Cheat Sheet – Exam 3 Derivatives 1. 2. 3. 4. 5. 6. d (tan x) sec 2 x dx d (cot x) csc 2 x dx d (sec x) sec x tan x dx d (csc x) csc x cot x dx d 1 (sin 1 x) dx 1 x2 d 1 (cos 1 x) dx 1 x2 14. a2 x2 1 dx 2 a x2 1 15. x x 2 a 2 1 tan a dx cos2 x sin 2 x 27. sin A cos B 12 [sin( A B) sin( A B )] [cos( A B) cos( A B)] [cos( A B) cos( A B)] Right Angle Trigonometry 30. sin opp hyp csc hyp opp 31. cos adj hyp sec hyp adj 32. tan opp adj cot adj opp Half-Angle Formulas C 33. sin 2 x 1 2 (1 cos 2 x) 34. cos 2 x 1 2 (1 cos 2 x) 0 0 π/6 sin x cos x 1 3 tan x 0 1 2 2 x a C ln x dx 17. tan x dx ln | sec x | C 18. sec x dx ln | sec x tan x | C 19. cot x dx x ln x x C π/4 π/3 2 3 2 1 1 3 16. ln | csc x | C 1 2 29. sin A sin B x a 1 1 2 28. cos A cos B C 1 sec a ln | sec x tan x | C 2 26. cos 2 x x a 1 sec x tan x 2 sec2 x 24. 1 cot 2 x csc2 x 25. sin 2 x 2sin x cos x Integrals 1 sec3 x dx 23. 1 tan 2 x d (sinh x) cosh x 11. dx d (cosh x) sinh x 12. dx dx sin 21. 22. sin 2 x cos2 x 1 d 1 (tan 1 x) dx 1 x2 d 1 (cot 1 x) 8. dx 1 x2 d 1 9. (sec 1 x) dx x x2 1 d 1 10. (csc 1 x) dx x x2 1 1 csc x dx ln | csc x cot x | C Trig Identities 7. 13. 20. 2 1 2 π/2 1 2 2 3 0 Undef. 7.1 Integration by Parts udv uv vdu L – Logs I – Inverse Trig A – Algebraic T – Trig E – Exponential 7.2 7.4 Partial Fractions Higher on the list = u Case 2: p( x) ( x 2)( x 4) 2 Case 3: p( x) ( x 2)( x 2 4) Lower on the list = dv Mn x[ f ( x1 ) x 3 [ f ( x0 ) Sn a) If sec x has an even power, pull a sec x aside and convert the rest to tan x. Substitute u = tan x b) If tan x has an odd power, pull a tan x sec x aside and convert the rest to sec x. Substitute u = sec x c) If sec x has an odd power and tan x has an even power, convert all tan x into sec x. x 2 f ( x2 ) ... 4 f ( x1 ) 2 f ( x2 ) ... f ( xn )] f ( xn 1 ) 2 f ( xn 2 ) f ( xn )] 4 f ( xn 1 ) K (b a )3 where | f ''( x) | K 12n 2 | EM | K (b a )3 where | f ''( x) | K 24n 2 | ES | K (b a )5 where | f (4) ( x) | K 4 180n Type I: a f ( x)dx f ( x)dx f ( x)dx lim t b lim a lim t x a f ( x)dx f ( x)dx t t t f ( x)dx lim t t a f ( x)dx Type II: If f(x) is discontinuous at a. b a f ( x)dx lim t a b t f ( x)dx If f(x) is discontinuous at b. b a f ( x)dx lim t b t a f ( x)dx If f(x) is discontinuous at c for some a 7.3 Trig Substitution b a2 x2 x a sin 1 sin 2 cos 2 a2 x2 x a tan 1 tan 2 sec2 x2 a2 x a sec sec2 1 tan 2 f ( x n )] 7.8 Improper Integrals csc x cot x dx a) If csc x has an even power, pull a csc x aside and convert the rest to cot x. Substitute u = cot x b) If cot x has an odd power, pull a cot x csc x aside and convert the rest to csc x. Substitute u = csc x c) If csc x has an odd power and cot x has an even power, convert all cot x into csc x. Bx C x2 4 | ET | m 2 A Error Bounds: b n x 4 Pattern for Simpson’s Rule Coefficients: 1,4,2,4,2,4,…,4,2,4,2,4,1 secn x tan m x dx 2 x 2 C ( x 4) 2 x Tn a) If sin x has an odd power, pull a sin x aside and convert the rest to cos x. Substitute u = cos x b) If cos x has an odd power, pull a cos x aside and convert the rest to sin x. Substitute u = sin x c) If both have even powers, use the half-angle formulas. B b a n x 2 f ( x1 ) ... 