Buckling of Stepped Thickness Plates in the Theory of Plasticity Momčilo Dunjić Assistant Professor University of Belgrade Faculty of Mechanical Engineering The problem of buckling has been treated for a long time as a single rectangular field with different boundary conditions loaded with inplate loads and usualy applying Levy method, when two opposite edges were always simply supported. This paper is concerned with the plastic buckling of rectangular plates in the region of plasticity. In this paper, it has been treated the elasto-plastic deformations for two coupled plates with different thicknesses, loaded with inplane constant forces Nx = const. Keywords: buckling, plates, plasticity, deformations. 1. INTRODUCTION The problem of buckling has been treated for many years as one rectangular field with different boundary conditions loaded with in-plate loads Nx, and Ny and usually applying Levy method, when two opposite edges were always simply supported. In plastic region A. A. Ilyushin [1] and E. Z. Stowell [2], using their differential equations solved many buckling problems in elasto-plastic region, but always with plates of constant thickness. Now, in this paper, the author has solved the problem of buckling when two rectangular plates form the unity, but of different thicknesses. All sides are simply supported and pressed along two parallel opposite sides with Nx = const. It is known, Fig. 1, that in the plastic region the angle α0 corresponds to modulus of elasticity (E), elastic region, and direction ON0, determined by angle α0 gives “cutting modulus” of elasticity ( Ec0 ), where the point N0 gives the initial appearance of plasticity [3]. The value of angle αk gives “tangential modulus of plasticity”. E 0k = dσ . dε (1) The direction ON determines the angle αc which determines primary modulus of elasticity Ec0 = σ . ε (2) According to the hypothesis that the radius of the Mises circle may be written, as it is known, as generalized stress, effective stress or equivalent stress. In the case of complete stresses the intensity of stress σi and intensity of deformation εi are introduced in the forms σi = ( ⋅ σ x −σ y ) + (σ y −σ z ) 2 2 1 2 ⋅ ( 2 ) 2 2 + (σ z −σ x ) + 6 τ xy +τ 2yz +τ zx (3) and εi = ( ⋅ εx −ε y ) + (ε y −ε z ) 2 2 2 ⋅ 3 + (εz −ε x ) + 2 ( ) 3 2 2 γ xy + γ 2yz + γ zx . (4) 2 2. FORMULATION OF THE PROBLEM In our case we are solving the problem of stability of plates, when we have small elasto-plastic deformations, using partial differential equations of A. A. Ilyushin [1,2] ⎛ 3 1 − s σ xσ y + 2τ 2 ⎞ ⎛ 3 1 − s σ x2 ⎞ ∂ 4 w ⎟⋅ + 2 ⎜1 − ⎜1 − ⎟ 2 ⎜ 4 1 − r σ 2 ⎟ ∂x 4 ⎜ ⎟ 4 1 r − σ i ⎠ i ⎝ ⎝ ⎠ ⎛ 3 1 − s σ 2y ⎞ ∂ 4 w 1 − s τ ⎟ + ⎜1 − −3 ⋅ 1 − r σ i2 ∂x 2 ∂y 2 ⎜⎝ 4 1 − r σ i2 ⎟⎠ ∂y 4 ⎛ ∂4w ∂4 w ⎞ 1 ⋅⎜σ x +σ y ∏ (σ , w ) = 0 . (5) ⎟+ 3 ⎟ (1 − r ) D ′ ⎜ ∂x3∂y ∂x∂y ⎠ ⎝ ⋅ Figure 1. Relation between (α, αc, αk) and (E, Ec, Ek) Received: November 