‫‪1‬‬
‫‪2‬‬
‫‪3‬‬
‫‪4‬‬
‫‪5‬‬
‫‪6‬‬
‫‪7‬‬
‫‪8‬‬
‫‪9‬‬
‫‪10‬‬
‫ﺍﻝﻌﺩﺩ‬
‫‪75‬‬
‫‪75‬‬
‫‪79‬‬
‫‪83‬‬
‫‪69‬‬
‫‪78‬‬
‫‪71‬‬
‫‪80‬‬
‫‪77‬‬
‫‪85‬‬
‫ﺍﻭﺠﺩ ﺘﻨﺒﺅﺍﺕ ﻝﻌﺩﺩ ﺍﻝﺴﻴﺎﺭﺍﺕ ﺍﻝﺘﻰ ﺴﺘﺒﺎﻉ ﻓﻰ ﺍﻻﺴﺒﻭﻋﻴﻥ ﺍﻝﺘﺎﻝﻴﻴﻥ ﻭﺍﻭﺠﺩ ﻓﺘﺭﺍﺕ ﺘﻨﺒﺅ ‪ 95%‬ﻝﻬﺫﻩ‬
‫ﺍﻝﺘﻨﺒﺅﺍﺕ ﻜﻠﻤﺎ ﺍﻤﻜﻥ ﺫﻝﻙ ﺒﺎﺴﺘﺨﺩﺍﻡ‪:‬‬
‫ﺍ( ﻨﻤﻭﺫﺝ ﺍﻨﺤﺩﺍﺭ ﺨﻁﻰ ﻝﻠﻌﺩﺩ ﺍﻝﻤﺒﺎﻉ ﻤﻊ ﺍﻝﺯﻤﻥ ﺒﺎﻻﺴﺎﺒﻴﻊ‪.‬‬
‫ﺏ( ﺍﻝﺘﻤﻬﻴﺩ ﺒﻭﺍﺴﻁﺔ ﻤﺘﻭﺴﻁ ﻤﺘﺤﺭﻙ ﻤﻥ ﺍﻝﺩﺭﺠﺔ ﺍﻝﺜﺎﻝﺜﺔ‪.‬‬
‫ﺝ( ﺍﻝﺘﻤﻬﻴﺩ ﺍﻻﺴﻰ ﺍﻝﺒﺴﻴﻁ ﻤﺴﺘﺨﺩﻤﺎ ‪. α = 0.3‬‬
‫ﺍﻝﺴﺅﺍل ﺍﻝﺜﺎﻨﻲ‪:‬‬
‫ﻝﻠﻨﻤﻭﺫﺝ ‪ (1 − φ1B − φ 2 B2 ) zt = δ + (1 − θB) at‬ﺤﻴﺙ ) ‪ at ~ WN (0,σ 2‬ﻭ ‪ φ1 , φ2 ,δ ,θ‬ﻫﻰ ﻤﻌﺎﻝﻡ‬
‫ﺍﻝﻨﻤﻭﺫﺝ ﻭ ‪ B‬ﻫﻭ ﻋﺎﻤل ﺍﻻﺯﺍﺤﺔ ﺍﻝﺨﻠﻔﻰ ﺍﻭﺠﺩ‪:‬‬
‫ﺍ( ‪E ( zt ) ∀t‬‬
‫ﺏ( ﺩﺍﻝﺔ ﺍﻝﺘﺭﺍﺒﻁ ﺍﻝﺫﺍﺘﻰ ‪ρk ∀k ≥ 0‬‬
‫ﺝ( ﺩﺍﻝﺔ ﺍﻝﺘﺭﺍﺒﻁ ﺍﻝﺫﺍﺘﻰ ﺍﻝﺠﺯﺌﻰ ‪φ kk ∀k ≥ 0‬‬
‫ﺩ( ﺩﺍﻝﺔ ﺍﻻﻭﺯﺍﻥ ‪ψ j ∀j ≥ 0‬‬
‫ﺍﻝﺴﺅﺍل ﺍﻝﺜﺎﻝﺙ‪:‬‬
‫‪266‬‬
‫‪ zt = 38.5 + 12‬ﺤﻴﺙ )‪ at ~ WN (0,4‬ﻭﺍﺫﺍ ﻜﺎﻨﺕ ‪ t = 10‬ﻭ‬
‫ﻝﻠﻨﻤﻭﺫﺝ ‪. zt −1 − 0.7 zt − 2 + at − 0.4at −1‬‬
‫‪ z9 = 77‬ﻭ ‪ z10 = 85‬ﻭ ‪ a10 = −1.6‬ﺍﻭﺠﺩ‪:‬‬
‫ﺍ( ﺩﺍﻝﺔ ﺍﻝﺘﻨﺒﺅ ﺍﻝﺘﻰ ﻝﻬﺎ ﺍﺩﻨﻰ ﻤﺘﻭﺴﻁ ﻤﺭﺒﻊ ﺍﺨﻁﺎﺀ‬
‫ﺏ( ﺘﺒﺎﻴﻥ ﺩﺍﻝﺔ ﺍﺨﻁﺎﺀ ﺍﻝﺘﻨﺒﺅ ﺤﺘﻰ ﺯﻤﻥ ﺍﻝﺘﻘﺩﻡ ‪ℓ = 3‬‬
‫ﺝ( ﺘﻨﺒﺅﺍﺕ ﻝﻠﻘﻴﻡ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ ‪ z11‬ﻭ ‪z12‬‬
‫ﺩ( ﻓﺘﺭﺍﺕ ﺘﻨﺒﺅ ‪ 95%‬ﻝﻠﺘﻨﺒﺅﺍﺕ ﺍﻝﺴﺎﺒﻘﺔ‬
‫ﻫـ( ﺍﺫﺍ ﻋﻠﻤﺕ ﺍﻥ ‪ z11 = 81‬ﻓﺠﺩﺩ ﺍﻝﺘﻨﺒﺅ ﻝﻠﻘﻴﻤﻪ ‪ z12‬ﻭﻝﻔﺘﺭﺓ ﺘﻨﺒﺅﻫﺎ‪.‬‬
‫‪267‬‬
‫ﺒﺴﻡ ﺍﷲ ﺍﻝﺭﺤﻤﻥ ﺍﻝﺭﺤﻴﻡ‬
‫ﻗﺴﻡ ﺍﻻﺤﺼﺎﺀ ﻭﺒﺤﻭﺙ ﺍﻝﻌﻤﻠﻴﺎﺕ‬
‫ﻜﻠﻴﺔ ﺍﻝﻌﻠﻭﻡ ﺠﺎﻤﻌﺔ ﺍﻝﻤﻠﻙ ﺴﻌﻭﺩ‬
‫ﺍﻻﺨﺘﺒﺎﺭ ﺍﻝﻨﻬﺎﺌﻰ ﻝﻠﻔﺼل ﺍﻻﻭل ‪ 1420/1419‬ﻫـ‬
‫ﺍﻝﻤﺎﺩﺓ ‪ 221‬ﺒﺤﺙ ﻁﺭﻕ ﺍﻝﺘﻨﺒﺅ ﺍﻻﺤﺼﺎﺌﻰ‬
‫ﺍﺠﺏ ﻋﻠﻰ ﺠﻤﻴﻊ ﺍﻻﺴﺌﻠﺔ ﺍﻝﺘﺎﻝﻴﺔ‪:‬‬
‫ﺍﻝﺴﺅﺍل ﺍﻻﻭل‪:‬‬
‫ﺍﻝﺒﻴﺎﻨﺎﺕ ﺍﻝﺘﺎﻝﻴﺔ ﺘﻤﺜل ﻋﺩﺩ ﺍﻝﺴﻴﺎﺭﺍﺕ ﺍﻝﻤﺒﺎﻋﺔ ﺍﺴﺒﻭﻋﻴﺎ ﻝﺩﻱ ﻤﻭﺯﻉ ﻤﺎ‬
‫‪Week‬‬
‫‪1 2 3 4 5 6 7 8 9 10‬‬
‫‪No. of cars 75 75 79 83 69 78 71 80 77 85‬‬
‫ﺍﻭﺠﺩ ﺘﻨﺒﺅﺍﺕ ﻝﻌﺩﺩ ﺍﻝﺴﻴﺎﺭﺍﺕ ﺍﻝﺘﻰ ﺴﺘﺒﺎﻉ ﻓﻰ ﺍﻻﺴﺒﻭﻋﻴﻥ ﺍﻝﺘﺎﻝﻴﻴﻥ ﻭﺍﻭﺠﺩ ﻓﺘﺭﺍﺕ ﺘﻨﺒﺅ ‪ 95%‬ﻝﻬﺫﻩ‬
‫ﺍﻝﺘﻨﺒﺅﺍﺕ ﻜﻠﻤﺎ ﺍﻤﻜﻥ ﺫﻝﻙ ﺒﺎﺴﺘﺨﺩﺍﻡ‪:‬‬
‫ﺍ( ﻨﻤﻭﺫﺝ ﺍﻨﺤﺩﺍﺭ ﺨﻁﻰ ﻝﻠﻌﺩﺩ ﺍﻝﻤﺒﺎﻉ ﻤﻊ ﺍﻝﺯﻤﻥ ﺒﺎﻻﺴﺎﺒﻴﻊ‪.‬‬
‫ﺏ( ﺍﻝﺘﻤﻬﻴﺩ ﺒﻭﺍﺴﻁﺔ ﻤﺘﻭﺴﻁ ﻤﺘﺤﺭﻙ ﻤﻥ ﺍﻝﺩﺭﺠﺔ ﺍﻝﺜﺎﻝﺜﺔ‪.‬‬
‫ﺝ( ﺍﻝﺘﻤﻬﻴﺩ ﺍﻻﺴﻰ ﺍﻝﺒﺴﻴﻁ ﻤﺴﺘﺨﺩﻤﺎ ‪. α = 0.3‬‬
‫ﺍﻝﺴﺅﺍل ﺍﻝﺜﺎﻨﻲ‪:‬‬
‫ﻝﻠﻨﻤﻭﺫﺝ ‪ (1 − φ1B − φ 2 B2 ) zt = δ + (1 − θB) at‬ﺤﻴﺙ ) ‪ at ~ WN (0,σ 2‬ﻭ ‪ φ1 , φ2 ,δ ,θ‬ﻫﻰ ﻤﻌﺎﻝﻡ‬
‫ﺍﻝﻨﻤﻭﺫﺝ ﻭ ‪ B‬ﻫﻭ ﻋﺎﻤل ﺍﻻﺯﺍﺤﺔ ﺍﻝﺨﻠﻔﻰ ﺍﻭﺠﺩ‪:‬‬
‫ﺍ( ‪E ( zt ) ∀t‬‬
‫ﺏ( ﺩﺍﻝﺔ ﺍﻝﺘﺭﺍﺒﻁ ﺍﻝﺫﺍﺘﻰ ‪ρk ∀k ≥ 0‬‬
‫ﺝ( ﺩﺍﻝﺔ ﺍﻝﺘﺭﺍﺒﻁ ﺍﻝﺫﺍﺘﻰ ﺍﻝﺠﺯﺌﻰ ‪φ kk ∀k ≥ 0‬‬
‫ﺩ( ﺩﺍﻝﺔ ﺍﻻﻭﺯﺍﻥ ‪ψ j ∀j ≥ 0‬‬
‫ﺍﻝﺴﺅﺍل ﺍﻝﺜﺎﻝﺙ‪:‬‬
‫‪268‬‬
‫‪ zt = 38.5 + 12‬ﺤﻴﺙ )‪ at ~ WN (0,4‬ﻭﺍﺫﺍ ﻜﺎﻨﺕ ‪ t = 10‬ﻭ‬
‫ﻝﻠﻨﻤﻭﺫﺝ ‪. zt −1 − 0.7 zt − 2 + at − 0.4at −1‬‬
‫‪ z9 = 77‬ﻭ ‪ z10 = 85‬ﻭ ‪ a10 = −1.6‬ﺍﻭﺠﺩ‪:‬‬
‫ﺍ( ﺩﺍﻝﺔ ﺍﻝﺘﻨﺒﺅ ﺍﻝﺘﻰ ﻝﻬﺎ ﺍﺩﻨﻰ ﻤﺘﻭﺴﻁ ﻤﺭﺒﻊ ﺍﺨﻁﺎﺀ‬
‫ﺏ( ﺘﺒﺎﻴﻥ ﺩﺍﻝﺔ ﺍﺨﻁﺎﺀ ﺍﻝﺘﻨﺒﺅ ﺤﺘﻰ ﺯﻤﻥ ﺍﻝﺘﻘﺩﻡ ‪ℓ = 3‬‬
‫ﺝ( ﺘﻨﺒﺅﺍﺕ ﻝﻠﻘﻴﻡ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ ‪ z11‬ﻭ ‪z12‬‬
‫ﺩ( ﻓﺘﺭﺍﺕ ﺘﻨﺒﺅ ‪ 95%‬ﻝﻠﺘﻨﺒﺅﺍﺕ ﺍﻝﺴﺎﺒﻘﺔ‬
‫ﻫـ( ﺍﺫﺍ ﻋﻠﻤﺕ ﺍﻥ ‪ z11 = 81‬ﻓﺠﺩﺩ ﺍﻝﺘﻨﺒﺅ ﻝﻠﻘﻴﻤﻪ ‪ z12‬ﻭﻝﻔﺘﺭﺓ ﺍﻝﺘﻨﺒﺅ‬
‫‪269‬‬
‫ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﺣﻤﻦ ﺍﻟﺮﺣﻴﻢ‬
‫ﻗﺴﻡ ﺍﻹﺤﺼﺎﺀ ﻭﺒﺤﻭﺙ ﺍﻝﻌﻤﻠﻴﺎﺕ‬
‫ا
!دة ‪= :‬ق ا
;'(‪ :‬ا‪Q%. 221 785X‬‬
‫ﺍﻻﺨﺘﺒﺎﺭ ﺍﻻﻭل ﻝﻸﻋﻤﺎل ﺍﻝﻔﺼﻠﻴﺔ‬
‫ا
‪ Hb‬اول ‪ 1421-1420‬هـ‬
‫ا
& ‪; :‬‬
‫أ‪ V!L 7 WL‬ا€‪ 4‬ا
;
‪:4‬‬
‫ا
‪:‬ال اول‪ 4;!
:‬ز&'‪{zt } 4‬‬
‫‪ -1‬أذآ وط ا‪J;9‬ار‬
‫‪ -2‬ف دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪7C‬‬
‫ا
‪:‬ال ا
]‪ 4;!
:7‬ا
;
‪4‬‬
‫‪9 10 11 12 13 14 15‬‬
‫‪8‬‬
‫‪7‬‬
‫‪6‬‬
‫‪5‬‬
‫‪4‬‬
‫‪3‬‬
‫‪2‬‬
‫‪1‬‬
‫‪53 43 66 48 52 42 44 56 44 58 41 54 51 56 38‬‬
‫‪ w (= -1‬إ‪%‬ار ‪ ( t , zt ) .‬و& ‪ )U‬أو‪z16 , z17 L‬‬
‫‪%;& w1;& (= -2‬ك & ا
ر‪ 4L‬ا
]
]‪ 4‬و& ‪ )U‬أو‪z16 , z17 L‬‬
‫‪ O!C (= -3‬ا‪ α = 0.5 w. 7‬و& ‪ )U‬أو‪z16 , z17 L‬‬
‫‪ -4‬إذا آ‪ z16 = 56 S‬و ‪{N z17 = 49‬ي & ا
‪6‬ق ا
‪ 4J.‬أآ] د‪ 4B‬وذ
‪[;F. f‬ام &"ر‬
‫‪W'& {6‬‬
‫‪270‬‬
‫‪t‬‬
‫‪zt‬‬
:Q
]
‫ال ا‬:
‫ا‬
zt = 20 − 0.9 zt −1 + at
, at ~ WN ( 0, 4 ) ‫ذج‬1!'
