تحميل الملف المرفق

Islamic Financial Transactions Performance Measurement Criterion (MQAM)
A Substitute for LIBOR Rate
Ohaj-Kantakji Model
‫ﻣﻌﻴﺎﺭ ﻗﻴﺎﺱ ﺃﺩﺍﺀ ﺍﻟﻤﻌﺎﻣﻼﺕ ﺍﻟﻤﺎﻟﻴﺔ ﺍﻹﺳﻼﻣﻴﺔ‬
(MQAM© ‫)ﻣﻘﺎﻡ‬
Ohaj-Kantakji Model ‫ ﻗﻨﻄﻘﺠﻲ‬- ‫ﺃﻧﻤﻮﺫﺝ ﺃﻭﻫﺎﺝ‬
‫ﺗﺄﻟﻴﻒ‬
‫ﺃﻭﻫﺎﺝ ﺑﺎﺩﺍ ﻧﻴﻦ ﻣﺤﻤﺪ ﻋﻤﺮ‬
‫ ﺳﺎﻣﺮ ﻣﻈﻬﺮ ﻗﻨﻄﻘﺠﻲ‬.‫ ﺩ‬.‫ﺃ‬
‫ﻣﺎﺟﺴﺘﲑ ﳏﺎﺳﺒﺔ ﻭﲤﻮﻳﻞ‬
‫ﺍﶈﺎﺳﺒﺔ‬
[email protected]
‫ﺩﻛﺘﻮﺭﺍﻩ‬
[email protected]
Ver. 1.0
www.kantakji.com :‫ﻣﺘﺎﺡ ﺍﻟﻜﱰﻭﻧﻴﺎً ﻋﻠﻰ ﻣﺮﻛﺰ ﺃﲝﺎﺙ ﻓﻘﻪ ﺍﳌﻌﺎﻣﻼﺕ ﺍﻹﺳﻼﻣﻴﺔ‬
2010
Translated By:
The Scandinavian Centre for Translation and Documentation
Website: www.e-su.no, Member of FUIW www.fuiw.org
‫ﻣﻌﻴﺎﺭ ﻗﻴﺎﺱ ﺃﺩﺍﺀ ﺍﻟﻤﻌﺎﻣﻼﺕ ﺍﻟﻤﺎﻟﻴﺔ ﺍﻹﺳﻼﻣﻴﺔ‬
‫)ﻣﻘﺎﻡ ‪(MQAM‬‬
‫ﺃﻧﻤﻮﺫﺝ )ﺃﻭﻫﺎﺝ & ﻗﻨﻄﻘﺠﻲ( ‪(Ohaj - Kantakji) Model‬‬
‫ﻣﻘﺪﻣﺔ‬
‫ﺗﻨﺘﺸﺮ ﺍﳌﺆﺳﺴﺎﺕ ﺍﳌﺎﻟﻴﺔ ﺍﻹﺳﻼﻣﻴﺔ‬
‫ﺍﻷﺳﻮﺍﻕ ﺍﳌﺎﻟﻴﺔ ﻣﺴﺘﺨﺪﻣﺔ ﺍﻟ ﺼﻴﻎ ﺍﻟﺸﺮﻋﻴﺔ‬
‫ﻭﺗﺮﻛﺰ ﻋﻠﻰ ﺻﻴﻎ ﺍﻟﺪﻳﻦ ﻛﺎﳌﺮﺍﲝﺔ ﻭﺍﻻﺳﺘﺼﻨﺎﻉ ﻭﺍﻟﺴﻠﻢ‪ ،‬ﻷﳖﺎ ﺻﻴﻎ ﺗﺴﺎﻋﺪ‬
‫ﺃﻋﻤﺎﳍﺎ‪،‬‬
‫ﲢﻤﻴﻞ ﺍﳌﻘﱰﺽ ﺃﻭ‬
‫ﺍﳌﺘﻤﻮﻝ ﺍﳌﺨﺎﻃﺮ ﻭﺍﻟﻌﺎﺋﺪ ﺍﳌﺘﻮﻗﻊ ﻣﻦ ﺍﻟﻌﻤﻠﻴﺔ ﺍﻻﺳﺘﺜﻤﺎﺭﻳﺔ ‪ .‬ﻟﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﺻﻴﻎ ﺍﻟﺪﻳﻦ ﻳﺴﺘﻠﺰﻡ‬
‫ﻭﺟﻮﺩ ﺿﻤﺎﻧﺎﺕ ﺗﻘﺎﺑﻞ ﺍﳉﺰﺀ ﺍﳌﺘﺒﻘﻲ ﺩﻳﻨﺎً ﺑﺬﻣﺔ ﺍﳌﺘﻤﻮﻝ‪ ،‬ﳑﺎ ﳚﻤﺪ ﺍﻷﺻﻮﻝ ﺍﻟﻀﺎﻣﻨﺔ )ﺃﻛﺜﺮ‬
‫ﺍﻷﺣﻴﺎﻥ( ﻭﻳﻌﻴﻖ ﺍﺳﺘﺜﻤﺎﺭﻫﺎ ﻓ ﻴﺤﺮﻣﻬﺎ ﻣﻦ ﲢﻘﻴﻖ ﻋﻮﺍﺋﺪ ﲣﺼﻬﺎ ‪.‬‬
‫ﻛﻤﺎ ﲢﺠﻢ ﺍﳌﺆﺳﺴﺎﺕ ﺍﳌﺎﻟﻴﺔ ﺍﻹﺳﻼﻣﻴﺔ ﻭﻣﻨﻬﺎ ﺍﳌﺼﺎﺭﻑ ﺍﻹﺳﻼﻣﻴﺔ ﻋﻦ ﺻﻴﻐﺔ ﺍﳌﻀﺎﺭﺑﺔ ﻟﻄﺒﻴﻌﺔ‬
‫ﻋﻘﺪ ﺍﳌﻀﺎﺭﺑﺔ ﺍﻟﺬﻱ ﻳﱰﻙ ﻓﺴﺤﺔ‬
‫ﲢﺪﻳﺪ ﻣﺴﺆﻭﻟﻴﺎﺕ ﺍﻟﺘﻌﺪﻱ ﻭﺍﻟﺘﻘﺼﲑ ﻣﻦ ﺟﻬﺔ ﻭﲢﺪﻳﺪ ﻧﺴﺐ‬
‫ﺍﳌﺸﺎﺭﻛﺔ ﻣﻦ ﺟﻬﺔ ﺃﺧﺮﻯ‪.‬‬
‫ﻭﺗﻠﺠﺄ ﺍﳌﺆﺳﺴﺎﺕ ﺍﳌﺎﻟﻴﺔ ﺍﻹﺳﻼﻣﻴﺔ ﺇﱃ ﺍﻻﺳﱰﺷﺎﺩ ﲟﺆﺷﺮ )ﺍﻟﻼﻳﺒﻮﺭ ﻭﻣﺜﻴﻼﺗﻪ(‬
‫ﻣﻌﺎﻣﻼﲥﺎ‬
‫ﻃﻮﻳﻠﺔ ﺍﻷﺟﻞ ﺑﻮﺻﻔﻪ ﺗﺴﻌﲑﺍً ﻳﻠﻘﻰ ﻗﺒﻮﻻً ﻋﺎﻣﺎ ً ﻭﻣﻌﱰﻓﺎً ﺑﻪ‪ ،‬ﺩﻭﻥ ﲢﺮﻳﻚ ﺳﺎﻛﻦ ﻹﳚﺎﺩ ﺑﺪﻳﻞ‬
‫ﻳ‪‬ﺒﻌﺪﻫﺎ ﻋﻦ ﺍﻟﺸﺒ ﻪ ﺍﻟﺮﺑﻮﻳﺔ ﲝﺠﺔ ﺍﻟﻘﺒﻮﻝ ﺍﻟﻌﺎﻡ ﳍﺬﺍ ﺍﳌﺆﺷﺮ ﻭﲝﺠﺔ ﺍﻧﺸﻐﺎﳍﺎ ﻭﺍﻧﻐﻤﺎﺳﻬﺎ‬
‫ﺃﻋﻤﺎﳍﺎ ﺍﳌﻴﺪﺍﻧﻴﺔ ﺍﻟﻴﻮﻣﻴﺔ‪ ،‬ﻭﺍﳌﺆﺳﻒ ﻇﻬﻮﺭ ﺍﳌﺪﺭﺳﺔ ﺍﻟﺘﱪﻳﺮﻳﺔ ﺍﻟﱵ ﺗﻀﻢ ﺑﻌﺾ ﺍﻟﻔﻘﻬﺎﺀ ﺣﻴﺚ‬
‫ﻳﱪﺭﻭﻥ ﺍﺳﺘﺨﺪﺍﻡ ﻫﺬﺍ ﺍﳌﺆﺷﺮ ﻟﻌﺠﺰﻫﻢ ﻋﻦ ﺇﳚﺎﺩ ﺑﺪﻳﻞ ﻟﻪ ‪.‬‬
‫ﺃﻣﺎ ﺍﳌﺼﺎﺭﻑ ﺍﻟﺮﺑﻮﻳﺔ ﻓﺘﺴﺘﺨﺪﻡ ﺍﻟﻔﺎﺋﺪﺓ ﻋﻤﻠﻴﺎﺕ ﺇﻗﺮﺍﺿﻬﺎ ﻭﺍﻗﱰﺍﺿﻬﺎ‪ ،‬ﻓﺘﺤﻤ‪‬ﻞ ﺍﳌﻘﱰﺽ ﺗﻜﻠﻔﺔ ﺍﻷﻣﻮﺍﻝ‬
‫ﺍﳌﻘﱰﺿﺔ ﲟﺎ ﻳﻌﺎﺩﻝ ﺳﻌﺮ ﺍﻟﻔﺎﺋﺪﺓ ﻭﻛﺬﻟﻚ ﳐﺎﻃﺮﻫﺎ‪ .‬ﻭﳝﺜﻞ ﻫﺬﺍ ﺍﻟﺴﻠﻮﻙ ﺇﳖﺎﻛﺎً ﻣﺘﻌﺒﺎً ﻟﻼﻗﺘﺼﺎﺩ ﺑﺴﺒﺐ‬
‫ﻋﺪﻡ ﺍﻟﺘﻮﺍﺯﻥ ﺑﲔ ﺃﻃﺮﺍﻑ ﻋﻤﻠﻴﺔ ﺍﻻﺳﺘﺜﻤﺎﺭ ﻓﺄﺭﺑﺎﺏ ﺍﻷﻣﻮﺍﻝ ﳛﻘﻘﻮﻥ ﻋﺎﺋﺪﺍً ﻣﻀﻤﻮﻧﺎً ﺑﻴﻨﻤﺎ ﻳﺘﺤﻤﻞ‬
‫ﺃﺻﺤﺎﺏ ﺍﻟﻌﻤﻞ ﳐﺎﻃﺮ ﻋﺎﺋﺪ ﺃﺭﺑﺎﺏ ﺍﳌﺎﻝ ﻋﻠﻰ ﺃﻗﻞ ﺗﻘﺪﻳﺮ‪ ،‬ﻓﺘﻜﻮﻥ ﺍﻟﻨﺘﻴﺠﺔ ﺻﻔﺮﺍً ﻣﻊ ﺑﻘﺎﺀ ﺍﺣﺘﻤﺎﻝ ﲢﻘﻖ‬
‫ﺧﺴﺎﺭﺓ ﺃﺻﺤﺎﺏ ﺍﻟﻌﻤﻞ ﻗﺎﺋﻤﺎً‪.‬‬
‫ﻭﻳ ﺸﱰﻙ ﻛﻼ ﺍﻟﻨﻮﻋﲔ ﻣﻦ ﺍﳌﺼﺎﺭﻑ ﺍﻹﺳﻼﻣﻴﺔ ) ﺣﺎﻟﺔ ﺻﻴﻎ ﺍﻟﺪﻳﻦ( ﻭﺍﳌﺼﺎﺭﻑ ﺍﻟﺮﺑﻮﻳﺔ ) ﻋﻤﻮﻣﺎً (‬
‫ﺑﺘﺤﻤﻴﻞ ﺍﳌﻘﱰﺽ ﺗﻜﻠﻔﺔ ﲡﻤﻴﺪ ﺃﻣﻮﺍﻝ ﺍﻟﻀﻤﺎﻧﺎﺕ ﺇﺿﺎﻓﺔ ﻟﺘﻜﻠﻔﺔ ﺍﻟﺘﻤﻮﻳﻞ ﻧﻔﺴﻪ ‪.‬‬
‫‪2‬‬
‫ﻛﻤﺎ ﻳ ﺸﱰﻛﺎﻥ ﺑﺎﺳﺘﺨﺪﺍﻡ ﻣﺆﺷﺮ ﺍﻟﻔﺎﺋﺪﺓ )ﺍﻟﻼﻳﺒﻮﺭ ﻭﻣﺜﻴﻼﺗﻪ( ﺑﻮﺻﻔﻪ ﺍﻷﻛﺜﺮ ﺍﺳﺘﺨﺪﺍﻣﺎً ﻭﻓﻌﺎﻟﻴﺔ‬
‫) ﲝﺴﺐ ﺍﳌﻌﺘﻘﺪ ﺍﻟﺴﺎﺋﺪ(‪ ،‬ﻟﻜﻦ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﳌﺆﺳﺴﺎﺕ ﺍﳌﺎﻟﻴﺔ ﺍﻟﺮﺑﻮﻳﺔ ﻣﻌﺬﻭﺭﺓ‬
‫ﺍﺳﺘﺨﺪﺍﻣﻬﺎ ﻟﻪ‬
‫ﺑﺴﺒﺐ ﻃﺒﻴﻌﺔ ﻋﻤﻠﻬﺎ ﺑﺎﳌﺮﺍﺑﺎﺓ ﺍﶈﺮﻣﺔ‪ ،‬ﻓﻠﻴﺲ ﺃﻣﺎﻡ ﺍﳌﺆﺳﺴﺎﺕ ﺍﳌﺎﻟﻴﺔ ﺍﻹﺳﻼﻣﻴﺔ ﺃﻱ ﻋﺬﺭ‬
‫ﻻﺳﺘﺨﺪﺍﻡ ﻫﺬﺍ ﺍﳌﺆﺷﺮ ﺍﻟﺮﺑﻮﻱ ﺣﺘﻰ ﻟﻮ ﺑﺮﺭﺕ ﺫﻟﻚ ﳍﻢ ﺗﻠﻚ ﺍﳌﺪﺭﺳﺔ ﺍﻟﺘﱪﻳﺮﻳﺔ ‪.‬‬
‫ﲡﺎﻩ ﻛﻞ ﺫﻟﻚ‪ ،‬ﻭﻧﺘﻴﺠﺔ ﻟﻨﻘﺎﺷﺎﺕ ﻣﺴﺘﻤﺮﺓ‬
‫ﺍﻟﻮﺳﻂ ﺍﳌﺎﱄ ﻓﻘﺪ ﺃﻟﻔﺖ‬
‫ﻋﺎﻡ ‪ ٢٠٠٣‬ﻛﺘﻴﺒﺎً‬
‫ﺍﻗﱰﺣﺖ ﻓﻴﻪ ﻣﻌﻴﺎﺭﺍً ﻟﻘﻴﺎﺱ ﺃﺩﺍﺀ ﺍﳌﻌﺎﻣﻼﺕ ﺍﳌﺎﻟﻴﺔ ﺍﻹﺳﻼﻣﻴﺔ ﺑﺪﻳﻼ ﻋﻦ ﻣﺆﺷﺮ ﺍﻟﻼﻳﺒﻮﺭ ﳛﺎﻛﻠﻲ‬
‫ﺁﻟﻴﺎﺕ ﺍﻋﺘﻤﺎﺩ ﻣﻨﻬﺠﻴﺔ ﺍﻟﻼﻳﺒﻮﺭ ﺇﳕﺎ ﺑﻘﻴﺎﺱ ﺗﻜﻠﻔﺔ ﺍﻟﻔﺮﺻﺔ ﺍﻟﺒﺪﻳﻠﺔ‪ ١‬ﻣﻦ ﺧﻼﻝ ﺗﻮﺯﻳﻌﺎﺕ ﺍﳌﺆﺳﺴﺎﺕ‬
‫ﺍﳌﺎﻟﻴﺔ ﺍﻹﺳﻼﻣﻴﺔ ﻷﺭﺑﺎﺣﻬﺎ ﺑﺪﻝ ﺗﺴﻌﲑ ﺍﳌﺎﻝ ﲝﺴﺐ ﺗﻘﻨﻴﺎﺕ ﺍﻟﻼﻳﺒﻮﺭ ‪.‬‬
‫ﻭﺍﻟﻴﻮﻡ ﻭﺑﻌﺪ ﺳﺒﻊ ﺳﻨﻮﺍﺕ ﻭﺑﺴﺒﺐ ﺇﺻﺮﺍﺭ ﻏﲑ ﺍﻟﻐﻴﻮﺭﻳﻦ ﻋﻠﻰ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻟﻼﻳﺒﻮﺭ ﺑﻮﺻﻔﻪ ﺃﺩﺍﺓ ﻳﺘﻴﻤﺔ‬
‫ﻟﻘﻴﺎﺱ ﻛﻔﺎﺀﺓ ﺍﻻﺳﺘﺜﻤﺎﺭﺍﺕ ﻃﻮﻳﻠﺔ ﺍﻷﺟﻞ ﻭﻟﻘﻴﺎﺱ ﺟﺪﻭﻯ ﻗﺮﺍﺭﺍﺕ ﺍﻻﺳﺘﺜﻤﺎﺭ‪ ،‬ﻓﻘﺪ ﺃﻋﺎﻧﻨﺎ ﺍ‪‬‬
‫ﺗﻌﺎﱃ ﻭﲟﻌﻮﻧﺔ ﺍﻷﺥ )ﺃﻭﻫﺎﺝ ﺑﺎﺩﺍ ﻧﲔ ﳏﻤﺪ ﻋﻤﺮ( ﻣﻦ ﺍﻟﺴﻮﺩﺍﻥ ﻋﻠﻰ ﻃﺮﺡ ﺑﺪﻳﻞ ﻻ ﳛﺘﺎﺝ ﺃﻱ ﻣﻦ‬
‫ﺍﻟﺘﻘﻨﻴﺎﺕ ﺍﻟﺮﺑﻮﻳﺔ‬
‫ﻋﻤﻠﻴﺎﺗﻪ ﻭﺃﺩﺍﺋﻪ ‪.‬‬
‫ﻭﻗﺪ ﺍﺣﺘﺪ ﻧﻘﺎﺵ ﺣﻮﻝ ﺃﳘﻴﺔ ﺍﻟﻼﻳﺒﻮﺭ ﻋﻠﻰ ﳎﻤﻮﻋﱵ )ﻗﻨﻄﻘﺠﻲ (‪ ٢‬ﻭ)ﻧﻀﺎﻝ(‪ ٣‬ﺍﳌﺨﺘﺼﺘﲔ‬
‫ﺑﺎﻻﻗﺘﺼﺎﺩ ﺍﻹﺳﻼﻣﻲ ﻭﻋﻠﻮﻣﻪ‪ ،‬ﻭﺫﻟﻚ ﺑﺎﺑﺘﻜﺎﺭ ﺃﺩﺍﺓ ﺗﺴﺎﻋﺪ‬
‫ﺯﻳﺎﺩﺓ ﻓﺎﻋﻠﻴﺔ ﺍﻟﺼﻴﻎ ﺍﻹﺳﻼﻣﻴﺔ‬
‫ﻭﺗﺒﻌﺪﻫﺎ ﺑﻨﻔﺲ ﺍﻟﻮﻗﺖ ﻋﻦ ﺍﳌﺆﺷﺮﺍﺕ ﺍﻟﺮﺑﻮﻳﺔ ﲡﻨﺒﺎً ﻟﻠﺸﺒﻬﺎﺕ ﻭﺳﺪﺍً ﻟﻠﺬﺭﺍﺋﻊ ﻭﺇﻗﺎﻣﺔ ﻟﻠﺤﺠﺔ ﻋﻠﻰ‬
‫ﻣﻦ ﻳﻠﺠﺄ ﻟﺘﻠﻚ ﺍﳌﺆﺷﺮﺍﺕ ﺃﻣﺎﻡ ﺍ‪ ‬ﺗﻌﺎﱃ ‪.‬‬
‫ﻭﻛﺎﻥ ﳑﻦ ﺗﺪﺍﺧﻞ‬
‫ﺗﻠﻚ ﺍﻟﻨﻘﺎﺷﺎﺕ )ﺍﻷﺥ ﺃﻭﻫﺎﺝ( ﲟﺪﺍﺧﻠﺔ ﺷﻌﺮﺕ ﻓﻴﻬﺎ ﺃﻥ ﻟﺪﻳﻪ ﻣﺎ ﻫﻮ ﻣﻔﻴﺪ‪،‬‬
‫ﻭﺑﻌﺪ ﻣﺮﺍﺳﻼﺕ ﺩﺍﻣﺖ ﺃﻛﺜﺮ ﻣﻦ ﺷﻬﺮﻳﻦ ﺍﺗﻔﻘﻨﺎ ﻋﻠﻰ ﺗﻄﻮﻳﺮ ﻓﻜﺮﺗﻪ ﻟﺘﻜﻮﻥ ﺃﳕﻮﺫﺟﺎً ﺭﻳﺎﺿﻴﺎ ً ﻳﺼﺐ‬
‫ﺍﳍﻨﺪﺳﺔ ﺍﳌﺎﻟﻴﺔ ﺍﻹﺳﻼﻣﻴﺔ ﻭﻳﺮﻓﺪ ﺍﻹﺩﺍﺭﺓ ﺍﳌﺎﻟﻴﺔ ﻋﻤﻮﻣﺎ ً ﻭﺍﻹﺳﻼﻣﻴﺔ ﺧﺼﻮﺻﺎً ﲟﺆﺷﺮﺍﺕ ﻓﻌﺎﻟﺔ‬
‫ﺗﻜﻮﻥ ﲟﻨﺄﻯ ﻋﻦ ﺍﻟﺮﺑﺎ ﻭﺃﺩﻭﺍﺗﻪ ‪.‬‬
‫ﻭﺑﻌﺪ ﺍﻟﻌﺰﻡ ﻭﺍﻟﺘﻮﻛﻞ ﻋﻠﻰ ﺍﻟﻮﺍﺣﺪ ﺍﻷﺣﺪ ﻭﺑﺘﻮﻓﻴﻖ ﻣﻨﻪ ﺗﻌﺎﱃ ﺗﻮﺻﻠﻨﺎ ﺇﱃ ﻭﺿﻊ ﺃﳕﻮﺫﺝ ﺃﲰﻴﻨﺎﻩ ‪:‬‬
‫)ﺃﳕﻮﺫﺝ ﺃﻭﻫﺎﺝ ‪ -‬ﻗﻨﻄﻘﺠﻲ( ﻧﺘﺞ ﻋﻨﻪ ﻋﺪﺓ ﻣﺆﺷﺮﺍﺕ ﺃﳘﻬﺎ ‪ :‬ﻣﺆﺷﺮ )ﻣﻘﺎﻡ( ﻭﺃﲰﻴﻨﺎﻩ ﻛﺬﻟﻚ‬
‫‪http://www.kantakji.com/fiqh/Files/Accountancy/9.rar‬‬
‫‪[email protected]‬‬
‫‪3 [email protected]‬‬
‫‪1‬‬
‫‪2‬‬
‫‪3‬‬
‫ﺍﺧﺘﺼﺎﺭﺍً ﻷﻭﺍﺋﻞ ﺍﻟﻜﻠﻤﺎﺕ ‪ :‬ﻣﻌﻴﺎﺭ ﻗﻴﺎﺱ ﺃﺩﺍﺀ ﺍﳌﻌﺎﻣﻼﺕ ﺍﳌﺎﻟﻴﺔ ﺍﻹﺳﻼﻣﻴﺔ‪ ،‬ﻓﻜﺎﻥ )ﻣﻘﺎﻡ ﺃﻭ‬
‫‪ (MQAM‬ﻟﻴ ﻘﻮﻡ ﺑﺈﺫﻥ ﺍ‪ ‬ﺗﻌﺎﱃ ﻣﻘﺎﻡ )ﺍﻟﻼﻳﺒﻮﺭ ‪(LIBOR‬‬
‫ﺍﳌﻌﺎﻣﻼﺕ ﺍﳌﺎﻟﻴﺔ ﺍﻹﺳﻼﻣﻴﺔ ‪.‬‬
‫ﻧﺮﺟﻮ ﺍ‪ ‬ﺗﻌﺎﱃ ﺃﻥ ﻳﻜﺘﺐ ﻟـ )ﻣﻘﺎﻡ ( ﺍﻟﻨﻔﻊ ﻟﻠﻨﺎﺱ ﻛﻠﻬﻢ ﻭ ﻟﻌﺎﻣﺔ ﺍ ﳌﺴﻠﻤﲔ ﻭﻷﻫﻞ ﺍﻟﺼﲑﻓﺔ ﺍﻹﺳﻼﻣﻴﺔ‬
‫ﺧﺎﺻﺔ ﻟﻴﻜﻮﻥ ﺭﺩﺍً ﻋﻠﻰ ﺃﺻﺤﺎﺏ ﻣﻨﻬﺞ ﺍﶈﺎﻛﺎﺓ ﻭﺍﻟﺘﻘﻠﻴﺪ ﻣﻦ ﺍﳋﱪﺍﺀ ﺍﳌﺴﻠﻤﲔ ﺍﻟﺬﻳﻦ ﺍﺧﺘﺎﺭﻭﺍ‬
‫ﻷﻧﻔﺴﻬﻢ ﺃﻥ ﻳﻜﻮﻧﻮﺍ ﺇﻣﻌﺎﺕ‬
‫ﺍﳌﺪﺭﺳﺔ ﺍﻟﺘﱪﻳﺮﻳﺔ ﺑﺎﺳﺘﺜﻨﺎﺀ ﻣﻦ ﱂ ﻳﺮﺽ ﺫﻟﻚ ﻭﻋﺠﺰﺕ ﻧﻔﺴﻪ ﻋﻨﻪ ‪.‬‬
‫ﻭﻧﺄﻣﻞ ﻣﻦ ﺍﻟﻌﺎﻣﻠﲔ ﻭﺍﻟﺘﻨﻔﻴﺬﻳﲔ ﺃﻥ ﻳﻮﻟﻮﺍ )ﻣﻘﺎﻡ( ﺑﻌﺾ ﺍﻻﻫﺘﻤﺎﻡ ﻟﻴﻜﻮﻧﻮﺍ ﻟﺒﻨﺔ ﻣﻦ ﻟﺒﻨﺎﺕ ﺍﻟﺒﻨﺎﺀ‬
‫ﻭﺍﻟﺘﻌﻤﲑ ﻓﻴﺴﻘﻄﻮﺍ ﻋﻦ ﺃﻧﻔﺴﻬﻢ ﺑﻌﺾ ﺍﻟﺘﻜﻠﻴﻒ ﺍﻟﺬﻱ ﺃﻧﺎﻃﻪ ﺭﺏ ﺍﻟﻌﺰﺓ ﺟ ﻞّ‬
‫ﻋﻼﻩ‬
‫ﺇﻋﻤﺎﺭ ﻫﺬﺍ‬
‫ﺍﻟﻜﻮﻥ ﻟﻴﻜﻮﻧﻮﺍ ﻣﻦ ﺍﳌﻌﻤﺮﻳﻦ ﻭﻟﻴﺴﺘﻔﻴﺪﻭﺍ ﺑﺄﺟﺮ ﻣﻦ ﻳﻌﻤﻞ ﺑﻪ ﻣﻦ ﺑﻌﺪﻫﻢ ﺩﻭﻥ ﺃﻥ ﻳﻨﻘﺺ ﺫﻟﻚ ﻣﻦ‬
‫ﺃﺟﻮﺭﻫﻢ ﺷﻴﺌﺎً ‪.‬‬
‫ﻧﻨﺼﺢ ﺍﻟﻌﺎﻣﻠﲔ‬
‫ﺍﻷﺳﻮﺍﻕ ﺍﳌﺎﻟﻴﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ) ﻣﻘﺎﻡ( ﺇﱃ ﺟﺎﻧﺐ )ﺍﻟﻼﻳﺒﻮﺭ( ﺭﻳﺜﻤﺎ ﻳﻘﺘﻨﻌﻮﻥ ﲜﺪﻭﺍﻩ‬
‫ﻭﺑﺈﻣﻜﺎﻧﻴﺔ ﺗﻄﺒﻴﻘﻪ ﻭﻣﻦ ﺛﻢ ﻳﱰﻛﻮﻥ ﺍﻟﻌﻤﻞ )ﺑﺎﻟﻼﻳﺒﻮﺭ( ﻛﻠﻴﺎً ‪.‬‬
‫ﻓﻜﺮﺓ ﺍﻟ ﻨﻤﻮﺫﺝ‪:‬‬
‫ﳛﺪﺩ ﳕﻮﺫﺝ )ﺃﻭﻫﺎﺝ ‪ -‬ﻗﻨﻄﻘﺠﻲ( ﻧﺴﺐ ﺍﻟﻌﺎﺋﺪ ﺍﳌﺴﺘﻬﺪﻓﺔ ﻣﻦ ﲤﻮﻳﻞ ﻣﺸﺮﻭﻉ ﻣﻔﱰﺽ ﺑﻨﺎﺀ ﻋﻠﻰ‬
‫ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﺘﻮﻗﻌﺔ ﻣﻨﻪ ﻧﺴﺒﺔ ﺇﱃ ﺭﺃ ﺱ ﺍﳌﺎﻝ ﺍﳌﺴﺘﺜﻤﺮ ﻓﻴﻪ‪ ،‬ﻓﺎﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﻳ‪‬ﻔﱰﺽ‬
‫ﲠﺎ ﺃﻥ ﺗﺄﺧﺬ ﺑﺎﳊﺴﺒﺎﻥ ﺍﻟﻈﺮﻭﻑ ﺍﻻﻗﺘﺼﺎﺩﻳﺔ ﺍﳉﻴﺪ ﺓ ﺃ ﻭ ﺍﻟﺴﻴﺌﺔ ﺍﻟﺴﺎﺋﺪﺓ ﺃﻭ ﺍﻟﱵ ﺳﺘﺴﻮﺩ ﺧﻼﻝ‬
‫ﻋﻤﺮ ﺍﳌﺸﺮﻭﻉ ﺍﳌﻔﱰﺽ ‪.‬‬
‫ﻓﺎﻟﻌﻤﻴﻞ ﻳﻘﺪﻡ ﺩﺭﺍﺳﺔ ﺟﺪﻭﻯ ﺍﻗﺘﺼﺎﺩﻳﺔ ﳌﺸﺮﻭﻋﻪ ﺍﳌﻔﱰﺽ ﻳﺒﲔ ﻓﻴﻬﺎ ﺣﺠﻢ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﺘﻮﻗﻌﺔ‬
‫ﺇﺿﺎﻓﺔ ﺇﱃ ﺑﻴﺎﻧﺎﺕ ﻭﻣﺆﺷﺮﺍﺕ ﺃﺧﺮﻯ‪.‬‬
‫ﺛﻢ ﻳﻘﺪﻡ ﺍﻟﻄﺮﻑ ﺍﳌﻤﻮ‪‬ﻝ )ﺍﳌﺼﺮﻑ ﺍﻹﺳﻼﻣﻲ ﻣﺜﻼ‪ (‬ﺍﻟﺘﻤﻮﻳﻞ ﺍﻟﻼﺯﻡ ﺍﻋﺘﻤﺎﺩﺍً ﻋﻠﻰ ﺗﻄﺒﻴﻖ ﻧﺘﺎﺋﺞ ﳕﻮﺫﺝ‬
‫)ﺃﻭﻫﺎﺝ ‪ -‬ﻗﻨﻄﻘﺠﻲ( ﻋﻠﻰ ﺩﺭﺍﺳﺔ ﺍﳉﺪﻭﻯ ﺍﳌﻘﺪﻣﺔ‪.‬‬
‫ﺇﻥ ﺍﻟﱰﻛﻴﺰ ﻋﻠﻰ ﺻﺎ‬
‫ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ )ﺃﻱ ﺍﻟﻔﺎﺭﻕ ﺑﲔ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﻟﻮﺍﺭﺩﺓ ﻣﺴﺘﻘﺒﻼ ‪‬‬
‫ﻭﺍﳋﺎﺭﺟﺔ ﺣﺎﻟﻴﺎً( ﻟﻴﺲ ﺃﻣﺮﺍً ﻣﺴﺘﺤﺪﺛﺎ ً ﺑﻞ ﺭﻛﺰﺕ ﻋﻠﻴﻪ ﺍﻟﻌﺪﻳﺪ ﻣﻦ ﺩﺭﺍﺳﺎﺕ ﺗﻘﻴﻴﻢ ﺍﻟﻘﺮﺍﺭﺍﺕ‬
‫ﺍﻻﺳﺘﺜﻤﺎﺭﻳﺔ ‪.‬‬
‫‪4‬‬
‫ﻓ ﺄﻭﻻً ‪..‬‬
‫ﻳﺴﻌﻰ ﻣﻌﻴﺎﺭ ﺻﺎ ﺍﻟﻘﻴﻤﺔ ﳊﺎﻟﻴﺔ ‪ NPV‬ﺇﱃ ﺣﺴﻢ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺑﺴﻌﺮ ﺣﺴﻢ ﳏﺪﺩ ﻣﺴﺒ‪‬ﻘﺎً‪،‬‬
