Cheat Sheet – Exam 3 Derivatives 1. 2. 3. 4. 5. 6. d (tan x) sec 2 x dx d (cot x) csc 2 x dx d (sec x) sec x tan x dx d (csc x) csc x cot x dx d 1 (sin 1 x) dx 1 x2 d 1 (cos 1 x) dx 1 x2 14. a2 x2 1 dx 2 a x2 1 15. x x 2 a 2 1 tan a dx cos2 x sin 2 x 27. sin A cos B 12 [sin( A B) sin( A B )] [cos( A B) cos( A B)] [cos( A B) cos( A B)] Right Angle Trigonometry 30. sin opp hyp csc hyp opp 31. cos adj hyp sec hyp adj 32. tan opp adj cot adj opp Half-Angle Formulas C 33. sin 2 x 1 2 (1 cos 2 x) 34. cos 2 x 1 2 (1 cos 2 x) 0 0 π/6 sin x cos x 1 3 tan x 0 1 2 2 x a C ln x dx 17. tan x dx ln | sec x | C 18. sec x dx ln | sec x tan x | C 19. cot x dx x ln x x C π/4 π/3 2 3 2 1 1 3 16. ln | csc x | C 1 2 29. sin A sin B x a 1 1 2 28. cos A cos B C 1 sec a ln | sec x tan x | C 2 26. cos 2 x x a 1 sec x tan x 2 sec2 x 24. 1 cot 2 x csc2 x 25. sin 2 x 2sin x cos x Integrals 1 sec3 x dx 23. 1 tan 2 x d (sinh x) cosh x 11. dx d (cosh x) sinh x 12. dx dx sin 21. 22. sin 2 x cos2 x 1 d 1 (tan 1 x) dx 1 x2 d 1 (cot 1 x) 8. dx 1 x2 d 1 9. (sec 1 x) dx x x2 1 d 1 10. (csc 1 x) dx x x2 1 1 csc x dx ln | csc x cot x | C Trig Identities 7. 13. 20. 2 1 2 π/2 1 2 2 3 0 Undef. 7.1 Integration by Parts udv uv vdu L – Logs I – Inverse Trig A – Algebraic T – Trig E – Exponential 7.2 7.4 Partial Fractions Higher on the list = u Case 2: p( x) ( x 2)( x 4) 2 Case 3: p( x) ( x 2)( x 2 4) Lower on the list = dv Mn x[ f ( x1 ) x 3 [ f ( x0 ) Sn a) If sec x has an even power, pull a sec x aside and convert the rest to tan x. Substitute u = tan x b) If tan x has an odd power, pull a tan x sec x aside and convert the rest to sec x. Substitute u = sec x c) If sec x has an odd power and tan x has an even power, convert all tan x into sec x. x 2 f ( x2 ) ... 4 f ( x1 ) 2 f ( x2 ) ... f ( xn )] f ( xn 1 ) 2 f ( xn 2 ) f ( xn )] 4 f ( xn 1 ) K (b a )3 where | f ''( x) | K 12n 2 | EM | K (b a )3 where | f ''( x) | K 24n 2 | ES | K (b a )5 where | f (4) ( x) | K 4 180n Type I: a f ( x)dx f ( x)dx f ( x)dx lim t b lim a lim t x a f ( x)dx f ( x)dx t t t f ( x)dx lim t t a f ( x)dx Type II: If f(x) is discontinuous at a. b a f ( x)dx lim t a b t f ( x)dx If f(x) is discontinuous at b. b a f ( x)dx lim t b t a f ( x)dx If f(x) is discontinuous at c for some a 7.3 Trig Substitution b a2 x2 x a sin 1 sin 2 cos 2 a2 x2 x a tan 1 tan 2 sec2 x2 a2 x a sec sec2 1 tan 2 f ( x n )] 7.8 Improper Integrals csc x cot x dx a) If csc x has an even power, pull a csc x aside and convert the rest to cot x. Substitute u = cot x b) If cot x has an odd power, pull a cot x csc x aside and convert the rest to csc x. Substitute u = csc x c) If csc x has an odd power and cot x has an even power, convert all cot x into csc x. Bx C x2 4 | ET | m 2 A Error Bounds: b n x 4 Pattern for Simpson’s Rule Coefficients: 1,4,2,4,2,4,…,4,2,4,2,4,1 secn x tan m x dx 2 x 2 C ( x 4) 2 x Tn a) If sin x has an odd power, pull a sin x aside and convert the rest to cos x. Substitute u = cos x b) If cos x has an odd power, pull a cos x aside and convert the rest to sin x. Substitute u = sin x c) If both have even powers, use the half-angle formulas. B b a n x 2 f ( x1 ) ... 