‫؟‬J;& ‫ذج‬1!'
‫ ا‬H‫ ه‬-1
µ L‫ أو‬-2
k = 0,1,2,...,5 )J
φkk ‫ و‬ρ k L‫ أو‬-3
271
‫ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﺣﻤﻦ ﺍﻟﺮﺣﻴﻢ‬
‫ﻗﺴﻡ ﺍﻹﺤﺼﺎﺀ ﻭﺒﺤﻭﺙ ﺍﻝﻌﻤﻠﻴﺎﺕ‬
‫ﺍﻝﻤﺎﺩﺓ ‪ :‬ﻁﺭﻕ ﺍﻝﺘﻨﺒﺅ ﺍﻻﺤﺼﺎﺌﻲ ‪ 221‬ﺒﺤﺙ‬
‫ﺍﻻﺨﺘﺒﺎﺭ ﺍﻝﻨﻬﺎﺌﻲ ﻝﻠﻔﺼل ﺍﻝﺜﺎﻨﻲ‪ 1421-1420‬ﻫـ‬
‫ﺍﻝﺯﻤﻥ ‪ :‬ﺃﺭﺒﻊ ﺴﺎﻋﺎﺕ‬
‫أ‪ V!L 7 WL‬ا€‪ 4‬ا
;
‪:4‬‬
‫ا
‪:‬ال اول‪( 4& 20 ) :‬‬
‫أآ!‪ H‬ا
‪b‬ا‪z‬ت ا
;
‪:4‬‬
‫‪(1‬‬
‫(‬
‫
!;‪ 4‬ز&'‪ {Z } 4‬دا
‪ 4‬ا
;‪ 2Y‬ا
‪A‬ا‪) 4B"
. 6"C 7C‬‬
‫‪ γ k = Cov Z t , Z‬ودا
‪4‬‬
‫‪t‬‬
‫‪ ρ k = γ k‬و
‪ O‬ا
[‪1‬اص‬
‫ا
;ا‪ w.‬ا
‪A‬ا‪4B"
. 7C‬‬
‫= ‪ ρ0‬و ‪1‬‬
‫‪ ρk‬و‬
‫‪& 5 ) ρ k = ρ‬ت (‬
‫‪ 4;!
(2‬ز&'‪K& 4‬هة ‪ z1 , z2 ,⋯ , zn‬دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪JC 4'"
7C‬ر &‬
‫⋯‪− z ) , k = 0,1,‬‬
‫‪n‬‬
‫‪t‬‬
‫‪∑( z‬‬
‫‪i =1‬‬
‫ا
"‪4B‬‬
‫) ‪ rk = ∑ ( zt − z )( zt +k − z‬و ا‪%9‬اف ا
!"ري‬
‫‪i =1‬‬
‫‪ s.e ( rk ) ≃ 1‬آ! ان دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪7C‬‬
‫
ا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪JC 4'"
7C‬ر & ا
"‪4B‬‬
‫‪k‬‬
‫‪rk +1 − ∑ rkj r‬‬
‫ا
‪JC 4'"
78‬ر &‬
‫‪j =1‬‬
‫‪k‬‬
‫ا
"‪4B‬‬
‫‪rj‬‬
‫‪, j = 1,...,‬‬
‫‪1− ∑r‬‬
‫= ‪ rk +1,k +1‬و ا
"‪ 4B‬ا
!ة‬
‫‪j =1‬‬
‫‪ rk +1, j = rkj − rk +1,k +1rk ,‬و
‪5 O‬ود ‪4L5‬‬
‫‪272‬‬
‫‪n‬‬
‫‪& 8 ) ±‬ت (‬
4B"
.
6"2
(
AR
H3K
‫ ا‬7 W;32 ‫ي‬A
‫ و ا‬1 − φ1
− φ2
2
( )
‫ذج‬1! (3
) Z = a , a ∼ WN (
t
t
t
( ‫ &ت‬7 ) Z t = δ + φ1
+ φ2
,
)
+ at
( 4& 40 ) :7]
‫ال ا‬:
‫ا‬
( !
‫أ & ا
ر‬B‫ )إ‬:‫ت‬X2
‫ف ا‬X“. & 4‫آ‬K
4&1
‫) ا
!("ت ا‬5 7‫ ه‬4
;
‫ا
(ت ا‬
29.3
20.0
25.8
29.0
31.0
27.5
32.7
26.8
33.6
30.6
28.9
28.5
28.2
26.1
27.8
28.2
27.6
26.7
29.9
30.0
30.8
30.5
36.6
31.4
30.8
27.1
33.2
33.7
30.2
36.6
29.0
28.1
30.3
29.4
33.6
17.5
30.3
23.7
20.1
24.2
32.4
32.4
29.4
23.5
23.6
30.6
28.1
32.3
29.9
31.6
28.0
24.1
29.2
34.3
26.4
21.7
28.8
21.5
21.3
24.7
33.6
36.5
35.7
33.7
29.3
30.6
25.1
29.1
27.2
28.5
32.0
31.9
31.7
29.0
31.9
26.6
24.3
28.9
22.7
28.3
28.2
28.6
30.7
30.6
20.8
31.8
16.6
32.5
25.2
30.3
26.1
19.0
24.3
31.5
32.0
31.7
29.1
23.2
48 & ‫ذج‬1!'
‫ ا‬7 ‫"ف‬C Minitab 7N %pacf ‫ و‬%acf
2&‫;[ام ا‬F. (1
( ‫ &ت‬7 ) ‫;("* ا
(ت‬C ‫ي‬A
‫ وا‬ARIMA ( p, d , q ) ‫ا
'!ذج‬
273
‫"ت ا‬.!
‫ ا‬4J2=‫ ا
"وم و‬4J26. * ‫ذج ا
!;"ف‬1!'
‫ !"
) ا‬4
‫رات أو‬J& L‫( أو‬2
( ‫ &ت‬9 ) 4=K
‫ا‬
7 ‫ذج‬1!'
‫ ا‬W;‫ أو ا
"وم أآ‬4=K
‫"ت ا
ا‬.!
‫ ا‬4J26. )
"!
‫رات ا‬J& ‫;[ام‬F. (3
Q5
Z t = δ + φ1Z t −1 + ⋯ + φ p Z t − p + at − θ1at −1 − ⋯ − θ q at −q
H3K
‫ا‬
( ‫ &ت‬4 ) at ∼ WN ( 0, σ 2 )
‫ أن‬S! ‫ وإذا‬Z100 ‫ و‬Z 99 4(J;!
‫) ا‬J
‫ات‬:('C L‫) أو‬U &‫ذج و‬1!'
:(';
‫ ا‬4
‫ دا‬L‫( أو‬4
( ‫ &ت‬10) Z100 ‫ و‬Z 99 4(J;!
‫) ا‬J
95% :('C ‫;ات‬N L‫و‬N σ 2 = 10.83
HON z100 = 32.4 S‫ وإذا آ‬Z100 4(J;!
‫ ا‬4!J
:(';
‫د ا‬N z99 = 26.7 ‫ أن‬S! ‫( إذا‬5
( ‫ &ت‬5 ) ‫ ؟‬2;
‫" ا‬. ‫ ام‬H(B H`N‫ أ‬:(';
‫ا‬
‫ و‬forecast 5 C2 C3 C4 4b
‫ واوا& ا‬arima p d q C1 &‫;[ام ا‬F. (6
f8; V& ‫رن‬B ‫ و‬J%C gfit ‫ و‬gnormal ‫ و‬ghist ‫ و‬gpacf ‫ و‬gacf ‫ و‬gseries
( ‫ &ت‬5 ) .4J.
‫ات ا‬Jb
‫ ا‬7N
274
‫ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﺣﻤﻦ ﺍﻟﺮﺣﻴﻢ‬
‫‪ )B‬ا‪59‬ء و‪1%.‬ث ا
"!ت‬
‫إ;(ر ا
‪ Hb‬اول ‪1421‬هـ‪1422/‬هـ‬
‫
!دة ‪= ) Q%. 221‬ق ا
;'(‪ :‬ا‪( 7859‬‬
‫ﺍﻝﺯﻤﻥ ‪ 3‬ﺴﺎﻋﺎﺕ‬
‫أ‪ V!L WL‬ا€‪ 4‬ا
;
‪:4‬‬
‫ا
‪:‬ال اول‪:‬‬
‫‪ -1‬ف ا
;
‪;F. 7‬ر‪ :‬ا
`‪ 4‬ا
(`ء‪ ،‬ا
;ا‪ w.‬ا
‪A‬ا‪ ،7C‬ا
;!‪ ،O‬ا‪J;9‬ار‬
‫‪ -2‬اآ;‪ W‬ا
!"د‪X‬ت ا
!"‪!'
4N‬ذج ا
;
‪AR(2), MA(1), ARMA(1,2) :4‬‬
‫ج( '!‪1‬ذج )‪ AR(2‬أي & ا
!"
) ا
;
‪ J%C 4‬ا‪J;9‬ار‪:‬‬
‫‪1) φ1 = 1.2, φ2 = −0.8‬‬
‫‪2) φ1 = −1.2, φ2 = −0.8‬‬
‫‪3) φ1 = 0.8, φ2 = −0.8‬‬
‫‪4) φ1 = −0.8, φ2 = 1.2‬‬
‫ا
‪:‬ال ا
]‪:7‬‬
‫ﺍﻝﺒﻴﺎﻨﺎﺕ ﺍﻝﺘﺎﻝﻴﺔ ﺘﻤﺜل ﻤﺒﻴﻌﺎﺕ ﺃﺠﻬﺯﺓ ﺍﻝﺤﺎﺴﺏ ﻓﻲ ﺃﺤﺩ ﺍﻝﺸﺭﻜﺎﺕ ﺸﻬﺭﻴﺎ ) ﺇﻗﺭﺃ ﻤﻥ ﺍﻝﻴﺴﺎﺭ ﻝﻠﻴﻤﻴﻥ‬
‫ﺴﻁﺭﺍ ﺒﺴﻁﺭ(‬
‫‪19‬‬
‫‪27‬‬
‫‪28‬‬
‫‪16‬‬
‫‪21‬‬
‫‪26‬‬
‫‪25‬‬
‫‪23‬‬
‫‪20‬‬
‫‪21‬‬
‫‪16‬‬
‫‪26‬‬
‫‪25‬‬
‫‪23‬‬
‫‪26‬‬
‫‪21‬‬
‫‪21‬‬
‫‪25‬‬
‫‪25‬‬
‫‪17‬‬
‫‪ -1‬أد‪ H‬ا
(ت ‪ 7N‬ور‪ Minitab _&(
H! 4B‬و أر!‪ O‬آ!;‪ 4‬ز&'‪.4‬‬
‫‪ (= -2‬ا
(ت ا
'!ذج ا
;
‪:4‬‬
‫‪i) Linear Trend Model‬‬
‫‪ii) Simple Moving Average Model of order 3‬‬
‫‪iii) Simple Exponential Smoothing Model with α =0.3‬‬
‫‪275‬‬
‫ج( =( ا
(ت !‪1‬ذج & ‪ ARMA( p, q) 48‬وذ
‪";
. f‬ف ‪ p, q‬ا
!'(‪4‬‬
‫و& ‪B )U‬ر ا
!"
) '!‪1‬ذج ا
!‪;J‬ح‪.‬‬
‫د( أي !‪1‬ذج & ا
'!ذج ا
‪ 7N ) 4J.‬ا
‪ CJb‬ب و ج ( ‪ e2‬ا
!‪K‬هات ‪ H3K.‬أ‪H`N‬؟‬
‫هـ( ‪[;F.‬ام ا
'!‪1‬ذج ا‪ H`N‬و
‪:('C‬ات ‪ 2OK‬ا
;
‪;b.‬ات ‪95% :('C‬‬
‫‪276‬‬
‫ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﺣﻤﻦ ﺍﻟﺮﺣﻴﻢ‬
‫ﻗﺴﻢ ﺍﻹﺣﺼﺎﺀ ﻭﺑﺤﻮﺙ ﺍﻟﻌﻤﻠﻴﺎﺕ‬
‫ﺍﻟﻤﺎﺩﺓ ‪ :‬ﻃﺮﻕ ﺍﻟﺘﻨﺒﺆ ﺍﻻﺣﺼﺎﺋﻲ ‪ 221‬ﺑﺤﺚ‬
‫ﺍﻻﺧﺘﺒﺎﺭ ﺍﻻﻭﻝ ﻟﻸﻋﻤﺎﻝ ﺍﻟﻔﺼﻠﻴﺔ‬
‫ﺍﻟﻔﺼﻞ ﺍﻟﺜﺎﻧﻲ ‪ 1422/1421‬ﻫـ‬
‫ا
& ‪; :‬‬
‫أ‪ V!L 7 WL‬ا€‪ 4‬ا
;
‪:4‬‬
‫ا
‪:‬ال اول‪1 :‬هت ا
!;‪ 4‬ا
&'‪ 4‬ا
;
‪) :4‬إ‪B‬ا & ا
ر ! ‪6‬ا ‪(6.‬‬
‫‪38‬‬
‫‪55‬‬
‫‪71‬‬
‫‪64‬‬
‫‪23‬‬
‫‪64‬‬
‫‪47‬‬
‫‪35‬‬
‫‪40‬‬
‫‪71‬‬
‫‪57‬‬
‫‪48‬‬
‫‪59‬‬
‫‪41‬‬
‫‪37‬‬
‫‪51‬‬
‫‪55‬‬
‫‪74‬‬
‫‪80‬‬
‫‪44‬‬
‫‪58‬‬
‫‪57‬‬
‫‪45‬‬
‫‪45‬‬
‫‪50‬‬
‫‪60‬‬
‫‪50‬‬
‫‪57‬‬
‫‪56‬‬
‫‪50‬‬
‫‪71‬‬
‫‪74‬‬
‫‪50‬‬
‫‪59‬‬
‫‪25‬‬
‫‪54‬‬
‫‪55‬‬
‫‪36‬‬
‫‪48‬‬
‫‪54‬‬
‫‪45‬‬
‫‪58‬‬
‫‪44‬‬
‫‪43‬‬
‫‪62‬‬
‫‪64‬‬
‫‪50‬‬
‫‪57‬‬
‫‪45‬‬
‫‪41‬‬
‫‪49‬‬
‫‪55‬‬
‫‪53‬‬
‫‪59‬‬
‫‪38‬‬
‫‪52‬‬
‫‪68‬‬
‫‪50‬‬
‫‪45‬‬
‫‪38‬‬
‫‪54‬‬
‫‪35‬‬
‫‪34‬‬
‫‪277‬‬
60
39
59
40
54
57
23
:7
;
‫ ا‬WL‫ وأ‬Minitab _&. 7N Worksheet H! 4b%+ 7N ‫هات‬K!