‫ﻓﺎﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳋﺎﺭﺟﺔ ﺗﺘﻢ ﳊﻈﺔ ﺷﺮﺍﺀ ﺃﺻﻮﻝ ﺍﳌﺸﺮﻭﻉ ﺍﳌﺰﻣﻊ ﺇﻗﺎﻣﺘﻪ‪ ،‬ﺃﻣﺎ ﺍﻟﺘﺪﻓﻘﺎﺕ‬
‫ﺍﳌﺴﺘﻘﺒﻞ‪ ،‬ﻟﺬﻟﻚ ﻓﺈﻥ ‪ ٤NPV‬ﳛﺴﺐ ﺍﻟﻔﺮﻕ ﺑﲔ‬
‫ﺍﻟﻨﻘﺪﻳﺔ ﺍﻟﻮﺍﺭﺩﺓ ﺍﳌﺘﻮﻗﻌﺔ ﻓﻬﻲ ﺗﺪﻓﻘﺎﺕ ﺳﺘﺄﺗﻲ‬
‫ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳋﺎﺭﺟﺔ ﺣﺎﻟﻴﺎً ﻭﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﺘﻮﻗﻌﺔ ﻣﺴﺘﻘﺒﻼ‪ ‬ﺍﺳﺘﻨﺎﺩﺍً ﺇﱃ ﺳﻌﺮ ﺣﺴﻢ‬
‫) ﺧﺼﻢ( ﺣﺎﱄ ﻳﻌﺘﻤﺪ ﻋﻠﻰ ﺳﻌﺮ ﺍﻟﻨﻘﻮﺩ ﺃﻭ ﻣﺎ ﻳﺴﻤﻰ ﺑﺴﻌﺮ ﺍﻟﻔﺎﺋﺪﺓ ﺍﻟﺴﺎﺋﺪ ﺃﻭ ﺍﻟﻼﻳﺒﻮﺭ ‪.‬‬
‫ﻓﻌﻠﻰ ﺍﻟﺮﻏﻢ ﻣﻦ ﺍﺧﺘﻼﻑ ﺃﺯﻣﻨﺔ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﺘﻘﺎﺑﻠﺔ ﻭﺍﻟﱵ ﺗﺴﺘﻠﺰﻡ ﺃﺳﻌﺎﺭ ﻓﺎﺋﺪﺓ ﳐﺘﻠﻔﺔ‬
‫ﻟﺘﺄﺛﺮ ﺳﻌﺮ ﺍﻟﻨﻘﻮﺩ ﺑﺎﻟﺰﻣﻦ‪ ،‬ﻓﺈﻥ ‪ NPV‬ﻻ ﻳ ﻘﺪﻡ ﲤﻴﻴ ﺰﺍً ﻋﻠﻤﻴﺎ ً ﻭﻣﻮﺿﻮﻋﻴﺎً ﳍﺬﺍ ﺍﻷﻣﺮ‪ ،‬ﻣﻊ ﺃﻥ ﺍﻟﻘﺮﺍﺭ‬
‫ﺍﳌﺘﺨﺬ ﰎ ﻋﻠﻰ ﺃﺳﺎﺳﻪ ﺳﻴﺆﺩﻱ ﻹﻗﺎﻣﺔ ﺍﳌﺸﺮﻭﻉ ﺃﻭ ﻻ!!‬
‫ﺇﻥ ﺻﺎ ﻗﻴﻤﺔ ﺍﳌﺸﺮﻭﻉ ﻳﻨﺨﻔﺾ ﺑﺎﺯﺩﻳﺎﺩﺳﻌﺮ ﺍﳊﺴﻢ )ﺍﳋﺼﻢ( ﺃﻱ ﺳﻌﺮ ﺍﻟﻔﺎﺋﺪﺓ ﺍﳌﻄﺒﻖ ‪ ،‬ﻭﺍﻟﻌﻜﺲ‬
‫ﺑﺎﻟﻌﻜﺲ ‪ .‬ﻟﺬﻟﻚ ﻳﻌﺘﱪ ﲢﺪﻳﺪ ﺳﻌﺮ ﺍﻟﻔﺎﺋﺪﺓ ﻣﻦ ﺍﳌﺸﺎﻛﻞ ﺍﻟﱵ ﺗﻮﺍﺟﻪ ﺗﻄﺒﻴﻖ ﻣﻌﻴﺎﺭ ﺻﺎ‬
‫ﺍﻟ ﻘﻴﻤﺔ‬
‫ﺍﳊﺎﻟﻴﺔ ‪. NPV‬‬
‫ﻭﺛﺎﻧﻴﺎً ‪..‬‬
‫ﻣﻌﻴﺎﺭ ﻣﻌﺪﻝ ﺍﻟﻌﺎﺋﺪ ﺍﻟﺪﺍﺧﻠﻲ ‪ IRR‬ﻭﻫﻮ ﻣﻦ ﺃﻛﺜﺮ ﺍﳌﻌﺎﻳﲑ ﺍﺳﺘﺨﺪﺍﻣﺎً‬
‫ﺍﳊﻜﻢ ﻋﻠﻰ ﺟﺪﻭﻯ ﻗﺮﺍﺭﺍﺕ‬
‫ﺍﻻﺳﺘﺜﻤﺎﺭ‪ ،‬ﻓﺒﻴﻨﻤﺎ ﻳﺴﻌﻰ ﻣﻌﻴﺎﺭ ﺻﺎ ﺍﻟﻘﻴﻤﺔ ﺍﳊﺎﻟﻴﺔ ‪ NPV‬ﻻﺣﺘﺴﺎﺏ ﺻﺎ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﳌﺘﻮﻗﻌﺔ‬
‫ﻋﻨﺪ ﺳﻌﺮ ﺣﺴﻢ ) ﺧﺼﻢ( ﳏﺪﺩ ﺳﻠﻔﺎً‪ ،‬ﻓﺈﻥ ﻣﻌﻴﺎﺭ ﻣﻌﺪﻝ ﺍﻟﻌﺎﺋﺪ ﺍﻟﺪﺍﺧﻠﻲ ‪ IRR‬ﻳﺒﺤﺚ ﻋﻦ ﺳﻌﺮ‬
‫ﺍﳊﺴﻢ )ﺍﳋﺼﻢ( ﺍﻟﺬﻱ ﳚﻌﻞ ﺻﺎ‬
‫ﺍﻟﻘﻴﻤﺔ ﺍﳊﺎﻟﻴﺔ ﻟﻠﻤﺸﺮﻭﻉ ﻣﺴﺎﻭﻳﺎً ﻟﻠﺼﻔﺮ ‪ .‬ﻟﺬﻟﻚ ﻓﺈﻥ‬
‫ﺍﳌﻌﻴﺎﺭﻳﻦ ﻭﺛﻴﻘﺎ ﺍﻟﺼﻠﺔ ﺑﺒﻌﻀﻬﻤﺎ ﻻﻋﺘﻤﺎﺩﳘﺎ ﻋﻠﻰ ﻧﻔﺲ ﺍﳌﻌﺎﺩﻟﺔ ﻣﻊ ﻗﻠﺐ ﺍﻟﻔﺮﺿﻴﺎ ﺕ ﻭﺍﻟﻨﺘﺎﺋﺞ ‪.‬‬
‫ﺇﻥ ‪ IRR‬ﳛﺘﺴﺐ ﺑﻄﺮﻳﻘﺔ ﺍﻟﺘﺠ ﺮﺑﺔ ﻭﺍﳋﻄﺄ‪ ٥‬ﻋﻨﺪ ﻣﻌﺪﻻﺕ ﺣﺴﻢ ) ﺧﺼﻢ( ﳐﺘﻠﻔﺔ ﻭﺻﻮﻻً ﻟﺘﺤﺪﻳﺪ‬
‫ﺳﻌﺮ ﺍﳊﺴﻢ )ﺍﳋﺼﻢ( ﺍﻷﻓﻀﻞ ﻭﻫﻮ‬
‫ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﺍﻟﻘﻴﻤﺔ ﺍﳊﺎﻟﻴﺔ ﺍﻟﺼﺎﻓﻴﺔ ﺍﻟﱵ ﺗﻘﱰﺏ ﺃﻭ‬
‫ﺗﺴﺎﻭﻱ ﺍﻟﺼﻔﺮ‪.‬‬
‫)‬
‫‪ ٥‬ﯾﻘﺪم ﺑﺮﻧﺎﻣﺞ اﻛﺴﻞ ﻣﻦ ﻣﺎﯾﻜﺮوﺳﻮﻓﺖ وﻣﺜﯿﻼﺗﮫ ﺻﯿﻐﺎ ﻻﺣﺘﺴﺎب ‪ IRR‬ﻣﺒﺎﺷﺮة إﻧﻤﺎ ﺑﻨﻔﺲ اﻟﻤﻨﮭﺠﯿﺔ اﻟﯿﺪوﯾﺔ اﻟﻤﺬﻛﻮرة‪.‬‬
‫‪5‬‬
‫(‬
‫∑=‬
‫‪4‬‬
‫ﻭﳛﻜﻢ ﻋﻠﻰ ﺍﳌﺸﺮﻭﻉ ﺍﳌﺪﺭﻭﺱ ﺑﺎﻟﻘﺒﻮﻝ ﺇﺫﺍ ﻛﺎﻥ ﻣﻌﺪﻝ ﻋﺎﺋﺪﻩ ﺍﻟﺪﺍﺧﻠﻲ ﺃﻛﱪ ﻣﻦ ﺳﻌﺮ ﺍﻟﻔﺎﺋﺪﺓ ﻋﻠﻰ‬
‫ﺍﻹﻗﺮﺍﺽ ﻃﻮﻳﻞ ﺍﻷﺟﻞ ﺃﻭ ﺃﻛﱪ ﻣﻦ ﻣﻌﺪﻝ ﺍﻟﻌﺎﺋﺪ ﻋﻠﻰ ﺍﻟﻔﺮﺻﺔ ﺍﻟﺒﺪﻳﻠﺔ ﻛﺎﻻﺳﺘﺜﻤﺎﺭ‬
‫ﺍﻟﺴﻨﺪﺍﺕ‬
‫ﺍﳊﻜﻮﻣﻴﺔ ﺍﻟﺮﺑﻮﻳﺔ ‪.‬‬
‫ﳝﻜﻦ ﲤﺜﻴﻞ ﺍﻟﻌﻼﻗﺔ ﺍﳌﺘﺪﺍﺧﻠﺔ ﺑﲔ ‪ NPV‬ﻭ‪ IRR‬ﺑﺎﻟﺒﻴﺎﻥ ﻵﺗﻲ‪ ،٦‬ﺍﻟﺸﻜﻞ ﺭﻗﻢ )‪: (١‬‬
‫‪=0‬‬
‫)‬
‫‪(1 +‬‬
‫‪+ ⋯+‬‬
‫‪(1 +‬‬
‫)‬
‫‪=0‬‬
‫ﻓﺈﺫﺍ ﻓﺮﺿﻨﺎ ﺃﻥ ﻣﺸﺮﻭﻋﺎً ﻣﺎ ﺗﺪﻓﻘﺎﺗﻪ ﺍﻟﻨﻘﺪﻳﺔ ﺑﻠﻐﺖ‬
‫)‬
‫‪+‬‬
‫‪(1 +‬‬
‫)‬
‫‪(1 +‬‬
‫‪+‬‬
‫=‬
‫ﺳﻨﻮﺍﺕ ﻋﻤﺮﻩ ﺍﳋﻤﺲ ﻛﻤﺎ ﻳﻠﻲ ‪،١٠٠٠ - :‬‬
‫‪ ١٠٠ ،٣٠٠ ،٤٠٠ ،٥٠٠‬ﻓﺈﻥ ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻲ ﺍﻟﺘﺎﱄ ﻳﻮﺿﺢ ﺃﻥ ﺍﻟﻘﻴﻤﺔ ﺍﳊﺎﻟﻴﺔ ‪ PV‬ﻟﻠﺘﺪﻓﻘﺎﺕ‬
‫ﺳﺘﺒﻠﻎ ‪ ١٠٠٠‬ﻭﺃﻥ ﺻﺎ ﺍﻟﻘﻴﻤﺔ ﺍﳊﺎﻟﻴﺔ ﺳﺘﺴﺎﻭﻱ ﺍﻟﺼﻔﺮ‪.‬‬
‫‪4‬‬
‫‪3‬‬
‫‪2‬‬
‫‪1‬‬
‫‪100‬‬
‫‪300‬‬
‫‪400‬‬
‫‪500‬‬
‫‪0‬‬
‫‪Cash Flows‬‬
‫‪-1000‬‬
‫‪1000‬‬
‫‪0‬‬
‫‪Sum of PVs for CF1-4‬‬
‫‪Net Present Value‬‬
‫ﺍﻟﺸﻜﻞ )‪(١‬‬
‫‪500‬‬
‫‪400‬‬
‫‪300‬‬
‫‪100‬‬
‫‪+‬‬
‫‪+‬‬
‫‪+‬‬
‫‪=0‬‬
‫‪(1 +‬‬
‫)‬
‫‪(1 +‬‬
‫)‬
‫‪(1 +‬‬
‫)‬
‫‪(1 +‬‬
‫)‬
‫‪−1000 +‬‬
‫ﺃﻣﺎ ﺗﻄﺒﻴﻖ ﳕﻮﺫﺝ )ﺃﻭﻫﺎﺝ ‪ -‬ﻗﻨﻄﻘﺠﻲ( ﻓ ﻴﺴﻤﺢ ﺑﺎﺣﺘﺴﺎﺏ )ﻣﻘﺎﻡ ‪ (MQAM‬ﺍﻟﺬﻱ ﳝ ﻜّﻦ ﺍﳌﻤﻮ‪ ‬ﻝ‬
‫ﻣﻦ ﲢﺪﻳﺪ ﺗﻜﻠﻔﺔ ﺍﻟﺘﻤﻮﻳﻞ ﺍﳌﻨﺎﺳﺒﺔ ﺑﺎﺣﺘﺴﺎﺏ ﺍﻟﻌﺎﺋﺪ ﺍﳌﺘﻮﻗﻊ ﺍﻋﺘﻤﺎﺩﺍً ﻋﻠﻰ ﺗﺪﻓﻘﺎﺕ ﺍﳌﺸﺮﻭﻉ‬
‫ﺍﳌﺘﻮﻗﻌﺔ ﻟ ﺘﻘﻴﻴﻢ ﺟﺪﻭﻯ ﺍﻻﺳﺘﺜﻤﺎﺭ‬
‫ﺍﳌﺸﺮﻭﻉ ﺑﻘﺒﻮﻝ ﲤﻮﻳﻠﻪ ﺃﻭ ﺭﻓﻀﻪ ﺩﻭﻥ ﺍﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺳﻌﺮ‬
‫ﺍﻟﻔﺎﺋﺪﺓ ﺍﻟﺮﺑﻮﻳﺔ ﻛﻠﻴ‪‬ﺎً ‪.‬‬
‫‪Eugene F. Brigham and Michael C. Ehrhardt,Financial Management Theory & Practice,‬‬
‫‪Thompson, South Western, USA, 2005, P. 351-355.‬‬
‫‪6‬‬
‫‪6‬‬
‫ﻓﻤﻘﺎﻡ ‪ MQAM‬ﻳﺴﻤﺢ ﺑﺎﻟﻮﺻﻮﻝ ﺇﱃ ﻧﺴﺒﺔ ﻋﺎﺋﺪ ﻣﻦ ﺧﻼﻝ ﺗﺪﻓﻘﺎﺕ ﻧﻘﺪﻳﺔ ﻣﻔﱰﺿﺔ ﲟﺎ ﻳﺸﺎﺑﻪ‬
‫ﻣﻌﺪﻝ ﺍﻟﻌﺎﺋﺪ ﺍﻟﺪﺍﺧﻠﻲ ‪ ،IRR‬ﺃﻭ ﺍﻟﻮﺻﻮﻝ ﺇﱃ ﲢﺪﻳﺪ ﺻﺎ‬
‫ﻋﻨﺪ ﻋﺎﺋﺪ ﻣﺴﺘﻬﺪﻑ ﺳﻠﻔﺎً ﲟﺎ ﻳﺸﺎﺑﻪ ﻣﻌﻴﺎﺭ ﺻﺎ‬
‫ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﻟﻮﺍﺟﺐ ﲢﻘﻴﻘﻬﺎ‬
‫ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ‪ NPV‬ﺩﻭﻥ ﺍﳊﺎﺟﺔ‬
‫ﻟﺘﻮﺳﻴﻂ ﺳﻌﺮ ﺍﻟﻔﺎﺋﺪﺓ ﺍﻟﺮﺑﻮﻳﺔ ﺳﻮﺍﺀ ﻛﺎﻥ ﻻﻳﺒﻮﺭ ﺃﻭ ﺳﺎﻳﺒﻮﺭ ﺃﻭ ﻏﲑﻩ ﻣﻦ ﺍﳌﺴﻤﻴﺎﺕ ﺫﺍﺕ ﺍﻷﺳﺎﺱ‬
‫ﺍﻟﺮﺑﻮﻱ‪.‬‬
‫ﺍﻟﻬﺪﻑ ﻣﻦ ﺍﻟ ﻨﻤﻮﺫﺝ ‪:‬‬
‫ﻳﻬﺪﻑ ﺍﺳﺘﺨﺪﺍﻡ ﻭﺗﻄﺒﻴﻖ ﳕﻮﺫﺝ )ﻣﻘﺎﻡ( ﺇﱃ ﲢﻘﻴﻖ ﺍﻟﻔﻮﺍﺋﺪ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ ﺗﺮﻭﻳﺞ ﺍﺳﺘﺨﺪﺍﻡ ﺍﳌﻀﺎﺭﺑﺔ ﺍﻹﺳﻼﻣﻴﺔ ﻣﻦ ﺧﻼﻝ ﺍﳌﺴﺎﻋﺪﺓ ﲢﺪﻳﺪ ﻧﺴﺐ ﺗﻮﺯﻳﻊ ﺍﻷﺭﺑﺎﺡ ﺑﲔ ﺭﺏ‬‫ﺍﳌﺎﻝ ﻭﺍﳌﻀﺎﺭﺏ ﺑﺎﻟﻌﻤﻞ ﺑﻨﺎﺀ ﻋﻠﻰ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﻟﱵ ﺳﺘﺤﻘﻘﻬﺎ ﺗﻠﻚ ﺍﳌﻀﺎﺭﺑﺔ ﻭﺫﻟﻚ ﻋﻠﻰ‬
‫ﺷﻜﻞ ﺻﻴﻐﺔ ﺭﻳﺎﺿﻴﺔ‪ ،‬ﻭﻟﻴﺲ ﺑﻨﺎﺀ ﻋﻠﻰ ﺗﻔﺎﻭﺽ ﺃﻃﺮﺍﻑ ﻋﻤﻠﻴﺔ ﺍﻟﺘﻤﻮﻳﻞ ﻓﻘﻂ‪.‬‬
‫ ﺩﻋﻢ ﺍﻟﺪﺭﺍﺳﺎﺕ ﺍﻻﺋﺘﻤﺎﻧﻴﺔ ﺍﻟﱵ ﺗﺮﻛﺰ ﻋﻠﻴﻬﺎ ﺍﳌﺼﺎﺭﻑ ﻟﺒﻴﺎﻥ ﻣﺪﻯ ﲢﻘﻴﻖ ﺍﻟﻌﻤﻴﻞ ﺍﳌﻔﱰﺽ‬‫ﻟﺘﺪﻓﻘﺎﺕ ﻧﻘﺪﻳﺔ ﻛﺎﻓﻴﺔ ﻟﺴﺪﺍﺩ ﺍﻷﻗﺴﺎﻁ ﺍﻟﱵ ﺳﻴﻠﺘﺰﻡ ﲠﺎ‪.‬‬
‫ ﲪﺎﻳﺔ ﺃﺭﺑﺎﺏ ﺍﳌﺎﻝ ﻭﺃﺻﺤﺎﺏ ﺍﻟﻌﻤﻞ ﻭﺍ‪‬ﺘﻤﻊ ﻛﻜﻞ ﻣﻦ ﺧﻼﻝ ﺍﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﻣﺆﺷﺮﺍﺕ ﻣﺴﺘﻨﺒﻄﺔ‬‫ﳑﺎ ﺳﻴﺘﻢ ﲢﻘﻴﻘﻪ ﻣﻦ ﺗﺪﻓﻘﺎﺕ ﻧﻘﺪﻳﺔ ﲡﻨﺒﺎً ﻷﺯﻣﺎﺕ ﺍﻟﺴﻴﻮﻟﺔ ﺍﳌﺘﻮﻗﻌﺔ ﺧﺎﺻﺔ ﺑﻌﺪ ﺍﻷﺯﻣﺔ ﺍﳌﺎﻟﻴﺔ‬
‫ﺍﻷﺧﲑﺓ‪.‬‬
‫ ﺍﻟﺘﺨﻠﺺ ﻛﻠﻴﺎً ﻣﻦ ﺍﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﻔﺎﺋﺪﺓ ﺍﳌﺼﺮﻓﻴﺔ )ﺃﻭ ﺍﻟﻼﻳﺒﻮﺭ ﻭﻣﺜﻴﻼﺗﻪ( ﻭﲡﻨﺒﻬﺎ‬‫ﺍﻟﺘﻄﺒﻴﻘﺎﺕ‪.‬‬
‫ﲨﻴﻊ‬
‫ﻣﺤﺪﺩﺍﺕ ﺍﻟﻨﻤﻮﺫﺝ ‪:‬‬
‫ﻳ ﻔﱰﺽ ﺃ ﳕﻮﺫﺝ )ﻣﻘﺎﻡ ( ﺗﻄﺎﺑﻖ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﺘﻮﻗﻌﺔ ﻟﻠﻤﺸﺮﻭﻉ ﲝﺴﺐ ﺩﺭﺍﺳﺔ ﺍﳉﺪﻭﻯ‬
‫ﺍﻻﻗﺘﺼﺎﺩﻳﺔ ﻣﻊ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﻟﻔﻌﻠﻴﺔ ﺑﻨﻬﺎﻳﺔ ﺍﳌﺸﺮﻭﻉ ﺑﻌﺪ ﺣﺴﻢ ﺍﻷ ﻋﺒﺎﺀ ﺍﻟﺘﻤﻮﻳﻠﻴﺔ ‪.‬‬
‫ﻭﻳﻌﺘﱪ ﻫﺬﺍ ﺍﻟﻔﺮﺽ ﲟﺜﺎﺑﺔ ﺷﺮﻁ ﻳﻌﺎﺩﻝ ﻛﻔﺎﺀﺓ ﺍﳌﺸﺮﻭﻉ ﻟﺘﻄﺒﻴﻖ ﺍﻟﻨﻤﻮﺫﺝ ﺍﳌﻘﱰﺡ‪ ،‬ﻭﺍﻟﻜﻔﺎﺀﺓ ﺗﻜﻮﻥ‬
‫ﺑﺘﺤﻘﻴﻖ ﺍﳌﺸﺮﻭﻉ ﻟ ﺘﺪﻓﻘﺎﺕ ﻧﻘﺪﻳﺔ ﺗﻌﺎﺩﻝ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﺮﺻﻮﺩﺓ‬
‫ﺩﺭﺍﺳﺔ ﺟﺪﻭﺍﻩ ﺑﻌﺪ ﺇ ﻋﺎﺩﺓ‬
‫ﺍﺳﺘﺜﻤﺎﺭ ﺗﻠﻚ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﶈﺴﻮﻣﺔ ‪.‬‬
‫ﻭﻳﻌﺘﱪ ﺍﻟﻌﻤﻴﻞ ﺍﳌﻔﱰﺽ ﻣﺴﺆﻭﻻً ﻋﻦ ﺩﻗﺔ ﺣﺴﺎﺑﺎﺕ ﺩﺭﺍﺳﺔ ﺍﳉﺪﻭﻯ ﺑﺎﻟﺘﻀﺎﻣﻦ ﻣﻊ ﺍﻟﺸﺮﻛﺔ ﺍﻟﺪﺍﺭﺳﺔ ﳍﺎ‬
‫ﻣﺴﺆﻭﻟﻴﺔ ﺃﺩﺑﻴﺔ ﻭﻓﻨﻴﺔ ﻭﺟﺰﺍﺋﻴﺔ‪.‬‬
‫‪7‬‬
‫ﻳ‪‬ﻀﺎﻑ ﺇﱃ ﺫﻟﻚ ﺗﻮﺍﻓﺮ ﺍﶈﺪﺩﺍﺕ ﺍﻟﺘﻔﻀﻴﻠﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫‪ -١‬ﲢﻘﻴﻖ ﺍﳌﺸﺮﻭﻉ ﻟﺘﺪﻓﻘﺎﺕ ﻧﻘﺪﻳﺔ ﺳﻨﻮﻳﺔ‪ ،‬ﺳﻮﺍﺀ ﻛﺎﻧﺖ ﺗﺪﻓﻘﺎﺕ ﻣﺘﺴﺎﻭﻳﺔ ﺃﻭ ﳐﺘﻠﻔﺔ‪ ،‬ﺳﺎﻟﺒﺔ ﺃﻡ ﻣﻮﺟﺒﺔ‪.‬‬
‫‪ -٢‬ﺃﻥ ﺗﻜﻮﻥ ﻣﺪﺓ ﺍﻟﺘﻤﻮﻳﻞ ﲬﺴﺔ ﺳﻨﻮﺍﺕ‪.‬‬
‫‪ -٣‬ﺃﻥ ﻳﻌﻴﺪ ﺍﳌﺸﺮﻭﻉ ﺍﺳﺘﺜﻤﺎﺭ ﺃﻣﻮﺍﻟﻪ )ﺍﳌﻘﺒﻮﺿﺔ ﻭﺍﻟﻨﺎﲨﺔ ﻋﻦ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﻟﺪﺍﺧﻠﺔ( ﺑﻨﻔﺲ ﻣﻌﺪﻝ‬
‫ﺍﳊﺴﻢ ﺍﻟﻨﺎﺗﺞ ﻋﻦ ﳕﻮﺫﺝ )ﻣﻘﺎﻡ(‪.‬‬
‫ﻓﺮﺿﻴﺎﺕ ﺍﻟﻨﻤﻮﺫﺝ ‪:‬‬
‫ﻫﻞ ﳏﺪﺩﺍﺕ ﳕﻮﺫﺝ )ﺃﻭﻫﺎﺝ – ﻗﻨﻄﻘﺠﻲ( ﻗﺎﺑﻠﺔ ﻟ ﻠﺘﺤﻘﻖ؟‬
‫ﻫﻞ ﻳﺼﻠﺢ ﳕﻮﺫﺝ )ﺃﻭﻫﺎﺝ – ﻗﻨﻄﻘﺠﻲ( ﻷﻥ ﻳﻜﻮﻥ ﺃﺩﺍﺓ ﺟﺪﻳﺪﺓ‬
‫ﺗﻘﻴﻴﻢ ﺍﳌﺸﺮﻭﻋﺎﺕ ﺃﻡ ﻻ؟‬
‫ﺻﻴﺎﻏﺔ ﺍﻷﻧﻤﻮﺫﺝ‪:‬‬
‫ﺳﻴﺘﻢ ﺻﻴﺎﻏﺔ ﳕﻮﺫﺝ )ﺃﻭﻫﺎﺝ – ﻗﻨﻄﻘﺠﻲ( ﺑﻄﺮﻳﻘﺘﲔ ﻣﺘﻌﺎﻛﺴﺘﲔ ﻟﺘﻮﺿﻴﺢ ﻣﺮﻭﻧﺘﻪ ﻭﻗﺎﺑﻠﻴﺔ‬
‫ﺍﺳﺘﺨﺪﺍﻣﻪ ﻋﻠﻰ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ‪:‬‬
‫ﺍﻟﻄﺮﻳﻘﺔ ﺍﻷﻭﱃ‪ :‬ﺑﺎﺣﺘﺴﺎﺏ ﻧﺴﺒﺔ ﺍﻟﺮﺑﺢ ﺍﳌﺴﺘﻬﺪﻓﺔ ﺑﺪﻻﻟﺔ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ‪.‬‬
‫ﺍﻟﻄﺮﻳﻘﺔ ﺍﻟﺜﺎﻧﻴﺔ‪ :‬ﺑﺎﺣﺘﺴﺎﺏ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺑﺪﻻﻟﺔ ﻧﺴﺒﺔ ﺍﻟﺮﺑﺢ ﺍﳌﺴﺘﻬﺪﻓﺔ‪.‬‬
‫ﻭﺫﻟﻚ ﲠﺪﻑ ﺇﺛﺒﺎﺕ ﻓﺮﺿﻴﺎﺕ ﺍﻟﻨﻤﻮﺫﺝ ﻻﺳﺘﺨﺪﺍﻣﻪ ﺑﻜﻔﺎﺀﺓ ﻹﺛﺒﺎﺕ ﺃﻫﺪﺍﻑ ﺍﻟﻨﻤﻮﺫﺝ ‪.‬‬
