Cheat Sheet – Exam 2 Derivatives 1. 2. 3. 4. 5. 6. 7. 8. 9. d (tan x) sec2 x dx d (cot x) csc2 x dx d (sec x) sec x tan x dx d (csc x) csc x cot x dx d 1 (sin 1 x) dx 1 x2 d 1 (cos 1 x) dx 1 x2 d 1 (tan 1 x) dx 1 x2 d 1 (cot 1 x) dx 1 x2 d 1 (sec1 x) dx x x2 1 d 1 10. (csc1 x) dx x x2 1 d 11. (sinh x) cosh x dx d 12. (cosh x) sinh x dx Integrals 1 x a2 x2 dx sin a C 1 1 x 14. 2 dx tan 1 C 2 a x a a 1 13. 15. 16. 17. 18. 19. x 1 x2 a2 dx 1 1 x sec C a a ln x dx x ln x x C tan x dx ln | sec x | C sec x dx ln | sec x tan x | C cot x dx ln | csc x | C 20. csc x dx ln | csc x cot x | C 21. sec 3 x dx sec x tan x ln | sec x tan x | C 2 2 Trig Identities 22. sin 2 x cos2 x 1 23. 1 tan 2 x sec2 x 24. 1 cot 2 x csc2 x 25. sin 2 x 2sin x cos x 26. cos 2 x cos2 x sin 2 x 27. sin A cos B 12 [sin( A B) sin( A B)] 28. cos A cos B 12 [cos( A B) cos( A B)] 29. sin A sin B 12 [cos( A B) cos( A B)] Right Angle Trigonometry 30. sin opp hyp hyp csc opp 31. cos adj hyp sec hyp adj 32. tan opp adj adj cot opp Half-Angle Formulas 33. sin 2 x 12 (1 cos 2 x) 34. cos2 x 12 (1 cos 2 x) 0 0 π/6 sin x cos x 1 3 tan x 0 1 2 2 π/4 π/3 2 3 2 1 1 3 2 1 2 π/2 1 2 2 3 0 Undef. 7.1 Integration by Parts 7.4 Partial Fractions Case 2: p ( x) A B C 2 ( x 2)( x 4) x 2 x 4 ( x 4) 2 Case 3: p( x) A Bx C 2 2 ( x 2)( x 4) x 2 x 4 udv uv vdu L – Logs I – Inverse Trig A – Algebraic T – Trig E – Exponential 7.2 Higher on the list = u Lower on the list = dv ba n x Tn 2 [ f ( x0 ) 2 f ( x1 ) ... 2 f ( xn1 ) f ( xn )] 7.7 x sin n x cos m x dx a) If sin x has an odd power, pull a sin x aside and convert the rest to cos x. Substitute u = cos x b) If cos x has an odd power, pull a cos x aside and convert the rest to sin x. Substitute u = sin x c) If both have even powers, use the half-angle formulas. x S n 3 [ f ( x0 ) 4 f ( x1 ) 2 f ( x 2 ) ... 2 f ( x n2 ) 4 f ( x n 1 ) f ( xn )] Pattern for Simpson’s Rule Coefficients: 1,4,2,4,2,4,…,4,2,4,2,4,1 Error Bounds: | ET | K (b a)3 where | f ''( x) | K 12n 2 | EM | K (b a)3 where | f ''( x) | K 24n 2 | ES | K (b a)5 where | f (4) ( x) | K 4 180n secn x tan m x dx 2 a) If sec x has an even power, pull a sec x aside and convert the rest to tan x. Substitute u = tan x b) If tan x has an odd power, pull a tan x sec x aside and convert the rest to sec x. Substitute u = sec x c) If sec x has an odd power and tan x has an even power, convert all tan x into sec x. M n x[ f ( x1 ) f ( x2 ) ... f ( xn1 ) f ( xn )] Type I: cscn x cot m x dx 2 a) If csc x has an even power, pull a csc x aside and convert the rest to cot x. Substitute u = cot x b) If cot x has an odd power, pull a cot x csc x aside and convert the rest to csc x. Substitute u = csc x c) If csc x has an odd power and cot x has an even power, convert all cot x into csc x. b a t f ( x)dx lim f ( x)dx t a b f ( x)dx lim f ( x)dx t t f ( x)dx lim x a t t f ( x)dx lim f ( x)dx t a Type II: If f(x) is discontinuous at a. b a b f ( x)dx lim f ( x)dx t a t If f(x) is discontinuous at b. b a t f ( x)dx lim f ( x)dx t b a If f(x) is discontinuous at c for some a c b 7.3 Trig Substitution a2 x2 x a sin 1 sin 2 cos2 a x 2 x a tan 1 tan sec x2 a2 x a sec sec2 1 tan 2 2 7.8 Improper Integrals 2 b a t b f ( x)dx lim f ( x)dx lim f ( x)dx x c a 2 Don’t Forget +C t c t Parametric Equations x f (t ), y g (t ) Eliminate the parameter: Solve for t and substitute. Slope of the tangent line: m d dt d2y Concavity: dx 2 dy dx dy dt dx Vertical when dt Let S be the solid generated by rotating the region bounded by y f ( x), x a, x b, y 0 about the y-axis. Then the volume of S is given by: b V 2 xf ( x) dx ydx g (t ) f '(t )dt a dt dx 2 2 dy dt dt b x r cos r x y y r sin tan 2 2 dy dx dr d dr d 2 y x sin r cos cos r sin Equation of the tangent line: y y1 m( x x1 ) dr d Horizontal when Vertical when dr d sin r cos 0 cos r sin 0 Undefined when both are 0. Area inside the curve: Area between curves: r Arc Length: L 1 2 dr d r 2 d 2 1 1 2 2 r22 d r 2 d Function y f ( x) Arc Length: L b a 1 dx dy 2 dx Let S be the solid generated by rotating the region bounded by x f ( y), y a, y b, x 0 about the x-axis. Then the volume of S is given by: Polar Equations r f ( ) Slope of tangent line: 2 a the y-axis. Then the volume of S is given by: b dx 0 dt Arc Length: L a V [ f ( y)] dy dy 0 dt Undefined when both are 0. Area under the curve (left to right): 2 V [ f ( x)] dx Let S be the solid generated by rotating the region bounded by x f ( y), y a, y b, x 0 about Equation of the tangent line: y y1 m( x x1 ) Horizontal when the x-axis. Then the volume of S is given by: b dt dy dt dx dt dx Volume of a Solid Let S be the solid generated by rotating the region bounded by y f ( x), x a, x b, y 0 about V 2 yf ( y) dy a
© Copyright 2026 Paperzz