‫ ا‬H‫أد‬
(‫ة‬5‫ وا‬4&) ‫ة؟ !ذا؟‬J;& 4;!
‫(و ا‬C H‫ ه‬Tsplot 46‫ا‬1. ‫هات‬K!
‫ ا‬o%N‫)أ( إ‬
4&) ‫؟ و
!ذا؟‬4;!
‫@ ا‬AO
Trend Analysis ‫اف‬9‫ ا‬H%C 4J2= ‫ ;[م‬H‫)ب( ه‬
(‫ة‬5‫وا‬
4&) ‫؟ و
!ذا؟‬4;!
‫@ ا‬AO
Decomposition Method f3b;
‫ ا‬4J2= ‫ ;[م‬H‫)ج( ه‬
(‫ة‬5‫وا‬
@AO
Moving Average Smoothing ‫ك‬%;!
‫ ا‬w1;!
. O!;
‫ ا‬4J2= ‫ ;[م‬H‫)د( ه‬
(‫ة‬5‫ وا‬4&) ‫؟ و
!ذا؟‬4;!
‫ا‬
@AO
Simple Exponential Smoothing w(
‫ ا‬7X‫ ا‬O!;
‫ ا‬4J2= ‫ ;[م‬H‫)هـ( ه‬
(‫ة‬5‫ وا‬4&) ‫؟ و
!ذا؟‬4;!
‫ا‬
@AO
Double Exponential Smoothing 78']
‫ ا‬7X‫ ا‬O!;
‫ ا‬4J2= ‫ ;[م‬H‫)و( ه‬
(‫ة‬5‫ وا‬4&) ‫؟ و
!ذا؟‬4;!
‫ا‬
(‫ة‬5‫ وا‬4&) ‫؟ و
!ذا؟‬4;!
‫@ ا‬AO
Winters’ Method ‫ و;ز‬4J2= ‫ ;[م‬H‫)ز( ه‬
4'&
‫ ا‬4;!
‫ ا‬H%;
W‫ ا‬7‫ ه‬wJN ‫ة‬5‫ وا‬4J2= L1C .
‫ال ا‬:
‫ & ا‬:7]
‫ال ا‬:
‫ا‬
. 95% :('C ‫;ات‬N V& 4(J;& )B 4![
‫ات‬:('C L‫ أو‬4('!
‫ ا‬4J26
‫;[ام ا‬F. !‫هة‬K!
‫ا‬
(‫ &ت‬8)
278
‫إ‪ 4.L‬ا
‪:‬ال اول‪:‬‬
‫)أ (‬
‫‪80‬‬
‫‪70‬‬
‫‪60‬‬
‫‪Sales‬‬
‫‪50‬‬
‫‪40‬‬
‫‪30‬‬
‫‪20‬‬
‫‪70‬‬
‫‪60‬‬
‫‪50‬‬
‫‪40‬‬
‫‪30‬‬
‫‪20‬‬
‫‪10‬‬
‫‪Index‬‬
‫ا
!;‪(C 4‬و &;‪J‬ة ‪ Q5‬ا‪15 Y;C O‬ل &;‪1‬ى ‪S.U‬‬
‫)ب( ‪ 3!2‬إ;[ام =‪ H%C 4J2‬ا‪9‬ف و
‪ 4('& z O'3‬ه' "م و‪1L‬د إ‪*;C "& @C‬‬
‫
* ا
!;‪4‬‬
‫)ج( ‪ 3!2‬إ;[ام =‪ 4J2‬ا
;‪ f3b‬و
‪ W'C O'3‬أآ] ا
!;ت ا
;‪& ON 7‬آ(ت إاف و‬
‫&‪4!1‬‬
‫)د( ‪ W'2‬ا
;!‪ w1;!
. O‬ا
!;‪%‬ك ه‪A‬ا ا
'‪1‬ع & ا
!;ت ا
&'‪ 4‬أآ] & ‪& @z‬‬
‫ا
‪6‬ق * آ! ى ه‪ @A‬ا
!;‪;%C 4‬ج إ
‪ w. O!C‬إذ ~ ‪ O.‬أي إاف أو &‪4!1‬‬
‫)هـ( ا
;!‪ O‬ا‪ 7X‬ا
(‪ H]!
Vb'2 w‬ه‪ @A‬ا
!;ت أ‪ `2‬و‪ 4+‬إذا آ‪1%C S‬ي إا‪N‬‬
‫‪w.‬‬
‫)و( ا
;!‪ O‬ا‪ 7X‬ا
]'‪ b2 78‬أآ] ‪ 4
5 7N‬ا
!;ت ا
;‪1%C 7‬ي إا‪ 76 z N‬وا
‪A‬ي‬
‫‪(2X‬و & ‪C‬ف ا
!;‪ 4‬ا
!‪K‬هة‬
‫)ز( =‪ 4J2‬و;ز ‪;!
Vb'C‬ت ا
!‪ 4!1‬ا
;‪1%C 7‬ي &آ(‪ 4‬إاف ‪76 z‬‬
‫إ‪ 4.L‬ا
‪:‬ال ا
]‪:7‬‬
‫‪(2‬و أن =‪ 4J2‬ا
;!‪ w1;!
. O‬ا
!;‪%‬ك ه‪ 7‬اآ] &'(‪ H%;
4‬ا
!;‪ 4‬ا
!‪K‬هة‪'
.‬ب‬
‫ة &;‪61‬ت &;‪%‬آ‪ O!;
4‬ا
!;‪ 4‬وإ‪2‬د ‪:('C‬ات ‪.O‬‬
‫)‪'
(1‬ب &;‪%;& w1‬ك & ا
ر‪ 4L‬ا
]‪!&) 4‬آ(‪:‬‬
‫;‪MTB > %MA 'Sales' 2‬‬
‫‪279‬‬
SUBC>
Center;
SUBC>
Forecasts 5.
Executing from file: G:\MTBWIN\MACROS\MA.MAC
Macro is running ... please wait
Moving average
Data
Sales
Length
70.0000
NMissing
0
Moving Average
Length: 2
Accuracy Measures
MAPE: 21.843
MAD:
MSD:
10.045
154.429
Row
Period
Forecast
Lower
Upper
1
71
47
22.6432
71.3568
2
3
72
73
47
47
22.6432
22.6432
71.3568
71.3568
4
5
74
75
47
47
22.6432
22.6432
71.3568
71.3568
280
Moving Average
Actual
80
Predicted
Forecast
70
Actual
Predicted
Forecast
Sales
60
50
Moving Average
40
Length:
2
30
MAPE:
21.843
20
0
10
20
30
40
50
60
MAD:
10.045
MSD:
154.429
70
Time
:4]
]
‫ ا‬4L‫ك & ا
ر‬%;& w1;& ‫( 'ب‬2)
MTB > %MA 'Sales' 3;
SUBC>
Forecasts 5.
Executing from file: G:\MTBWIN\MACROS\MA.MAC
Macro is running ... please wait
Moving average
Data
Sales
Length
70.0000
NMissing
0
Moving Average
Length: 3
Accuracy Measures
MAPE: 23.909
MAD:
MSD:
281
11.184
183.098
Row
Period
Forecast
Lower
Upper
1
71
44.6667
18.1452
71.1881
2
3
72
73
44.6667
44.6667
18.1452
18.1452
71.1881
71.1881
4
5
74
75
44.6667
44.6667
18.1452
18.1452
71.1881
71.1881
Moving Average
Actual
80
Sales
Predicted
70
Forecast
60
Actual
Predicted
Forecast
50
Moving Average
40
Length:
3
MAPE:
23.909
30
20
0
10
20
30
40
50
60
MAD:
11.184
MSD:
183.098
70
Time
:(‫ )&!آ‬4".‫ ا
ا‬4L‫ك & ا
ر‬%;& w1;& ‫( 'ب‬3)
MTB > %MA 'Sales' 4;
SUBC> Center;
SUBC>
Forecasts 5.
Executing from file: G:\MTBWIN\MACROS\MA.MAC
Macro is running ... please wait
Moving average
Data
282
Sales
Length
70.0000
NMissing
0
Moving Average
Length: 4
Accuracy Measures
MAPE:
MAD:
MSD:
21.161
9.733
146.200
Row
Period
Forecast
Lower
Upper
1
2
71
72
48
48
24.3010
24.3010
71.6990
71.6990
3
4
73
74
48
48
24.3010
24.3010
71.6990
71.6990
5
75
48
24.3010
71.6990
Moving Average
82
Actual
Sales
Predicted
72
Forecast
62
Actual
Predicted
Forecast
52
Moving Average
42
32
22
0
10
20
30
40
50
60
Length:
4
MAPE:
21.161
MAD:
9.733
MSD:
146.200
70
Time
:4&[
‫ ا‬4L‫ك & ا
ر‬%;& w1;& ‫( أا ب‬4)
MTB > %MA 'Sales' 5;
SUBC>
Forecasts 5.
283
Executing from file: G:\MTBWIN\MACROS\MA.MAC
Macro is running ... please wait
Moving average
Data
Sales
Length
70.0000
NMissing
0
Moving Average
Length: 5
Accuracy Measures
MAPE: 21.724
MAD:
MSD:
10.040
156.195
Row
Period
Forecast
Lower
Upper
1
2
71
72
46.6
46.6
22.1043
22.1043
71.0957
71.0957
3
4
73
74
46.6
46.6
22.1043
22.1043
71.0957
71.0957
5
75
46.6
22.1043
71.0957
284
Moving Average
Actual
80
Predicted
Forecast
70
Actual
Predicted
Forecast
Sales
60
50
Moving Average
40
Length:
5
30
MAPE:
21.724
20
0
10
20
30
40
50
60
MAD:
10.040
MSD:
156.195
70
Time
‫ ـ‬4!B HB‫ أ‬76"2 ‫ ا
!!آ‬4".‫ ا
ا‬4L‫ط & ا
ر‬%;!
‫ ا‬w1;!
‫ أن ا‬4J.
‫_ ا‬8;'
‫& ا‬
146.2 ‫وي‬C (MSD (Mean Square Deviation
7‫ ه‬95% :('C ‫;ات‬N V& 4(J;!
‫) ا‬B 4![
‫ات‬:(';
‫ا‬
Row
Period
Forecast
Lower
Upper
1
71
48
24.3010
71.6990
2
3
72
73
48
48
24.3010
24.3010
71.6990
71.6990
4
5
74
75
48
48
24.3010
24.3010
71.6990
71.6990
)5
‫! ا‬5
‫) ا ا‬.
‫ث ا
"!ت‬1%.‫ء و‬59‫) ا‬B
‫م‬1"
‫ ا‬4‫آ‬
‫د‬1" f!
‫ ا‬4"&L
285
‫ا‪(;9‬ر ا
]‪! 7‬ل ا
‪ Hb‬ا
]‪ 1422/1421 7‬هـ‬
‫
!دة ‪= ) Q%. 221‬ق ا
;'(‪ :‬ا‪( 7859‬‬
‫ا
& ‪ 3 :‬ت‬
‫أ‪ V!L WL‬ا€‪ 4‬ا
;
‪:4‬‬
‫ا
‪:‬ال اول‪:‬‬
‫
'!‪1‬ذج‬
‫)‪− 65) = (1 − 0.4 B ) at , at ~ WN ( 0,1‬‬
‫‪(1 − 1.2 B + 0.6B ) ( z‬‬
‫‪2‬‬
‫‪t‬‬
‫)أ( ‪ & J%C‬ان ا
'!‪1‬ذج &;‪ J‬و‪JŒ
H.B‬ب‪.‬‬
‫)ب( أو‪ L‬آ‪ ρ k & H‬و ‪. k = 1, 2,...,5 )J
φkk‬‬
‫)ج( أو‪ L‬دا
‪ 4‬اوزان ‪. j = 1, 2,...,5 )J
ψ j‬‬
‫ا
‪:‬ال ا
]‪:7‬‬
‫
'!‪1‬ذج ا
‪ .‬إذا !‪ S‬أن ‪. z76 = 60.4, z77 = 58.9, z78 = 64.7, z79 = 70.4, z80 = 62.6‬‬
‫)أ( أو‪:('C L‬ات ‪ )J‬ا
!;‪. z81 , z82 , z83 , z84 4(J‬‬
‫)ب( أو‪;N L‬ات ‪:(';
95% :('C‬ات ‪ 7N‬ا
‪Jb‬ة ا
‪.4J.‬‬
‫ا
‪:‬ال ا
]
‪:Q‬‬
‫
'!‪1‬ذج‬
‫)‪(1 − 0.43B )(1 − B ) zt = at , at ~ WN ( 0,1‬‬
‫)أ( ه‪ H‬ا
'!‪1‬ذج &;‪J‬؟ و
!ذا؟‬
‫)ب( إذا آ‪ W5{N z49 = 33.4, z50 = 33.9 S‬ا
;'(‪:‬ات ) ‪. ℓ = 1, 2,...,5 )J
z50 ( ℓ‬‬
‫)ج( أو‪;N L‬ات ‪:(';
95% :('C‬ات ‪ 7N‬ا
‪Jb‬ة ا
‪.4J.‬‬
‫‪286‬‬
‫ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﺣﻤﻦ ﺍﻟﺮﺣﻴﻢ‬
‫‪ )B‬ا‪59‬ء و‪1%.‬ث ا
"!ت‬
‫آ‪ 4‬ا
"‪1‬م‬
‫‪ 4"&L‬ا
!‪1" f‬د‬
‫ا‪(;9‬ر ا
'‪ Hb
78O‬ا
]‪ 1422/1421 7‬هـ‬
‫
!دة ‪= ) Q%. 221‬ق ا
;'(‪ :‬ا‪(7859‬‬
‫ﺍﻝﺯﻤﻥ ‪ 3‬ﺴﺎﻋﺎﺕ‬
‫أ‪ V!L WL‬ا€‪ 4‬ا
;
‪:4‬‬
‫ا
‪:‬ال اول‪:‬‬
‫=(‪"(& 4;& 'J‬ت !‪1‬ذج ) ‪ ARIMA (1,1,0‬ا
;
‪:7‬‬
‫)‪at ∼ WN ( 0, 25‬‬
‫‪(1 − 0.7 B )(1 − B ) zt = at ,‬‬
‫ا
!‪K‬ه‪ C‬اة ه‪z143 = 770, z144 = 800 7‬‬
‫(أ( ه‪ H‬ا
'!‪1‬ذج &;‪ J‬أم ‪ X‬و
!ذا؟‬
‫)ب( أو‪ L‬دا
‪ 4‬اوزان ‪. j = 1, 2,...,5 )J
ψ j‬‬
‫)ج( ا‪ W5‬ا
;'(‪:‬ات ]ث )‪ (3‬ا
‪ )J‬ا
!;‪ 4(J‬ا
;
‪.4‬‬
‫)د( او‪;N L‬ات ‪:(';
95% :('C‬ات ا
‪.4J.‬‬
‫ا
‪:‬ال ا
]‪:7‬‬
‫
!;‪ 4‬ا
&'‪ 4‬ا
;
‪) : 4‬إ‪B‬أ & ا
ر ! ‪6‬ا ‪(6.‬‬
‫‪4.14‬‬
‫‪5.43‬‬
‫‪4.77‬‬
‫‪3.80‬‬
‫‪3.45‬‬
‫‪4.60‬‬
‫‪3.99‬‬
‫‪5.51‬‬
‫‪5.74‬‬
‫‪3.49‬‬
‫‪5.42‬‬
‫‪3.88‬‬
‫‪5.07‬‬
‫‪4.30‬‬
‫‪3.78‬‬
‫‪3.91‬‬
‫‪6.16‬‬
‫‪4.05‬‬
‫‪2.54‬‬
‫‪3.96‬‬
‫‪1.22‬‬
‫‪3.57‬‬
‫‪2.65‬‬
‫‪3.45‬‬
‫‪3.28‬‬
‫‪3.98‬‬
‫‪4.05‬‬
‫‪4.08‬‬
‫‪4.61‬‬
‫‪2.89‬‬
‫‪287‬‬
2.52
5.77
3.20
5.13
7.20
7.26
6.42
1.58
4.99
5.05
7.07
6.87
7.22
8.22
4.00
4.31
6.23
8.02
7.56
6.69
7.67
5.14
3.84
4.40
3.08
6.46
5.43
6.11
4.80
4.79
2.75
5.65
6.12
5.52
4.99
6.12
4.89
6.06
4.78
6.36
5.67
5.75
6.08
5.70
5.80
5.61
6.57
5.63
6.08
5.71
4.72
5.16
6.09
7.49
6.64
9.01
7.49
7.27
6.64
5.62
7.53
7.59
7.23
7.53
8.50
6.43
8.27
8.75
7.50
7.86
:7
;
‫ ا‬L‫ أو‬MINITAB ‫;[ام‬F.