‫ﺍﻟﻤﺒﺤﺚ ﺍﻷﻭﻝ‬
‫ﺍﺣﺘﺴﺎﺏ ﻧﺴﺒﺔ ﺍﻟﺮﺑﺢ ﺍﻟﻤﺴﺘﻬﺪﻓﺔ ﺑﺪﻻﻟﺔ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ‬
‫ﺗﻘﻮﻡ ﻓﻜﺮﺓ ﺍﻟﻨﻤﻮﺫﺝ ﻋﻠﻰ ﺃﺳﺎﺱ ﺑﻨﺎﺀ ﻣﻌﺎﺩﻟﺔ ﻧﺘﻴﺠﺘﻬﺎ ﲤﺜﻞ ﻧﻘﻄﺔ ﺗﻌﺎﺩﻝ ﳝﻜﻦ ﺍﻋﺘﺒﺎﺭﻫﺎ ﻛﺂ ﻟﻴﺔ‬
‫ﺑﺪﻳﻠﺔ ﻋﻦ ﺍ ﻻﻗﱰﺍﺽ ﺑﺎﻟﻔﺎﺋﺪ ﺓ )ﺍﻟﻼﻳﺒﻮﺭ ﻭﻣﺜﻴﻼﺗﻪ (‪ ،‬ﻭﺍﳌﻘﺼﻮﺩ ﺑﺎﻟﺘﻌﺎﺩﻝ ﻫﻮ ﺍﻟﺘﻄﺎﺑﻖ ﺑﲔ ﺍﻟﺘﺪﻓﻘﺎﺕ‬
‫ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﺮﻓﻘﺔ ﺑﺪﺍﺭﺳﺔ ﺍﳉﺪﻭﻯ ﻭﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﻟﻔﻌﻠﻴﺔ ﻟﻠﻤﺸﺮﻭﻉ )ﳋﻤﺲ ﺳﻨﻮﺍﺕ ﻣﺘﺘﺎﻟﻴﺔ‬
‫ﻣﺜﻼ‪.(‬‬
‫ﻛﻤﺎ ﳝﻜﻦ ﺇﺛﺒﺎﺕ ﻧﻘﻄﺔ ﺍﻟﺘﻌﺎﺩﻝ ﻋﻠﻰ ﺃﺳﺎﺱ ﻛﻞ ﺳﻨﺔ ﻣﻨﻔﺼﻠﺔ ﻋﻦ ﺍﻷ ﺧﺮﻯ‪ ،‬ﳑﺎ ﳚﻌﻞ ﺍﳌﻌﺎﺩﻟﺔ‬
‫ﺻﺎﳊ ﺔ ﻭﻟﻮ ﻟﻌﺎﻡ ﻭﺍﺣﺪ‪ ،‬ﺳﻮﺍﺀ ﺃﻛﺎﻧﺖ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﻣﺘﺴﺎﻭﻳﺔ ﺳﻨﻮﻳﺎً ﺃﻭ ﻏﲑ ﻣﺘﺴﺎﻭﻳﺔ ‪.‬‬
‫‪8‬‬
‫ﻳﻔﱰﺽ ﺍﻟﻨﻤﻮﺫﺝ ﺃﻥ ﺣﺎﺻﻞ ﻗﺴﻤﺔ ﺇﲨﺎﱄ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﻋﻠﻰ ﺍﻟﻌﺎﺋﺪ ﺍﳌﺴﺘﻬﺪﻑ ﻣﺮﻓﻮﻋﺎً ﻟﻌﺪﺩ‬
‫ﺍﻟﺴﻨﻮﺍﺕ ﺍﻟﱵ ﺣﻘﻘﺖ ﺗﻠﻚ ﺍﻟﺘﺪﻓﻘﺎﺕ ﻳﻌﺎﺩﻝ ﺍﻟﻌﺎﺋﺪ ﺍﳌﺴﺘﻬﺪﻑ ﻣﻀﺮﻭﺑﺎً ﺑﺮﺃﺱ ﺍﳌﺎﻝ ﺍﳌﺴﺘﺜﻤﺮ‪.‬‬
‫ﻭﻋﻠﻴﻪ ﳝﻜﻦ ﺻﻴﺎﻏﺔ ﺗﻠﻚ ﺍﻟﻔﺮﺿﻴﺔ ﺑﺎﳌﻌﺎﺩﻟﺔ ﺍﻟﺮﻳﺎﺿﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫ﺇﲨﺎﱄ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ÷ )ﻣﻌﺪﻝ ﺍﳊﺴﻢ ﺍﳌﺴﺘﻬﺪﻑ( ^ ﻥ = )ﻣﻌﺪﻝ ﺍﳊﺴﻢ ﺍﳌﺴﺘﻬﺪﻑ( × ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﳌﺴﺘﺜﻤﺮ‬
‫×‬
‫)‪(1‬‬
‫ﺣﻴﺚ ﺃﻥ‪:‬‬
‫÷‬
‫=‬
‫∑‬
‫‪ :‬ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ‬
‫‪ :‬ﻣﻌﺪﻝ ﺍﳊﺴﻢ ﺍﳌﺴﺘﻬﺪﻑ‬
‫ﺍﻟﺴﻨﺔ )ﻥ( ﻭﺗﻘﺎﺑﻞ ﻣﻌﺎﻣﻞ ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﺍﳌﻔﱰﺽ‬
‫‪ : n‬ﻋﺪﺩ ﺍﻟﺴﻨﻮﺍﺕ‬
‫‪ :‬ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﳌﺴﺘﺜﻤﺮ‬
‫ﻭﺑﻨﺎﺀ ﻋﻠﻰ ﺍﳌﻌﺎﺩﻟﺔ )‪ (١‬ﳝﻜﻦ ﲢﺪﻳﺪ ﻣﻌﺎﺩﻟﺔ ﺇﲨﺎﱄ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﻛﺎﻵﺗﻲ‪ ،‬ﺍﳌﻌﺎﺩﻟﺔ )‪:(٢‬‬
‫ﺇﲨﺎﱄ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ = )ﻣﻌﺪﻝ ﺍﳊﺴﻢ ﺍﳌﺴﺘﻬﺪﻑ( ^ ﻥ × )ﻣﻌﺪﻝ ﺍﳊﺴﻢ ﺍﳌﺴﺘﻬﺪﻑ( × ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﳌﺴﺘﺜﻤﺮ‬
‫×‬
‫)‪(2‬‬
‫×‬
‫ﻭﺑﻘﺴﻤﺔ ﻃﺮ ﺍﳌﻌﺎﺩﻟﺔ )‪ (٢‬ﻋﻠﻰ ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﳌﺴﺘﺜﻤﺮ )‪ (C‬ﳓﺼﻞ ﻋﻠﻰ ﺍﳌﻌﺎﺩﻟﺔ )‪:(٣‬‬
‫=‬
‫)‪(3‬‬
‫ﺍﳌﻌﺎﺩﻟﺔ )‪ (٣‬ﳓﺼﻞ ﻋﻠﻰ )ﻣﻌﺪﻝ ﺍﳊﺴﻢ ﺍﳌﺴﺘﻬﺪﻑ (‪:‬‬
‫ﻣﻌﺪﻝ ﺍﳊﺴﻢ ﺍﳌﺴﺘﻬﺪﻑ = )ﺇﲨﺎﱄ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ÷ ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﳌﺴﺘﺜﻤﺮ( ^‬
‫))‬
‫)‪(4‬‬
‫ﺃﻣﺎ ﻣﻌﺪﻝ ﺍﳊﺴﻢ ﺍﳌﺴﺘﻬﺪﻑ ﻟﻠﺴﻨﻮﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ﻓﻴﻜﻮﻥ ﺣﺴﺎﺑﻪ ﻛﻤﺎ ﻳﻠﻲ‪:‬‬
‫(‪/‬‬
‫))‬
‫)‪(5‬‬
‫‪9‬‬
‫=‬
‫) ﻥ‪( ١+‬‬
‫ﺇﲨﺎﱄ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ÷ ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﳌﺴﺘﺜﻤﺮ = )ﻣﻌﺪﻝ ﺍﳊﺴﻢ ﺍﳌﺴﺘﻬﺪﻑ( ^‬
‫ﻭﺑﺎﻟﺘﺨﻠﺺ ﻣﻦ ﺍﳉﺬﺭ‬
‫∑‬
‫∑‬
‫÷‬
‫)‪ ) /١‬ﻥ‪((١+‬‬
‫() ÷‬
‫(‪/‬‬
‫(‬
‫∑=‬
‫() ÷‬
‫(=‬
‫ﺃﻣﺎ ﻣﻌﺪﻝ ﺍﳊﺴﻢ ﺍﳌﺴﺘﻬﺪﻑ ﻟﺴﻨﺔ ﻭﺍﺣﺪﺓ ﻓﻴﺘﻢ ﺣﺴﺎﺑﻪ ﻭﻓﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫) (‬
‫)‪(6‬‬
‫=‬
‫ﳛﺘﺴﺐ ﻣﺆﺷﺮ )ﻣﻘﺎﻡ( ﻋﻠﻰ ﺃﺳﺎﺱ ﺗﺪﻓﻘﺎﺕ ﻧﻘﺪﻳﺔ ﻟﻌﺪﺓ ﺳﻨﻮﺍﺕ ﳝﻜﻦ ﺣﺴﺎﺑﻪ ﻣﻦ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫ﻣﻘﺎﻡ = )ﺇﲨﺎﱄ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ÷ ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﳌﺴﺘﺜﻤﺮ( ^ )‪) /١‬ﻥ‪١ - ((١+‬‬
‫)‪(7‬‬
‫‪−1‬‬
‫))‬
‫(‪/‬‬
‫() ÷‬
‫∑( =‬
‫ﺃﻣﺎ ﳊﺴﺎﺏ )ﻣﻘﺎﻡ( ﻋﻠﻰ ﺃﺳﺎﺱ ﺗﺪﻓﻖ ﻧﻘﺪﻱ ﻟﺴﻨﺔ ﻭﺍﺣﺪﺓ ﻓﺘﻜﻮﻥ ﺍﳌﻌﺎﺩﻟﺔ ﻋﻠﻰ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ‪:‬‬
‫‪−1‬‬
‫)‪(8‬‬
‫))‬
‫(‪/‬‬
‫ﻣﻊ ﻣﺮﺍﻋﺎﺓ ﺧﺼﻮﺻﻴﺔ ﺍﺣﺘﺴﺎﺏ ﺍﻟﺴﻨﻮﺍﺕ ﺍﳌﺘﺘﺎﺑﻌﺔ ﻋﻠﻰ ﺍﻷﺳﺎﺱ ﺍﻟﺴﻨﻮﻱ‪.‬‬
‫() ÷‬
‫(=‬
‫ﺇﺫﻥ ﻳﻌﺘﱪ )ﻣﻘﺎﻡ( ﲟﺜﺎﺑﺔ ﻧﻘﻄﺔ ﺍﻟﺘﻌﺎﺩﻝ ﺍﻟﱵ ﻳﺒﺪﺃ ﻋﻨﺪﻫﺎ ﺍﻟﺘﻔﺎﻭﺽ ﺑﲔ ﺍﳌﻤﻮﻝ ﻭﺍﳌﺘﻤﻮﻝ ﺑﺪﻳﻼ‪ ‬ﻋﻦ‬
‫ﻣﺆﺷﺮ )ﺍﻟﻼﻳﺒﻮﺭ ﻭﻣﺜﻴﻼﺗﻪ( ﺑﺄﺳﻠﻮﺏ ﻋﻠﻤﻲ ﻭﻣﻮﺿﻮﻋﻲ ﺑﺎﻋﺘﻤﺎﺩ ﺍﻟﺘﻘﺪﻳﺮ ﻋﻠﻰ ﺃﺳﺎﺱ ﻛﻔﺎﺀﺓ ﻛﻞ ﻣﺸﺮﻭﻉ‬
‫ﻋﻠﻰ ﺣﺪﺓ ﻭﻟﻴﺲ ﺑﺘﻘﻨﻴﺔ ﺍﻟﺘﺴﻌﲑ ﺍﻹﲨﺎﻟﻴﺔ ﻟﻜﻞ ﺍﻟﺴﻮﻕ ﺣﻴﺚ ﺍﳋﻠﻂ ﺑﲔ ﺍﳊﺎﺑﻞ ﻭﺍﻟﻨﺎﺑﻞ ﻣﻦ ﺍﳌﺸﺎﺭﻳﻊ‬
‫ﺩﻭﻥ ﲤﻴﻴﺰ ﺑﲔ ﺟﻴﺪﻫﺎ ﻭﺭﺩﻳﺌﻬﺎ‪.‬‬
‫ﺑﺮﻫﻨﺔ ﻭﺇﺛﺒﺎﺕ ﻓﻌﺎﻟﻴﺔ ) ﻣﻘﺎﻡ (‬
‫ﺳﻨﻘﻮﻡ ﺑﺈﺛﺒﺎﺕ ﻓﻌﺎﻟﻴﺔ )ﻣﻘﺎﻡ( ﺑﺎﺳﺘﺨﺪﺍﻡ ﳕﻮﺫﺝ )‪ (O HAJ – KANTAKJI‬ﺑﺎﺳﺘﻌﺮﺍﺽ ﳎﻤﻮﻋﺔ‬
‫ﺃﻣﺜﻠﺔ ﺗﺘﻨﺎﻭﻝ ﻋﺪﺓ ﻧﻮﺍﺣﻲ ﻣﺎﻟﻴﺔ ﳝﻜﻦ ﻟﻠﻨﻤﻮﺫﺝ ﺃﻥ ﻳﻌﺎﳉﻬﺎ ﺃﻭ ﻳﻐﻄﻴﻬﺎ ‪.‬‬
‫ﻣﺜﺎﻝ ﺭﻗﻢ ) ‪ :( ١‬ﺗﺪﻓﻘﺎﺕ ﻧﻘﺪﻳﺔ ﺳﻨﻮﻳﺔ ﻣﺘﺴﺎﻭﻳﺔ‪:‬‬
‫ﻃﻠﺐ ﻣﺸﺮﻭﻉ ﺍﺳﺘﺜﻤﺎﺭﻱ )ﺃ( ﻣﻦ ﻣﺼﺮﻑ ﺇﺳﻼﻣﻲ ﲤﻮﻳﻞ ﻣﻀﺎﺭﺑﺔ ﲟﺒﻠﻎ ‪ ١٠٠٠٠٠‬ﺟﻨﻴﻪ ﺗﺴﺘﻤﺮ ﻣﺪﺓ‬
‫ﲬﺴﺔ ﺳﻨﻮﺍﺕ‪.‬‬
‫ﺗﻮﺿﺢ ﺩﺭﺍﺳﺔ ﺍﳉﺪﻭﻯ ﺑﺄﻥ ﺍﳌﺸﺮﻭﻉ ﺳﻴﺤﻘﻖ ﺗﺪﻓﻘﺎﺕ ﻧﻘﺪﻳﺔ ﺳﻨﻮﻳﺔ ﻗﺪﺭﻫﺎ ‪ ١٠٠٠٠٠‬ﺟﻨﻴﻪ ﺳﻨﻮﻳﺎً ﺣﺘﻰ‬
‫ﳖﺎﻳﺔ ﺍﳌﺸﺮﻭﻉ‪.‬‬
‫ﺍﳌﻄﻠﻮﺏ‪:‬‬
‫‪ .١‬ﻣﺎ ﻫﻮ ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﻟﻠﻌﺎﺋﺪ ﺍﻟﺬﻱ ﳚﺐ ﺃﻥ ﻳﻘﺒﻠﻪ ﺍﳌﺼﺮﻑ ﺍﻹﺳﻼﻣﻲ؟‬
‫‪ .٢‬ﺇﺛﺒﺎﺕ ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﻟﻠﻌﺎﺋﺪ‪.‬‬
‫‪10‬‬
‫‪ .٣‬ﺑﻔﺮﺽ ﺃﻥ ﺍﳌﺼﺮﻑ ﻳﺴﺘﻬﺪﻑ ﲢﻘﻴﻖ ﻋﺎﺋﺪ ﻗﺪﺭﻩ ‪ %٩.٦‬ﺳﻨﻮﻳﺎً ﻓﻬﻞ ﺣﻘﻖ ﺍﳌﺼﺮﻑ ﺍﻹﺳﻼﻣﻲ‬
‫ﺳﻴﺎﺳﺘﻪ ﺍﻻﺋﺘﻤﺎﻧﻴﺔ ﺍﳌﺴﺘﻬﺪﻓﺔ؟‬
‫ﺍﳊﻞ‪:‬‬
‫ﺃﻭﻻً‪ ..‬ﲢﺪﻳﺪ ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﺍﻟﺬﻱ ﳚﺐ ﺃﻥ ﻳﻘﺒﻞ ﺑﻪ ﺍﳌﺼﺮﻑ‪:‬‬
‫ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ )‪ (٧‬ﳝﻜﻨﻨﺎ ﺑﻨﺎﺀ ﺍﳉﺪﻭﻝ )‪ (١‬ﺍﻟﺘﺎﱄ‪:‬‬
‫ﺍﻟﺴﻨﺔ‬
‫ﻣﻌﺪﻝ ﺍﳊﺴﻢ ﺗﺪﻓﻘﺎﺕ ﻧﻘﺪﻳﺔ ﻧﺼﻴﺐ ﺍﳌﻤﻮﻝ‬
‫ﺗﺪﻓﻘﺎﺕ ﻣﻌﺎﺩ ﺍﺳﺘﺜﻤﺎﺭﻫﺎ‬
‫‪n‬‬
‫‪R‬‬
‫‪CF‬‬
‫‪Share1‬‬
‫‪CFp‬‬
‫‪1‬‬
‫‪2‬‬
‫‪3‬‬
‫‪4‬‬
‫‪5‬‬
‫‪1.30766‬‬
‫‪1.70998‬‬
‫‪2.23607‬‬
‫‪2.92402‬‬
‫‪3.82362‬‬
‫‪-‬‬
‫‪100,000‬‬
‫‪100,000‬‬
‫‪100,000‬‬
‫‪100,000‬‬
‫‪100,000‬‬
‫‪76,472.45‬‬
‫‪58,480.35‬‬
‫‪44,721.36‬‬
‫‪34,199.52‬‬
‫‪26,153.21‬‬
‫‪100,000.00‬‬
‫‪158,480.35‬‬
‫‪251,959.86‬‬
‫‪363,677.47‬‬
‫‪501,719.86‬‬
‫‪500,000‬‬
‫‪240,026.89‬‬
‫‪501,719.86‬‬
‫ﺍ‪‬ﻤﻮﻉ‬
‫ﻧﺼﻴﺐ‬
‫ﺍﳌﻀﺎﺭﺏ‬
‫‪Share2‬‬
‫‪261,692.97‬‬
‫ﺍﳉﺪﻭﻝ )‪(١‬‬
‫ﺇﻥ ﻗﻴﻤﺔ )ﻣﻘﺎﻡ( ﺗﺴﺎﻭﻱ‪:‬‬
‫∑(‬
‫‪÷ )( /( )) − 1=1-(500000/100000)^(1/6)= 0.30766‬‬
‫ﺇﺫﻥ ﻓﺎﳊﺪ ﺍﻷﺩﻧﻰ ﺍﻟﺬﻱ ﻳﻘﺒﻞ ﺑﻪ ﺍﳌﺼﺮﻑ ﺍﻹﺳﻼﻣﻲ ﻟﺘﻤﻮﻳﻞ ﻫﺬﻩ ﺍﳌﻀﺎﺭﺑﺔ ﺑﺘﻄﺒﻴﻖ ﺍﻟﻨﻤﻮﺫﺝ ﻭﲝﺴﺐ‬
‫ﻣﻌﺎﺩﻟﺔ )ﻣﻘﺎﻡ( ﻳﻌﺎﺩﻝ ‪ .%٣٠،٧٦٦‬ﻭﻳﺮﺍﻋﻰ ﺷﺮﻁ ﺇﻋﺎﺩﺓ ﺍﺳﺘﺜﻤﺎﺭ ﺍﻷﻣﻮﺍﻝ ﺍﳌﻘﺒﻮﺿﺔ ﺑﻨﻔﺲ ﺍﻟﻨﺴﺒﺔ‪.‬‬
‫ﺛﺎﻧﻴﺎً‪ ..‬ﺇﺛﺒﺎﺕ ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﻟﻠﻌﺎﺋﺪ‬
‫ﻳﻄﻠﺐ ﺍﳌﺼﺮﻑ ﺍﻹﺳﻼﻣﻲ ﻣﺒﻠﻎ ‪ ٣٠٧٦٦‬ﺟﻨﻴﻪ ﻛﺤﺪ ﺃﺩﻧﻰ ﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﺍﺕ ﺍﳋﻤﺴﺔ‪ .‬ﻭﻹﺛﺒﺎﺕ ﺻﺤﺔ ﺫﻟﻚ‬
‫ﻧﻄﺒﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﻟﻠﻌﺎﺋﺪ)ﻥ( = ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﳌﺴﺘﺜﻤﺮ × )ﻥ( ﺳﻨﺔ ÷ ﻣﻌﺎﻣﻞ ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﺍﳌﻔﱰﺽ)ﻥ(‬
‫÷‬
‫)‪(9‬‬
‫ﺣﻴﺚ ﺃﻥ‪:‬‬
‫ﲤﺜﻞ ﻣﻌﺪﻝ ﺍﳊﺪ ﺍﻷﺩﻧﻰ‬
‫ﺍﻟﺴﻨﺔ )ﻥ( ﻭﲢﺴﺐ ﻣﻦ ﺍﳌﻌﺎﺩﻟﺔ )‪ (٦‬ﻛﺎﻟﺘﺎﱄ‪:‬‬
‫‪= 1.30766^5 = 3.82362‬‬
‫ﻭﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ )‪ (٩‬ﳓﺼﻞ ﻋﻠﻰ ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﻟﻠﻌﺎﺋﺪ‬
‫ﺍﻟﺴﻨﺔ ﺍﳋﺎﻣﺴﺔ ﻛﻤﺎ ﻳﻠﻲ ‪:‬‬
‫ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﻟﻠﻌﺎﺋﺪ)‪ ١٣٠٧٦٦ = ٣،٨٢٣ ÷ ٥ × ١٠٠٠٠٠ = (5‬ﺟﻨﻴﻪ‬
‫‪11‬‬
‫×‬
‫) (‬
‫=‬
‫=‬
‫ﺃﻣﺎ ﻧﺼﻴﺐ ﺍﳌﻤﻮﻝ ﻓﻬﻲ ﺇﲨﺎﱄ ﻣﻘﺒﻮﺿﺎﺗﻪ ﻭﺗﺴﺎﻭﻱ ‪ ٢٤٠٠٢٦‬ﺟﻨﻴﻪ‪ ،‬ﺃﻱ ﺭﺃﲰﺎﻟﻪ ﺍﳌﺴﺘﺜﻤﺮ ﺇﺿﺎﻓﺔ ﺇﱃ‬