2 f ( xn 1 ) 2 [ f ( x0 ) 7.7 sin n x cos m x dx A a f ( x)dx lim x c t a f ( x)dx lim Don’t Forget +C t c c b b t f ( x)dx Parametric Equations x f (t ), y g (t ) Eliminate the parameter: Solve for t and substitute. dy dy dx Slope of the tangent line: m dt dx dt Parabola Center = Vertex = (h, k) The equation of the parabola with focal point (h, k p) and directrix y k p is y ax 2 1 4p a dy 2 Concavity: dt d dt d y dx 2 dx dx The equation of the parabola with focal point (h p, k ) and directrix x h p is dt dt Equation of the tangent line: y dy dt Horizontal when Vertical when dx dt y1 m( x x1 ) Center = (h, k) = midpoint between foci. Arc Length: L dx The equation of the ellipse with focal points (h c, k ) and (h c, k ) , with major axis length of 2a is 2 2 dy dt Polar Equations r dt r cos r2 y r sin tan x2 dr d dr d sin cos r sin r cos r sin y1 m( x x1 ) 0 0 Undefined when both are 0. Area inside the curve: 1 2 Area between curves: 1 2 dr d Arc Length: L Function y Arc Length: L r 2d r12 r22 d 2 2 r d a 1 a2 c2 ( x h) 2 a2 ( y k )2 b2 a2 1 b2 c2 Hyperbola Center = (h, k) = midpoint between foci. The equation of the hyperbola with focal points (h c, k ) and (h c, k ) and vertices (h a, k ) and (h a, k ) is ( x h) 2 a2 ( y k )2 b2 Asymptotes: y k a 2 b2 1 b a c2 ( x h) The equation of the hyperbola with focal points (h, k c) and (h, k c) and f ( x) b b2 1 2b is sin cos r cos ( y k )2 b2 The equation of the ellipse with focal points (h, k c) and (h, k c) , with major axis length of y2 Equation of the tangent line: y Vertical when dt y x dy Slope of tangent line: dx dr d ( x h) 2 a2 f( ) x dr d 1 4p a Ellipse 0 g (t ) f '(t )dt Horizontal when ay 2 P = Focus - Center 0 Undefined when both are 0. Area under the curve (left to right): ydx x dy dx 2 vertices (h, k b) and (h, k b) is dx ( x h) 2 ( y k ) 2 1 a2 b2 b h) Asymptotes: y k a (x a 2 b2 c2 11.1 Sequences 11.3 Error bounds for Integral Test If f is continuous, positive and decreasing, then the error is bounded by: Finding the general term: Alternating: ( 1) n or ( 1) n 1 Common difference of a: an b Common ratio of b: abn Use n 1 to find missing variable. n 1 f ( x)dx Sn n 1 Rn f ( x)dx and n f ( x)dx S Sn n f ( x)dx 11.5 Error bounds for Alternating Series Test Limit Laws: lim(an bn ) lim(an ) lim(bn ) lim(an bn ) lim(an ) lim(bn ) ( 1)n bn is an alternating series, then If n 1 | Rn | bn 1 and S n lim(can ) c lim(an ) S S n 1 or S n 1 S Sn lim(anbn ) lim(an ) lim(bn ) lim(an / bn ) lim(an ) / lim(bn ) p lim[(an ) ] [lim(an )] p( x) lim n q( x) Absolute Convergence p 0 if deg(p) < deg(q) c if deg(p) > deg(q) if deg(p) = deg(q) where c is the ratio of the coefficients of the highest degree terms in p and q. an n 1 Convergent Divergent L’Hospital’s Rule: If f ( x) g ( x) lim x f ( x) g ( x) 0 f ( x) or 0 g ( x) lim x , then f '( x) g '( x) 11.2 Series If I ask for what a series converges to, it must be either geometric or telescoping. | an | n 1 Absolutely Conditionally Do Not Apply Series Convergence Tests to Sequences!!!
© Copyright 2026 Paperzz