Time Series Plot . ‫;[ام‬F. 4'&
‫ ا‬4;!
‫)أ( أر) ا‬
.)
‫ ا‬o%N ". 4;!
‫ ا‬O!;
4J2= ‫;ح‬B‫)ب( أ‬
S‫! إذا آ‬N 4Pb
‫ وأ;( ا‬Residuals 7B‫ا‬1(
‫ ا‬o%b. )B 45;J& 4J2= H3
(‫)ج‬
Kolmogorov-Smirnov
‫;[ام إ;(ر‬F. f
‫ وذ‬7"(= V2‫ز‬1C 4‫ز‬1& 7B‫ا‬1(
‫ا‬
Test .
Mean Absolute Percentage Error
Mean
‫ و‬Mean
Absolute
‫ء‬6
4B
‫ ا‬2"& ‫رن‬B (‫)د‬
Deviation
(MAD) ‫( و‬MAPE)
]‫ اآ‬4J26
‫) أ;[م ا‬U &‫ و‬45;J& 4J2= H3
Squared Deviation (MSD)
95% . :('C ‫;ات‬N ‫د‬2‫ إ‬V& 4(J;!
‫) ا‬J
‫ ا‬4![
‫ات‬:('C 1;
4B‫د‬
:Q
]
‫ال ا‬:
‫ا‬
(6. ‫ا‬6 !
‫أ & ا
ر‬B‫ )إ‬:4
;
‫ ا‬4'&
‫ ا‬4;!
1.20
1.76
1.50
2.00
1.54
2.09
288
2.70
1.95
2.40
1.89
3.44
1.80
2.83
1.25
1.58
2.25
2.50
1.08
2.07
2.05
1.27
2.32
1.37
1.46
1.18
1.23
1.79
1.54
1.42
1.57
1.39
1.40
1.42
1.51
2.08
2.91
1.85
1.77
1.82
1.61
1.68
1.25
1.78
1.15
1.84
:7
;
‫ ا‬L‫ أو‬MINITAB ‫;[ام‬F.
Time Series Plot . ‫;[ام‬F. 4'&
‫ ا‬4;!
‫)أ( أر) ا‬
ARIMA ( p, d , q ) 48 & W'& ‫ذج‬1! ‫;ح‬B‫ أ‬O'&‫ و‬SPACF ‫ و‬SACF & H‫ آ‬L‫)ب( أو‬
. q ‫ و‬d ‫ و‬p & H‫;" آ‬. f
‫وذ‬
2‫ة ا
!"
) &و‬A‫ ه‬H‫ أو آ‬5‫! إذا آن أ‬N ‫ت‬Pb
‫;ح وأ;( ا‬J!
‫ذج ا‬1!'
)
"!
‫ر ا‬B (‫)ج‬
.b
V2‫ز‬1C 4‫ز‬1& 7B‫ا‬1(
‫ ا‬S‫! إذا آ‬N 4Pb
‫ وأ;( ا‬Residuals 7B‫ا‬1(
‫ ا‬o%b. )B (‫)د‬
Kolmogorov-Smirnov Test . ‫;[ام إ;(ر‬F. f
‫ وذ‬7"(=
95% . :('C ‫;ات‬N ‫د‬2‫ إ‬V& 4
;
‫ ا‬4(J;!
‫) ا‬J
‫ ا‬4![
‫ات‬:('C W5‫)هـ( أ‬
289
)5
‫! ا‬5
‫) ا ا‬.
‫ هـ‬1422/1421 7]
‫ ا‬Hb
78O'
‫ Œ;(ر ا‬4!;%& ‫ت‬.L‫إ‬
Q%. 221 ‫
!دة‬
:‫ال اول‬:
‫ ا‬4.L‫إ‬
(1 − B ) 2b;
‫ ا‬H& ‫ى‬1%2 * J;& z ‫ذج‬1!'
‫)أ( ا‬
(‫)ب‬
(1 − 0.7 B )(1 − B ) zt = at
(1 − 1.7 B + 0.7 B ) z
2
t
= at
1
at
1 − 1.7 B + 0.7 B 2
= ψ ( B ) at
∴ zt =
1
1 − 1.7 B + 0.7 B 2
∴ (1 + ψ 1B + ψ 2 B 2 + ψ 3 B 3 + ⋯)(1 − 1.7 B + 0.7 B 2 ) ≡ 0
∴ψ ( B ) =
B : ψ 1 − 1.7 = 0 ⇒ ψ 1 = 1.7
B 2 : ψ 2 − 1.7ψ 1 + 0.7 = 0 ⇒ ψ 2 = 1.7ψ 1 − 0.7 = 2.19
B 3 : ψ 3 − 1.7ψ 2 + 0.7ψ 1 = 0 ⇒ ψ 3 = 1.7ψ 2 − 0.7ψ 1 = 2.53
⋮
B j : ψ j − 1.7ψ j −1 + 0.7ψ j −2 = 0 ⇒ ψ j = 1.7ψ j −1 + 0.7ψ j −2 , j = 2, 3,...
∴ψ 4 = 1.7ψ 3 − 0.7ψ 2 = 2.768
ψ 5 = 1.7ψ 4 − 0.7ψ 3 = 2.9346
ψ 1 = 1.7,ψ 2 = 2.19,ψ 3 = 2.53,ψ 4 = 2.77,ψ 5 = 2.93 :7‫ ه‬4.16!
‫إذا اوزان ا‬
:7
;
‫ات آ‬:(';
‫ ا‬W% (‫)ج‬
290
∵ (1 − 1.7 B + 0.7 B 2 ) zt = at
∴ zt = 1.7 zt −1 − 0.7 zt −2 + at
∴ zt ( ℓ ) = E  zt + ℓ zt , zt −1 ,⋯ , ℓ ≥ 0
= E 1.7 zt + ℓ−1 − 0.7 zt + ℓ−2 + at + ℓ zt , zt −1 ,⋯ , ℓ ≥ 0
= 1.7 E  zt + ℓ−1 zt , zt −1 ,⋯ − 0.7 E  zt +ℓ −2 zt , zt −1 ,⋯ + E  at +ℓ zt , zt −1 ,⋯ , ℓ ≥ 0
∴ ℓ = 1: zt (1) = 1.7 E  zt zt , zt −1 ,⋯ − 0.7 E  zt −1 zt , zt −1 ,⋯ + E  at +1 zt , zt −1 ,⋯
= 1.7 zt − 0.7 zt −1
ℓ = 2 : zt ( 2 ) = 1.7 E  zt +1 zt , zt −1 ,⋯ − 0.7 E  zt zt , zt −1 ,⋯ + E  at + 2 zt , zt −1 ,⋯
= 1.7 zt (1) − 0.7 zt
ℓ = 3 : zt ( 3) = 1.7 E  zt + 2 zt , zt −1 ,⋯ − 0.7 E  zt +1 zt , zt −1 ,⋯ + E  at +3 zt , zt −1 ,⋯
= 1.7 zt ( 2 ) − 0.7 zt (1)
∴ ℓ ≥ 3 : zt ( ℓ ) = 1.7 zt ( ℓ − 1) − 0.7 zt ( ℓ − 2 )
∵ t = 144
∴ z144 (1) = 1.7 z144 − 0.7 z143 = 1.7 ( 800 ) − 0.7 ( 770 ) = 821
z144 ( 2 ) = 1.7 z144 (1) − 0.7 z144 = 1.7 ( 821) − 0.7 ( 800 ) = 835.7
z144 ( 3) = 1.7 z144 ( 2 ) − 0.7 z144 (1) = 1.7 ( 835.7 ) − 0.7 ( 821) = 845.99
:7‫ ه‬4(J;!
‫) ا‬B ‫ات ]ث‬:(';
‫إذا ا‬
z144 (1) = 821, z144 ( 2 ) = 835.7, z144 ( 3) = 845.99
4B"
. 6"C :('C (1 − α )100% ‫;ات‬N (‫)د‬
 z (ℓ) ± u

α 2 V 
 et ( ℓ )   , ℓ ≥ 0
 t
‫ أي أن‬uα 2 = 1.96 ‫ن‬FN α = 0.05 ‫ ان‬Q5‫ و‬7J
‫ ا‬7"(6
‫ ا‬V2‫ز‬1;
95 €!
‫ ا‬1‫ ه‬uα 2 Q5
zt + ℓ ∈  zt ( ℓ ) ± 1.96 V  et ( ℓ )   w.p. 0.95, ℓ ≥ 0


V  et ( ℓ ) = σ 2 (1 + ψ 12 + ψ 22 + ⋯ + ψ ℓ2−1 ) , ℓ ≥ 0 :4B"
‫ & ا‬:(';
‫ء ا‬6‫'ت أ‬2(C W% X‫أو‬
V  et (1)  = σ 2 = 25
(
)
V  et ( 2 )  = σ 2 (1 + ψ 12 ) = 25 1 + (1.7 ) = 97.25
(
2
)
V  et ( 3) = σ 2 (1 + ψ 12 + ψ 22 ) = 25 1 + (1.7 ) + ( 2.19 ) = 217.1525
2
2
:4.16!
‫ ا‬:(';
‫;ات ا‬N O'&‫و‬
291
z145 ∈ 821 ± 1.96 25  = [811.2,830.8] , w. p. 0.95
z146 ∈ 835.7 ± 1.96 97.25  = [816.37,855.03] , w. p. 0.95
z145 ∈ 845.99 ± 1.96 217.1525  = [817.11,874.87] , w. p. 0.95
:7]
‫ال ا‬:
4.L‫إ‬
( ‫)أ‬
7
6
Sales
5
4
3
2
1
Index
10
20
30
40
50
‫ق‬6
‫ ا‬5‫ه أ‬O!C 7N ‫ ;[م‬f
A
‫ و‬4!1& z 4;!
‫ أن ا‬.
‫)ب( & ا
) ا‬
:4
;
‫ا‬
Moving Average Smoothing ‫ك‬%;!
‫ ا‬w1;!
‫ ا‬-1
Single Exponential Smoothing w(
‫ ا‬7‫ ا‬O!;
‫ ا‬-2
Double Exponential Smoothing 78']
‫ ا‬7‫ ا‬O!;
‫ ا‬-3
‫ك‬%;!
‫ ا‬w1;!
‫ ا‬X‫أو‬
292
Smoothing Sales Series by Moving Avg. of Order 3
Actual
8
Sales
Predicted
7
Forecast
6
Actual
Predicted
Forecast
5
4
Moving Average
3
Length:
2
MAPE: 26.5366
1
0
10
20
30
40
3
MAD:
0.9077
MSD:
1.2322
50
Time
MTB > %MA 'Sales' 3;
SUBC>
Forecasts 5;
SUBC>
Title "Smoothing Sales Series by Moving
Avg. of Order 3";
SUBC>
Residuals 'RESI1'.
Executing from file: G:\MTBWIN\MACROS\MA.MAC
Macro is running ... please wait
Moving average
Data
Length
Sales
50.0000
NMissing
0
Moving Average
Length: 3
Accuracy Measures
MAPE: 26.5366
MAD:
0.9077
293
MSD:
1.2322
Row
Period
Forecast
Lower
Upper
1
51
5.9
3.72428
8.07572
2
3
52
53
5.9
5.9
3.72428
3.72428
8.07572
8.07572
4
5
54
55
5.9
5.9
3.72428
3.72428
8.07572
8.07572
w(
‫ ا‬7‫ ا‬O!;
‫ ا‬U
Smoothing Sales Series by Single Exponential Smoothing
8
Actual
Predicted
7
Forecast
Actual
Predicted
Forecast
Sales
6
5
4
Smoothing Constant
3
Alpha:
2
MAPE: 25.5159
1
0
10
20
30
40
0.258
MAD:
0.9002
MSD:
1.1638
50
Time
MTB > %SES 'Sales';
SUBC>
Forecasts 5;
SUBC>
Title "Smoothing Sales Series by Single
Exponential Smoothing";
SUBC>
Residuals 'RESI2'.
Executing from file: G:\MTBWIN\MACROS\SES.MAC
Macro is running ... please wait
294
Single Exponential Smoothing
Data
Length
Sales
50.0000
NMissing
0
Smoothing Constant
Alpha: 0.257773
Accuracy Measures
MAPE: 25.5159
MAD:
0.9002
MSD:
1.1638
Row
Period
Forecast
Lower
Upper
1
2
51
52
5.67586
5.67586
3.47035
3.47035
7.88137
7.88137
3
4
53
54
5.67586
5.67586
3.47035
3.47035
7.88137
7.88137
5
55
5.67586
3.47035
7.88137
78']
‫ ا‬7‫ ا‬O!;
‫
] ا‬U
295
Smoothing Sales Series by Double Exponential Smoothing
Actual
11
Predicted
Sales
Forecast
Actual
Predicted
Forecast
6
Smoothing Constants
Alpha (level): 0.681
Gamma (trend):0.019
MAPE:
MAD:
MSD:
1
0
10
20
30
40
27.1322
0.9880
1.5458
50
Time
MTB > %DES 'Sales';
SUBC>
Forecasts 5;
SUBC>
Title "Smoothing Sales Series by Double
Exponential Smoothing";
SUBC>
Residuals 'RESI3'.
Executing from file: G:\MTBWIN\MACROS\DES.MAC
Macro is running ... please wait
Double Exponential Smoothing
Data
Length
Sales
50.0000
NMissing
0
Smoothing Constants
Alpha (level): 0.680728
Gamma (trend): 0.019421
Accuracy Measures
MAPE: 27.1322
MAD:
296
0.9880
MSD:
1.5458
Row
Period
Forecast
Lower
Upper
1
51
6.04349
3.62298
8.4640
2
3
52
53
6.06254
6.08160
3.04085
2.40519
9.0842
9.7580
4
5
54
55
6.10065
6.11971
1.74005
1.05736
10.4613
11.1821
:7B‫ا‬1(
‫ ا‬o%N (‫)ج‬
‫ك‬%;!