‫ﺃﺭﺑﺎﺣﻪ ﺍﻟﻨﺎﲨﺔ ﻋﻦ ﺍﻻﺳﺘﺜﻤﺎﺭ )ﺍﻟﺘﻤﻮﻳﻞ( ﻣﻀﺎﻓﺎً ﺇﻟﻴﻪ ﺍﻟﻌﻮﺍﺋﺪ ﺍﻟﱵ ﺣﻘﻘﺘﻬﺎ ﻣﻘﺒﻮﺿﺎﺗﻪ ﻣﻦ ﺍﻟﺘﺪﻓﻘﺎﺕ‬
‫ﺍﻟﻨﻘﺪﻳﺔ ﺍﻟﺪﺍﺧﻠﺔ ﻟﻠﺴﻨﻮﺍﺕ ﺍﳌﻔﱰﺿﺔ‪ .‬ﻭﳝﻜﻦ ﺻﻴﺎﻏﺔ ﺫﻟﻚ ﺑﺎﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫)‬
‫)‪(10‬‬
‫ﺣﻴﺚ ﺃﻥ ‪1‬‬
‫÷‬
‫‪ ℎ‬ﻫﻲ ﺣﺼﺔ ﺍﻟﺸﺮﻳﻚ ﺍﻷﻭﻝ ﻭ ﺣﺎﻟﺘﻨﺎ ﻫﻮ ﺍﻟﺸﺮﻳﻚ ﺍﳌﻤﻮﻝ‪.‬‬
‫(‬
‫∑=‪1‬‬
‫‪ℎ‬‬
‫ﻭﺑﺬﻟﻚ ﳛﺼﻞ ﺍﳌﻤﻮ‪‬ﻝ ﻋﻠﻰ ﻣﺒﻠﻎ ﻗﺪﺭﻩ ‪ ٢٤٠٠٢٦‬ﻭﻫﺬﺍ ﻳﻌﺎﺩﻝ ﺭﺃﺱ ﻣﺎﻟﻪ ﺍﻟﺒﺎﻟﻎ ‪ ١٠٠٠٠٠‬ﻭﻋﺎﺋﺪ ﻗﺪﺭﻩ‬
‫‪ ١٤٠٠٢٦‬ﺟﻨﻴﻪ ﻧﺎﺟﻢ ﻋﻦ ﺣﺼﺘﻪ ﻣﻦ ﲤﻮﻳﻞ ﺍﳌﻀﺎﺭﺑﺔ ﻭﻋﻦ ﺍﺳﺘﺜﻤﺎﺭ ﻣﺎ ﻗﺒﻀﻪ ﻣﻦ ﺗﺪﻓﻘﺎﺕ ﻧﻘﺪﻳﺔ ﺩﺍﺧﻠﺔ‪.‬‬
‫ﺃﻣﺎ ﺻﺎ ﺍﻟﻌﺎﺋﺪ ﺍﻟﺬﻱ ﺣﻘﻘﻪ ﺍﳌﻤﻮﻝ ﻓﻴﺴﺎﻭﻱ ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﳌﺴﺘﺜﻤﺮ ﻣﻄﺮﻭﺣﺎً ﻣﻦ ﺇﲨﺎﱄ ﺍﻟﺘﺪﻓﻘﺎﺕ‬
‫ﺍﻟﻨﻘﺪﻳﺔ ﺑﻌﺪ ﺗﺸﻐﻴﻞ ﻣﺎ ﰎ ﻗﺒﻀﻪ ﺧﻼﻝ ﻓﱰﺓ ﺍﻟﺘﺪﻓﻖ ﺍﻟﻨﻘﺪﻱ‪.‬‬
‫ﻭﺗﺘﻤﺜﻞ ﺣﺴﺐ ﺍﳌﻌﺎﺩﻟﺔ )‪ (١١‬ﺍﻟﺘﺎﻟﻴﺔ = ‪ ١٤٠٠٢٦ = ١٠٠٠٠٠ – ٢٤٠٢٢٦‬ﺟﻨﻴﻪ‬
‫‪)−‬‬
‫)‪(11‬‬
‫ﺣﻴﺚ ﺃﻥ ‪1‬‬
‫(‬
‫÷‬
‫ﻫﻲ ﺃﺭﺑﺎﺡ ﺍﻟﺸﺮﻳﻚ ﺍﻷﻭﻝ ﻭ ﺣﺎﻟﺘﻨﺎ ﻫﻮ ﺍﻟﺸﺮﻳﻚ ﺍﳌﻤﻮﻝ‪.‬‬
‫∑=‪1‬‬
‫ﺃﻣﺎ ﺇﲨﺎﱄ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﳌﻌﺎﺩ ﺍﺳﺘﺜﻤﺎﺭﻫﺎ ﺳﻨﻮﻳﺎً ﻓﺘﻤﺜﻞ‪:‬‬
‫)‪(12‬‬
‫ﺣﻴﺚ ﺃﻥ‬
‫)‬
‫(‬
‫÷‬
‫ﻫﻲ ﺍﻟﺘﺪﻓﻖ ﺍﻟﻨﻘﺪﻱ ﺑﻌﺪ ﺇﻋﺎﺩﺓ ﺍﺳﺘﺜﻤﺎﺭﻩ‬
‫∑‪)+‬‬
‫ﺍﻟﺴﻨﺔ ‪.N‬‬
‫÷‬
‫(‪+‬‬
‫=‬
‫ﺃﻣﺎ ﻧﺼﻴﺐ ﺍﳌﻀﺎﺭﺏ ﺑﺎﻟﻌﻤﻞ ﻓﻬﻮ ﻧﺎﺗﺞ ﻃﺮﺡ ﺣﺼﺔ ﺍﳌﻤﻮﻝ ﻣﻦ ﺇﲨﺎﱄ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﺎﲡﺔ ﻭﳝﻜﻦ ﲤﺜﻴﻞ‬
‫ﺫﻟﻚ ﺭﻳﺎﺿﻴﺎً ﺑﺎﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫ﻧﺼﻴﺐ ﺍﳌﻀﺎﺭﺏ ﺑﺎﻟﻌﻤﻞ = ‪ ٢٦١٦٩٢ = ٢٤٠٠٢٦ - ٥٠١٧١٩‬ﺟﻨﻴﻪ‬
‫‪1‬‬
‫)‪(13‬‬
‫ﺣﻴﺚ ﺃﻥ ‪2‬‬
‫‪− ℎ‬‬
‫‪ ℎ‬ﻫﻲ ﺃﺭﺑﺎﺡ ﺍﻟﺸﺮﻳﻚ ﺍﻟﺜﺎﻧﻲ ﻭ ﺣﺎﻟﺘﻨﺎ ﻫﻮ ﺍﻟﺸﺮﻳﻚ ﺍﳌﻀﺎﺭﺏ ﺑﺎﻟﻌﻤﻞ‪.‬‬
‫=‪2‬‬
‫‪ℎ‬‬
‫ﻓﺒﻔﺮﺽ ﺃﻥ ﻋﺎﺋﺪ ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﺑﻠﻎ ‪ ٧%٢٠‬ﻓﻘﻂ‪ ،‬ﻓﺈﻥ ﺍﻷﻣﻮﺍﻝ ﺍﳌﻌﺎﺩ ﺍﺳﺘﺜﻤﺎﺭﻫﺎ ﺳﺘﻘﻞ ﻋﻦ ﺇﲨﺎﱄ‬
‫ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﻟﻠﻤﺸﺮﻭﻉ ﻭﺍﻟﺒﺎﻟﻐﺔ ‪ ،٢٨٩٤٦٩‬ﳑﺎ ﻳﻌﲏ ﺃﻥ ﻗﺮﺍﺭ ﺍﻟﺘﻤﻮﻳﻞ ﺳﻴﺘﺠﻪ ﳓﻮ ﺭﻓﺾ ﲤﻮﻳﻞ‬
‫ﻫﺬﻩ ﺍﳌﻀﺎﺭﺑﺔ ﺩﺭﺀﺍً ﻟﻠﻤﺨﺎﻃﺮ ﻷﻥ ﺍﳌﺸﺮﻭﻉ ﺳﻴﻌﻤﻞ ﺑﻜﻔﺎﺀﺓ ﻣﺘﺪﻧﻴﺔ‪.‬‬
‫‪ ٧‬أي ﺑﻔﺮض أن ﺣﺠﻢ اﻟﺘﺪﻓﻖ اﻟﻨﻘﺪي اﻟﺴﻨﻮي ھﻮ ‪ ٦٠٩٦٢‬ﺟﻨﯿﮫ‬
‫‪12‬‬
‫ﺛﺎﻟﺜﺎً‪ ..‬ﻣﺪﻯ ﲢﻘﻴﻖ ﺍﳌﺼﺮﻑ ﺍﻹﺳﻼﻣﻲ ﻟﺴﻴﺎﺳﺘﻪ ﺍﻻﺋﺘﻤﺎﻧﻴﺔ ﺍﳌﺮﺳﻮﻣﺔ‪:‬‬
‫ﻧﺴﺒﺔ ﺣﺼﺔ ﺍﳌﻤﻮﻝ ﺍﻹﲨﺎﻟﻴﺔ= ﺇﲨﺎﱄ ﻣﻘﺒﻮﺿﺎﺕ ﺍﳌﻤﻮﻝ ÷ ﺇﲨﺎﱄ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﻌﺎﺩ ﺍﺳﺘﺜﻤﺎﺭﻫﺎ‬
‫= ‪%٤٨ =٥٠٠٠٠٠ ÷ ٢٤٠٠٢٦‬‬
‫∑÷‪1‬‬
‫)‪(14‬‬
‫ﺣﻴﺚ ﺃﻥ‬
‫‪1‬‬
‫‪= ℎ‬‬
‫‪ℎ‬‬
‫‪1‬‬
‫ﻧﺴﺒﺔ ﺇﲨﺎﱄ ﺣﺼﺔ ﺍﻟﺸﺮﻳﻚ ﺍﻷﻭﻝ ﻭ ﺣﺎﻟﺘﻨﺎ ﺍﻟﺸﺮﻳﻚ ﺍﳌﻤﻮﻝ‪.‬‬
‫‪ℎ‬‬
‫= ﻧﺴﺒﺔ ﺣﺼﺔ ﺍﳌﻤﻮﻝ ﺍﻹﲨﺎﻟﻴﺔ ÷ ﻋﺪﺩ ﺍﻟﺴﻨﻮﺍﺕ‬
‫ﺃﻣﺎ ﻧﺴﺒﺔ ﺣﺼﺔ ﺍﳌﻤﻮﻝ ﺍﻟﺴﻨﻮﻳﺔ‬
‫= ‪%٩.٦ = ٥ ÷ %٤٨‬‬
‫)‪(15‬‬
‫ﺣﻴﺚ ﺃﻥ‬
‫ﺍﻟﺴﻨﻮﻳﺔ‪.‬‬
‫‪1‬‬
‫‪ℎ‬‬
‫÷‬
‫‪1‬‬
‫‪ℎ‬‬
‫=‬
‫ﻧﺴﺒﺔ ﺣﺼﺔ ﺍﻟﺸﺮﻳﻚ ﺍﻷﻭﻝ ﻭ‬
‫‪1‬‬
‫‪ℎ‬‬
‫ﺣﺎﻟﺘﻨﺎ ﺍﻟﺸﺮﻳﻚ ﺍﳌﻤﻮﻝ‬
‫ﺇﺫﻥ ﻭﺑﺎﳌﻘﺎﺭﻧﺔ ﻣﻊ ﺳﻴﺎﺳﺔ ﺍﳌﺼﺮﻑ ﺍﻻﺋﺘﻤﺎﻧﻴﺔ ﺍﳌﺴﺘﻬﺪﻓﺔ )ﺣﺴﺐ ﻧﺺ ﺍﳌﺴﺄﻟﺔ( ﻓﻴﻤﻜﻦ ﺍﻟﻘﻮﻝ ﺃﻥ ﺍﳌﻤﻮﻝ‬
‫ﻗﺪ ﺣﻘﻖ ﺳﻴﺎﺳﺘﻪ ﺍﻻﺋﺘﻤﺎﻧﻴﺔ ﺍﳌﻨﺸﻮﺩﺓ )ﻭﻫﻲ ﻧﺴﺒﺔ ﺗﻜﺎﻓﺊ ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ﺍﳌﺴﺘﻬﺪﻑ ﻭﺍﻟﺒﺎﻟﻎ ‪.(%٩،٦‬‬
‫ﻭﺑﺎﻓﱰﺍﺽ ﺃﻥ ﺃﻣﻮﺍﻝ ﺍﳌﺼﺮﻑ ﺗﻌﻮﺩ ‪‬ﻤﻮﻋﺔ ﳑﻮﻟﲔ ﺃﻱ ﻷﺭﺑﺎﺏ ﻣﺎﻝ ﻣﺘﻌﺪﺩﻳﻦ ﻭﻫﻮ ﺇﳕﺎ ﻣﻀﺎﺭﺏ ﲜﻬﺪﻩ‬
‫ﻭﻋﻤﻠﻪ ﻓﻘﻂ‪ ،‬ﻭﻋﻠﻴﻪ ﻓﺈﻥ ﺗﻘﺴﻴﻢ ﺍﻟﺮﺑﺢ ﺍﳊﺎﺻﻞ ﺳﻴﻜﻮﻥ ﻛﺎﻟﺘﺎﱄ‪:‬‬
‫ ﺗﻜﻠﻔﺔ ﺗﺸﻐﻴﻞ ﺃﻣﻮﺍﻝ ﺍﳌﻮﺩﻋﲔ ﺍﳌﺴﺘﺜﻤﺮﺓ ﺑﺎﻟﺒﻨﻚ ﺍﻹﺳﻼﻣﻲ ﺍﻟﺒﺎﻟﻐﺔ ‪ ١٠٠.٠٠٠‬ﺟﻨﻴﻪ ﻫﻲ ‪٣٠٧٦٦‬‬‫ﺟﻨﻴﻪ‪.‬‬
‫ ﻋﻨﺪ ﺍﻧﺘﻬﺎﺀ ﺍﳌﺸﺮﻭﻉ ﺳﺘﻜﻮﻥ ﺍﳊﺼﺺ ﻛﺎﻟﺘﺎﱄ‪:‬‬‫‪ o‬ﺍﳌﺼﺮﻑ ﺍﻹﺳﻼﻣﻲ‪ ٥٦٤٧٢ = (١٣٠٧٦٦ ÷ ٣٠٧٦٦) × ٢٤٠٠٢٦ :‬ﺟﻨﻴﻪ ﻣﺎ ﻳﻌﺎﺩﻝ ﻧﺴﺒﺔ‬
‫‪.%٢٣.٥٣‬‬
‫‪ o‬ﺍﳌﻮﺩﻋﻮﻥ‪ ١٨٣٥٥٢ = ٥٦٤٧٢ – ٢٤٠٠٢٦ :‬ﺟﻨﻴﻪ ﻣﺎ ﻳﻌﺎﺩﻝ ﻧﺴﺒﺔ ‪.%٧٦.٤٧‬‬
‫ﻣﺜﺎﻝ ﺭﻗﻢ )‪ :(٢‬ﺗﺪﻓﻘﺎﺕ ﻧﻘﺪﻳﺔ ﺳﻨﻮﻳﺔ ﻣﺨﺘﻠﻔﺔ‪:‬‬
‫ﻃﻠﺐ ﻣﺸﺮﻭﻉ ﺍﺳﺘﺜﻤﺎﺭﻱ )ﺏ( ﻣﻦ ﻣﺼﺮﻑ ﺇﺳﻼﻣﻲ ﲤﻮﻳﻞ ﻣﻀﺎﺭﺑﺔ ﲟﺒﻠﻎ ‪ ١٢٠٠‬ﺟﻨﻴﻪ ﺗﺴﺘﻤﺮ ﻣﺪﺓ‬
‫ﲬﺴﺔ ﺳﻨﻮﺍﺕ‪.‬‬
‫ﺗﻮﺿﺢ ﺩﺭﺍﺳﺔ ﺍﳉﺪﻭﻯ ﺑﺄﻥ ﺍﳌﺸﺮﻭﻉ ﺳﻴﺤﻘﻖ ﺗﺪﻓﻘﺎﺕ ﻧﻘﺪﻳﺔ ﳐﺘﻠﻔﺔ ﻗﺪﺭﻫﺎ ‪،٢٤٠٠ ،٣٦٠٠ ،١٨٠٠‬‬
‫‪ ٣٣٠٠ ،٣٦٠٠‬ﺟﻨﻴﻪ ﻋﻠﻰ ﺍﻟﺘﻮﺍﱄ ﺣﺘﻰ ﳖﺎﻳﺔ ﺍﳌﺸﺮﻭﻉ‪.‬‬
‫‪13‬‬
‫ﺍﳌﻄﻠﻮﺏ‪ :‬ﻣﺎ ﻫﻮ ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﻟﻠﻌﺎﺋﺪ ﺍﻟﺬﻱ ﳚﺐ ﺃﻥ ﻳﻘﺒﻠﻪ ﺍﳌﺼﺮﻑ ﺍﻹﺳﻼﻣﻲ؟‬
‫ﺍﳊﻞ‪ :‬ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ )‪ (٧‬ﻳﺘﻢ ﺑﻨﺎﺀ ﺍﳉﺪﻭﻝ )‪ (٢‬ﺍﻟﺘﺎﱄ‪:‬‬
‫ﺍﻟﺴﻨﺔ‬
‫ﻣﻌﺪﻝ ﺍﳊﺴﻢ‬
‫ﺗﺪﻓﻘﺎﺕ ﻧﻘﺪﻳﺔ‬
‫ﻧﺼﻴﺐ ﺍﳌﻤﻮﻝ‬
‫‪n‬‬
‫‪R‬‬
‫‪CF‬‬
‫‪Share1‬‬
‫‪1‬‬
‫‪2‬‬
‫‪3‬‬
‫‪4‬‬
‫‪5‬‬
‫‪1.518294486‬‬
‫‪2.305218146‬‬
‫‪3.500000000‬‬
‫‪5.314030701‬‬
‫‪8.068263511‬‬
‫اﻟﻤﺠﻤﻮع‬
‫ﺗﺪﻓﻘﺎﺕ ﻣﻌﺎﺩ‬
‫ﻧﺼﻴﺐ‬
‫ﺍﺳﺘﺜﻤﺎﺭﻫﺎ‬
‫ﺍﳌﻀﺎﺭﺏ‬
‫‪1,800‬‬
‫‪3,600‬‬
‫‪2,400‬‬
‫‪3,600‬‬
‫‪3,300‬‬
‫‪1,185.540761‬‬
‫‪1,561.674328‬‬
‫‪685.714286‬‬
‫‪677.451863‬‬
‫‪409.009943‬‬
‫‪CFp‬‬
‫‪1,800.00‬‬
‫‪3,361.67‬‬
‫‪5,789.73‬‬
‫‪9,467.96‬‬
‫‪14,784.16‬‬
‫‪14,700‬‬
‫‪4,519.391181‬‬
‫‪14,784.16‬‬
‫‪Share2‬‬
‫‪10,264.77‬‬
‫ﺍﳉﺪﻭﻝ )‪(٢‬‬
‫ﺑﺘﻄﺒﻴﻖ ﻣﻌﺎﺩﻟﺔ )ﻣﻘﺎﻡ( ﺭﻗﻢ )‪ (٧‬ﻳﻨﺘﺞ ﻣﻌﻨﺎ‪:‬‬
‫‪− 1= (14700/1200)^(1/6) - 1= 0.5182‬‬
‫))‬
‫(‪/‬‬
‫() ÷‬
‫∑( =‬
‫ﺇﺫﻥ ﻓﺎﳊﺪ ﺍﻷﺩﻧﻰ ﺍﻟﺬﻱ ﻳﻘﺒﻞ ﺑﻪ ﺍﳌﺼﺮﻑ ﺍﻹﺳﻼﻣﻲ ﻟﺘﻤﻮﻳﻞ ﻫﺬﻩ ﺍﳌﻀﺎﺭﺑﺔ ﺑﺘﻄﺒﻴﻖ ﺍﻟﻨﻤﻮﺫﺝ ﻭﲝﺴﺐ‬
‫ﻣﻌﺎﺩﻟﺔ )ﻣﻘﺎﻡ( ﻳﻌﺎﺩﻝ ‪ .%٥١.٨٢‬ﺑﺸﺮﻁ ﺇﻋﺎﺩﺓ ﺍﺳﺘﺜﻤﺎﺭ ﺍﻷﻣﻮﺍﻝ ﺍﳌﻘﺒﻮﺿﺔ ﺑﻨﻔﺲ ﺍﻟﻨﺴﺒﺔ‪.‬‬
‫ﻣﺜﺎﻝ ﺭﻗﻢ )‪ :(٣‬ﻣﻘﺎﺭﻧﺔ ﺗﻤﻮﻳﻠﻴﻦ )ﺳﻨﻮﻱ ﻭﻟـﻌﺪﺓ ﺳﻨﻮﺍﺕ( ﺑﻨﻔﺲ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻤﺨﺘﻠﻔﺔ‬
‫ﺑﻔﺮﺽ ﺃﻥ ﻣﺸﺮﻭﻉ )ﺃ( ﺭﺃﲰﺎﻟﻪ )‪ ١٢٠٠ (C‬ﺟﻨﻴﻪ‪ ،‬ﺳﻴﺼﻔﻰ ﺳﻨﻮﻳﺎً )‪ ،(N=1‬ﺃﻭ ﺑﻌﺪ ﲬﺴﺔ ﺳﻨﻮﺍﺕ‬
‫)‪ ،(N=5‬ﻭﺑﻨﻔﺲ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﺨﺘﻠﻔﺔ )‪(CF‬‬
‫ﳕﻮﺫﺝ )ﻣﻘﺎﻡ(‪.‬‬
‫ﺍﳊﺎﻟﺘﲔ‪ ،‬ﻓﺒﺄﻱ ﺍﻟﺘﺼﻔﻴﺘﲔ ﺗﻨﺼﺢ ﺑﺎﺳﺘﺨﺪﺍﻡ‬
‫ﺍﳊﺎﻟﺔ ﺍﻷﻭﱃ‪ :‬ﻧﻄﺒﻖ ﻣﻌﺎﺩﻟﺔ )ﻣﻘﺎﻡ( ﺭﻗﻢ )‪ (٨‬ﻟﺘﺪﻓﻘﺎﺕ ﺳﻨﺔ ﻭﺍﺣﺪﺓ‪ ،‬ﻭﳊﺴﺎﺏ ﻣﻌﺪﻝ ﺍﻟﻌﺎﺋﺪ ﺍﻷﺩﻧﻰ‬
‫ﻧﺴﺘﺨﺪﻡ ﺍﳌﻌﺎﺩﻟﺔ )‪ ،(٩‬ﺍﳉﺪﻭﻝ )‪:(٣‬‬
‫ﺍﻟﺒﻴﺎﻥ‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍ‪‬ﻤﻮﻉ‬
‫ﳎﻤﻮﻉ ﺑﻌﺪ ﺣﺴﻢ ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﶈﺴﻮﺏ‬
‫ﻋﻤﺮ ﺍﳌﺸﺮﻭﻉ‬
‫ﺣﺼﺔ ﺭﺏ ﺍﳌﺎﻝ ﺳﻨﻮﻳﺎ‬
‫ﺍﻟﺘﺪﻓﻖ ﺍﻟﻨﻘﺪﻱ‬
‫‪n‬‬
‫‪Share1‬‬
‫‪CF‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1,469.693846‬‬
‫‪2,078.460969‬‬
‫‪1,697.056275‬‬
‫‪2,078.460969‬‬
‫‪1,989.974874‬‬
‫‪9,313.646933‬‬
‫‪4,513.646933‬‬
‫‪1,800‬‬
‫‪3,600‬‬
‫‪2,400‬‬
‫‪3,600‬‬
‫‪3,300‬‬
‫‪14‬‬
‫‪14,700‬‬
‫ﻣﻌﺪﻝ ﺍﳊﺴﻢ‬
‫ﺳﻨﻮﻳﺎ‬
‫ﺣﺼﺔ ﺍﳌﻀﺎﺭﺏ‬
‫‪Share2‬‬
‫‪R‬‬
‫‪1.224744871‬‬
‫‪1.732050808‬‬
‫‪1.414213562‬‬
‫‪1.732050808‬‬
‫‪1.658312395‬‬
‫‪10186.36‬‬
‫ﺍﳉﺪﻭﻝ )‪(٣‬‬
‫ﲝﺴﺐ ﺍﳌﻌﺎﺩﻟﺔ )‪ (٨‬ﻓﺈﻥ ﻣﻌﺪﻝ ﺍﳊﺴﻢ ﺍﻟﺴﻨﻮﻱ ﻳﻌﺎﺩﻝ‪:‬‬
‫‪1‬‬
‫)‪+1‬‬
‫(‬
‫) ÷‬
‫‪/ 1200)^(1/2) = 1.224744871‬‬
‫‪/ 1200)^(1/2) = 1.732050808‬‬
‫‪/ 1200)^(1/2) = 1.414213562‬‬
‫‪/ 1200)^(1/2) = 1.732050808‬‬
‫‪/ 1200)^(1/2) = 1.658312395‬‬
‫(=‬
‫‪R1 = (1800‬‬
‫‪R2 = (3600‬‬
‫‪R3 = (2400‬‬
‫‪R4 = (3600‬‬
‫‪R5 = (3300‬‬
‫ﻭﲝﺴﺐ ﺍﳌﻌﺎﺩﻟﺔ )‪ (٩‬ﻓﺈﻥ )ﻣﻘﺎﻡ( ﻟﻜﻞ ﺳﻨﺔ ﻳﻌﺎﺩﻝ‪:‬‬
‫‪÷ )(1/( +1)) − 1‬‬
‫(=‬
‫‪MQAM1 = (1800 / 1200)^1/2 -1 = 0.224744871‬‬
‫‪MQAM2 = (3600 / 1200)^1/2 -1 = 0.732050808‬‬
‫‪MQAM3 = (2400 / 1200)^1/2 -1 = 0.414213562‬‬
‫‪MQAM4 = (3600 / 1200)^1/2 -1 = 0.732050808‬‬
‫‪MQAM5 = (3300 / 1200)^1/2 -1 = 0.658312395‬‬
‫ﻭﳊﺴﺎﺏ ﻧﺼﻴﺐ ﺍﳌﻤﻮﻝ ﻧﻄﺒﻖ ﺍﳌﻌﺎﺩﻟﺔ )‪ (١٠‬ﻛﻤﺎ ﻳﻠﻲ‪:‬‬