2 f ( xn 1 ) 2 [ f ( x0 ) 7.7 sin n x cos m x dx A a f ( x)dx lim x c t a f ( x)dx lim Don’t Forget +C t c c b b t f ( x)dx Parametric Equations x f (t ), y g (t ) Eliminate the parameter: Solve for t and substitute. dy dy dx Slope of the tangent line: m dx Concavity: d y dx 2 dx dx Common difference of a: an b Common ratio of b: abn Use n 1 to find missing variable. Limit Laws: dt dy dt Vertical when dx dt y1 m( x x1 ) 0 lim(an / bn ) lim(an ) / lim(bn ) lim[(an ) p ] [lim(an )] p g (t ) f '(t )dt dx 2 2 dy dt Polar Equations r dt r cos r2 y r sin tan Vertical when dr d dr d dt x2 y2 dy dx sin cos sin cos r sin r cos r sin y1 m( x x1 ) 0 0 Undefined when both are 0. 1 2 Area between curves: 1 2 dr d Arc Length: L r 2d r12 r22 d 2 r2 d f ( x) g ( x) If r cos Area inside the curve: lim x Arc Length: L a 1 lim x , then f '( x) g '( x) 11.3 Error bounds for Integral Test If f is continuous, positive and decreasing, then the error is bounded by: n 1 f ( x)dx Sn n 1 Rn f ( x)dx f ( x)dx and n S Sn n f ( x)dx 11.5 Error bounds for Alternating Series Test ( 1)n bn is an alternating series, then n 1 f ( x) b c if deg(p) > deg(q) if deg(p) = deg(q) 0 f ( x) or 0 g ( x) f ( x) g ( x) If Function y if deg(p) < deg(q) L’Hospital’s Rule: x y dr d dr d 0 where c is the ratio of the coefficients of the highest degree terms in p and q. Equation of the tangent line: y Horizontal when p( x) lim n q( x) f( ) x Slope of tangent line: lim(an bn ) lim(an ) lim(bn ) lim(anbn ) lim(an ) lim(bn ) 0 Arc Length: L lim(an bn ) lim(an ) lim(bn ) lim(can ) c lim(an ) Undefined when both are 0. Area under the curve (left to right): ydx 1 dt Equation of the tangent line: y Horizontal when Alternating: ( 1) n or ( 1) n dt dt d dt Finding the general term: dt dy 2 11.1 Sequences dy dx 2 | Rn | bn 1 and S n dx S S n 1 or S n 1 S Sn Absolute Convergence Known Power Series an 1 n 1 xn 1 x Divergent Convergent n 0 1 1 x2 ( 1) x 2 n n 0 1 tan x n ( 1) n x 2 n 2n 1 0 | an | ln(1 x) n 1 n ( 1) n x n n 0 n Conditionally Absolutely x n! ex n 0 n ( 1) n x 2 n 1 0 (2 n 1)! n ( 1) n x 2 n (2n)! 0 sin x Do Not Apply Series Convergence Tests to Sequences!!! 11.10 Taylor and MacLaurin Series If f ( x) has a power series centered at x = a, then f ( x) cn ( x a) n cn n 0 f ( n ) (a) n! 11. 8 Radius and Interval of Convergence Use the ratio test first, then follow up with other tests to check the endpoints of the interval. Converges Diverges a -R a Diverges a +R 11.9 Writing Functions as a Power Series a 1 r ar n n 0 Exponent Rules (ab) n a nb n aman am n cos x 1
© Copyright 2026 Paperzz