‫ ا‬w1;!
Autocorrelation
Autocorrelation Function for RESI1
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
2
3
4
5
Lag
Corr
T
LBQ
1
2
3
4
5
6
7
0.01
-0.33
-0.11
-0.01
0.10
0.20
-0.07
0.05
-2.26
-0.69
-0.06
0.64
1.22
-0.39
0.00
5.55
6.19
6.19
6.79
9.03
9.28
297
6
Lag
7
Corr
8
T
LBQ
8 0.08 0.47
9 -0.11 -0.66
10 0.00 0.02
11 0.04 0.25
9.66
10.43
10.43
10.55
9
10
11
Partial Autocorrelation
Partial Autocorrelation Function for RESI1
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
2
3
4
5
Lag PAC
T
1 0.01
2 -0.33
3 -0.12
4 -0.14
5 0.03
6 0.17
7 -0.02
0.05
-2.26
-0.81
-0.93
0.19
1.14
-0.16
6
7
Lag PAC
8
9
10
11
T
8 0.25 1.74
9 -0.11 -0.76
10 0.15 1.01
11 -0.06 -0.39
Frequency
10
5
0
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
RESI1
Normal Probability Plot for RESI1
99
Mean:
3.15E-02
StDev:
1.12161
95
90
80
Percent
70
60
50
40
30
20
10
5
1
-3
-2
-1
0
1
2
3
Data
MTB > %Qqplot 'RESI1';
SUBC>
298
Table;
SUBC>
Conf 95;
SUBC>
Ci.
Executing from file: G:\MTBWIN\MACROS\Qqplot.MAC
Distribution Function Analysis
Normal Dist. Parameter Estimates
Data
Mean:
StDev:
: RESI1
3.15E-02
1.12161
Percentile Estimates
95% CI
95% CI
Approximate
Upper Limit
P
Percentile
Approximate
Lower Limit
0.01
-2.57777
-3.19506
-1.96047
0.02
0.03
-2.27202
-2.07803
-2.83741
-2.61158
-1.70663
-1.54447
0.04
0.05
-1.93210
-1.81339
-2.44238
-2.30524
-1.42181
-1.32155
0.06
0.07
-1.71236
-1.62377
-2.18891
-2.08723
-1.23581
-1.16032
0.08
0.09
-1.54445
-1.47231
-1.99647
-1.91417
-1.09244
-1.03046
0.10
0.20
-1.40591
-0.91248
-1.83864
-1.28563
-0.97318
-0.53934
299
0.30
-0.55668
-0.89868
-0.21469
0.40
0.50
-0.25267
0.03149
-0.57843
-0.28917
0.07309
0.35215
0.60
0.70
0.31565
0.61966
-0.01012
0.27767
0.64141
0.96165
0.80
0.90
0.97546
1.46889
0.60232
1.03616
1.34860
1.90162
0.91
0.92
1.53529
1.60743
1.09344
1.15542
1.97715
2.05945
0.93
0.94
1.68675
1.77534
1.22330
1.29879
2.15021
2.25189
0.95
0.96
1.87637
1.99508
1.38453
1.48479
2.36822
2.50536
0.97
0.98
2.14101
2.33499
1.60745
1.76961
2.67456
2.90038
0.99
2.64074
2.02345
3.25804
Kolmogorov-Smirnov Test for Residuals of MA
.999
.99
Probability
.95
.80
.50
.20
.05
.01
.001
-2
-1
0
1
2
RESI1
Average: 0.0314894
StDev: 1.12161
N: 47
Kolmogorov-Smirnov Normality Test
D+: 0.069 D-: 0.067 D : 0.069
Approximate P-Value > 0.15
w(
‫ ا‬7‫ ا‬O!;
300
Autocorrelation
Autocorrelation Function for RESI2
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
2
7
Lag
T
LBQ
1 -0.02 -0.16
2 -0.21 -1.51
3 0.16 1.07
4 0.01 0.07
5 0.10 0.68
6 0.21 1.40
7 -0.08 -0.53
Corr
0.03
2.48
3.87
3.87
4.47
7.18
7.61
Lag
Corr
12
T
LBQ
8 0.17 1.05
9 -0.13 -0.79
10 -0.08 -0.47
11 0.13 0.81
12 -0.06 -0.38
9.33
10.37
10.76
11.95
12.24
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
2
7
Lag PAC
T
1 -0.02
2 -0.21
3 0.15
4 -0.03
5 0.18
6 0.20
7 -0.02
-0.16
-1.51
1.09
-0.24
1.28
1.42
-0.14
Lag PAC
12
T
8 0.25 1.76
9 -0.27 -1.89
10 0.04 0.26
11 -0.11 -0.75
12 -0.09 -0.62
9
8
7
Frequency
Partial Autocorrelation
Partial Autocorrelation Function for RESI2
6
5
4
3
2
1
0
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
RESI2
301
Normal Probability Plot for RESI2
99
Mean:
9.40E-02
StDev:
1.08561
95
90
80
Percent
70
60
50
40
30
20
10
5
1
-3
-2
-1
0
1
2
3
Data
MTB > %Qqplot 'RESI2';
SUBC>
Table;
SUBC>
Conf 95;
SUBC>
Ci.
Executing from file: G:\MTBWIN\MACROS\Qqplot.MAC
Distribution Function Analysis
Normal Dist. Parameter Estimates
Data
Mean:
StDev:
: RESI2
9.40E-02
1.08561
Percentile Estimates
95% CI
302
95% CI
Approximate
Approximate
P
Percentile
Lower Limit
Upper Limit
0.01
0.02
-2.43146
-2.13552
-3.01074
-2.66609
-1.85218
-1.60495
0.03
0.04
-1.94776
-1.80651
-2.44846
-2.28537
-1.44706
-1.32766
0.05
0.06
-1.69162
-1.59383
-2.15318
-2.04103
-1.23006
-1.14663
0.07
0.08
-1.50809
-1.43131
-1.94300
-1.85549
-1.07317
-1.00713
0.09
0.10
-1.36149
-1.29722
-1.77614
-1.70330
-0.94684
-0.89113
0.20
0.30
-0.81962
-0.47525
-1.16979
-0.79618
-0.46946
-0.15431
0.40
0.50
-0.18099
0.09405
-0.48669
-0.20686
0.12471
0.39496
0.60
0.70
0.36908
0.66334
0.06338
0.34241
0.67479
0.98427
0.80
0.90
1.00772
1.48531
0.65756
1.07923
1.35789
1.89140
0.91
0.92
1.54959
1.61941
1.13494
1.19523
1.96423
2.04359
0.93
0.94
1.69618
1.78193
1.26127
1.33473
2.13110
2.22913
0.95
0.96
1.87972
1.99461
1.41816
1.51575
2.34128
2.47347
0.97
0.98
2.13586
2.32362
1.63516
1.79305
2.63655
2.85419
0.99
2.61955
2.04028
3.19883
303
Kolmogorov-Smirnov Test for Residuals of SES
.999
.99
Probability
.95
.80
.50
.20
.05
.01
.001
-2
-1
0
1
2
RESI2
Average: 0.0940483
StDev: 1.08561
N: 50
Kolmogorov-Smirnov Normality Test
D+: 0.077 D-: 0.068 D : 0.077
Approximate P-Value > 0.15
78']
‫ ا‬7‫ ا‬O!;
‫ا‬
Autocorrelation
Autocorrelation Function for RESI3
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
2
7
Lag
Corr
T
LBQ
1
2
3
4
5
6
7
-0.22
-0.29
0.22
-0.07
0.00
0.17
-0.16
-1.53
-1.98
1.39
-0.43
0.03
1.03
-0.95
2.50
7.12
9.81
10.10
10.10
11.82
13.38
Lag
Corr
12
T
LBQ
8 0.16 0.96
9 -0.16 -0.89
10 0.01 0.04
11 0.19 1.06
12 -0.15 -0.82
15.06
16.62
16.62
18.99
20.53
Partial Autocorrelation
Partial Autocorrelation Function for RESI3
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
2
7
Lag PAC
T
1 -0.22
2 -0.36
3 0.07
4 -0.11
5 0.07
6 0.14
7 -0.05
-1.53
-2.52
0.49
-0.81
0.47
1.02
-0.34
304
Lag PAC
12
T
8 0.24 1.69
9 -0.23 -1.61
10 0.13 0.92
11 0.01 0.04
12 -0.03 -0.25
9
8
Frequency
7
6
5
4
3
2
1
0
-3
-2
-1
0
1
2
3
RESI3
Normal Probability Plot for RESI3
99
Mean:
-3.0E-03
StDev:
1.25593
95
90
80
Percent
70
60
50
40
30
20
10
5
1
-3
-2
-1
0
1
2
3
Data
MTB > %Qqplot 'RESI3';
SUBC>
Table;
SUBC>
Conf 95;
SUBC>
Ci.
Executing from file: G:\MTBWIN\MACROS\Qqplot.MAC
Distribution Function Analysis
Normal Dist. Parameter Estimates
305
Data
: RESI3
Mean:
-3.0E-03
StDev:
1.25593
Percentile Estimates
95% CI
Approximate
95% CI
Approximate
P
Percentile
Lower Limit
Upper Limit
0.01
0.02
-2.92473
-2.58237
-3.59489
-3.19618
-2.25457
-1.96855
0.03
0.04
-2.36515
-2.20174
-2.94440
-2.75573
-1.78589
-1.64775
0.05
0.06
-2.06882
-1.95569
-2.60279
-2.47305
-1.53485
-1.43832
0.07
0.08
-1.85649
-1.76767
-2.35964
-2.25840
-1.35334
-1.27694
0.09
0.10
-1.68689
-1.61254
-2.16659
-2.08233
-1.20719
-1.14274
0.20
0.30
-1.06001
-0.66161
-1.46512
-1.03289
-0.65491
-0.29032
0.40
0.50
-0.32118
-0.00300
-0.67484
-0.35112
0.03248
0.34512
0.60
0.70
0.31519
0.65562
-0.03847
0.28433
0.66885
1.02690
0.80
0.90
1.05402
1.60655
0.64892
1.13675
1.45913
2.07634
0.91
0.92
1.68090
1.76168
1.20120
1.27095
2.16060
2.25241
306
0.93
1.85050
1.34735
2.35365
0.94
0.95
1.94969
2.06283
1.43233
1.52886
2.46706
2.59680
0.96
0.97
2.19575
2.35915
1.64176
1.77990
2.74973
2.93840
0.98
0.99
2.57637
2.91874
1.96256
2.24858
3.19019
3.58890
Kolmogorov-Smirnov Test for Residuals of DES
.999
.99
Probability
.95
.80
.50
.20
.05
.01
.001
-3
-2
-1
0
1
2
RESI3
Average: -0.0029958
StDev: 1.25593
N: 50
Kolmogorov-Smirnov Normality Test
D+: 0.077 D-: 0.070 D : 0.077
Approximate P-Value > 0.15
‫ت‬Pb
‫ ا‬J%C 7B‫ا‬1(
‫ ان ا‬4J.
‫ت ا‬X%
‫ ا‬H‫ آ‬7N
46.‫ &;ا‬z -1
‫ة‬5‫ و‬2(C‫ي و‬b+ w1;!. 7"(= V2‫ز‬1C (2JC O
-2
‫ء‬6
4B
‫~ ا‬2J& o[2 7
;
‫)د( ا
ول ا‬
MAPE
MAD
MSD
MA
26.5366
0.9077
1.2322
SES
25.5159
0.9002
1.1638
307
DES
27.1322
0.9880
1.5458
.4; H`N‫ أ‬76"2 w(
‫ ا‬7‫ ا‬O!;
‫‚ أن ا‬52‫و‬
:(';
95% ‫;ات‬N‫ و‬w(
‫ ا‬7‫ ا‬O!;
‫;[ام ا‬F. ‫ات‬:(';
‫ا‬
Period
of
Forecast
Forecast
Lower
Upper
51
52
5.67586
5.67586
3.47035
3.47035
7.88137
7.88137
53
54
5.67586
5.67586
3.47035
3.47035
7.88137
7.88137
55
5.67586
3.47035
7.88137
:Q
]
‫ال ا‬:
4.L‫إ‬
( ‫)أ‬
3.5
Defects
3.0
2.5
2.0
1.5
1.0
Index
10
308
20
30
40
Autocorrelation
Autocorrelation Function for Defects
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
2
3
Lag
Corr
4
5
6
7
8
9
T
LBQ
Lag
Corr
T
LBQ
1 0.43 2.88
2 0.26 1.49
3 0.14 0.77
4 0.08 0.43
5 -0.09 -0.46
6 -0.07 -0.39
7 -0.21 -1.10
8.84
12.18
13.18
13.50
13.89
14.18
16.57
8
9
10
11
-0.11
-0.05
-0.01
-0.04
-0.57
-0.27
-0.04
-0.19
17.25
17.41
17.41
17.50
10
11
Partial Autocorrelation
Partial Autocorrelation Function for Defects
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
2
3
Lag PAC
4
5
T
1 0.43 2.88
2 0.09 0.63
3 -0.00 -0.01
4 0.00 0.00
5 -0.16 -1.07
6 0.00 0.02
7 -0.18 -1.19
6
7
Lag PAC
8
9
10
11
T
8 0.07 0.44
9 0.05 0.35
10 0.01 0.09
11 -0.03 -0.23
‫ذج‬1! ‫;ح‬J2 ‫ا‬A‫ وه‬r1,1 ". V6B O
SPACF ‫;[& أ و‬C SACF ‫ أن‬H3K
‫^ & ا‬P‫وا‬
q = 0 ‫ و‬d = 0 ‫ و‬p = 1 ‫ أي أن‬ARIMA (1, 0, 0 )
:)
"!
‫ ا‬2JC (‫)ج‬
MTB > ARIMA 1 0 0 'Defects' 'RESI1' 'FITS1';
SUBC>
Constant;
SUBC>
Forecast 5 c3 c4 c5;
SUBC> GACF;
SUBC> GPACF;
SUBC> GHistogram;
SUBC>
GNormalplot;
SUBC> GFits;
SUBC>
309
GOrder.
ARIMA Model
ARIMA model for Defects
Estimates at each iteration
Iteration
SSE
Parameters
0
11.2419
0.100
1.700
Relative
1
2
10.0858
9.5649
0.250
0.400
1.393
1.086
3
4
9.5316
9.5309
0.436
0.441
1.006
0.995
5
6
9.5309
9.5309
0.442
0.442
0.993
0.993
change
in
each
estimate
less
than
0.0010
Final Estimates of Parameters
Type
AR
1
Constant
Coef
0.4421
StDev
0.1365
T
3.24
0.99280
Mean
0.06999
1.7795
14.19
0.1254
Number of observations:
Residuals:
SS
=
9.47811
(backforecasts
excluded)
MS = 0.22042
Modified
Box-Pierce
(Ljung-Box)
Lag
12
36
310
45
DF = 43
Chi-Square
statistic
24
48
Chi-Square
4.9(DF=11)
8.9(DF=23)
30.9(DF=35)
* (DF= *)
Forecasts from period 45
95 Percent Limits
Period
Forecast
Lower
Upper
Actual
46
47
1.80627
1.79135
0.88588
0.78503
2.72665
2.79767
48
49
1.78476
1.78184
0.76248
0.75648
2.80703
2.80721
50
1.78055
0.75459
2.80652
1‫;ح ه‬J!