‫‪) = 9,313.646933‬‬
‫÷‬
‫(‬
‫∑=‪1‬‬
‫‪ℎ‬‬
‫ﻭﺑﺎﺳﺘﺒﻌﺎﺩ ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﶈﺴﻮﺏ‪) ٨‬ﺍﻟﺼﻮﺭﻱ( ﺍﻟﺬﻱ ﻳﻘﺎﺑﻞ ‪ ٤‬ﺳﻨﻮﺍﺕ × ‪ ١٢٠٠‬ﺟﻨﻴﻪ ﻓﻴﻜﻮﻥ ﻧﺼﻴﺐ ﺍﳌﻤﻮﻝ‪:‬‬
‫‪Share1= 9,313.6 – 4800 = 4,513.6‬‬
‫ﺍﳊﺎﻟﺔ ﺍﻟﺜﺎﻧﻴﺔ‪:‬‬
‫ﺍﻟﺒﻴﺎﻥ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍ‪‬ﻤﻮﻉ‬
‫ﻋﻤﺮ ﺍﳌﺸﺮﻭﻉ‬
‫‪n‬‬
‫‪5‬‬
‫‪5‬‬
‫‪5‬‬
‫‪5‬‬
‫‪5‬‬
‫ﺣﺼﺔ ﺭﺏ ﺍﳌﺎﻝ‬
‫ﺍﻟﺘﺪﻓﻖ ﺍﻟﻨﻘﺪﻱ‬
‫‪ Share1‬ﺑﻌﺪ ‪n‬‬
‫‪CF‬‬
‫‪1,185.540761‬‬
‫‪1,561.674328‬‬
‫‪685.714286‬‬
‫‪677.451863‬‬
‫‪409.009943‬‬
‫‪4,519.391181‬‬
‫‪1,800‬‬
‫‪3,600‬‬
‫‪2,400‬‬
‫‪3,600‬‬
‫‪3,300‬‬
‫‪14,700‬‬
‫ﻣﻌﺪﻝ ﺍﳊﺴﻢ‬
‫ﳋﻤﺴﺔ ﺳﻨﻮﺍﺕ ‪R‬‬
‫ﺣﺼﺔ ﺍﳌﻀﺎﺭﺏ‬
‫‪Share2‬‬
‫‪1.518294486‬‬
‫‪2.305218146‬‬
‫‪3.500000000‬‬
‫‪5.314030701‬‬
‫‪8.068263511‬‬
‫‪9280.61‬‬
‫ﺍﳉﺪﻭﻝ )‪(٤‬‬
‫ﺗﻔﱰﺽ ﺍﳊﺎﻟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺃﻥ ﺍﻟﻌﺎﺋﺪ ﺍﳌﺴﺘﻬﺪﻑ )ﻣﻘﺎﻡ( = ‪ .%٥١.٨٢‬ﻓﺤﺴﺐ ﺍﳌﻌﺎﺩﻟﺔ )‪ (٤‬ﻳﻜﻮﻥ ﻣﻌﺪﻝ ﺍﳊﺴﻢ‬
‫ﺍﻟﺴﻨﻮﻱ‪:‬‬
‫‪ ٨‬رأس اﻟﻤﺎل اﻟﺼﻮري ﯾﻌﺎدل ‪ ١٢٠٠‬ﺟﻨﯿﮫ × ‪ ٤‬ﺳﻨﻮات = ‪ ٤٨٠٠‬ﺟﻨﯿﮫ‪ ،‬أي ﺑﻘﻲ ﻣﺎ ﯾﻌﺎدل رأﺳﻤﺎل ﻋﺎم واﺣﺪ‪.‬‬
‫‪15‬‬
‫ﻭﲝﺴﺐ ﺍﳌﻌﺎﺩﻟﺔ )‪ (٧‬ﻓﺈﻥ )ﻣﻘﺎﻡ( ﻳﻌﺎﺩﻝ‪:‬‬
‫)) (‪= ∑ ( ÷ )( /‬‬
‫‪R = (14700 / 1200)^(1/6) = 1.518294486‬‬
‫‪÷ )(1/( +1)) − 1 =0. 518294486‬‬
‫ﻭﲝﺴﺎﺏ ﺍﳌﻌﺎﺩﻟﺔ )‪ (١٠‬ﻓﺈﻥ ﻧﺼﻴﺐ ﺍﳌﻤﻮﻝ ﻳﻌﺎﺩﻝ‪:‬‬
‫ﻭﲟﻘﺎﺭﻧﺔ ‪Shar1‬‬
‫ﻛﺎﻵﺗﻲ‪:‬‬
‫‪) = 4,519.391181‬‬
‫ﺍﳊﺎﻟﺔ ﺍﻷﻭﱃ ﻭ‪Share1‬‬
‫÷‬
‫(‬
‫(=‬
‫∑=‪1‬‬
‫‪ℎ‬‬
‫ﺍﳊﺎﻟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻳﺘﺒﲔ ﺃﻥ ﺍﻟﻔﺎﺭﻕ ﻻ ﻳﺘﻌﺪﻯ ‪ ١‬ﺑﺎﻷﻟﻒ‬
‫‪4,519.3 - 4,513.6 = 5.7‬‬
‫ﺍﻟﻨﺘﻴﺠﺔ‪:‬‬
‫ﺇﻥ ﺩﺭﺍﺳﺔ ﺣﺎﻟﱵ ﲤﻮﻳﻞ ﺑﻨﻔﺲ ﺭﺃﺱ ﺍﳌﺎﻝ ﻭﻧﻔﺲ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﺨﺘﻠﻔﺔ ﻋﺸﻮﺍﺋﻴﺎ ﻟﻜﻼ ﺍﻟﺘﻤﻮﻳﻠﲔ‬
‫ﺃﻇﻬﺮ ﻧﻔﺲ ﺍﻟﻌﺎﺋﺪ ﻣﻦ ﻭﺟﻬﺔ ﻧﻈﺮ ﺭﺏ ﺍﳌﺎﻝ ﺳﻮﺍﺀ ﺃﲤﺖ ﺍﻟﺘﺼﻔﻴﺔ ﺳﻨﻮﻳﺎً ﺃﻭ ﺑﻌﺪ ﲬﺴﺔ ﺳﻨﻮﺍﺕ‪ .‬ﻟﺬﻟﻚ ﻻ‬
‫ﻓﺮﻕ ﺑﲔ ﺍﳊﺎﻟﺘﲔ ﻣﻦ ﻭﺟﻬﺔ ﻧﻈﺮﻩ‪ ،‬ﺑﻴﻨﻤﺎ ﻳﻔﻀﻞ ﺍﳌﻀﺎﺭﺏ ﺑﻌﻤﻠﻪ ﺍﳊﺎﻟﺔ ﺍﻷﻭﱃ ﻷﳖﺎ ﲢﻘﻖ ﻟﻪ ﻣﻜﺴﺒﺎً‬
‫ﺇﺿﺎﻓﻴﺎً ﻗﺪﺭﻩ ‪ ٩٠٥.٧٥‬ﺟﻨﻴﻬﺎً‪.‬‬
‫ﻳﻼﺣﻆ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﺃﻥ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﻛﺎﻧﺖ ﻋﺸﻮﺍﺋﻴﺔ ﺣﻴﺚ ﺗﺰﺍﻳﺪﺕ ﺛﻢ ﺍﳔﻔﻀﺖ ﺛﻢ ﺗﺰﺍﻳﺪﺕ ﺛﻢ‬
‫ﺍﳔﻔﻀﺖ‪.‬‬
‫ﻭﻟﻮ ﺍﻓﱰﺿﻨﺎ ﺗﺰﺍﻳﺪ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺑﺼﻮﺭﺓ ﻣﺴﺘﻤﺮﺓ ﺃﻭ ﺍﳔﻔﺎﺿﻬﺎ ﺑﺼﻮﺭﺓ ﻣﺴﺘﻤﺮﺓ ﻻﺧﺘﻠﻔﺖ ﺍﻟﻨﺘﻴﺠﺔ‬
‫ﲤﺎﻣﺎً ﻭﻫﺬﺍ ﻣﺎ ﺳﻨﻠﺤﻈﻪ ﺍﳌﺜﺎﻝ ﺍﳌﻮﺳﻊ ﺍﻟﺘﺎﱄ ﳑﺎ ﳝﻴﺰ )ﻣﻘﺎﻡ( ﻋﻦ ﻏﲑﻩ ﺑﺘﺄﺛﺮﻩ ﺑﺸﻜﻞ ﺍﻟﺘﺪﻓﻘﺎﺕ‬
‫ﺍﻟﻨﻘﺪﻳﺔ ﺗﺄﺛﺮﺍً ﺷﺪﻳﺪﺍً‪.‬‬
‫ﻣﺜﺎﻝ ﺭﻗﻢ )‪ :(٤‬ﻣﻘﺎﺭﻧﺔ ﺗﻤﻮﻳﻠﻴﻦ )ﺳﻨﻮﻱ ﻭﻟـﻌﺪﺓ ﺳﻨﻮﺍﺕ( ﺑﻨﻔﺲ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻤﺘﺴﺎﻭﻳﺔ‬
‫ﺑﻔﺮﺽ ﺃﻥ ﻣﺸﺮﻭﻉ )ﺃ( ﺭﺃﲰﺎﻟﻪ )‪ ١٢٠٠ (C‬ﺟﻨﻴﻪ‪ ،‬ﺳﻴﺼﻔﻰ ﺳﻨﻮﻳﺎً )‪ ،(N=1‬ﺃﻭ ﺑﻌﺪ ﲬﺴﺔ ﺳﻨﻮﺍﺕ‬
‫)‪ ،(N=5‬ﻭﺑﻨﻔﺲ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﺨﺘﻠﻔﺔ )‪(CF‬‬
‫ﳕﻮﺫﺝ )ﻣﻘﺎﻡ(‪.‬‬
‫ﺍﳊﺎﻟﺘﲔ‪ ،‬ﻓﺒﺄﻱ ﺍﻟﺘﺼﻔﻴﺘﲔ ﺗﻨﺼﺢ ﺑﺎﺳﺘﺨﺪﺍﻡ‬
‫ﺍﳊﺎﻟﺔ ﺍﻷﻭﱃ‪:‬‬
‫ﺍﻟﺒﻴﺎﻥ‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﻋﻤﺮ ﺍﳌﺸﺮﻭﻉ‬
‫ﺣﺼﺔ ﺭﺏ ﺍﳌﺎﻝ ﺳﻨﻮﻳﺎ‬
‫ﺍﻟﺘﺪﻓﻖ ﺍﻟﻨﻘﺪﻱ‬
‫ﻣﻌﺪﻝ ﺍﳊﺴﻢ ﺳﻨﻮﻳﺎ‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪2,115.939508‬‬
‫‪2,115.939508‬‬
‫‪2,115.939508‬‬
‫‪3,731‬‬
‫‪3,731‬‬
‫‪3,731‬‬
‫‪1.763282923‬‬
‫‪1.763282923‬‬
‫‪1.763282923‬‬
‫‪n‬‬
‫‪Share1‬‬
‫‪16‬‬
‫‪CF‬‬
‫‪R‬‬
‫ﺣﺼﺔ ﺍﳌﻀﺎﺭﺏ‬
‫‪Share2‬‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍ‪‬ﻤﻮﻉ‬
‫ﳎﻤﻮﻉ ﺑﻌﺪ ﺣﺴﻢ ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﶈﺴﻮﺏ‬
‫‪1‬‬
‫‪1‬‬
‫‪3,731‬‬
‫‪3,731‬‬
‫‪2,115.939508‬‬
‫‪2,115.939508‬‬
‫‪10,579.697538‬‬
‫‪5,779.697538‬‬
‫‪1.763282923‬‬
‫‪1.763282923‬‬
‫‪12,875‬‬
‫‪18,655‬‬
‫ﺍﳉﺪﻭﻝ )‪(٥‬‬
‫ﺍﳊﺎﻟﺔ ﺍﻟﺜﺎﻧﻴﺔ‪:‬‬
‫ﺍﻟﺒﻴﺎﻥ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍ‪‬ﻤﻮﻉ‬
‫ﻋﻤﺮ ﺍﳌﺸﺮﻭﻉ‬
‫‪n‬‬
‫‪5‬‬
‫‪5‬‬
‫‪5‬‬
‫‪5‬‬
‫‪5‬‬
‫ﺣﺼﺔ ﺭﺏ ﺍﳌﺎﻝ‬
‫ﺍﻟﺘﺪﻓﻖ ﺍﻟﻨﻘﺪﻱ‬
‫‪ Share1‬ﺑﻌﺪ ‪n‬‬
‫‪CF‬‬
‫‪2,853.187077‬‬
‫‪2,181.902036‬‬
‫‪1,668.553925‬‬
‫‪1,275.984051‬‬
‫‪975.776255‬‬
‫‪8,955.403344‬‬
‫‪3,731‬‬
‫‪3,731‬‬
‫‪3,731‬‬
‫‪3,731‬‬
‫‪3,731‬‬
‫‪18,655‬‬
‫ﻣﻌﺪﻝ ﺍﳊﺴﻢ‬
‫ﳋﻤﺴﺔ ﺳﻨﻮﺍﺕ ‪R‬‬
‫ﺣﺼﺔ ﺍﳌﻀﺎﺭﺏ‬
‫‪Share2‬‬
‫‪1.307660486‬‬
‫‪1.709975947‬‬
‫‪2.236067977‬‬
‫‪2.924017738‬‬
‫‪3.823622457‬‬
‫‪9,700‬‬
‫ﺍﳉﺪﻭﻝ )‪(٦‬‬
‫ﺍﻟﻨﺘﻴﺠﺔ‪:‬‬
‫ﺇﻥ ﺩﺭﺍﺳﺔ ﺣﺎﻟﱵ ﲤﻮﻳﻞ ﺑﻨﻔﺲ ﺭﺃﺱ ﺍﳌﺎﻝ ﻭﻧﻔﺲ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﺘﺴﺎﻭﻳﺔ ﻟﻜﻼ ﺍﻟﺘﻤﻮﻳﻠﲔ ﺃﻇﻬﺮ‬
‫ﺗﻔﻀﻴﻞ ﺭﺏ ﺍﳌﺎﻝ ﻟﻠﺤﺎﻟﺔ ﺍﻷﻭﱃ ﺃﻱ ﺍﻟﺘﺼﻔﻴﺔ ﺍﻟﺴﻨﻮﻳﺔ ﻟﻠﻤﺸﺮﻭﻉ ﺣﻴﺚ ﺃﻥ ﻋﻮﺍﺋﺪﻩ ﺗﺰﺩﺍﺩ ﲟﻘﺪﺍﺭ ‪٣١٧٥‬‬
‫ﺟﻨﻴﻬﺎ ﻓﻴﻤﺎ ﻟﻮ ﲤﺖ ﺍﻟﺘﺼﻔﻴﺔ ﺑﻌﺪ ﲬﺴﺔ ﺳﻨﻮﺍﺕ‪.‬‬
‫ﺑﻴﻨﻤﺎ ﻳﻔﻀﻞ ﺍﳌﻀﺎﺭﺏ ﺑﻌﻤﻠﻪ ﺍﳊﺎﻟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺃﻱ ﺍﻟﺘﺼﻔﻴﺔ ﺑﻌﺪ ﲬﺴﺔ ﺳﻨﻮﺍﺕ ﻷﳖﺎ ﲢﻘﻖ ﻟﻪ ﻣﻜﺴﺒﺎً‬
‫ﺇﺿﺎﻓﻴﺎً ﺑﻨﻔﺲ ﺍﻟﻘﺪﺭ ﺍﻟﺬﻱ ﺣﻘﻘﻪ ﺭﺏ ﺍﳌﺎﻝ ﻓﻴﻤﺎ ﻟﻮ ﺍﺧﺘﺎﺭ ﻋﻜﺲ ﺍﳊﺎﻟﺔ‪.‬‬
‫ﺇﺫﻥ ﺣﺎﻟﺔ ﺍﻧﺘﻈﺎﻡ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﻳﻔﻀﻞ ﺭﺏ ﺍﳌﺎﻝ ﺍﻟﺘﺼﻔﻴﺔ ﺍﻟﺴﻨﻮﻳﺔ ﺑﻴﻨﻤﺎ ﻳﻔﻀﻞ ﺍﳌﻀﺎﺭﺏ ﺑﺎﻟﻌﻤﻞ‬
‫ﺍﻟﺘﺼﻔﻴﺔ ﺑﻌﺪ ﲬﺴﺔ ﺳﻨﻮﺍﺕ‪.‬‬
‫ﻣﺜﺎﻝ ﺭﻗﻢ )‪ :(٥‬ﻣﻘﺎﺭﻧﺔ ﺗﻤﻮﻳﻠﻴﻦ )ﺳﻨﻮﻱ ﻭﻟـﻌﺪﺓ ﺳﻨﻮﺍﺕ( ﺑﻨﻔﺲ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻤﺘﺰﺍﻳﺪﺓ‬
‫ﺑﻔﺮﺽ ﺃﻥ ﻣﺸﺮﻭﻉ )ﺃ( ﺭﺃﲰﺎﻟﻪ )‪ ١٢٠٠ (C‬ﺟﻨﻴﻪ‪ ،‬ﺳﻴﺼﻔﻰ ﺳﻨﻮﻳﺎً )‪ ،(n=1‬ﺃﻭ ﺑﻌﺪ ﲬﺴﺔ ﺳﻨﻮﺍﺕ‬
‫)‪ ،(n=5‬ﻭﺑﻨﻔﺲ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﺘﺰﺍﻳﺪﺓ ﺗﺼﺎﻋﺪﻳﺎً )‪(cf‬‬
‫ﺑﺎﺳﺘﺨﺪﺍﻡ ﳕﻮﺫﺝ )ﻣﻘﺎﻡ(‪.‬‬
‫ﺍﳊﺎﻟﺘﲔ‪ ،‬ﻓﺒﺄﻱ ﺍﻟﺘﺼﻔﻴﺘﲔ ﺗﻨﺼﺢ‬
‫ﺍﳊﺎﻟﺔ ﺍﻷﻭﱃ‪:‬‬
‫ﺍﻟﺒﻴﺎﻥ‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﻋﻤﺮ ﺍﳌﺸﺮﻭﻉ‬
‫ﺣﺼﺔ ﺭﺏ ﺍﳌﺎﻝ ﺳﻨﻮﻳﺎ‬
‫ﺍﻟﺘﺪﻓﻖ ﺍﻟﻨﻘﺪﻱ‬
‫ﻣﻌﺪﻝ ﺍﳊﺴﻢ ﺳﻨﻮﻳﺎ‬
‫ﺣﺼﺔ ﺍﳌﻀﺎﺭﺏ‬
‫‪n‬‬
‫‪1‬‬
‫‪Share1‬‬
‫‪1,200.0000000‬‬
‫‪CF‬‬
‫‪1,200‬‬
‫‪R‬‬
‫‪1.000000000‬‬
‫‪Share2‬‬
‫‪17‬‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍ‪‬ﻤﻮﻉ‬
‫ﳎﻤﻮﻉ ﺑﻌﺪ ﺣﺴﻢ ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﶈﺴﻮﺏ‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪2,400‬‬
‫‪3,600‬‬
‫‪4,800‬‬
‫‪5,000‬‬
‫‪1,697.0562748‬‬
‫‪2,078.4609691‬‬
‫‪2,400.0000000‬‬
‫‪2,449.4897428‬‬
‫‪9,825.0069867‬‬
‫‪5,025.0069867‬‬
‫‪1.414213562‬‬
‫‪1.732050808‬‬
‫‪2.000000000‬‬
‫‪2.041241452‬‬
‫‪11,975‬‬
‫‪17,000‬‬
‫ﺍﳉﺪﻭﻝ )‪(٧‬‬
‫ﺍﳊﺎﻟﺔ ﺍﻟﺜﺎﻧﻴﺔ‪:‬‬
‫ﺍﻟﺒﻴﺎﻥ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍ‪‬ﻤﻮﻉ‬
‫ﻋﻤﺮ ﺍﳌﺸﺮﻭﻉ‬
‫‪n‬‬
‫‪5‬‬
‫‪5‬‬
‫‪5‬‬
‫‪5‬‬
‫‪5‬‬
‫ﺣﺼﺔ ﺭﺏ ﺍﳌﺎﻝ‬
‫ﺍﻟﺘﺪﻓﻖ ﺍﻟﻨﻘﺪﻱ‬
‫‪ Share1‬ﺑﻌﺪ ‪n‬‬
‫‪CF‬‬
‫‪771.4420364‬‬
‫‪991.8713591‬‬
‫‪956.4640764‬‬
‫‪819.8406609‬‬
‫‪549.0100251‬‬
‫‪4,088.6281579‬‬
‫‪1,200‬‬
‫‪2,400‬‬
‫‪3,600‬‬
‫‪4,800‬‬
‫‪5,000‬‬
‫‪17,000‬‬
‫ﻣﻌﺪﻝ ﺍﳊﺴﻢ‬
‫ﳋﻤﺴﺔ ﺳﻨﻮﺍﺕ ‪R‬‬
‫ﺣﺼﺔ ﺍﳌﻀﺎﺭﺏ‬
‫‪Share2‬‬
‫‪1.555528405‬‬
‫‪2.419668617‬‬
‫‪3.763863264‬‬
‫‪5.854796217‬‬
‫‪9.107301818‬‬
‫‪12,911‬‬
‫ﺍﳉﺪﻭﻝ )‪(٨‬‬
‫ﺍﻟﻨﺘﻴﺠﺔ‪:‬‬
‫ﺇﻥ ﺩﺭﺍﺳﺔ ﺣﺎﻟﱵ ﲤﻮﻳﻞ ﺑﻨﻔﺲ ﺭﺃﺱ ﺍﳌﺎﻝ ﻭﻧﻔﺲ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﺘﺰﺍﻳﺪﺓ ﺗﺼﺎﻋﺪﻳﺎً ﻟﻜﻼ ﺍﻟﺘﻤﻮﻳﻠﲔ‬
‫ﺃﻇﻬﺮ ﺗﻔﻀﻴﻞ ﺭﺏ ﺍﳌﺎﻝ ﻟﻠﺤﺎﻟﺔ ﺍﻷﻭﱃ ﺃﻱ ﺍﻟﺘﺼﻔﻴﺔ ﺍﻟﺴﻨﻮﻳﺔ ﻟﻠﻤﺸﺮﻭﻉ ﺣﻴﺚ ﺃﻥ ﻋﻮﺍﺋﺪﻩ ﺗﺰﺩﺍﺩ ﲟﻘﺪﺍﺭ ‪٩٣٦‬‬
‫ﺟﻨﻴﻬﺎ ﻓﻴﻤﺎ ﻟﻮ ﲤﺖ ﺍﻟﺘﺼﻔﻴﺔ ﺑﻌﺪ ﲬﺴﺔ ﺳﻨﻮﺍﺕ‪.‬‬
‫ﺑﻴﻨﻤﺎ ﻳﻔﻀﻞ ﺍﳌﻀﺎﺭﺏ ﺑﻌﻤﻠﻪ ﺍﳊﺎﻟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺃﻱ ﺍﻟﺘﺼﻔﻴﺔ ﺑﻌﺪ ﲬﺴﺔ ﺳﻨﻮﺍﺕ ﻷﳖﺎ ﲢﻘﻖ ﻟﻪ ﻣﻜﺴﺒﺎً‬
‫ﺇﺿﺎﻓﻴﺎً ﺑﻨﻔﺲ ﺍﻟﻘﺪﺭ ﺍﻟﺬﻱ ﺣﻘﻘﻪ ﺭﺏ ﺍﳌﺎﻝ ﻓﻴﻤﺎ ﻟﻮ ﺍﺧﺘﺎﺭ ﻋﻜﺲ ﺍﳊﺎﻟﺔ‪.‬‬
‫ﺇﺫﻥ ﺣﺎﻟﺔ ﺗﺰﺍﻳﺪ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﻳﻔﻀﻞ ﺭﺏ ﺍﳌﺎﻝ ﺍﻟﺘﺼﻔﻴﺔ ﺍﻟﺴﻨﻮﻳﺔ ﺑﻴﻨﻤﺎ ﻳﻔﻀﻞ ﺍﳌﻀﺎﺭﺏ ﺑﺎﻟﻌﻤﻞ‬
‫ﺍﻟﺘﺼﻔﻴﺔ ﺑﻌﺪ ﲬﺴﺔ ﺳﻨﻮﺍﺕ‪.‬‬
‫ﻣﺜﺎﻝ ﺭﻗﻢ )‪ :(٦‬ﻣﻘﺎﺭﻧﺔ ﺗﻤﻮﻳﻠﻴﻦ )ﺳﻨﻮﻱ ﻭﻟـﻌﺪﺓ ﺳﻨﻮﺍﺕ( ﺑﻨﻔﺲ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻤﺘﻨﺎﻗﺼﺔ‬
‫ﺑﻔﺮﺽ ﺃﻥ ﻣﺸﺮﻭﻉ )ﺃ( ﺭﺃﲰﺎﻟﻪ )‪ ١٢٠٠ (C‬ﺟﻨﻴﻪ‪ ،‬ﺳﻴﺼﻔﻰ ﺳﻨﻮﻳﺎً )‪ ،(n=1‬ﺃﻭ ﺑﻌﺪ ﲬﺴﺔ ﺳﻨﻮﺍﺕ‬
‫)‪ ،(n=5‬ﻭﺑﻨﻔﺲ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﺘﻨﺎﻗﺼﺔ ﺗﻨﺎﺯﻟﻴﺎً )‪(cf‬‬
‫ﺑﺎﺳﺘﺨﺪﺍﻡ ﳕﻮﺫﺝ )ﻣﻘﺎﻡ(‪.‬‬
‫ﺍﳊﺎﻟﺔ ﺍﻷﻭﱃ‪:‬‬
‫‪18‬‬
‫ﺍﳊﺎﻟﺘﲔ‪ ،‬ﻓﺒﺄﻱ ﺍﻟﺘﺼﻔﻴﺘﲔ ﺗﻨﺼﺢ‬
‫ﺍﻟﺒﻴﺎﻥ‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍ‪‬ﻤﻮﻉ‬
‫ﳎﻤﻮﻉ ﺑﻌﺪ ﺣﺴﻢ ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﶈﺴﻮﺏ‬
‫ﻋﻤﺮ ﺍﳌﺸﺮﻭﻉ‬
‫ﺣﺼﺔ ﺭﺏ ﺍﳌﺎﻝ ﺳﻨﻮﻳﺎ‬
‫ﺍﻟﺘﺪﻓﻖ ﺍﻟﻨﻘﺪﻱ‬
‫ﻣﻌﺪﻝ ﺍﳊﺴﻢ ﺳﻨﻮﻳﺎ‬
‫ﺣﺼﺔ ﺍﳌﻀﺎﺭﺏ‬
‫‪n‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪Share1‬‬
‫‪2,449.4897428‬‬
‫‪2,400.0000000‬‬
‫‪2,078.4609691‬‬
‫‪1,697.0562748‬‬
‫‪1,200.0000000‬‬
‫‪9,825.0069867‬‬
‫‪5,025.0069867‬‬
‫‪CF‬‬
‫‪5,000‬‬
‫‪4,800‬‬
‫‪3,600‬‬
‫‪2,400‬‬
‫‪1,200‬‬
‫‪R‬‬
‫‪2.041241452‬‬
‫‪2.000000000‬‬
‫‪1.732050808‬‬
‫‪1.414213562‬‬
‫‪1.000000000‬‬
‫‪Share2‬‬
‫‪11,975‬‬
‫‪17,000‬‬
‫ﺍﳉﺪﻭﻝ )‪(٩‬‬
‫ﺍﳊﺎﻟﺔ ﺍﻟﺜﺎﻧﻴﺔ‪:‬‬
‫ﺍﻟﺒﻴﺎﻥ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍﻟﻌﺎﺋﺪ ﺑﻌﺪ ‪ ٥‬ﺳﻨﻮﺍﺕ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ‬
‫ﺍ‪‬ﻤﻮﻉ‬
‫ﻋﻤﺮ ﺍﳌﺸﺮﻭﻉ‬
‫‪n‬‬
‫‪5‬‬
‫‪5‬‬
‫‪5‬‬
‫‪5‬‬
‫‪5‬‬
‫ﺣﺼﺔ ﺭﺏ ﺍﳌﺎﻝ‬
‫ﺍﻟﺘﺪﻓﻖ ﺍﻟﻨﻘﺪﻱ‬
‫‪ Share1‬ﺑﻌﺪ ‪n‬‬
‫‪CF‬‬
‫‪3,214.3418182‬‬
‫‪1,983.7427183‬‬
‫‪956.4640764‬‬
‫‪409.9203304‬‬
‫‪131.7624060‬‬
‫‪6,696.2313493‬‬
‫‪5,000‬‬
‫‪4,800‬‬
‫‪3,600‬‬
‫‪2,400‬‬
‫‪1,200‬‬
‫‪17,000‬‬
‫ﻣﻌﺪﻝ ﺍﳊﺴﻢ‬
‫ﳋﻤﺴﺔ ﺳﻨﻮﺍﺕ ‪R‬‬
‫ﺣﺼﺔ ﺍﳌﻀﺎﺭﺏ‬
‫‪Share2‬‬
‫‪1.555528405‬‬
‫‪2.419668617‬‬
‫‪3.763863264‬‬
‫‪5.854796217‬‬
‫‪9.107301818‬‬
‫‪10,304‬‬
‫ﺍﳉﺪﻭﻝ )‪(١٠‬‬
‫ﺍﻟﻨﺘﻴﺠﺔ‪:‬‬
‫ﺇﻥ ﺩﺭﺍﺳﺔ ﺣﺎﻟﱵ ﲤﻮﻳﻞ ﺑﻨﻔﺲ ﺭﺃﺱ ﺍﳌﺎﻝ ﻭﻧﻔﺲ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﺘﻨﺎﻗﺼﺔ ﺗﻨﺎﺯﻟﻴﺎً ﻟﻜﻼ ﺍﻟﺘﻤﻮﻳﻠﲔ‬
‫ﺃﻇﻬﺮ ﺗﻔﻀﻴﻞ ﺭﺏ ﺍﳌﺎﻝ ﻟﻠﺤﺎﻟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺃﻱ ﺍﻟﺘﺼﻔﻴﺔ ﺑﻌﺪ ﲬﺴﺔ ﺳﻨﻮﺍﺕ ﻟﻠﻤﺸﺮﻭﻉ ﺣﻴﺚ ﺃﻥ ﻋﻮﺍﺋﺪﻩ ﺗﺰﺩﺍﺩ‬
‫ﲟﻘﺪﺍﺭ ‪ ١٦٧١‬ﺟﻨﻴﻬﺎ ﻓﻴﻤﺎ ﻟﻮ ﲤﺖ ﺍﻟﺘﺼﻔﻴﺔ ﺳﻨﻮﻳﺎً‪.‬‬
‫ﺑﻴﻨﻤﺎ ﻳﻔﻀﻞ ﺍﳌﻀﺎﺭﺏ ﺑﻌﻤﻠﻪ ﺍﳊﺎﻟﺔ ﺍﻷﻭﱃ ﺃﻱ ﺍﻟﺘﺼﻔﻴﺔ ﺳﻨﻮﻳﺎً ﻷﳖﺎ ﲢﻘﻖ ﻟﻪ ﻣﻜﺴﺒﺎً ﺇﺿﺎﻓﻴﺎً ﺑﻨﻔﺲ‬
‫ﺍﻟﻘﺪﺭ ﺍﻟﺬﻱ ﺣﻘﻘﻪ ﺭﺏ ﺍﳌﺎﻝ ﻓﻴﻤﺎ ﻟﻮ ﺍﺧﺘﺎﺭ ﻋﻜﺲ ﺍﳊﺎﻟﺔ‪.‬‬
‫ﺇﺫﻥ ﺣﺎﻟﺔ ﺗﻨﺎﻗﺺ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﻳﻔﻀﻞ ﺭﺏ ﺍﳌﺎﻝ ﺍﻟﺘﺼﻔﻴﺔ ﺑﻌﺪ ﲬﺴﺔ ﺳﻨﻮﺍﺕ ﺑﻴﻨﻤﺎ ﻳﻔﻀﻞ‬
‫ﺍﳌﻀﺎﺭﺏ ﺑﺎﻟﻌﻤﻞ ﺍﻟﺘﺼﻔﻴﺔ ﺳﻨﻮﻳﺎً‪.‬‬
‫ﻣﺜﺎﻝ ﺭﻗﻢ )‪ :(٧‬ﻋﻼﻗﺔ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﻟﺴﻨﻮﻳﺔ ﻣﻊ ﻧﺴﺐ ﺗﻮﺯﻳﻊ ﺍﻷﺭﺑﺎﺡ‬
‫ﻟﺪﺭﺍﺳﺔ ﻋﻼﻗﺔ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﻟﺴﻨﻮﻳﺔ ﻣﻘﺎﺭﻧﺔ ﺑﻨﺴﺐ ﺗﻮﺯﻳﻊ ﺍﻷﺭﺑﺎﺡ ﺑﲔ ﺍﳌﺼﺮﻑ ﺍﳌﻤﻮﻝ ﻭﺍﳌﻘﱰﺽ‬
‫ﺍﳌﺘﻤﻮﻝ ﺑﺎﺳﺘﺨﺪﺍﻡ )ﻣﻘﺎﻡ( ﻧﺴﺘﻌﺮﺽ ﻧﺘﺎﺋﺞ ﺃﺣﺪ ﺍﻷﻣﺜﻠﺔ ﺍﻟﺴﺎﺑﻘﺔ ﻛﻤﺎ ﻳﻠﻲ‪:‬‬
‫‪19‬‬
‫ﺑﻔﺮﺽ ﺃﻥ ﻣﺸﺮﻭﻉ )ﺃ( ﺭﺃﲰﺎﻟﻪ )‪ ١٢٠٠ (C‬ﺟﻨﻴﻪ‪ ،‬ﺣﻘﻖ ﺧﻼﻝ ﺳﻨﻮﺍﺕ ﻋﻤﺮﻩ ﺍﳋﻤﺲ )‪ (N=5‬ﺗﺪﻓﻘﺎﺕ‬
‫ﻧﻘﺪﻳﺔ ﳐﺘﻠﻔﺔ )‪ (CF‬ﻛﻤﺎ ﻳﻠﻲ‪ ١٢٠٠٠ ،٥٠٠٠ ،٤٨٠٠ ،٣٦٠٠ ،٢٤٠٠ ،١٢٠٠ :‬ﻓﺈﻧﻪ ﻭﺑﺎﺳﺘﺨﺪﺍﻡ ﳕﻮﺫﺝ‬
‫)ﻣﻘﺎﻡ( ﺳﻴﺤﻘﻖ ﺍﳌﻤﻮﻝ ﻭﺍﳌﺘﻤﻮﻝ ﺍﻟﻨﺘﺎﺋﺞ ﺍﻟﺘﺎﻟﻴﺔ‪ ،‬ﺍﳉﺪﻭﻝ )‪:(١١‬‬
‫ﺍﻟﺘﺪﻓﻖ ﺍﻟﻨﻘﺪﻱ ﺍﻟﺴﻨﻮﻱ‬
‫)‪(cf‬‬
‫ﻧﺴﺒﺔ ﺗﻮﺯﻳﻊ ﺍﻷﺭﺑﺎﺡ ﻟﻠﻤﺼﺮﻑ‬
‫ﻧﺴﺒﺔ ﺗﻮﺯﻳﻊ ﺍﻷﺭﺑﺎﺡ ﻟﻠﻤﻘﱰﺽ‬
‫‪Share1‬‬
‫‪Share2‬‬
‫‪1200‬‬
‫‪2400‬‬
‫‪3600‬‬
‫‪4800‬‬
‫‪5000‬‬
‫‪12000‬‬
‫‪0‬‬
‫‪71%‬‬
‫‪57%‬‬
‫‪50%‬‬
‫‪45%‬‬
‫‪31%‬‬
‫‪0%‬‬
‫‪29%‬‬
‫‪43%‬‬
‫‪50%‬‬
‫‪55%‬‬
‫‪69%‬‬
‫ﺍﳉﺪﻭﻝ )‪(١١‬‬
‫ﻭﺑﺘﻤﺜﻴﻞ ﺫﻟﻚ ﺑﻴﺎﻧﻴﺎً ﳓﺼﻞ ﻋﻠﻰ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ‪:‬‬
‫‪٠.٨‬‬
‫‪٠.٧‬‬
‫‪٠.٦‬‬
‫‪٠.٥‬‬
‫ﺣﺼﺔ اﻟﻤﺼﺮف أو اﻟﻤﻤﻮل‬
‫‪٠.٤‬‬
‫ﺣﺼﺔ اﻟﻤﻘﺘﺮض أو اﻟﻤﺘﻤﻮل‬
‫‪٠.٣‬‬
‫‪٠.٢‬‬
‫‪٠.١‬‬
‫‪٠‬‬
‫‪١٢٠٠٠‬‬
‫‪٥٠٠٠‬‬
‫‪٤٨٠٠‬‬
‫‪٣٦٠٠‬‬
‫‪٢٤٠٠‬‬
‫‪١٢٠٠‬‬
‫ﺍﻟﺸﻜﻞ )‪(٢‬‬
‫ﺇﻥ ﲢﻠﻴﻞ ﺍﻟﻌﻼﻗﺔ )ﻣﻦ ﺧﻼﻝ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﻧﻲ‪ ،‬ﺍﻟﺸﻜﻞ ﺭﻗﻢ ‪ (٢‬ﻳﺒﲔ ﺃﻥ ﻫﻨﺎﻟﻚ ﻋﻼﻗﺔ ﻋﻜﺴﻴﺔ ﺑﲔ ﻣﺎ‬
‫ﳛﻘﻘﻪ ﺍﳌﺼﺮﻑ ﺍﳌﻤﻮﻝ ﻭﺍﳌﻘﱰﺽ ﺃﻭ ﺍﳌﺘﻤﻮﻝ ﻭﺫﻟﻚ ﻋﻠﻰ ﺍﻟﻨﺤﻮ ﺍﻟﺘﺎﱄ‪:‬‬
‫ ﻋﻨﺪﻣﺎ ﳛﻘﻖ ﺍﳌﺸﺮﻭﻉ ﺗﺪﻓﻘﺎً ﻧﻘﺪﻳﺎً ﻳﺴﺎﻭﻱ ﺃﺻﻞ ﺍﻟﻘﺮﺽ ﺗﻜﻮﻥ ﻧﺴﺐ ﺗﻮﺯﻳﻊ ﺍﻷﺭﺑﺎﺡ ﺻﻔﺮﺍً‪.‬‬‫ ﻋﻨﺪﻣﺎ ﳛﻘﻖ ﺍﳌﺸﺮﻭﻉ ﺗﺪﻓﻘﺎً ﻧﻘﺪﻳﺎً ﺃﻋﻠﻰ ﻣﻦ ﺃﺻﻞ ﺍﻟﻘﺮﺽ ﺣﺘﻰ ﻧﻘﻄﺔ ﻣﻌﻴﻨﺔ ﺗﻜﻮﻥ ﻧﺴﺐ ﺃﺭﺑﺎﺡ‬‫ﺍﳌﺼﺮﻑ ﺍﳌﻤﻮﻝ ﺃﻛﱪ ﻣﻦ ﻧﺴﺐ ﺃﺭﺑﺎﺡ ﻭﺍﳌﻘﱰﺽ ﺍﳌﺘﻤﻮﻝ‪.‬‬
‫ ﻋﻨﺪﻣﺎ ﳛﻘﻖ ﺍﳌﺸﺮﻭﻉ ﺗﺪﻓﻘﺎً ﻧﻘﺪﻳﺎً ﺃﺭﺑﻊ ﺃﺿﻌﺎﻑ ﺃﺻﻞ ﺍﻟﻘﺮﺽ ﺗﻜﻮﻥ ﻧﺴﺐ ﺗﻮﺯﻳﻊ ﺍﻷﺭﺑﺎﺡ‬‫ﻣﺘﺴﺎﻭﻳﺔ ﺑﲔ ﺍﳌﺼﺮﻑ ﺍﳌﻤﻮﻝ ﻭﺍﳌﻘﱰﺽ ﺍﳌﺘﻤﻮﻝ‪ ،‬ﺃﻭ ﲟﻌﻨﻰ ﺃﺧﺮ ﻳﺘﺴﺎﻭﻯ ﲨﻠﺔ ﻣﺎ ﻳﺘﺤﺼﻞ ﻋﻠﻴﺔ‬
‫ﺍﳌﺼﺮﻑ ﻭﺍﳌﻘﱰﺽ‪.‬‬
‫ ﻋﻨﺪﻣﺎ ﳛﻘﻖ ﺍﳌﺸﺮﻭﻉ ﺗﺪﻓﻘﺎً ﻧﻘﺪﻳﺎً ﻳﺰﻳﺪ ﻋﻦ ﺃﺭﺑﻌﺔ ﺃﺿﻌﺎﻑ ﺃﺻﻞ ﺍﻟﻘﺮﺽ ﻫﻨﺎ ﺗﺒﺪﺃ ﺃﺭﺑﺎﺡ‬‫ﺍﳌﺼﺮﻑ ﺍﳌﻤﻮﻝ ﺍﻟﺘﻘﻠﺺ ﻣﻘﺎﺭﻧﺔ ﻣﻊ ﺃﺭﺑﺎﺡ ﺍﳌﻘﱰﺽ ﺍﳌﺘﻤﻮﻝ ﺍﻟﱵ ﺗﺒﺪﺃ ﺍﻟﺰﻳﺎﺩﺓ‪.‬‬
‫‪20‬‬
‫ﺇﻥ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﻧﻲ ﻳﻮﺿﺢ ﺍﻟﻔﺮﺿﻴﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ ﺑﻔﺮﺽ ﺃﻥ ﺭﺃﲰﺎﻝ ﺍﳌﺸﺮﻭﻉ ﻳﺴﺎﻭﻱ ‪ ١٢٠٠‬ﺟﻨﻴﻪ ﻭﺫﻟﻚ‬
‫ﺑﺘﻄﺒﻴﻖ ﻣﻌﺎﺩﻟﺔ )ﻣﻘﺎﻡ(‪:‬‬
‫ ﺇﺫﺍ ﺣﻘﻖ ﺍﳌﺸﺮﻭﻉ ﺗﺪﻓﻘﺎ ﻧﻘﺪﻳﺎً ‪ ١٢٠٠‬ﻓﺈﻥ ﻣﻌﺪﻝ ﺍﳊﺴﻢ ﺻﻔﺮ‪.‬‬‫ ﺇﺫﺍ ﺣﻘﻖ ﺍﳌﺸﺮﻭﻉ ﺗﺪﻓﻘﺎ ﻧﻘﺪﻳﺎً ‪ ٢٤٠٠‬ﻓﺈﻥ ﻣﻌﺪﻝ ﺍﳊﺴﻢ ‪ %٤١.٤‬ﺑﻨﻬﺎﻳﺔ ﺍﻟﻔﱰﺓ‪.‬‬‫ ﺇﺫﺍ ﺣﻘﻖ ﺍﳌﺸﺮﻭﻉ ﺗﺪﻓﻘﺎ ﻧﻘﺪﻳﺎً ‪ ٤٨٠٠‬ﻓﺈﻥ ﻣﻌﺪﻝ ﺍﳊﺴﻢ ‪.%١٠٠‬‬‫ﻭﲣﺘﻠﻒ ﻫﺬﻩ ﺍﻟﻌﻼﻗﺔ ﺑﺎﺧﺘﻼﻑ ﺷﻜﻞ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳊﺎﺻﻠﺔ‪ ،‬ﻭﺫﻟﻚ ﻟﺘﺄﺛﺮ )ﻣﻘﺎﻡ( ﲠﺎ‪.‬‬
‫ﺍﻟﻤﺒﺤﺚ ﺍﻟﺜﺎﻧﻲ‬
‫ﺍﺣﺘﺴﺎﺏ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺑﺪﻻﻟﺔ ﻧﺴﺒﺔ ﺭﺑﺢ ﻣﺴﺘﻬﺪﻓﺔ‬
‫ﺇﻥ ﺍﳍﺪﻑ ﻣﻦ ﺍﺣﺘﺴﺎﺏ ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﻟﻠﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﺘﻮﻗﻌﺔ ﻣﻦ ﺍﳌﺸﺮﻭﻉ ﺍﻟﺬﻱ ﺳﻴﻤﻮ‪‬ﻝ ﺇﳕﺎ ﻳﻬﺪﻑ‬
‫ﻟﻠﺤﺪ ﻣﻦ ﺍﳌﺨﺎﻃﺮ ﻭﺍﻟﺘﺤﻮﻁ ﳍﺎ ﻗﺒﻞ ﺇﺻﺪﺍﺭ ﻗﺮﺍﺭ ﺍﻟﺘﻤﻮﻳﻞ‪.‬‬
‫ﺇﻥ ﺗﺪﻓﻘﺎﺕ ﺻﺎﺣﺐ ﺍﻟﻌﻤﻞ ﲤﺜﻞ ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﻟﻠﻌﺎﺋﺪ ﲟﻘﺪﺍﺭ )‪ (r%‬ﺳﻨﻮﻳﺎً ﺑﻌﺪ ﺗﺄﻣﲔ ﺍﳌﺒﻠﻎ ﺍﻷﺳﺎﺳﻲ‬
‫ﻟﻠﻤﻤﻮ‪‬ﻝ ﻭﺍﺣﺘﺴﺎﺏ ﺍﻟﻌﺎﺋﺪ ﺍﻟﺬﻱ ﻳﺮﻏﺐ ﺑﺘﺤﻘﻴﻘﻪ‪ ،‬ﻭﳝﻜﻦ ﺫﻟﻚ ﺑﺎﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫ﺍﻟﺘﺪﻓﻖ ﺍﻟﻨﻘﺪﻱ ﺍﻟﻮﺍﺟﺐ ﲢﻘﻴﻘﻪ = ﺭﺃﺱ ﻣﺎﻝ ﺍﳌﻤﻮ‪‬ﻝ ﺑﻌﺪ ﺍﻻﺳﺘﺜﻤﺎﺭ ‪ +‬ﺭﺃﺱ ﻣﺎﻝ ﺍﳌﻀﺎﺭﺏ ﺑﺎﻟﻌﻤﻞ ﺑﻌﺪ‬
‫ﺍﻻﺳﺘﺜﻤﺎﺭ‬
‫‪+ ℎ‬‬
‫)‪(16‬‬
‫‪= ℎ‬‬
‫ﺭﺃﺱ ﻣﺎﻝ ﺍﳌﻤﻮ‪‬ﻝ ﺑﻌﺪ ﺍﻻﺳﺘﺜﻤﺎﺭ = ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﳌﺴﺘﺜﻤﺮ ‪ +‬ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﳌﺴﺘﺜﻤﺮ × ﺍﻟﻌﺎﺋﺪ ﺍﳌﺘﻮﻗﻊ ﲢﻘﻴﻘﻪ‬
‫= ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﳌﺴﺘﺜﻤﺮ × )‪ +١‬ﺍﻟﻌﺎﺋﺪ ﺍﳌﺘﻮﻗﻊ ﲢﻘﻴﻘﻪ(‬
‫) ‪× (1 +‬‬
‫)‪(17‬‬
‫ﺣﻴﺚ ﺃﻥ‪:‬‬
‫=‬
‫‪ℎ‬‬
‫ﻫﻲ ﺍﳌﻌﺪﻝ ﺍﳌﺴﺘﻬﺪﻑ ﲢﻘﻴﻘﻪ ﻣﻦ ﻗﺒﻞ ﺳﻴﺎﺳﺔ ﺍﳌﻤﻮﻝ ﺍﻻﺳﺘﺜﻤﺎﺭﻳﺔ‬