‫ذج ا‬1!'
‫ أن ا‬4J.
‫ت ا‬L[!
‫& ا‬
zt = 0.9928 − 0.4421zt −1 + at , at ∼ WN ( 0, 0.22042 )
or
( zt − 1.7795) = −0.4421( zt −1 − 1.7795) + at
Q5
( )
φˆ1 = 0.4421, s.e φˆ1 = 0.1365, with t-value = 3.24
‫ي‬1'"& 7C‫ا‬A
‫ار ا‬%9‫ ا‬H&"& ‫أي أن‬
( )
δˆ = 0.9928, s.e δˆ = 0.06999, with t-value = 14.19
‫ي‬1'"& δ ‫ى‬1;!
‫` ا‬2‫وأ‬
:7B‫ا‬1(
‫ ا‬o%N (‫)د‬
w.‫ م ا
;ا‬-1
311
ACF of Residuals for Defects
(with 95% confidence limits for the autocorrelations)
1.0
0.8
Autocorrelation
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
2
3
4
5
6
7
8
9
10
11
10
11
Lag
PACF of Residuals for Defects
(with 95% confidence limits for the partial autocorrelations)
1.0
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
2
3
4
5
6
7
8
9
Lag
:7"(6
‫ ا‬V2‫ز‬1;
‫ا‬
Histogram of the Residuals
(response is Defects)
10
Frequency
Partial Autocorrelation
0.8
5
0
-1.0
-0.5
0.0
0.5
Residual
312
1.0
1.5
Normal Probability Plot of the Residuals
(response is Defects)
Residual
1
0
-1
-2
-1
0
1
2
Normal Score
Normal Probability Plot for RESI1
99
95
Mean:
8.21E-03
StDev:
0.464050
90
80
Percent
70
60
50
40
30
20
10
5
1
-1.0
-0.5
0.0
0.5
1.0
1.5
Data
MTB > %Qqplot 'RESI1';
SUBC>
Table;
SUBC>
Conf 95;
SUBC>
Ci.
Executing from file: G:\MTBWIN\MACROS\Qqplot.MAC
Distribution Function Analysis
Normal Dist. Parameter Estimates
Data
313
: RESI1
Mean:
StDev:
8.21E-03
0.464050
Percentile Estimates
95% CI
95% CI
Approximate
Upper Limit
P
Percentile
Approximate
Lower Limit
0.01
-1.07134
-1.33235
-0.81033
0.02
0.03
-0.94484
-0.86458
-1.18390
-1.09018
-0.70577
-0.63897
0.04
0.05
-0.80420
-0.75509
-1.01996
-0.96306
-0.58844
-0.54712
0.06
0.07
-0.71329
-0.67663
-0.91478
-0.87260
-0.51179
-0.48067
0.08
0.09
-0.64382
-0.61397
-0.83494
-0.80080
-0.45269
-0.42714
0.10
0.20
-0.58650
-0.38235
-0.76947
-0.54012
-0.40353
-0.22457
0.30
0.40
-0.23514
-0.10936
-0.37975
-0.24710
-0.09054
0.02838
0.50
0.60
0.00821
0.12577
-0.12738
-0.01197
0.14379
0.26351
0.70
0.80
0.25155
0.39876
0.10695
0.24098
0.39616
0.55654
0.90
0.91
0.60291
0.63038
0.41994
0.44355
0.78588
0.81721
0.92
0.93
0.66023
0.69305
0.46911
0.49708
0.85136
0.88901
314
0.94
0.72970
0.52820
0.93120
0.95
0.96
0.77150
0.82061
0.56353
0.60485
0.97947
1.03638
0.97
0.98
0.88099
0.96125
0.65539
0.72219
1.10659
1.20031
0.99
1.08775
0.82674
1.34876
Normal Probability Plot
.999
.99
Probability
.95
.80
.50
.20
.05
.01
.001
-0.5
0.0
0.5
1.0
RESI1
Average: 0.0082067
StDev: 0.464050
N: 45
Kolmogorov-Smirnov Normality Test
D+: 0.166 D-: 0.080 D : 0.166
Approximate P-Value < 0.01
4J(6!
‫) ا‬J
‫ ا‬V& 7B‫ا‬1(
‫ أ!ط ا‬o%b
Residuals Versus the Fitted Values
(response is Defects)
Residual
1
0
-1
1.5
2.0
2.5
Fitted Value
‫ ا
(ت‬WCC V& 7B‫ا‬1(
‫وا‬
315
Residuals Versus the Order of the Data
(response is Defects)
Residual
1
0
-1
5
10
15
20
25
30
35
40
45
Observation Order
‫ة‬6"!
‫ ا
(ت ا‬7 (6;
W'& ‫;ح‬J!
‫ذج ا‬1!'
‫ ;';_ أن ا‬4J.
‫ت ا‬+1%b
‫& ا‬
(‫)هـ‬
95%
Forecasts from period 45 :('C ‫;ات‬N‫ و‬4(J;!
‫) ا‬J
‫ات [!~ ا‬:(';
‫ا‬
95 Percent Limits
Period
Forecast
Lower
Upper
46
1.80627
0.88588
2.72665
47
1.79135
0.78503
2.79767
48
1.78476
0.76248
2.80703
49
1.78184
0.75648
2.80721
50
1.78055
0.75459
2.80652
316
‫ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﺣﻤﻦ ﺍﻟﺮﺣﻴﻢ‬
‫ﻗﺴﻡ ﺍﻹﺤﺼﺎﺀ ﻭﺒﺤﻭﺙ ﺍﻝﻌﻤﻠﻴﺎﺕ‬
‫ا
!دة ‪= :‬ق ا
;'(‪ :‬ا‪Q%. 221 785X‬‬
‫ﺍﻻﺨﺘﺒﺎﺭ ﺍﻻﻭل ﻝﻸﻋﻤﺎل ﺍﻝﻔﺼﻠﻴﺔ‬
‫ا
‪ Hb‬اول ‪ 1421-1420‬هـ‬
‫ا
& ‪; :‬‬
‫أ‪ V!L 7 WL‬ا€‪ 4‬ا
;
‪:4‬‬
‫ا
‪:‬ال اول‪:‬‬
‫ا‪-‬‬
‫‪VP‬‬
‫ا
'!‪1‬ذج‬
‫ا
;
‪7‬‬
‫‪7‬‬
‫‪z n + j = β 0 + β1 j + ε n + j , j = 0,±1,...‬‬
‫‪ z n + j = f ′( j )β + ε n + j , j = 0,±1,...‬وذ
‪ 2%;. f‬آ‪& H‬‬
‫‪ β‬و ) ‪ f ′( j‬أو‪L‬‬
‫ا
‪H3K‬‬
‫ان‬
‫‪ L‬و‪.‬ه‬
‫) ‪f ′( j + 1) = Lf ′( j‬‬
‫])‪. X ′ = [f (− n + 1), f (− n + 2 ),..., f (1), f (0‬ه‬
‫ب‪ y ′ = (z1 ,..., z n ) VP1. -‬و‬
‫‪n −1‬‬
‫‪n −1‬‬
‫‪j =0‬‬
‫‪j =0‬‬
‫ان‬
‫) ‪ X ′X = ∑ f (− j )f ′(− j‬وان ‪ X ′y = ∑ f (− j )z n − j‬و& ‪ )U‬او‪J& L‬ر !") ‪β‬‬
‫ا
‪:‬ال ا
]‪:7‬‬
‫
!;‪ 4‬ا
&'‪ 4‬ا
;
‪:4‬‬
‫‪12‬‬
‫‪11‬‬
‫‪10‬‬
‫‪9‬‬
‫‪8‬‬
‫‪7‬‬
‫‪6‬‬
‫‪5‬‬
‫‪4‬‬
‫‪3‬‬
‫‪2‬‬
‫‪1‬‬
‫‪t‬‬
‫‪28‬‬
‫‪26‬‬
‫‪24‬‬
‫‪25‬‬
‫‪22‬‬
‫‪19‬‬
‫‪15‬‬
‫‪17‬‬
‫‪13‬‬
‫‪12‬‬
‫‪8‬‬
‫‪7‬‬
‫‪zt‬‬
‫ا‪ (= -‬و‪%;& w‬ك & ا
ر‪ 4;!
3 4L‬ا
!"‪ @6‬و& ‪ )U‬او‪€(';& L‬ت ‪ )J‬ا
!;‪4‬‬
‫‪z13 , z14‬‬
‫ب‪ O!C (= α = 0.5 A{. -‬ا‪ 4;!
w. 7‬ا
!"‪ @6‬و& ‪ )U‬او‪€(';& L‬ت ‪ )J‬ا
!;‪4‬‬
‫‪z13 , z14‬‬
‫‪317‬‬
:Q
]
‫ال ا‬:
‫ا‬
‫و‬
φ1 < 1
‫ و‬S.U ‫ار‬J& 0 < δ < ∞
Q5
z t = δ + φ1 z t −1 + at
7
;
‫ذج ا‬1!'
at ~ WN (0, σ 2 )
k = 0,1,...,5 )J
O!‫ وار‬ρ k , ∀k 7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ دا‬L‫ او‬-‫ا‬
k = 0,1,...,5 )J
O!‫ و وار‬φk ,k , ∀k 78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬4
‫ دا‬L‫ او‬-‫ب‬
318
‫ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﺣﻤﻦ ﺍﻟﺮﺣﻴﻢ‬
‫‪ 4"&L‬ا
!‪1" f‬د – آ‪ 4‬ا
"‪1‬م‬
‫‪ )B‬ا‪59‬ء و‪1%.‬ث ا
"!ت‬
‫إ;(ر أ!ل ‪ HN‬أول ‪ 1423/1422‬هـ‬
‫
!دة ‪=) Q%. 221‬ق ا
;'(‪ :‬ا‪7859‬‬
‫ﺍﻝﺯﻤﻥ‪ 2 :‬ﺴﺎﻋﺔ‬
‫أ‪ V!L WL‬ا€‪ 4‬ا
;
‪:4‬‬
‫ا
‪:‬ال اول‪:‬‬
‫
'!‪1‬ذج‬
‫‪z = β0 + β1t + x t‬‬
‫) ‪x t = φ1x t −1 + at , at ∼ WN (0, σ 2‬‬
‫ إ‪;N‬اض أن ا
!"
) ‪.4&1"& β0 , β1, φ1, σ 2‬‬
‫‪.‬ه أن ا
!;'(| ا
[‪ 76‬ذا أد &;‪16[
{6 V.& w1‬ة ‪ ℓ‬إ
ا&م ‪4B"
. 6"2‬‬
‫‪ℓ≥0‬‬
‫‪zt (ℓ ) = β0 + β1 (t + ℓ ) + φ1ℓ (zt − β0 − β1t ),‬‬
‫ا
‪:‬ال ا
]‪:7‬‬
‫إ;!دا &;‪K& n = 200 O
1= 4‬هة =( !‪1‬ذج )‪ AR (2‬و‪ '5‬ا
;ا‪6.‬ت‬
‫ا
‪A‬ا‪1(
4C‬ا‪ 7B‬ا
;
‪ r1 = 0.13, r2 = 0.13, r3 = 0.12 4‬إذا آ‪φˆ1 = 1.1, φˆ2 = −0.8 S‬‬
‫‪ HON‬ا
;ا‪6.‬ت ا
‪A‬ا‪1(
4C‬ا‪ )C 7B‬أن ا
'!‪1‬ذج ه‪ AR (2) 1‬آ‪5 H‬ة أو &;!"‪4‬؟‬
‫ا
‪:‬ال ا
]
‪:Q‬‬
‫
!;‪ 4‬ا
!;‪J‬ة ا
;
‪B 6, 5, 4, 6, 4 4‬ر ‪µ, γ 0, ρ1‬‬
‫‪319‬‬
:V.‫ال ا
ا‬:
‫ا‬
4
;
‫!ت ا‬3
‫ ا‬S(5 ‫هة‬K& n = 100 O
1= 4'&‫ ز‬4;!
r1 = 0.8, r2 = 0.5, r3 = 0.4, z = 2, s 2 = 5
H3K
‫ ا‬AR (2) ‫ذج‬1! & ‫هات‬K!
‫;ض ان ا‬N‫إذا ا‬
z = δ + φ1z t −1 + φ2z t −2 + at , at ∼ WN (0, σ 2 )
φ1, φ2, δ, σ 2 )
"!
‫رات ا
"وم‬J& L‫أو‬
320
‫ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﺣﻤﻦ ﺍﻟﺮﺣﻴﻢ‬
‫‪ 4"&L‬ا
!‪1" f‬د – آ‪ 4‬ا
"‪1‬م‬
‫‪ )B‬ا‪59‬ء و‪1%.‬ث ا
"!ت‬
‫ا‪(;9‬ر ا
'‪ Hb
78O‬اول ‪ 1423/1422‬هـ‬
‫
!دة ‪=) Q%. 221‬ق ا
;'(‪ :‬ا‪(7859‬‬
‫ﺍﻝﺯﻤﻥ‪ 3 :‬ﺴﺎﻋﺎﺕ‬
‫أ‪ V!L WL‬ا€‪ 4‬ا
;
‪:4‬‬
‫ا
‪:‬ال اول‪:‬‬
‫
'!‪1‬ذج‬
‫‪z = β0 + β1t + x t‬‬
‫) ‪x t = φ1x t −1 + at , at ∼ WN (0, σ 2‬‬
‫ إ‪;N‬اض أن ا
!"
) ‪.4&1"& β0 , β1, φ1, σ 2‬‬
‫‪.‬ه أن ا
!;'(| ا
[‪ 76‬ذا أد &;‪16[
{6 V.& w1‬ة ‪ ℓ‬إ
ا&م ‪4B"
. 6"2‬‬
‫‪ℓ≥0‬‬
‫‪z t (ℓ ) = β0 + β1 (t + ℓ ) + φ1ℓ (z t − β0 − β1t ),‬‬
‫ا
‪:‬ال ا
]‪:7‬‬
‫إ;!دا &;‪K& n = 200 O
1= 4‬هة =( !‪1‬ذج )‪ AR (2‬و‪ '5‬ا
;ا‪6.‬ت‬
‫ا
‪A‬ا‪1(
4C‬ا‪ 7B‬ا
;
‪ r1 = 0.13, r2 = 0.13, r3 = 0.12 4‬إذا آ‪φˆ1 = 1.1, φˆ2 = −0.8 S‬‬
‫‪ HON‬ا
;ا‪6.‬ت ا
‪A‬ا‪1(
4C‬ا‪ )C 7B‬أن ا
'!‪1‬ذج ه‪ AR (2) 1‬آ‪5 H‬ة أو &;!"‪4‬؟‬
‫ا
‪:‬ال ا
]
‪:Q‬‬
‫
!;‪ 4‬ا
!;‪J‬ة ا
;
‪B 6, 5, 4, 6, 4 4‬ر ‪µ, γ 0, ρ1‬‬
‫ا
‪:‬ال ا
ا‪:V.‬‬
‫
!;‪ 4‬ز&'‪K& n = 100 O
1= 4‬هة ‪ S(5‬ا
‪!3‬ت ا
;
‪4‬‬
‫‪321‬‬
‫‪r1 = 0.8, r2 = 0.5, r3 = 0.4, z = 2, s 2 = 5‬‬
‫إذا ا‪;N‬ض ان ا
!‪K‬هات & !‪1‬ذج )‪ AR (2‬ا
‪H3K‬‬
‫) ‪z = δ + φ1z t −1 + φ2z t −2 + at , at ∼ WN (0, σ 2‬‬
‫أو‪J& L‬رات ا
"وم !"