‫ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﳌﺴﺘﺜﻤﺮ‬
‫‪ ℎ‬ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﳌﻤﻮﻝ ﺑﻌﺪ ﺍﺳﺘﺜﻤﺎﺭﻩ‬
‫ﺭﺃﺱ ﻣﺎﻝ ﺍﳌﻀﺎﺭﺏ ﺑﻌﺪ ﺍﻻﺳﺘﺜﻤﺎﺭ = ﺭﺃﺱ ﻣﺎﻝ ﺍﳌﻤﻮ‪‬ﻝ ﺑﻌﺪ ﺍﻻﺳﺘﺜﻤﺎﺭ ‪ +‬ﺭﺃﺱ ﻣﺎﻝ ﺍﳌﻤﻮ‪‬ﻝ ﺑﻌﺪ ﺍﻻﺳﺘﺜﻤﺎﺭ‬
‫× ﺍﻟﻌﺎﺋﺪ ﺍﳌﺘﻮﻗﻊ ﲢﻘﻴﻘﻪ‬
‫‪21‬‬
‫= ﺭﺃﺱ ﻣﺎﻝ ﺍﳌﻤﻮ‪‬ﻝ ﺑﻌﺪ ﺍﻻﺳﺘﺜﻤﺎﺭ × )‪ +١‬ﺍﻟﻌﺎﺋﺪ ﺍﳌﺘﻮﻗﻊ ﲢﻘﻴﻘﻪ(‬
‫) ‪× (1 +‬‬
‫)‪(18‬‬
‫ﺣﻴﺚ ﺃﻥ‪:‬‬
‫‪ℎ‬‬
‫‪= ℎ‬‬
‫‪ ℎ‬ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﳌﻀﺎﺭﺏ ﺑﻌﺪ ﺍﺳﺘﺜﻤﺎﺭﻩ ﻷﻣﻮﺍﻝ ﺍﳌﺴﺘﺜﻤﺮ ﻭﲢﻘﻴﻘﻪ ﻋﺎﺋﺪ ﳜﺼﻪ‬
‫ﻭﺑﺘﻌﻮﻳﺾ ﺍﳌﻌﺎﺩﻟﺔ )‪ (١٧‬ﺑﺎﳌﻌﺎﺩﻟﺔ )‪ (١٨‬ﳓﺼﻞ ﻋﻠﻰ ﺍﻟﺘﺎﱄ‪:‬‬
‫ﺭﺃﺱ ﻣﺎﻝ ﺍﳌﻀﺎﺭﺏ ﺑﻌﺪ ﺍﻻﺳﺘﺜﻤﺎﺭ = ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﳌﺴﺘﺜﻤﺮ × )‪ +١‬ﺍﻟﻌﺎﺋﺪ ﺍﳌﺘﻮﻗﻊ ﲢﻘﻴﻘﻪ( × )‪ +١‬ﺍﻟﻌﺎﺋﺪ‬
‫ﺍﳌﺘﻮﻗﻊ ﲢﻘﻴﻘﻪ(‬
‫‪٢‬‬
‫= ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﳌﺴﺘﺜﻤﺮ × )‪ +١‬ﺍﻟﻌﺎﺋﺪ ﺍﳌﺘﻮﻗﻊ ﲢﻘﻴﻘﻪ(‬
‫) ‪× (1 +‬‬
‫)‪(19‬‬
‫ﻭﺑﺘﻌﻮﻳﺾ ﺍﳌﻌﺎﺩﻟﺘﲔ )‪ ١٧‬ﻭ‪(١٩‬‬
‫=‬
‫ﺍﳌﻌﺎﺩﻟﺔ )‪ (١٦‬ﻓﺈﻥ ﺍﻟﺘﺪﻓﻖ ﺍﻟﻨﻘﺪﻱ ﳝﻜﻦ ﲤﺜﻴﻠﻪ ﺑﺎﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:٩‬‬
‫) ‪× (1 + ) × (2 +‬‬
‫)‪(20‬‬
‫ﻭﻋﻠﻴﻪ ﻓﺈﻥ ﺇﲨﺎﱄ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﻟﺴﻨﻮﺍﺕ ﺍﻻﺳﺘﺜﻤﺎﺭ ﳝﻜﻦ ﲤﺜﻴﻠﻬﺎ ﺑﺎﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫) ‪× (1 + ) × (2 +‬‬
‫)‪(21‬‬
‫‪ℎ‬‬
‫‪ℎ‬‬
‫=‬
‫∑ ‪= [ × (1 + ) × (2 + )] +‬‬
‫ﻣﺜﺎﻝ ﺭﻗﻢ )‪ :(٨‬ﺍﺣﺘﺴﺎﺏ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺑﺪﻻﻟﺔ ﻧﺴﺒﺔ ﺭﺑﺢ ﻣﺴﺘﻬﺪﻓﺔ‬
‫ﺑﻔﺮﺽ ﻣﺸﺮﻭﻉ ﺍﺳﺘﺜﻤﺎﺭﻱ )ﺝ( ﻃﻠﺐ ﻣﻦ ﻣﺼﺮﻑ ﺇﺳﻼﻣﻲ ﲤﻮﻳﻞ ﻣﻀﺎﺭﺑﺔ ﲟﺒﻠﻎ ‪ ١٠٠٠٠٠‬ﺟﻨﻴﻪ‬
‫ﺗﺴﺘﻤﺮ ﳌﺪﺓ ﲬﺴﺔ ﺳﻨﻮﺍﺕ‪.‬‬
‫ﻭﺑﻔﺮﺽ ﺃﻥ ﺇﺩﺍﺭﺓ ﺍﻻﺋﺘﻤﺎﻥ‬
‫ﺍﳌﺼﺮﻑ ﺍﻹﺳﻼﻣﻲ ﻗﺪ ﺭﲰﺖ ﻟﺘﺤﻘﻴﻖ ﻋﺎﺋﺪﺍً ﺳﻨﻮﻳﺎً ﻗﺪﺭﻩ ‪.%٩.٦‬‬
‫ﺍﳌﻄﻠﻮﺏ‪:‬‬
‫‪ .١‬ﺑﻴﺎﻥ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﻟﻮﺍﺟﺐ ﺃﻥ ﺗﻮﺿﺤﻬﺎ ﺩﺭﺍﺳﺔ ﺟﺪﻭﻯ ﺍﳌﺸﺮﻭﻉ‪.‬‬
‫‪ .٢‬ﺑﻴﺎﻥ ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﻟﻠﻌﺎﺋﺪ ﺍﻟﺬﻱ ﻳﻘﺒﻠﻪ ﺍﳌﺼﺮﻑ ﺍﻹﺳﻼﻣﻲ ﻛﻤﻤﻮﻝ‪.‬‬
‫‪ ٩‬اﻟﺘﺪﻓﻖ اﻟﻨﻘﺪي اﻟﻮاﺟﺐ ﺗﺤﻘﯿﻘﮫ =‬
‫= رأس ﻣﺎل اﻟﻤﻤﻮّل ﺑﻌﺪ اﻻﺳﺘﺜﻤﺎر ‪ +‬رأس ﻣﺎل اﻟﻤﻀﺎرب ﺑﺎﻟﻌﻤﻞ ﺑﻌﺪ اﻻﺳﺘﺜﻤﺎر‬
‫‪٢‬‬
‫= رأس اﻟﻤﺎل اﻟﻤﺴﺘﺜﻤﺮ × )‪ +١‬اﻟﻌﺎﺋﺪ اﻟﻤﺘﻮﻗﻊ ﺗﺤﻘﯿﻘﮫ( ‪ +‬رأس اﻟﻤﺎل اﻟﻤﺴﺘﺜﻤﺮ × )‪ +١‬اﻟﻌﺎﺋﺪ اﻟﻤﺘﻮﻗﻊ ﺗﺤﻘﯿﻘﮫ(‬
‫= رأس اﻟﻤﺎل اﻟﻤﺴﺘﺜﻤﺮ × ))‪ +١‬اﻟﻌﺎﺋﺪ اﻟﻤﺘﻮﻗﻊ ﺗﺤﻘﯿﻘﮫ( ‪ +١) +‬اﻟﻌﺎﺋﺪ اﻟﻤﺘﻮﻗﻊ ﺗﺤﻘﯿﻘﮫ(‪(٢‬‬
‫= رأس اﻟﻤﺎل اﻟﻤﺴﺘﺜﻤﺮ × )‪ +١‬اﻟﻌﺎﺋﺪ اﻟﻤﺘﻮﻗﻊ ﺗﺤﻘﯿﻘﮫ( × )‪ +٢‬اﻟﻌﺎﺋﺪ اﻟﻤﺘﻮﻗﻊ ﺗﺤﻘﯿﻘﮫ(‬
‫‪22‬‬
‫ﺍﳊﻞ‪:‬‬
‫ﺇﻥ )‪ (r‬ﺍﳌﺴﺘﻬﺪﻓﺔ = ‪ %٩،٦‬ﺳﻨﻮﻳ ًﺎ‬
‫ﻭﻋﻠﻴﻪ ﻓﺈﻥ ﻧﺘﺎﺋﺞ ﺍﻟﺴﻨﺔ ﺍﻷﻭﱃ ﺳﺘﻜﻮﻥ ﻛﻤﺎ ﻳﻠﻲ‪:‬‬
‫‪ ( ℎ‬ﺣﺴﺐ ﺍﳌﻌﺎﺩﻟﺔ )‪ ١٠٩٦٠٠ = (١،٠٩٦) × ١٠٠٠٠٠ = (١٧‬ﺟﻨﻴﻪ‬
‫ﺭﺃﺱ ﻣﺎﻝ ﺍﳌﻤﻮﻝ ﺑﻌﺪ ﺍﻻﺳﺘﺜﻤﺎﺭ )‬
‫‪ ( ℎ‬ﺣﺴﺐ ﺍﳌﻌﺎﺩﻟﺔ )‪ ١٢٠١٢١ = ٢(١،٠٩٦) × ١٠٠٠٠٠ = (١٩‬ﺟﻨﻴﻪ‬
‫ﺭﺃﺱ ﻣﺎﻝ ﺍﳌﻀﺎﺭﺏ ﺑﻌﺪ ﺍﻻﺳﺘﺜﻤﺎﺭ )‬
‫ﺍﻟﺘﺪﻓﻖ ﺍﻟﻨﻘﺪﻱ )‬
‫( ﺣﺴﺐ ﺍﳌﻌﺎﺩﻟﺔ )‪ ٢٢٩٧٢٢ = ٢.٠٩٦ × ١.٠٩٦ × ١٠٠٠٠٠ = (٢٠‬ﺟﻨﻴﻪ‬
‫(‬
‫ﺛﻢ ﻭﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻻﺕ ﺍﻟﺴﺎﺑﻘﺔ ﻓﺈﻥ ﺇﲨﺎﱄ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ )‬
‫ﻭﻳﻠﺨﺺ ﺍﳉﺪﻭﻝ )‪ (١٢‬ﺍﻟﻨﺘﺎﺋﺞ ﺍﻟﺴﺎﺑﻘﺔ ﻟﺴﻨﻮﺍﺕ ﺍﻻﺳﺘﺜﻤﺎﺭ ﺍﶈﺪﺩﺓ ﻛﻤﺎ ﻳﻠﻲ‪:‬‬
‫ﻟﺴﻨﻮﺍﺕ ﺍﻻﺳﺘﺜﻤﺎﺭ‬
‫ﺍﻟﺘﺪﻓﻖ ﺍﻟﻨﻘﺪﻱ‬
‫ﺍﻟﺴﻨﺔ ‪n‬‬
‫‪CF‬‬
‫‪1‬‬
‫‪2‬‬
‫‪3‬‬
‫‪4‬‬
‫‪5‬‬
‫‪100,000‬‬
‫‪120,122‬‬
‫‪144,292‬‬
‫‪173,326‬‬
‫‪208,202‬‬
‫ﺍﳊﺪ ﺍﻷﺩﻧﻰ‬
‫ﻧﺼﻴﺐ ﺍﳌﺼﺮﻑ‬
‫ﻟﻠﻌﺎﺋﺪ ‪r‬‬
‫‪SHARE1‬‬
‫‪1.096‬‬
‫‪1.096‬‬
‫‪1.096‬‬
‫‪1.096‬‬
‫‪1.096‬‬
‫‪109,600‬‬
‫‪131,653‬‬
‫‪158,144‬‬
‫‪189,965‬‬
‫‪228,189‬‬
‫ﻧﺼﻴﺐ ﺻﺎﺣﺐ‬
‫ﺍﻟﻌﻤﻞ‬
‫‪SHARE2‬‬
‫‪120,122‬‬
‫‪144,292‬‬
‫‪173,326‬‬
‫‪208,202‬‬
‫‪250,095‬‬
‫= ‪ ٤٧٨٢٨٤‬ﺟﻨﻴﻪ‬
‫ﺇﲨﺎﱄ ﺍﻟﺘﺪﻓﻘﺎﺕ‬
‫ﺍﶈﺴﻮﻣﺔ ﻭﺍﳌﻌﺎﺩ‬
‫ﺍﺳﺘﺜﻤﺎﺭﻫﺎ ‪CFp‬‬
‫‪229,722‬‬
‫‪275,945‬‬
‫‪331,470‬‬
‫‪398,167‬‬
‫‪478,284‬‬
‫ﺍﳉﺪﻭﻝ )‪(١٢‬‬
‫ﻭﻟﻠﺘﺄﻛﺪ ﻣﻦ ﺍﻟﻨﺘﺎﺋﺞ ﺍﻟﺴﺎﺑﻘﺔ‪ ،‬ﳝﻜﻨﻨﺎ ﺍﺣﺘﺴﺎﺏ )ﻣﻘﺎﻡ( ﻛﻤﺎ‬
‫ﺍﻟﺘﺪﻓﻖ ﺍﻟﻨﻘﺪﻱ‬
‫ﺍﳉﺪﻭﻝ )‪ (١٣‬ﺍﻟﺘﺎﱄ‪:‬‬
‫ﺇﲨﺎﱄ ﺍﻟﺘﺪﻓﻘﺎﺕ‬
‫ﺍﶈﺴﻮﻣﺔ ﻭﺍﳌﻌﺎﺩ‬
‫ﺍﻟﺴﻨﺔ ‪n‬‬
‫‪CF‬‬
‫ﻣﻌﺪﻝ ﺍﳊﺴﻢ‬
‫ﻧﺼﻴﺐ ﺍﳌﺼﺮﻑ‬
‫‪R‬‬
‫‪SHARE1‬‬
‫‪1‬‬
‫‪2‬‬
‫‪3‬‬
‫‪4‬‬
‫‪5‬‬
‫‪95,657‬‬
‫‪95,657‬‬
‫‪95,657‬‬
‫‪95,657‬‬
‫‪95,657‬‬
‫‪1.29802‬‬
‫‪1.68485‬‬
‫‪2.18697‬‬
‫‪2.83873‬‬
‫‪3.68473‬‬
‫‪73,694.59‬‬
‫‪56,774.65‬‬
‫‪43,739.46‬‬
‫‪33,697.08‬‬
‫‪25,960.38‬‬
‫‪95,657.00‬‬
‫‪152,431.65‬‬
‫‪241,598.68‬‬
‫‪347,296.81‬‬
‫‪476,758.32‬‬
‫ﺍ‪‬ﻤﻮﻉ‬
‫‪478,285‬‬
‫‪233,866.17‬‬
‫‪476,758.32‬‬
‫ﺍﺳﺘﺜﻤﺎﺭﻫﺎ ‪CFp‬‬
‫ﻧﺼﻴﺐ ﺻﺎﺣﺐ‬
‫ﺍﻟﻌﻤﻞ‬
‫‪SHARE2‬‬
‫‪242,892.15‬‬
‫ﺍﳉﺪﻭﻝ )‪(١٣‬‬
‫ﺇﻥ ﺍﻟﻔﺮﻭﻗﺎﺕ ﺑﲔ ﺣﺼﺺ ﺍﳌﻤﻮﻝ ﻭﺍﳌﻀﺎﺭﺏ ﺑﲔ ﺍﳉﺪﻭﻟﲔ )‪ ١٢‬ﻭ‪ (١٣‬ﺳﺒﺒﻬﺎ ﺍﻻﻓﱰﺍﺽ ﺑﺄﻥ ﺍﻟﺘﺪﻓﻖ‬
‫ﺍﻟﻨﻘﺪﻱ ﺍﻟﺴﻨﻮﻱ ﻧﻔﺴﻪ ﻷﻧﻨﺎ ﻗﺴﻤﻨﺎ ﺇﲨﺎﱄ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﻋﻠﻰ ﻋﺪﺩ ﺳﻨﻮﺍﺕ ﺍﻻﺳﺘﺜﻤﺎﺭ‪ ،‬ﻷﻥ ﻫﺪﻑ‬
‫ﺍﻟﺼﻴﻐﺔ ‪ ٢١‬ﻫﻮ ﲢﺪﻳﺪ ﺇﲨﺎﱄ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﻭﻟﻴﺲ ﻣﻔﺮﺩﺍﲥﺎ ﻟﺘﻌﺬﺭ ﺫﻟﻚ ﺣﺴﺎﺑﻴﺎً‪.‬‬
‫ﺃﻣﺎ )ﻣﻘﺎﻡ( ﻭﻫﻮ ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﻟﻠﻌﺎﺋﺪ ﺍﻟﺬﻱ ﳚﺐ ﺃﻥ ﻳﻘﺒﻠﻪ ﺍﳌﺼﺮﻑ ﺍﻹﺳﻼﻣﻲ ﻛﻤﻤﻮﻝ = ‪.%٢٩.٨٠‬‬
‫ﻣﺜﺎﻝ ﺭﻗﻢ )‪ :(٩‬ﺻﻼﺣﻴﺔ ﺍﻟﻨﻤﻮﺫﺝ ﺑﻤﻘﺎﺭﻧﺔ ﺍﺳﺘﺨﺪﺍﻡ ﺃﺩﺍﺗﻴﻦ ﻣﺨﺘﻠﻔﺘﻴﻦ‬
‫‪23‬‬
‫ﺍﻗﱰﺽ ﻣﺸﺮﻭﻉ ﻣﺒﻠﻎ ‪ ١٠٠٠‬ﺟﻨﻴﻪ ﳌﺪﺓ ﺳﻨﺔ‪ ،‬ﻭﻛﺎﻧﺖ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﻟﺴﻨﻮﻳﺔ ﻛﺎﻟﺘﺎﱄ‪:‬‬
‫ ﺣﺎﻟﺔ ﺭﻭﺍﺝ‪ :‬ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ‪ ١٣٠٠‬ﺟﻨﻴﻪ ﻭﺳﻌﺮ ﺍﻟﻔﺎﺋﺪﺓ ﺍﻟﺴﻮﻗﻲ ‪.%١٠‬‬‫ ﺣﺎﻟﺔ ﻛﺴﺎﺩ‪ :‬ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ‪ ١٠٥٠‬ﺟﻨﻴﻪ ﻭﺳﻌﺮ ﺍﻟﻔﺎﺋﺪﺓ ﺍﻟﺴﻮﻗﻲ ‪.% ٢.٥‬‬‫ﻓﺄﻱ ﺍﻟﻄﺮﻳﻘﺘﲔ )ﻣﻘﺎﻡ ﺃﻡ ﺍﻟﻔﺎﺋﺪﺓ ﺍﻟﺮﺑﻮﻳﺔ( ﻫﻲ ﺍﻷﻓﻀﻞ؟‬
‫ﺍﳊﻞ‪:‬‬
‫أوﻻ‪ ..‬ﺣﺎﻟﺔ اﻟﺮواج‪:‬‬
‫ﺑﺎﺳﺘﺨﺪﺍﻡ )ﺳﻌﺮ ﺍﻟﻔﺎﺋﺪﺓ(‪:‬‬
‫ﺣﺼﺔ ﺭﺏ ﺍﳌﺎﻝ ‪Share1‬‬
‫ﺣﺼﺔ ﺍﳌﻀﺎﺭﺏ ﺑﺎﻟﻌﻤﻞ ‪Share2‬‬
‫= ‪ ١١٠٠ = ١٠٠٠ ×١.١٠‬ﺟﻨﻴﻪ‬
‫= ‪ ٢٠٠ = ١١٠٠ - ١٣٠٠‬ﺟﻨﻴﻪ‬
‫= ‪%٢٠ = ١٠٠٠ ÷ ٢٠٠‬‬
‫ﺑﺎﺳﺘﺨﺪﺍﻡ )ﻣﻘﺎﻡ(‪:‬‬
‫ﻣﻌﺪﻝ ﺍﳊﺴﻢ ‪R‬‬
‫= )‪١.١٤ = (٢÷١)^(١٠٠٠÷١٣٠٠‬‬
‫ﺣﺼﺔ ﺭﺏ ﺍﳌﺎﻝ ‪Share1‬‬
‫= ‪ ١١٤٠ = ١٠٠٠ × ١.١٤‬ﺟﻨﻴﻪ‬
‫= ‪ ١٦٠ = ١١٤٠ – ١٣٠٠‬ﺟﻨﻴﻪ‬
‫= ‪%١٦ = ١٠٠٠ ÷ ١٦٠‬‬
‫ﺣﺼﺔ ﺍﳌﻀﺎﺭﺏ ﺑﺎﻟﻌﻤﻞ ‪Share2‬‬
‫ﺑﻴﺎﻥ‬
‫ﺣﺎﻟﺔ ﺍﻟﺮﻭﺍﺝ‬
‫ﺳﻌﺮ ﺍﻟﻔﺎﺋﺪﺓ‬
‫ﺍﻟﻨﻤﻮﺫﺝ‬
‫ﺣﺎﻟﺔ ﺍﻟﻜﺴﺎﺩ‬
‫ﺍﻟﻨﻤﻮﺫﺝ‬
‫ﺳﻌﺮ ﺍﻟﻔﺎﺋﺪﺓ‬
‫ﺭ ﺏ ﺍﳌﺎﻝ‬
‫‪١١٠٠‬‬
‫‪١١٤٠‬‬
‫‪١٠٢٥‬‬
‫‪١٠٢٥‬‬
‫ﺍﳌﻀﺎﺭﺏ ﺑﺎﻟﻌﻤﻞ‬
‫‪٢٠٠‬‬
‫‪١٦٠‬‬
‫‪٢٥‬‬
‫‪٢٥‬‬
‫ﺍﳉﺪﻭﻝ )‪(١٤‬‬
‫ﺗﻔﺴﲑ ﺍﻟﻨﺘﻴﺠﺔ‪:‬‬
‫ﺣﺼﻞ ﺭﺏ ﺍﳌﺎﻝ ﲝﺴﺐ )ﻣﻘﺎﻡ( ﻋﻠﻰ ﻧﺴﺒﺔ ﺇﺿﺎﻓﻴﺔ ﺗﻌﺎﺩﻝ )‪ (%٤ = %١٦ - %٢٠‬ﻷﻧﻪ ﻳﺘﺤﻤﻞ ﺍﳌﺨﺎﻃﺮ‬
‫ﻭﺍﳔﻔﻀﺖ ﺣﺼﺔ ﺍﳌﻀﺎﺭﺏ ﺑﺎﻟﻌﻤﻞ ﺑﻨﻔﺲ ﺍﻟﻨﺴﺒﺔ‪.‬‬
‫ﺛﺎﻧﻴﺎ‪ ..‬ﺣﺎﻟﺔ اﻟﻜﺴﺎد‪:‬‬
‫ﺑﺎﺳﺘﺨﺪﺍﻡ ﺳﻌﺮ ﺍﻟﻔﺎﺋﺪﺓ‪:‬‬
‫ﺣﺼﺔ ﺭﺏ ﺍﳌﺎﻝ ‪Share1‬‬
‫ﺣﺼﺔ ﺍﳌﻀﺎﺭﺏ ﺑﺎﻟﻌﻤﻞ ‪Share2‬‬
‫ﺑﺎﺳﺘﺨﺪﺍﻡ )ﻣﻘﺎﻡ(‪:‬‬
‫= ‪ ١٠٢٥ = ١٠٠٠× ١.٠٢٥‬ﺟﻨﻴﻪ‬
‫= ‪ ٢٥ = ١٠٢٥ – ١٠٥٠‬ﺟﻨﻴﻪ‬
‫= ‪%٢.٥ = ١٠٠٠ ÷ ٢٥‬‬
‫‪24‬‬
‫ﻣﻌﺪﻝ ﺍﳊﺴﻢ ‪R‬‬
‫= )‪١.٠٢٥ = (٢÷١)^(١٠٠٠ ÷١٠٥٠‬‬
‫ﺣﺼﺔ ﺭﺏ ﺍﳌﺎﻝ ‪Share1‬‬
‫= ‪ ١٠٢٥ = ١٠٠٠ × ١.٠٢٥‬ﺟﻨﻴﻪ‬
‫= ‪ ٢٥ = ١٠٢٥ – ١٠٥٠‬ﺟﻨﻴﻪ‬
‫= ‪%٢.٥ = ١٠٠٠ ÷ ٢٥‬‬
‫ﺣﺼﺔ ﺍﳌﻀﺎﺭﺏ ﺑﺎﻟﻌﻤﻞ ‪Share2‬‬
‫ﺗﻔﺴﲑ ﺍﻟﻨﺘﻴﺠﺔ‪:‬‬
‫ﺣﺼﻞ ﺭﺏ ﺍﳌﺎﻝ ﻋﻠﻰ ﻧﻔﺲ ﺍﻟﻨﺴﺒﺔ ﺳﻮﺍﺀ ﺣﺎﻟﺔ )ﻣﻘﺎﻡ( ﻭﺣﺎﻟﺔ )ﺍﻟﻔﺎﺋﺪﺓ ﺍﻟﺮﺑﻮﻳﺔ( ﻓﻔﻲ ﺣﺎﻟﺔ ﺍﻟﻜﺴﺎﺩ‬
‫ﳝﺜﻞ ﺳﻌﺮ ﺍﻟﻔﺎﺋﺪﺓ ﺃﻋﻠﻰ ﺳﻌﺮ ﻳﻘﺒﻞ ﺑﻪ ﺭﺏ ﺍﳌﺎﻝ ﻭﺇﻻ ﻓﺈﻧﻪ ﺳﻴﺤﺘﻔﻆ ﺑﺄﻣﻮﺍﻟﻪ‪.‬‬
‫ﻟﺬﻟﻚ ﳛﺠﻢ ﺍﳌﻤﻮﻟﻮﻥ ﺑﺼﻴﻎ ﺍﻟﺮﺑﺎ ﻋﻦ ﺍﻹﻗﺪﺍﻡ ﺣﺎﻻﺕ ﺍﻟﻜﺴﺎﺩ ﻓﻴﺴﺒﺒﻮﻥ ﺿﺮﺭﺍً ﺷﺪﻳﺪﺍ ﻟﻼﻗﺘﺼﺎﺩ‬
‫ﲢﻤﻞ ﺍﻷﻋﺒﺎﺀ ﻣﻊ‬
‫ﺑﺰﻳﺎﺩﺓ ﺍﻧﻜﻤﺎﺷﻪ‪ .‬ﺑﻴﻨﻤﺎ ﺗﺘﻤﺘﻊ ﺻﻴﻎ ﺍﳌﺸﺎﺭﻛﺔ ﺑﺎﳌﺮﻭﻧﺔ ﻷﻥ ﺭﺏ ﺍﳌﺎﻝ ﻳﺴﺎﻫﻢ‬
‫ﺍﳌﻀﺎﺭﺑﲔ ﺑﺄﻋﻤﺎﳍﻢ‪ ،‬ﳑﺎ ﻳﺴﺮﻉ ﺇﻋﺎﺩﺓ ﺍﻟﻨﻬﻮﺽ ﻣﻦ ﺣﺎﻻﺕ ﺍﻟﻜﺴﺎﺩ‪.‬‬
‫ﻣﺜﺎﻝ ﺭﻗﻢ )‪ :(١٠‬ﺍﻟﻤﺤﺎﻓﻈﺔ ﻋﻠﻰ ﺭﺃﺱ ﺍﻟﻤﺎﻝ‬
‫ﳝﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ )ﻣﻘﺎﻡ( ﺑﻐﺮﺽ ﺍﶈﺎﻓﻈﺔ ﻋﻠﻰ ﺭﺃﺱ ﺍﳌﺎﻝ‪ ،‬ﻭﺫﻟﻚ ﺑﺎﻟﺒﺤﺚ ﻋﻦ ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﻟﻠﻌﺎﺋﺪ‪ ،‬ﻓﺈﺫﺍ‬
‫ﻓﺮﺿﻨﺎ ﺃﻥ ﺍﳌﺴﺘﺜﻤﺮ ﻋﻠﻴﻪ ﺃﻥ ﻳﺴﺪﺩ ﺯﻛﺎﺓ ﺃﻣﻮﺍﻟﻪ ﺑﻨﺴﺒﺔ )‪ (%٢.٥‬ﻭﺃﻧﻪ ﻳﻬﺪﻑ ﻟﺘﺤﻘﻴﻖ ﻋﺎﺋﺪ ﻳﺒﻠﻎ ﻧﺴﺒﺔ‬
‫)‪ (%٧‬ﻛﺤﺪ ﺃﺩﻧﻰ‪.‬‬
‫ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﻟﻠﻌﺎﺋﺪ = ﺍﻟﻌﺎﺋﺪ ﺍﳌﺴﺘﻬﺪﻑ ‪ + r‬ﻣﻌﺪﻝ ﺍﻟﺰﻛﺎﺓ )ﺗﻜﻠﻔﺔ ﺭﺃﺱ ﺍﳌﺎﻝ(‬
‫ﺇﺫﻥ ﺍﻟﻌﺎﺋﺪ ﺍﳌﺴﺘﻬﺪﻑ ‪%٩.٥ = %٢.٥ + %٧ = r‬‬
‫ﻓﺈﺫﺍ ﻛﺎﻥ ﺭﺃﺱ ﺍﳌﺎﻝ )‪ (١٠٠٠‬ﺟﻨﻴﻪ‪ ،‬ﻓﻤﺎ ﺃﻗﻞ ﻋﺎﺋﺪ ﳚﺐ ﺃﻥ ﻳﻄﻠﺒﻪ ﺍﳌﺴﺘﺜﻤﺮ ﻟﻠﻤﺤﺎﻓﻈﺔ ﻋﻠﻰ ﺭﺃﺱ ﻣﺎﻟﻪ؟‬
‫ﺭﺃﺱ ﺍﳌﺎﻝ ﺑﻌﺪ ﺍﻻﺳﺘﺜﻤﺎﺭ = ‪١٠٩٥ = ١.٠٩٥ × ١٠٠٠‬ﺟﻨﻴﻪ‬
‫ﻭﻋﻠﻴﻪ ﻓﺎﻟﺘﺪﻓﻖ ﺍﻟﻨﻘﺪﻱ ﺍﳌﻄﻠﻮﺏ ﻫﻮ‪:‬‬
‫‪ = ١٠٩٥‬ﺱ ÷ ‪١.٠٩٥‬‬
‫ﺱ = ‪ ١٢٠٠ = ١.٠٩٥ × ١٠٩٥‬ﺟﻨﻴﻪ‬
‫ﻓﺈﺫﺍ ﻛﺎﻥ ﺍﻟﺘﺪﻓﻖ ﺍﻟﻨﻘﺪﻱ ﻟﻼﺳﺘﺜﻤﺎﺭ ﺍﳌﻌﺮﻭﺽ ﺃﻗﻞ ﻣﻦ ﺫﻟﻚ ﻓﺎﻟﻘﺮﺍﺭ ﻫﻮ ﺭﻓﺾ ﺍﻟﺘﻤﻮﻳﻞ‪.‬‬
‫ﻣﺜﺎﻝ ﺭﻗﻢ )‪ :(١١‬ﻣﻌﺎﻟﺠﺔ ﺍﻟﺼﻜﻮﻙ ﺑﻨﻤﻮﺫﺝ )ﻣﻘﺎﻡ(‬
‫ﺃﺻﺪﺭﺕ ﺷﺮﻛﺔ ﺍﺳﺘﺜﻤﺎﺭ )ﺃ( ﺻﻜﻮﻙ ﻣﻀﺎﺭﺑﺔ ﺑﻘﻴﻤﺔ ‪ ٥٠٠٠٠٠‬ﺟﻨﻴﻪ )‪ ٥٠٠٠‬ﺻﻚ × ‪ ١٠٠‬ﺟﻨﻴﻪ(‪.‬‬
‫ﺇﻥ ﺳﻴﺎﺳﺎﺕ ﺍﻟﺘﻮﺯﻳﻊ ﺍﳌﺘﺎﺣﺔ ﺳﺘﻜﻮﻥ ﻛﺎﻟﺘﺎﱄ‪:‬‬
‫ﺳﻴﺎﺳﺔ ‪ :١‬ﻋﺪﻡ ﺗﻮﺯﻳﻊ ﺃﺭﺑﺎﺡ ﺍﻟﺼﻜﻮﻙ ﻏﲑ ﺍﳌﻮﺯﻋﺔ ﺑﺈﻋﺎﺩﺓ ﺍﺳﺘﺜﻤﺎﺭﻫﺎ‪) .‬ﺑﻌﺾ ﺍﳌﺸﺮﻭﻋﺎﺕ ﺍﻟﻜﺒﲑﺓ ﲝﻴﺚ‬
‫ﻻ ﺗﻮﺯﻉ ﺃﺭﺑﺎﺣﻬﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﺗﺪﻓﻘﺎﲥﺎ ﺍﻟﻨﻘﺪﻳﺔ ﺃﻗﻞ ﻣﻦ ﺭﺃﺱ ﻣﺎﳍﺎ ﺍﳌﻜﺘﺘﺐ(‪.‬‬
‫‪25‬‬
‫ﺳﻴﺎﺳﺔ ‪ :٢‬ﺗﻮﺯﻳﻊ ﺍﻷﺭﺑﺎﺡ ﺳﻨﻮﻳﺎً ﺑﺎﺳﺘﺨﺪﺍﻡ ﳕﻮﺫﺝ )ﻣﻘﺎﻡ(‪.‬‬
‫ﺳﻴﺎﺳﺔ ‪ :٣‬ﺑﻴﻊ ﺍﻟﺼﻜﻮﻙ ﺑﻘﻴﻤﺘﻬﺎ ﺍﻻﲰﻴﺔ ﺇﺿﺎﻓﺔ ﻟﻘﻴﻤﺔ ﺍﻷﺭﺑﺎﺡ ﻏﲑ ﺍﳌﻮﺯﻋﺔ‪.‬‬
‫ﻭﺑﻔﺮﺽ ﺗﻮﺍﻓﺮ ﺍﻟﻔﺮﺿﻴﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫‪ .١‬ﺣﻘﻘﺖ ﺍﻟﺸﺮﻛﺔ‬
‫ﺍﻟﺴﻨﺔ ﺍﻷﻭﱃ ﺗﺪﻓﻘﺎﺕ ﻧﻘﺪﻳﺔ ﺏ ‪ ٤٠٠٠٠٠‬ﺟﻨﻴﻪ‪.‬‬
‫‪ .٢‬ﺣﻘﻘﺖ ﺍﻟﺸﺮﻛﺔ‬
‫ﺍﻟﺴﻨﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺗﺪﻓﻘﺎﺕ ﻧﻘﺪﻳﺔ ﺏ ‪ ١٠٠٠٠٠٠‬ﺟﻨﻴﻪ‪.‬‬
‫‪ .٣‬ﻗﺮﺭ ﺃﺻﺤﺎﺏ ‪ %٥٠‬ﻣﻦ ﺍﻟﺼﻜﻮﻙ ﺍﳌﻜﺘﺘﺐ ﲠﺎ ﻋﺪﻡ ﺻﺮﻑ ﺃﺭﺑﺎﺣﻬﻢ ﺍﳌﺴﺘﺤﻘﺔ‬
‫ﻻﺳﺘﺜﻤﺎﺭﻫﺎ ﺍﻟﺸﺮﻛﺔ‪.‬‬
‫‪ .٤‬ﺣﻘﻘﺖ ﺍﻟﺸﺮﻛﺔ ﺗﺪﻓﻘﺎﺕ ﻧﻘﺪﻳﺔ ﻗﺪﺭﻫﺎ ‪ ١٣٠٠٠٠٠‬ﺟﻨﻴﻪ‬
‫ﺍﻟﺴﻨﺔ ﺍﻟﺜﺎﻧﻴﺔ‬
‫ﺍﻟﻌﺎﻡ ﺍﻟﺜﺎﻟﺚ‪.‬‬
‫‪ .٥‬ﻗﺮﺭ ﺃﺻﺤﺎﺏ ‪ ١٠٠٠‬ﺻﻚ ﺑﻴﻊ ﺻﻜﻮﻛﻬﻢ ﻋﻠﻰ ﺍﻟﻨﺤﻮ ﺍﻟﺘﺎﱄ‪:‬‬
‫ﺃ‪ ٢٥٠ -‬ﺻﻚ ﻣﻦ ﺃﺻﺤﺎﺏ ﺍﻷﺭﺑﺎﺡ ﺍﳌﻮﺯﻋﺔ‪.‬‬
‫ﺍﳌﻄﻠﻮﺏ‪:‬‬
‫ﺏ‪ ٧٥٠ -‬ﺻﻚ ﻣﻦ ﺃﺻﺤﺎﺏ ﺍﻷﺭﺑﺎﺡ ﻏﲑ ﺍﳌﻮﺯﻋﺔ ‪.‬‬
‫‪ .١‬ﺇﺛﺒﺎﺕ ﺣﺮﻣﺎﻥ ﺃﺻﺤﺎﺏ ﺍﻟﺼﻜﻮﻙ ﻣﻦ ﺍﻷﺭﺑﺎﺡ‬
‫ﺍﻟﺼﻜﻮﻙ ﺍﳌﻜﺘﺘﺐ ﻓﻴﻬﺎ‪.‬‬
‫ﺣﺎﻟﺔ ﲢﻘﻴﻖ ﺍﻟﺸﺮﻛﺔ ﺗﺪﻓﻘﺎً ﻧﻘﺪﻳﺎً ﺩﻭﻥ ﻗﻴﻤﺔ‬
‫‪ .٢‬ﻛﻴﻔﻴﺔ ﺗﻮﺯﻳﻊ ﺍﻷﺭﺑﺎﺡ ﺑﺎﺳﺘﺨﺪﺍﻡ ﳕﻮﺫﺝ )ﻣﻘﺎﻡ(‪.‬‬
‫‪ .٣‬ﻛﻴﻔﻴﺔ ﺣﺴﺎﺏ ﺻﻜﻮﻙ ﺃﺻﺤﺎﺏ ﺍﻷﺭﺑﺎﺡ ﻏﲑ ﺍﳌﻮﺯﻋﺔ‪.‬‬
‫‪ .٤‬ﻛﻴﻔﻴﺔ ﺗﺴﻌﲑ ﺍﻟﺼﻜﻮﻙ ﺍﳌﺒﺎﻋﺔ‪.‬‬
‫ﺍﳊﻞ‬
‫ﺍﻟﻄﻠﺐ ﺍﻷﻭﻝ – ﺳﻴﺎﺳﺔ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻷﻭﱃ ﺍﳌﻘﱰﺣﺔ‪ :‬ﺇﺛﺒﺎﺕ ﺣﺮﻣﺎﻥ ﺃﺻﺤﺎﺏ ﺍﻟﺼﻜﻮﻙ ﻣﻦ ﺍﻷﺭﺑﺎﺡ‬
‫ﲢﻘﻴﻖ ﺍﻟﺸﺮﻛﺔ ﺗﺪﻓﻘﺎً ﻧﻘﺪﻳﺎً ﺩﻭﻥ ﻗﻴﻤﺔ ﺍﻟﺼﻜﻮﻙ ﺍﳌﻜﺘﺘﺐ ﻓﻴﻬﺎ‪:‬‬
‫ﺣﺎﻟﺔ‬
‫ﺍﻟﻔﺮﺿﻴﺔ ﺍﻷﻭﱃ‪ :‬ﺣﻘﻘﺖ ﺍﻟﺸﺮﻛﺔ ﺍﻟﺴﻨﺔ ﺍﻷﻭﱃ ﺗﺪﻓﻘﺎﺕ ﻧﻘﺪﻳﺔ ﲟﻘﺪﺍﺭ ‪ ٤٠٠٠٠٠‬ﺟﻨﻴﻪ‪:‬‬
‫)ﻣﻘﺎﻡ( = )‪%٨٩= (٢÷١) ^ (٥٠٠٠٠٠ ÷ ٤٠٠٠٠٠‬‬
‫ﻧﺼﻴﺐ ﺻﺎﺣﺐ ﺍﻟﺼﻚ ﻫﺬﻩ ﺍﳊﺎﻟﺔ = ‪ ٨٩ = ١٠٠ × %٨٩‬ﺟﻨﻴﻪ‬
‫ﺇﺫﻥ ﻟﺪﻳﻨﺎ ﺧﺴﺎﺭﺓ ﺑﻨﺴﺒﺔ ‪) %٢٠‬ﻣﺜﻼ ﻷﻥ ﺍﳌﺸﺮﻭﻉ ﺑﺪﺍﻳﺔ ﺍﻧﻄﻼﻗﺘﻪ( ﻓﻴﻤﺎ ﻟﻮ ﺑﺎﻉ ﺑﻌﺾ ﺃﺻﺤﺎﺏ‬
‫ﺍﻟﺼﻜﻮﻙ ﺻﻜﻮﻛﻬﻢ ﺍﻟﺴﻮﻕ ﺑﻘﻴﻤﺘﻬﺎ ﺍﻻﲰﻴﺔ ﻭﻛﺄﳖﻢ ﺣﻘﻘﻮﺍ ﺭﲝﺎً ﻏﲑ ﻣﺴﺘﺤﻖ‪.‬‬
‫ﺍﻟﻔﺮﺿﻴﺔ ﺍﻟﺜﺎﻧﻴﺔ‪ :‬ﺣﻘﻘﺖ ﺍﻟﺸﺮﻛﺔ ﺍﻟﺴﻨﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺗﺪﻓﻘﺎً ﻧﻘﺪﻳﺎً ﲟﻘﺪﺍﺭ ‪ ١٠٠٠٠٠٠‬ﺟﻨﻴﻪ‪:‬‬
‫)ﻣﻘﺎﻡ( = )‪١.٤١ = (٢÷١) ^ (٥٠٠٠٠٠ ÷ ١٠٠٠٠٠٠‬‬
‫‪26‬‬
‫ﻧﺼﻴﺐ ﺻﺎﺣﺐ ﺍﻟﺼﻚ = ‪ ١٤١ = ١٠٠ × ١.٤١‬ﺟﻨﻴﻪ‬
‫ﺃﺭﺑﺎﺡ ﺍﻟﺼﻚ ﺍﻟﻮﺍﺣﺪ = ‪ ٤١ = ١٠٠ - ١٤١‬ﺟﻨﻴﻪ‬
‫ﺍﻟﻔﺮﺿﻴﺔ ﺍﻟﺜﺎﻟﺜﺔ‪ :‬ﺣﺎﻟﺔ ﻗﺮﺍﺭ ﺃﺻﺤﺎﺏ ﻧﺼﻒ ﺍﻟﺼﻜﻮﻙ ﺍﳌﻜﺘﺘﺐ ﻓﻴﻬﺎ ﻋﺪﻡ ﺻﺮﻑ ﺃﺭﺑﺎﺣﻬﻢ‬
‫ﻭﺍﺳﺘﺜﻤﺎﺭﻫﺎ‪:‬‬
‫ﺇﲨﺎﱄ ﺃﺭﺑﺎﺡ ﺍﻟﺼﻜﻮﻙ ﺍﳌﺼﺪﺭﺓ‪ ٤١ :‬ﺟﻨﻴﻪ ﺭﺑﺢ ﺍﻟﺼﻚ × ‪ ٥٠٠٠‬ﺻﻚ = ‪ ٢٠٥٠٠٠‬ﺟﻨﻴﻪ‬
‫= ‪ ١٠٢٥٠٠‬ﺟﻨﻴﻪ‬
‫ﻧﺼﻴﺐ ﺍﻷﺭﺑﺎﺡ ﺍﳌﻮﺯﻋﺔ = ‪%٥٠ × ٢٠٥٠٠٠‬‬
‫ﻧﺼﻴﺐ ﺍﻷﺭﺑﺎﺡ ﻏﲑ ﺍﳌﻮﺯﻋﺔ = ‪ ١٠٢٥٠٠ = %٥٠ × ٢٠٥٠٠٠‬ﺟﻨﻴﻪ‬
‫ﺍﻟﻌﺎﻡ ﺍﻟﺜﺎﻧﻲ‬
‫ﺍﻟﻔﺮﺿﻴﺔ ﺍﻟﺮﺍﺑﻌﺔ‪ :‬ﺣﻘﻘﺖ ﺍﻟﺸﺮﻛﺔ ﺗﺪﻓﻘﺎﺕ ﻧﻘﺪﻳﺔ ﻗﺪﺭﻫﺎ ‪ ١٣٠٠٠٠٠‬ﺟﻨﻴﻪ ﺍﻟﻌﺎﻡ ﺍﻟﺜﺎﻟﺚ‬
‫ﺭﺃﺱ ﺍﳌﺎﻝ ﺍﳌﺴﺘﺜﻤﺮ = ﻗﻴﻤﺔ ﺍﻟﺼﻜﻮﻙ ﺍﳌﻜﺘﺘﺐ ﻓﻴﻬﺎ ‪ +‬ﺍﻷﺭﺑﺎﺡ ﻏﲑ ﺍﳌﻮﺯﻋﺔ )ﺍﳌﻌﺎﺩ ﺍﺳﺘﺜﻤﺎﺭﻫﺎ(‬
‫= ‪ ٦٠٢٥٠٠ = ١٠٢٥٠٠ + ٥٠٠٠٠٠‬ﺟﻨﻴﻪ‬
‫ﺗﺪﻓﻘﺎﺕ ﺍﻟﺴﻨﺔ ﺍﻟﺜﺎﻟﺜﺔ = ‪ ١٣٠٠٠٠٠‬ﺟﻨﻴﻪ‬
‫)ﻣﻘﺎﻡ( = )‪١.٤٧ = (٢÷١) ^ ((٦٠٢٥٠٠) ÷ ١٣٠٠٠٠٠‬‬
‫ﻧﺼﻴﺐ ﺻﺎﺣﺐ ﺍﻟﺼﻚ )ﺃﺻﺤﺎﺏ ﺍﻷﺭﺑﺎﺡ ﺍﳌﻮﺯﻋﺔ(= ‪ ١٤٧ = ١٠٠ × ١.٤٧‬ﺟﻨﻴﻪ‬
‫ﺭﺑﺢ ﺍﻟﺼﻚ )ﻷﺻﺤﺎﺏ ﺍﻷﺭﺑﺎﺡ ﺍﳌﻮﺯﻋﺔ( = ‪ ٤٧ = ١٠٠ - ١٤٧‬ﺟﻨﻴﻪ‬
‫ﺇﲨﺎﱄ ﺍﻷﺭﺑﺎﺡ ﺍﳌﻮﺯﻋﺔ = ‪ ٢٥٠٠ × ٤٧‬ﺻﻚ = ‪ ١١٧٥٠٠‬ﺟﻨﻴﻪ‬
‫ﻧﺼﻴﺐ ﺻﺎﺣﺐ ﺍﻟﺼﻚ )ﻷﺻﺤﺎﺏ ﺍﻷﺭﺑﺎﺡ ﻏﲑ ﺍﳌﻮﺯﻋﺔ( = ‪٢٠٧ = ١٤١× ١.٤٧‬‬
‫ﺭﺑﺢ ﺍﻟﺼﻚ )ﻷﺻﺤﺎﺏ ﺍﻷﺭﺑﺎﺡ ﻏﲑ ﺍﳌﻮﺯﻋﺔ( = ‪ ١٠٧ =١٠٠ - ٢٠٧‬ﺟﻨﻴﻪ‬
‫ﺇﲨﺎﱄ ﺍﻷﺭﺑﺎﺡ ﻏﲑ ﺍﳌﻮﺯﻋﺔ ﻭﺍﳌﺴﺘﺜﻤﺮﺓ = ‪ ٢٥٠٠ × ١٠٧‬ﺻﻚ = ‪ ٢٦٧٥٠٠‬ﺟﻨﻴﻪ‬
‫ﺍﻟﻔﺮﺿﻴﺔ ﺍﳋﺎﻣﺴﺔ‪ :‬ﺑﻴﻊ ‪ ١٠٠٠‬ﺻﻚ‪:‬‬
‫= ‪٢٥٠٠٠ = ١٠٠ × ٢٥٠‬‬
‫ﺻﻜﻮﻙ ﺃﺻﺤﺎﺏ ﺍﻷﺭﺑﺎﺡ ﺍﳌﻮﺯﻋﺔ‬
‫ﺻﻜﻮﻙ ﺃﺻﺤﺎﺏ ﺍﻷﺭﺑﺎﺡ ﻏﲑ ﺍﳌﻮﺯﻋﺔ = ‪) × ٧٥٠‬ﺍﻷﺭﺑﺎﺡ ﻏﲑ ﺍﳌﻮﺯﻋﺔ ÷ ﻋﺪﺩ ﺍﻟﺼﻜﻮﻙ ﺍﳌﺴﺘﺜﻤﺮﺓ( ‪ +‬ﻗﻴﻤﺔ‬
‫ﺍﻟﺼﻚ ﺍﻻﲰﻴﺔ‬
‫= ‪١٠٠ + (٢٥٠٠ ÷ ٢٦٧٥٠٠) × ٧٥٠‬‬
‫= ‪٢٠٧ × ٧٥٠‬‬
‫= ‪ ١٥٥٢٥٠‬ﺟﻨﻴﻪ‬
‫‪27‬‬
‫ﺍﻟﺨﺎﺗﻤﺔ ﻭﺍﻟﻨﺘﺎﺋﺞ‬
‫ﺑﻨﺎﺀ ﻋﻠﻰ ﻣﺎ ﺳﺒﻖ‪ ،‬ﻓﺈﻥ ﳕﻮﺫﺝ )ﺃﻭﻫﺎﺝ – ﻗﻨﻄﻘﺠﻲ( ﻫﻮ ﲟﺜﺎﺑﺔ ﺁﻟﻴﺔ ﻣﻘﱰﺣﺔ‪:‬‬
‫ ﳝﻜﻦ ﺍﺳﺘﺨﺪﺍﻣﻬﺎ ﻛﺒﺪﻳﻞ ﻟﻌﻤﻠﻴﺎﺕ ﺍﻻﻗﱰﺍﺽ ﺍﻟﺘﻘﻠﻴﺪﻱ ﺍﻟﱵ ﺗﻌﺘﻤﺪ ﻋﻠﻰ ﺍﻟﻔﺎﺋﺪﺓ ﺍﻟﺮﺑﻮﻳﺔ ﺃﻭ ﺍﻟﺮﺑﺎ‬‫ﺍﶈﺮﻡ‪.‬‬
‫ ﳝﻜﻦ ﺗﻄﺒﻴﻘﻬﺎ ﻋﻠﻰ ﺍﳌﺸﺎﺭﻛﺎﺕ ﺃﻭ ﺍﳌﻀﺎﺭﺑﺎﺕ ﺍﻹﺳﻼﻣﻴﺔ ﺣﻴﺚ ﻳﺘﺤﻤﻞ ﺭﺏ ﺍﳌﺎﻝ ﻋﺎﺩﺓ ﺍﳋﺴﺎﺋﺮ ﺇﻥ‬‫ﱂ ﻳﻜﻦ ﺳﺒﺒﻬﺎ ﺇﳘﺎﻝ ﺃﻭ ﺗﻘﺼﲑ ﺻﺎﺣﺐ ﺍﻟﻌﻤﻞ‪ .‬ﻭﺫﻟﻚ ﻟﺘﺤﺪﻳﺪ ﻧﺴﺐ ﺍﳌﺸﺎﺭﻛﺔ ﺑﲔ ﻓﺮﻳﻘﻲ‬
‫ﺍﻟﺸﺮﺍﻛﺔ ﺃﻭ ﺍﳌﻀﺎﺭﺑﺔ‪.‬‬
‫ ﺃﺩﺍﺓ ﻣﺴﺎﻋﺪﺓ ﲢﺪﻳﺪ ﺍﻟﻨﺴﺒﺔ ﺍﳌﺴﺘﻬﺪﻓﺔ )ﺃﻱ ﻛﺒﺪﻳﻞ ﺍﻟﻼﻳﺒﻮﺭ( ﻟﻜﻮﳖﺎ ﻧﻘﻄﺔ ﺗﻌﺎﺩﻝ‪ ،‬ﺣﻴﺚ ﻳﻌﺘﱪ‬‫)ﻣﻘﺎﻡ( ﻧﻘﻄﺔ ﺍﻟﺘﻌﺎﺩﻝ ﺃﻭ ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﻟﻠﻌﺎﺋﺪ ﺍﻟﺬﻱ ﻳﺴﺘﻬﺪﻓﻪ ﺍﳌﻤﻮ‪‬ﻝ )ﺍﳌﺼﺮﻑ ﺍﻹﺳﻼﻣﻲ ﻣﺜﻼ(‬
‫ﻋﻠﻰ ﺃﺳﺎﺱ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﺘﻮﻗﻌﺔ ﻟﻠﻤﺸﺮﻭﻉ ﺍﳌﺰﻣﻊ ﲤﻮﻳﻠﻪ ﻭﻟﻴﺲ ﻋﻠﻰ ﺃﺳﺎﺱ ﺍﻻﺳﺘﺌﻨﺎﺱ‬
‫ﲟﺆﺷﺮﺍﺕ ﺭﺑﻮﻳﺔ )ﻣﺜﻞ ﻻﻳﺒﻮﺭ(‪ .‬ﻓﺈﺫﺍ ﺍﻓﱰﺿﻨﺎ ﺃﻥ ﺍﳊﺪ ﺍﻷﺩﻧﻰ ﻟﻠﻌﺎﺋﺪ ﺍﻟﺴﻨﻮﻱ ﺍﳌﺴﺘﻬﺪﻑ ﻣﻦ ﻗﺒﻞ‬
‫ﺍﳌﻤﻮﻝ )ﻛﺎﳌﺼﺮﻑ ﺍﻹﺳﻼﻣﻲ ﻣﺜﻼ( ﻫﻮ ﲢﻘﻴﻖ ﻧﺴﺒﺔ ‪ %٩.٦‬ﻛﻌﺎﺩ ﺳﻨﻮﻱ ﺑﻌﺪ ﻋﻤﺮ ﺍﳌﺸﺮﻭﻉ‬
‫ﺍﳌﻔﱰﺽ‪ ،‬ﻓﺈﺫﺍ ﺑﻠﻎ ﻋﻤﺮ ﺍﳌﺸﺮﻭﻉ ﲬﺴﺔ ﺳﻨﻮﺍﺕ ﻓﺈﻥ ﺍﻟﻌﺎﺋﺪ ﺍﻹﲨﺎﱄ ﺍﳌﺘﻮﻗﻊ ﻟﺮﺏ ﺍﳌﺎﻝ ﺳﻴﺒﻠﻎ‬
‫ﻫﻜﺬﺍ ﺣﺎﻟﺔ ‪ ٥ × %٩.٦) %٤٨‬ﺳﻨﺔ(‪.‬‬
‫ ﺃﺩﺍﺓ ﻟﻠﻔﺼﻞ ﺑﻘﺮﺍﺭ ﺍﻟﺘﻤﻮﻳﻞ ﻣﻦ ﻋﺪﻣﻪ‪.‬‬‫‪ -‬ﺃﺩﺍﺓ ﻣﺴﺎﻋﺪﺓ‬
‫ﺭﺳﻢ ﻭﲢﺪﻳﺪ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺍﻟﻨﻘﺪﻳﺔ ﺍﳌﺴﺘﻬﺪﻓﺔ‪.‬‬
‫ﳑﺎ ﺳﺒﻖ ﻳﺘﺒﲔ ﻗﺎﺑﻠﻴﺔ ﲢﻘﻖ ﳕﻮﺫﺝ )ﻣﻘﺎﻡ( ﻭﺻﻼﺣﻴﺘﻪ ﻷﻥ ﻳﻜﻮﻥ ﺃﺩﺍﺓ ﺟﺪﻳﺪﺓ‬
‫ﺗﻘﻴﻴﻢ ﺍﳌﺸﺮﻭﻋﺎﺕ‪.‬‬
‫ﻧﻜﺮﺭ ﻧﺼﺤﻨﺎ ﻟﻠﻌﺎﻣﻠﲔ ﺍﻷﺳﻮﺍﻕ ﺍﳌﺎﻟﻴﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ )ﻣﻘﺎﻡ( ﺇﱃ ﺟﺎﻧﺐ )ﺍﻟﻼﻳﺒﻮﺭ( ﺭﻳﺜﻤﺎ ﻳﺜﺒﺖ ﳍﻢ ﺟﺪﻭﺍﻩ‬
‫ﻭﻳﺘﺒﲔ ﻣﺪﻯ ﺇﻣﻜﺎﻧﻴﺔ ﺗﻄﺒﻴﻘﻪ‪.‬‬
‫ﻭﺁﺧﺮ ﺩﻋﻮﺍﻧﺎ ﺃﻥ ﺍﳊﻤﺪ ‪ ‬ﺭﺏ ﺍﻟﻌﺎﳌﲔ‬
‫ﺣﺮﺭ ﲪﺎﺓ ﺑﺘﺎﺭﻳﺦ ــﺎ‪ ١٤٣١/١٠/٠٩‬ﺍﳌﻮﺍﻓﻖ ــﺎ‪٢٠١٠/٠٩/١٨‬‬
‫ﳌﻦ ﻳﺮﻏﺐ ﲟﺰﻳﺪ ﻣﻦ ﺍﻟﺸﺮﺡ ﻭﺍﻟﺒﻴﺎﻥ ﳝﻜﻨﻪ ﺍﻻﺗﺼﺎﻝ ﺑﻨﺎ ﻋﱪ‬
‫ﻣﻮﻗﻊ ﻣﺮﻛﺰ ﺃﲝﺎﺙ ﻓﻘﻪ ﺍﳌﻌﺎﻣﻼﺕ ﺍﻹﺳﻼﻣﻴﺔ ‪www.kantakji.com‬‬
‫‪28‬‬