) ‪φ1, φ2, δ, σ 2‬‬
‫ا
‪:‬ال ا
[&~‪:‬‬
‫و‪ L‬أن ا
!("ت ا
'‪ 2!. 421‬ا
‪X2‬ت ‪K‬آ‪ V(;C & 4‬ا
'!‪1‬ذج‬
‫) ‪zt = 5 + 1.1zt −1 − 0.5zt −2 + at , at ∼ WN ( 0, 2‬‬
‫إذا آ‪ S‬ا
!("ت '‪1‬ات ‪ 1419‬و ‪ 1420‬و ‪ 1421‬هـ ه‪ 7‬ا
;‪1‬ا
‪ 10 7‬و ‪ 11‬و ‪2& 9‬‬
‫ر‪2‬ل‬
‫‪ -1‬أو‪:('C L‬ات !("ت ‪ 1422‬و ‪ 1423‬و ‪ 1424‬هـ‬
‫‪ -2‬أ‪ W5‬اوزان‬
‫‪ψj , j = 1,2, 3, 4.‬‬
‫ج( أ‪;N W5‬ات ‪"(!
95% :('C‬ت '‪1‬ات ‪ 1422‬و ‪ 1423‬و ‪ 1424‬هـ‪.‬‬
‫‪322‬‬
‫ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﺣﻤﻦ ﺍﻟﺮﺣﻴﻢ‬
‫‪ 4"&L‬ا
!‪1" f‬د – آ‪ 4‬ا
"‪1‬م‬
‫‪ )B‬ا‪59‬ء و‪1%.‬ث ا
"!ت‬
‫ا‪(;9‬ر ا
'‪ Hb
78O‬اول ‪ 1423/1422‬هـ‬
‫
!دة ‪=) Q%. 221‬ق ا
;'(‪ :‬ا‪(7859‬‬
‫ﺍﻝﺯﻤﻥ‪ 3 :‬ﺴﺎﻋﺎﺕ‬
‫أ‪ V!L WL‬ا€‪ 4‬ا
;
‪:4‬‬
‫ا
‪:‬ال اول‪:‬‬
‫
'!‪1‬ذج‬
‫‪z t = β0 + β1t + x t‬‬
‫) ‪x t = φ1x t −1 + at , at ∼ WN (0, σ 2‬‬
‫ إ‪;N‬اض أن ا
!"
) ‪.4&1"& β0 , β1, φ1, σ 2‬‬
‫‪.‬ه أن ا
!;'(| ا
[‪ 76‬ذا أد &;‪16[
{6 V.& w1‬ة ‪ ℓ‬إ
ا&م ‪4B"
. 6"2‬‬
‫‪ℓ≥0‬‬
‫‪z t (ℓ ) = β0 + β1 (t + ℓ ) + φ1ℓ (z t − β0 − β1t ),‬‬
‫ا
‪:‬ال ا
]‪:7‬‬
‫إ;!دا &;‪K& n = 200 O
1= 4‬هة =( !‪1‬ذج )‪ AR (2‬و‪ '5‬ا
;ا‪6.‬ت‬
‫ا
‪A‬ا‪1(
4C‬ا‪ 7B‬ا
;
‪ r1 = 0.13, r2 = 0.13, r3 = 0.12 4‬إذا آ‪φˆ1 = 1.1, φˆ2 = −0.8 S‬‬
‫‪ HON‬ا
;ا‪6.‬ت ا
‪A‬ا‪1(
4C‬ا‪ )C 7B‬أن ا
'!‪1‬ذج ه‪ AR (2) 1‬آ‪5 H‬ة أو &;!"‪4‬؟‬
‫ا
‪:‬ال ا
]
‪:Q‬‬
‫
!;‪ 4‬ز&'‪K& n = 100 O
1= 4‬هة ‪ S(5‬ا
‪!3‬ت ا
;
‪4‬‬
‫‪r1 = 0.8, r2 = 0.5, r3 = 0.4, z = 2, s 2 = 5‬‬
‫إذا ا‪;N‬ض ان ا
!‪K‬هات & !‪1‬ذج )‪ AR (2‬ا
‪H3K‬‬
‫‪323‬‬
‫) ‪z = δ + φ1z t −1 + φ2z t −2 + at , at ∼ WN (0, σ 2‬‬
‫أو‪J& L‬رات ا
"وم !"
) ‪φ1, φ2 , δ, σ 2‬‬
‫ا
‪:‬ال ا
ا‪:V.‬‬
‫و‪ L‬أن ا
!("ت ا
'‪ 2!. 421‬ا
‪X2‬ت ‪K‬آ‪ V(;C & 4‬ا
'!‪1‬ذج‬
‫) ‪zt = 5 + 1.1zt −1 − 0.5zt −2 + at , at ∼ WN ( 0, 2‬‬
‫إذا آ‪ S‬ا
!("ت '‪1‬ات ‪ 1419‬و ‪ 1420‬و ‪ 1421‬هـ ه‪ 7‬ا
;‪1‬ا
‪ 10 7‬و ‪ 11‬و ‪2& 9‬‬
‫ر‪2‬ل‬
‫‪ -3‬أو‪:('C L‬ات !("ت ‪ 1422‬و ‪ 1423‬و ‪ 1424‬هـ‬
‫‪ -4‬أ‪ W5‬اوزان‬
‫‪ψj , j = 1,2, 3, 4.‬‬
‫ج( أ‪;N W5‬ات ‪"(!
95% :('C‬ت '‪1‬ات ‪ 1422‬و ‪ 1423‬و ‪ 1424‬هـ‪.‬‬
‫‪324‬‬
)5
‫! ا‬5
‫) ا ا‬.
‫ هـ‬1423/1422 ‫ اول‬Hb
78O'
‫ Œ;(ر ا‬4L‫ذ‬1! ‫ت‬.L‫إ‬
( 7859‫ ا‬:(';
‫ ) =ق ا‬Q%. 221 ‫
!دة‬
:‫ال اول‬:
4.L‫إ‬
H3K
‫ذج ا‬1!'
4N"!
‫ت ا‬X‫ ا
!"د‬V`
z t = β0 + β1t + φ1x t −1 + at , at ~ WN (0, σ 2 )
4B"
‫ & ا‬6"2 ‫ إ
ا&م‬ℓ ‫ة‬16[
{6 V.& w1;& ‫ ذا أد‬76[
‫ا
!;'(| ا‬
zt (ℓ ) = E (z t +ℓ | zt , z t −1,...), ℓ ≥ 0
∵ x t = z t − β0 − β1t
∴ z t − β0 − β1t = φ1 [z t −1 − β0 − β1 (t − 1)] + at , at ~ WN (0, σ 2 )
zt (ℓ ) − β0 − β1 (t + ℓ ) = E (φ1 [zt +ℓ−1 − β0 − β1 (t + ℓ − 1)] + at +ℓ ) | z t , zt −1,... , ℓ ≥ 0


= E (φ1 [zt +ℓ−1 − β0 − β1 (t + ℓ − 1)] | zt , zt −1,...) + E (at +ℓ | z t , z t −1,...), ℓ ≥ 0
ℓ = 1 : z t (1) − β0 − β1 (t + 1) = E (φ1 (z t − β0 − β1t ) | zt , zt −1,...) + 0
= φ1 (z t − β0 − β1t )
ℓ = 2 : zt (2) − β0 − β1 (t + 2) = φ1 [zt (1) − β0 − β1 (t + 1)] = φ12 (z t − β0 − β1t )
ℓ = 3 : zt (3) − β0 − β1 (t + 3) = φ1 [z t (2) − β0 − β1 (t + 2)] = φ13 (z t − β0 − β1t )
ℓ = 4 : z t (4) − β0 − β1 (t + 4) = φ1 [zt (3) − β0 − β1 (t + 3)] = φ14 (zt − β0 − β1t )
‫ م‬H3K. ‫ا‬A3‫وه‬
z t (ℓ ) − β0 − β1 (t + ℓ ) = φ1 [z t ( ℓ − 1) − β0 − β1 (t + ℓ − 1)] = φ1ℓ (z t − β0 − β1t )
‫ود‬%
‫ ا‬WCC ". ‫أو‬
z t (ℓ ) = β0 + β1 (t + ℓ ) + φ1ℓ (z t − β0 − β1t ), ℓ ≥ 0
.‫ب‬16!
‫ ا‬1‫وه‬
325
‫ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﺣﻤﻦ ﺍﻟﺮﺣﻴﻢ‬
‫ﺟﺎﻣﻌﺔ ﺍﻟﻤﻠﻚ ﺳﻌﻮﺩ‬
‫ﻗﺴﻢ ﺍﻹﺣﺼﺎﺀ ﻭﺑﺤﻮﺙ ﺍﻟﻌﻤﻠﻴﺎﺕ‬
‫&دة ‪=) Q%. 221‬ق ا
;'(‪ :‬ا‪( 7859‬‬
‫ا‪(;9‬ر ا
'‪ Hb
78O‬ا
]‪ 1423/1422 7‬هـ‬
‫ا
& ‪ 3‬ت‬
‫أ‪ V!L WL‬ا€‪ 4‬ا
;
‪:4‬‬
‫ا
‪:‬ال اول‪:‬‬
‫
'!‪1‬ذج‬
‫)‪zt = 200 + 1.2 zt −1 − 0.7 zt − 2 + at + 0.5at −1 , at ∼ N ( 0,1‬‬
‫‪ -1‬أو‪ L‬دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪ k = 1, 2,...,5 )J
ρ k 7C‬وار!‪.O‬‬
‫‪ -2‬أو‪ L‬دا
‪ 4‬ا
;ا‪ w.‬ا
‪A‬ا‪ 7C‬ا
‪ k = 1, 2,...,5 )J
φkk 78‬وار!‪.O‬‬
‫‪ -3‬أو‪ L‬دا
‪ 4‬اوزان ‪ j = 1, 2,...,5 )J
ψ j‬وار!‪.O‬‬
‫‪ -4‬أو‪ L‬دا
‪ 4‬ا
;'(‪. zn ( ℓ ) , ℓ ≥ 0 :‬‬
‫ا
‪:‬ال ا
]‪:7‬‬
‫ا
!‪K‬هات ا
;
‪ 4;!
4‬ز&'‪ ) :4‬إ‪B‬أ & ا
ر ‪6‬ا ‪( 6.‬‬
‫‪197‬‬
‫‪197‬‬
‫‪198‬‬
‫‪199‬‬
‫‪201‬‬
‫‪200‬‬
‫‪200‬‬
‫‪202‬‬
‫‪198‬‬
‫‪326‬‬
‫‪203‬‬
‫‪202‬‬
‫‪201‬‬
196
193
195
197
199
201
201
201
203
200
197
204
202
200
200
198
198
199
204
206
203
200
200
198
199
201
201
201
204
205
205
201
198
197
203
194
195
197
201
204
201
198
198
196
193
194
206
202
204
206
205
202
:7
;
‫ ا‬WL‫ وأ‬MINITAB _&. 7N ‫هات‬K!
‫ ا‬H‫اد‬
‫;[ام‬F. f
‫هات وذ‬K!
‫( ا‬62 ARIMA 48 & W'& ‫ذج‬1! ‫"ف‬C -1
AIC ( m ) = n ln σ a2 + 2m :4B"
. 6"2 ‫ي‬A
‫ وا‬AIC 7C‫ا‬A
‫&ت ا‬1"!
‫&"ر ا‬
.4('!
‫;(رات ا‬9‫ ا‬V!L O 2& 7B‫ا‬1(
‫ ا‬o%b. )B ‫;ح‬J!
‫ذج ا‬1!'
-2
. 95% :('C ‫;ات‬N V& ‫م‬JC 4'&‫ أز‬8 ;5 4(J;!
‫) ا‬J
‫ات‬:('C ‫;ح و‬J!
‫ذج ا‬1!'
‫ & ا‬-3
327
‫ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﺣﻤﻦ ﺍﻟﺮﺣﻴﻢ‬
‫ هـ‬1423/1422 7]
‫ ا‬Hb
78O'
‫ Œ;(ر ا‬4!;%& ‫ت‬.L‫إ‬
( 7859‫ ا‬:(';
‫ )=ق ا‬Q%. 221 ‫&دة‬
:‫ال اول‬:
4.L‫إ‬
‫ت‬N‫ا‬%‫ إ‬H3 zt = 200 + 1.2 zt −1 − 0.7 zt −2 + at + 0.5at −1 , at ∼ N ( 0,1) ‫ذج‬1!'
‫ ا‬V`
‫ اي‬µ =
δ
200
=
= 400 w1;!
‫ ا‬
(1 − φ1 − φ2 ) 1 + 0.7 − 1.2
zt − 400 = 1.2 ( zt −1 − 400 ) − 0.7 ( zt − 2 − 400 ) + at + 0.5at −1 , at ∼ N ( 0,1)
:7
;
‫ آ‬ρk L1 -1
E {( zt − 400 )( zt − k − 400 )} − 1.2 E {( zt −1 − 400 )( zt − k − 400 )} + 0.7 E {( zt − 2 − 400 )( zt − k − 400 )} =
E {at ( zt − k − 400 )} + 0.5 E {at −1 ( zt − k − 400 )}
γ k − 1.2γ k −1 + 0.7γ k −2 = E {at ( zt −k − 400 )} + 0.5E {at −1 ( zt −k − 400 )}
k = 0 : γ 0 − 1.2γ 1 + 0.7γ 2 = E {at ( zt − 400 )} + 0.5 E {at −1 ( zt − 400 )}
= σ 2 + 0.5 ( 0.7σ 2 ) = 1.35σ 2
k = 1: γ 1 − 1.2γ 0 + 0.7γ 1 = E {at ( zt −1 − 400 )} + 0.5 E {at −1 ( zt −1 − 400 )}
= 0.5σ 2
k = 2 : γ 2 − 1.2γ 1 + 0.7γ 0 = E {at ( zt − 2 − 400 )} + 0.5 E {at −1 ( zt − 2 − 400 )}
=0
k ≥ 2 : γ k − 1.2γ k −1 + 0.7γ k − 2 = 0
) σ 2 = 1 VP1.) ‫ ان‬4J.
‫ت ا‬B"
‫& ا‬
ρ1 = 0.74436
γ 0 4!J
.‫ اة و‬4B"
‫و& ا‬
γ k = 1.2γ k −1 − 0.7γ k −2 , k = 2,3,...
ρ k = 1.2 ρ k −1 − 0.7 ρ k −2 , k = 2,3,...
∴ ρ 2 = 1.2 ρ1 − 0.7 ρ0 = 1.2 ( 0.74436 ) − 0.7 (1) = 0.193232
328
ρ3 = 1.2 ρ 2 − 0.7 ρ1 = -0.289173
ρ 4 = -0.482271
ρ5 = -0.376304
ρ6 = -0.113975
ρ7 = 0.126642
ρ8 = 0.231754
ρ9 = 0.189455
ρ10 = 0.651180
:7
;
‫) آ‬C‫و‬
ACF of the Model
ACF
0.5
0.0
-0.5
0
1
2
3
4
5
6
7
8
9
10
Lag
φkk L1 -2
329
φ00 = 1, by definition
φ11 = ρ1 = 0.744361, by definition
k −1
φkk =
ρ k − ∑ φk −1, j ρ k − j
j =1
k −1
1 − ∑ φk −1, j ρ j
, k = 2,3,...
j =1
φkj = φk −1, j − φkkφk −1,k −1 ,
φ22 =
j = 1, 2,..., k − 1
ρ 2 − φ11 ρ1 0.193233 − ( 0.744361)( 0.744361) −0.3608402
= −0.8091915
=
=
1 − φ11 ρ1
1 − ( 0.744361)( 0.744361)
0.4459268
φ33 = 0.343852
φ44 = -0.165706
φ55 = 0.821095
φ66 = -0.409620
φ77 = 0.204689
φ88 = -0.102327
φ99 = 0.511617
φ10,10 = -0.255822
:7
;
‫ آ‬O!‫و‬
PACF of the Model
0.8
0.6
PACF
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
0
1
2
3
4
5
6
7
8
9
10
Lag
ψ j ‫ اوزان‬4
‫ دا‬-3
330
:H3K
‫ذج ا‬1!'
‫ ا‬V`
zt = 200 + 1.2 zt −1 − 0.7 zt − 2 + at + 0.5at −1
zt − 1.2 zt −1 + 0.7 zt − 2 = 200 + at + 0.5at −1
(1 − 1.2B + 0.7 B ) z
2
zt =
t
= 200 + (1 + 0.5 B ) at
(1 + 0.5B ) a
200
+
t
1 − 1.2 + 0.7 (1 − 1.2 B + 0.7 B 2 )
= 400 + ψ ( B ) at
:7‫ اوزان ه‬4
‫دا‬
ψ (B) =
(1 − 0.5B )
(1 − 1.2B + 0.7 B 2 )
= 1 + ψ 1B + ψ 2 B 2 + ψ 3 B 3 + ...
:7
;
‫ اوزان آ‬L1
(1 + ψ B + ψ
1
2
B 2 + ψ 3 B 3 + ...)(1 − 1.2 B + 0.7 B 2 ) ≡ (1 + 0.5B )
B :ψ 1 − 1.2 = 0.5 ⇒ ψ 1 = 1.7
B 2 :ψ 2 − 1.2ψ 1 + 0.7 = 0 ⇒ ψ 2 = 1.2ψ 1 − 0.7 = 1.34
B 3 :ψ 3 − 1.2ψ 2 + 0.7ψ 1 = 0 ⇒ ψ 3 = 1.2ψ 2 − 0.7ψ 1 = 0.418
⋮
B j :ψ j = 1.2ψ j −1 − 0.7ψ j − 2
ψ 4 = 1.2ψ 3 − 0.7ψ 2 = -0.4364
ψ 5 = -0.81628
ψ 6 = -0.674056
ψ 7 = -0.237471
ψ 8 = 0.186874
ψ 9 = 0.390478
ψ 10 = 0.337762
:7
;
‫ ا‬H3K
‫ ا‬O
‫و‬
331
Psi Weights of the Model
2
Psi
1
0
-1
0
5
10
j
:4B"
. 6"C zn ( ℓ ) , ℓ ≥ 0 :(';
‫ ا‬4
‫ دا‬-4
zn ( ℓ ) = E ( zn + ℓ zn , zn −1 ,⋯) , ℓ ≥ 1
V&
a , j ≤ 0
E ( an + j z n , z n −1 ,⋯) =  n + j
j>0
 0,
j≤0
 zn+ j ,
E ( zn + j zn , z n −1 ,⋯) = 
 zn ( j ) , j > 0
:‫إذا‬
zn ( ℓ ) = E ( zn + ℓ zn , zn −1 ,⋯) , ℓ ≥ 1
= E ( 200 + 1.2 zn + ℓ −1 − 0.7 zn + ℓ − 2 + an + ℓ + 0.5an + ℓ −1 | zn , zn −1 ,⋯) , ℓ ≥ 1
= 200 + 1.2 E ( zn + ℓ −1 | zn , zn −1 ,⋯) − 0.7 E ( zn + ℓ − 2 | zn , zn −1 ,⋯)
+ E ( an + ℓ | zn , zn −1 ,⋯) + 0.5 E ( an + ℓ −1 | zn , zn −1 ,⋯) , ℓ ≥ 1
ℓ = 1: zn (1) = 200 + 1.2 zn − 0.7 zn −1 + 0.5an
ℓ = 2 : zn ( 2 ) = 200 + 1.2 zn (1) − 0.7 zn
ℓ ≥ 3 : zn ( ℓ ) = 200 + 1.2 zn ( ℓ − 1) − 0.7 zn ( ℓ − 2 )
:4
‫ دا‬H3K.‫و‬
332
 200 + 1.2 zn − 0.7 zn −1 + 0.5an ,
ℓ =1

zn ( ℓ ) =  200 + 1.2 zn (1) − 0.7 zn ,
ℓ=2
200 + 1.2 z ( ℓ − 1) − 0.7 z ( ℓ − 2 ) , ℓ ≥ 3
n
n

:7]
‫ال ا‬:
4.L‫إ‬
4;!
‫) ا‬
Observed Series
205
200
195
Index
10
20
30
40
50
60
2(;
‫ وا‬VB1;
‫ ا‬7N ‫ة‬J;& O‫(و ا‬2
78
‫ ا‬7C‫ا‬A
‫ ا‬w.‫ وا
;ا‬7C‫ا‬A
‫ ا‬w.‫ ا
;ا‬7;
‫) آ & دا‬
333
Autocorrelation
Autocorrelation Function for Observed
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
6
Partial Autocorrelation
Lag Corr
T
LBQ
1 0.77 6.18
2 0.31 1.67
3 -0.09 -0.48
4 -0.26 -1.33
5 -0.21 -1.06
6 -0.06 -0.32
7 0.06 0.29
39.96
46.47
47.06
51.72
54.89
55.19
55.45
11
Lag Corr
T
LBQ
8 0.11 0.55
9 0.08 0.38
10 -0.00 -0.01
11 -0.07 -0.33
12 -0.06 -0.27
13 0.02 0.08
14 0.11 0.52
56.38
56.84
56.84
57.21
57.47
57.49
58.44
Lag Corr
16
T
LBQ
15 0.16 0.75 60.52
16 0.13 0.63 62.00
Partial Autocorrelation Function for Observed
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
1
6
Lag PAC
T
1 0.77 6.18
2 -0.71 -5.68
3 0.24 1.91
4 0.07 0.56
5 -0.08 -0.67
6 0.08 0.62
7 -0.04 -0.34
11
Lag PAC
T
8 0.05 0.44
9 -0.11 -0.87
10 0.01 0.06
11 0.05 0.42
12 0.10 0.77
13 -0.04 -0.35
14 0.09 0.74
Lag PAC
16
T
15 0.01 0.04
16 -0.07 -0.56
& 41!& (6 ARMA ( p, q ) H3K
‫ ا‬7‫ة وه‬J;& 4;!
‫( ان ا‬C ;
‫آ & ا
ا‬
)J
‫ا
'!ذج‬
:7
;
‫ آ‬AIC ( m ) = n ln σ a2 + 2m ‫ !"ر‬4!B HB‫ ا‬A{‫ و‬p = 0,1, 2 q = 0,1, 2
334
ARMA (1, 0 ) 1-
Type
AR
1
Constant
Coef
StDev
T
0.7841
43.1776
0.0803
0.2587
9.77
166.90
Mean
Residuals:
SS
199.954
1.198
Number of observations: 64
= 264.844
(backforecasts
MS =
excluded)
4.272 DF = 62
= 64 ln(4.272)+2(3) = 64(1.452)+6 = 98.928 AIC ( m ) = n ln σ a2 + 2m
ARMA ( 2, 0 ) 2-
Type
AR
1
AR
2
Constant
Coef
1.3568
StDev
0.0870
T
15.60
-0.7422
77.0740
0.0872
0.1768
-8.51
435.96
Mean
Residuals:
SS
200.013
0.459
Number of observations: 64
= 121.868
(backforecasts
MS =
excluded)
1.998 DF = 61
= 64 ln(1.998)+2(4) = 64(0.692)+8 = 52.288 AIC ( m ) = n ln σ a2 + 2m
ARMA ( 0,1) 3-
Type
MA
1
Constant
Coef
-0.8772
StDev
0.0775
T
-11.32
200.032
Mean
0.464
200.032
430.96
0.464
Number of observations:
335
64
Residuals:
SS
=
252.640
MS =
(backforecasts
excluded)
4.075 DF = 62
= 64 ln(4.075) + 2(3) = 64(1.40487) + 6 = 95.912 AIC ( m ) = n ln σ a2 + 2m
ARMA ( 0, 2 ) 4-
Type
MA
1
Coef
-1.3321
StDev
0.1042
T
-12.78
MA
2
Constant
-0.6491
200.038
0.1032
0.580
-6.29
344.69
Mean
Residuals:
SS
200.038
0.580
Number of observations: 64
= 149.291
(backforecasts
MS =
excluded)
2.447 DF = 61
= 64 ln(2.447) + 2(4) = 64(0.89486) + 8 = 65.271 AIC ( m ) = n ln σ a2 + 2m
ARMA (1,1) 5-
Type
AR
1
MA
1
Constant
Coef
0.6823
StDev
0.1023
T
6.67
-0.6832
63.5287
0.1054
0.3342
-6.48
190.09
Mean
Residuals:
SS
199.954
1.052
Number of observations: 64
= 153.610
(backforecasts
MS =
excluded)
2.518 DF = 61
= 64 ln(2.518) + 2(4) = 64(0.92346) + 8 = 67.101 AIC ( m ) = n ln σ a2 + 2m
ARMA ( 2,1) 6-
Model cannot be estimated with these data
336
ARMA (1, 2 ) 7-
Type
AR
MA
1
1
MA
2
Constant
Coef
StDev
T
0.5112
-1.0134
0.1492
0.1518
3.43
-6.68
-0.4821
97.7668
0.1482
0.4536
-3.25
215.55
Mean
Residuals:
SS
200.014
0.928
Number of observations: 64
= 126.688
(backforecasts
MS =
excluded)
2.111 DF = 60
= 64 ln(2.111) + 2(5) = 64(0.74716) + 10 = AIC ( m ) = n ln σ a2 + 2m
57.818
ARMA ( 2, 2 ) 8-
Type
AR
1
AR
MA
2
1
MA
2
Constant
Coef
1.1047
StDev
0.2011
T
5.49
-0.5789
-0.4394
0.1608
0.2275
-3.60
-1.93
-0.1918
94.8688
0.1973
0.2824
-0.97
335.90
Mean
Residuals:
SS
200.041
0.596
Number of observations: 64
= 113.051
(backforecasts
MS =
excluded)
1.916 DF = 59
= 64 ln(1.916) + 2(6) = 64(0.65) + 12 = 53.6 AIC ( m ) = n ln σ a2 + 2m
:7
;
‫ ا
ول ا‬7N O[‫و‬
AIC ( m )
ARMA ( p, q )
337
min AIC ( m )
ARMA ( 0, 0 )
NA
ARMA (1, 0 )
98.928
ARMA ( 2, 0 )
52.288
ARMA ( 0,1)
95.912
ARMA ( 0, 2 )
65.271
ARMA (1,1)
67.101
ARMA ( 2,1)
NA
ARMA (1, 2 )
57.818
ARMA ( 2, 2 )
53.6
*
ARMA ( 2, 0 ) ‫ذج‬1!'
AIC 7C‫ا‬A
‫&ت ا‬1"!
‫ !"ر ا‬4!B HB‫‚ ان أ‬5
:7B‫ا‬1(
‫ وإ;(ر ا‬o%N -2
ACF of Residuals for Observed
(with 95% confidence limits for the autocorrelations)
1.0
0.8
Autocorrelation
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
2
4
6
8
Lag
338
10
12
14
16
PACF of Residuals for Observed
(with 95% confidence limits for the partial autocorrelations)
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
2
4
6
8
10
12
14
16
Lag
Normal Probability Plot of the Residuals
(response is Observed)
4
3
2
Residual
Partial Autocorrelation
1.0
1
0
-1
-2
-3
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
Normal Score
339
1.0
1.5
2.0
2.5
Histogram of the Residuals
(response is Observed)
Frequency
10
5
0
-3
-2
-1
0
1
2
3
4
Residual
Norm al Probability Plot
.999
Probability
.99
.95
.80
.50
.20
.05
.01
.001
-3
-2
-1
0
1
2
3
RESI1
Average: 0.0042206
StDev: 1.39083
N: 64
Ko lmo go rov-Smirno v No rmality Test
D+: 0.067 D-: 0.068 D : 0.068
Appro ximate P-Value > 0.15
.W'& ‫;ح‬J!
‫ذج ا‬1!'
‫ ان ا‬7'"2 ‫ا‬A‫;(رات وه‬9‫ ا‬H‫;ز آ‬C 7B‫ا‬1(
‫‚ أن ا‬5
95% :('C ‫;ات‬N V& ‫م‬JC 4'&‫ أز‬8 ;5 4(J;!
‫) ا‬J
‫ات‬:('C -3
340
Forecasts from period 64
95 Percent Limits
Period
Forecast
Lower
Upper
Actual
65
66
197.419
198.729
194.648
194.059
200.190
203.400
67
68
200.196
201.215
194.621
195.480
205.772
206.949
69
70
201.507
201.148
195.756
195.181
207.258
207.116
71
72
200.445
199.756
194.202
193.378
206.687
206.134
207
C6
202
197
192
In d e x
10
20
30
40
341
50
60
70
:%n‫اا‬
1- Abraham, B. and Ledoter, J. (1983). Statistical Methods for
Forecasting, John Wiley, New York.
2- Anderson, T. W. (1971). The Statistical Analysis of Time Series,
John Wiley, New York.
3- Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis
Forecasting and Control, 2nd ed., Holden-Day, San Francisco.
4- Montgomery, D. C., Johnson, L. A. and Gardiner, J. S. (1990).
Forecasting and Time Series Analysis, 2nd ed., McGraw-Hill
International Edition.
5- Makridakis, S., Wheelwright, S. C. and McGee, V. E. (1983).
Forecasting Methods and Applications, 2nd ed., John Wiley, New
York.
6- Wei, W. W. S. (1990). Time Series Analysis Univariate and
Multivariate Methods, Addison Wesley.
7- Minitab Reference Manual, Release 11 for Windows. (1998).
‫ة‬6Y!
‫ى ا
!دة ا‬1;%& & ‫ء‬L ‫ أو‬H‫ آ‬76YC 4. VL‫ &ا‬7! W5 L1CX 2K
‫ ا‬e
‫;ب أن‬3
‫ او ا‬VL!
‫ا ا‬A‫ ه‬H]!. )"2 ‫ أو &رس‬Q5. ‫ أو‬W
= ‫ا & أي‬1L‫;ب وأر‬3
‫ا ا‬A‫ ه‬7N
:7‫;و‬3
9‫ ا‬2(
‫ ا‬4I5& 7
H2
[email protected] ‫ أو‬[email protected]
342