2010, Accepted: February 2011 Correspondence to: Dr Momčilo Dunjić Faculty of Mechanical Engineering, Kraljice Marije 16, 11120 Belgrade 35, Serbia E-mail: [email protected] © Faculty of Mechanical Engineering, Belgrade. All rights reserved ∂4w In (5) is introduced the sign ∂2w ∂2w . +σ y ∂x∂y ∂y 2 (6) FME Transactions (2011) 39, 41-47 41 ∏ (σ , w ) = σ x ∂2w ∂x 2 + 2τ In our case we consider two plates (1) and (2) (Fig. 2), it is plate of dimensions a × b which has contact along the edge y = η, (0 < η < b). functions, while the functions f1 (y) and f2 (y) are giving behaviours of plates (1) and (2) in y direction. The conditions on edges x = 0 and x = a must be satisfied: ⎛ ∂ 2 w1 ∂ 2 w1 ⎞ w1 = 0 x =0 and D1 ⎜ +ν ⎟= 0 ⎜ ∂x 2 ∂y 2 ⎟⎠ ⎝ x =a ⎛ ∂ 2 w2 ∂ 2 w2 w2 = 0 x = a and D2 ⎜ +ν ⎜ ∂x 2 ∂y 2 ⎝ ⎞ ⎟=0 ⎟ ⎠ (11) (12) x =a which means that plates (1) and (2) are simply supported on x = 0 and x = a, or the deflections and moments are equal to zero. Supposed solutions must also satisfy the differential equations for plates (1) and (2), respectively: Figure 2. Two coupled plates with load NX = const. Now, we have • plate (1): 0 ≤ x ≤ a; 0 ≤ y ≤ η • plate (2): 0 ≤ x ≤ a; η ≤ y ≤ b. In (5) are given: r = 1 – ϕc, s = 1 – (ϕc – ϕk). Along the edges y = 0 and y = b we could have any kind of boundary conditions. Along the plates (1) and (2), for x = 0 and x = a are pressed with forces Nx = const. and they have thicknesses h1 and h2. The other forces are Ny = 0 and Nxy = 0. In actual case is used modified differential equation given by E. Z. Stowell ⎡ 3⎛ ϕ ⎡ 3 ⎛ ϕk ⎞ σ x2 ⎤ ∂ 4 w ⎢1 − ⎜1 − ⎟ 2 ⎥ 4 + 2 ⎢1 − ⎜1 − k ⎢ 4 ⎝ ϕc ⎢⎣ 4 ⎝ ϕc ⎠ σ i ⎥⎦ ∂x ⎣ ⋅ 2 ⎞ σ xσ y + 2τ ⎤ ⎥⋅ ⎟ ⎥ σ i2 ⎠ ⎦ ⎡ 3 ⎛ ϕ ⎞ σ 2y ⎤ ∂ 4 w ⎛ ϕ ⎥ + ⎢1 − ⎜ 1 − k ⎟ − 3 ⎜1 − k 2 2 ⎢ 2⎥ 4 ϕ 4 ∂x ∂y c ⎠ σ i ⎦ ∂y ⎝ ⎝ ϕc ⎣ ⎛ ∂4w ∂4w ⎞ h ⋅⎜σ x +σ y ∏ (σ , w ) = 0 ⎟+ ⎜ ∂x3∂y ∂x∂y 3 ⎟⎠ Dc′ ⎝ ∂4w ⎞ ⎟⋅ ⎠ (7) ⎛ 1 3 ϕk ⎞ ∂ 4 w ∂4 w ∂4w σ xh ∂2w = 0 (8) ⎜ + ⎟ 4 +2 2 2 + 4 + Dc′ ∂x 2 ∂x ∂y ∂y ⎝ 4 4 ϕc ⎠ ∂x where E ϕk = k , E Dc′ = Dc′1 = D1 or Dc′ = Dc′2 = D2 . According to Morris-Lavy method, for the plate (1) and (2) are supposed functions w1 and w2: w1 = f1 ( y ) sin mπx a (9) w2 = f 2 ( y ) sin mπx . a (10) Using (9) and (10), under the load Nx = σx · h, the plates are going to deflect in x direction in the form of sin 42 ▪ VOL. 39, No 1, 2011 ⎛ 1 3 ϕk ⎜ + ⎝ 4 4 ϕc ⎞ ∂ 4 w2 ∂ 4 w2 ∂ 4 w2 N x ∂w2 2 + + + = 0 . (14) ⎟ 4 ∂x 2 ∂y 2 ∂y 4 D2 ∂x 2 ⎠ ∂x According to obtained solutions for (13) and (14), we have to find the derivations of (9) and (10): w1 = f1 ( y ) f0 ( x) = f1 ( y ) sin mπx a ∂w1 mπ mπx ∂ 2 w1 ∂3 w1 ∂ 4 w1 = f1 ( y ) ; cos ; ; ∂x a a ∂x 2 ∂x3 ∂x 4 ⎛ m 2 π2 ⎞ ∂ 4 w1 mπx = f1′′( y ) ⎜ − ⎟ sin 2 2 2 ⎟ ⎜ a ∂x ∂y a ⎠ ⎝ ∂w1 mπx ∂ 2 w1 ∂3 w1 ∂ 4 w1 = f1′( y ) sin ; ; ; ∂y a ∂y 2 ∂y3 ∂y 4 where values for aluminium and for steel are given in [5]. For our case, given with (Fig. 2), (7) is reduced to: E ϕc = c , E ⎛ 1 3 ϕk ⎞ ∂ 4 w1 ∂ 4 w1 ∂ 4 w1 N x ∂w1 +2 + + = 0 (13) ⎜ + ⎟ 4 ∂x 2 ∂y 2 ∂y 4 D1∂x 2 ⎝ 4 4 ϕc ⎠ ∂x w2 = f 2 ( y ) f0 ( x) = f 2 ( y ) sin (15) mπx a ∂w2 mπ mπx ∂ 2 w2 ∂3 w2 ∂ 4 w2 = f2 ( y) cos ; ; ; a a ∂x ∂x 2 ∂x3 ∂x 4 ⎛ m 2 π2 ⎞ ∂ 4 w2 mπx = f 2′′ ( y ) ⎜ − ⎟ sin 2 2 2 ⎟ ⎜ a a ⎠ ∂x ∂y ⎝ ∂w2 mπx ∂ 2 w2 ∂ 3 w2 ∂ 4 w2 ; ; ; . (16) = f 2′ ( y ) sin a ∂y ∂y 2 ∂y 3 ∂y 4 Using (15) and (16) we obtain: ⎛ 1 3 ϕk ⎞ m 4 π4 mπx + ⎜ + ⎟ f1 ( y ) 4 sin a a ⎝ 4 4 ϕc ⎠ ⎛ m 2 π2 ⎞ mπx mπx +2 f1′′( y ) ⎜ − + f1IV ( y ) sin + ⎟ sin 2 ⎟ ⎜ a a a ⎠ ⎝ ⎛ m 2 π2 ⎞ mπx + f1 ( y ) ⎜ − = 0. (17) ⎟ sin 2 ⎟ ⎜ a a ⎠ ⎝ At last from (17) we get: FME Transactions f1IV ( y ) − 2 f1′′( y ) ⎡ m 4 π4 ⎛ 1 3 ϕk + f1 ( y ) ⎢ + 4 ⎜ ⎣⎢ a ⎝ 4 4 ϕc m 2 π2 a2 The roots of (25) are + Partial differential equation of forth order is reduced to ordinal differential equation with constant coefficients of the same order (18). The solution for (18) is supposed to be: f1 ( y ) = eλ y . (19) From (18) we obtain characteristic equation λ4 − 2 m 2 π2 a 2 ⎡ m 4 π4 λ2 + ⎢ ⎣⎢ a 4 κ −k π4 m 2 ⎤ ⎥ a 2b 2 ⎦⎥ (20) ⎛1 ⎝4 3 ϕk 4 ϕc ⎞ N x b2 , and . k = ⎟ 1 D1π2 ⎠ (21) ⎛ a2 ⎞ ⎜ 1 + k1 2 2 ⎟ − κ 0 . ⎜ b m ⎟⎠ ⎝ mπ 1± a or λ1,′ 2 = ± λ3,′ 4 = ± i mπ 1± a The solution for the plate (2) is now: mπx = ( C5 chα 2 y + C6 shα 2 y + a mπx +C7 cosβ 2 y + C8 sinβ 2 y ) sin . (30) a w1 = 0 ⎛ a2 ⎜ 1 + k1 2 2 ⎜ b m ⎝ ⎛ mπ a2 λ3, 4 = ± i −1 + ⎜1 + k1 ⎜ a b2 m2 ⎝ ⎞ ⎟ − κ 0 = ±α1 ⎟ ⎠ ∂ 2 w1 ∂y a 2 For 2 4 FME Transactions mπx = f1 (0) = 0 a mπx a ∂w1 = (α1C1 shα1 y + α1C2 chα1 y − ∂y ∂ 2 w1 ∂y 2 1 (26) ( mπx a = α 2C1 chα1 y + α 2C2 shα1 y − 1 1 1 ) mπx . a (33) Including (33) into (32) we obtain: (C1α12 ch0 + C2α12 sh0 − C3β12 cos0 − C4 β12 ⋅ 0) ⋅ introducing the coefficient ψ: D1 . D2 y =0 −C3 β 2 sinβ1 y + C4 β 2 cosβ1 y sin 2 4 Nx m π N b m π D1 D m π = x = k1 1 2 2 D 2 D2 a D D1π b 2 2 b ψ = (32) −C3 β1 sinβ1 y + C4 β1 cosβ1 y ) sin ⎛ N x m 2 π2 m 4 π4 ⎞ k1 ⎟ = 0 . (25) − ⎜ D2 a 2 ⎟ a4 ⎝ ⎠ 2 =0 II: w1 = ( C1 chα1 y + C2 shα1 y + (24) λ2 − ⎜ 2 2 ∂x 2 +C3 cosβ1 y + C4 sinβ1 y ) sin For the plate (2) we have: m 2 π2 ∂w1 C1 + C3 = 0 w1 = ( C1 chα1 y + C2 shα1 y + λ4 − 2 +ν I: ( C1 ch0 + C2 sh0 + C3 cos0 + C4 sin0) sin In this case we obtain our function of deflection: mπx . a 2 means that the moment is equal to zero. Using (31) and (32) we get: ⎞ ⎟ − κ 0 = β1 ⋅ i . (23) ⎟ ⎠ +C3 cosβ1 y + C4 sinβ1 y ) sin (31) y =0 means that deflection for y = 0 is zero. II condition: is: mπ 1+ a ⎛ ⎞ a2 ⎜ 1 + k1 2 2 ψ ⎟ − κ 0 = ±α 2 ⎜ ⎟ b m ⎝ ⎠ ⎛ ⎞ a2 ⎜1 + k1 2 2 ψ ⎟ − κ 0 − 1 = ± iβ 2 . (29) ⎜ ⎟ b m ⎝ ⎠ mπ a (22) ⎛ k a2 ⎞ As it is κ0 < 1, then ⎜1 + 1 ⎟ − κ 0 > 0 . ⎜ b2 m2 ⎟ ⎝ ⎠ One possible combination for resolving our problem λ1, 2 = ± (28) Now we must use the boundary conditions (I, II, ..., VII, VIII), in order to get unknown coefficients of (24) and (28): I condition: From (20), we get four solutions for λ: λ1, 2,3, 4 = ± ⎛ ⎞ a2 ⎜ 1 + k1 2 2 ψ ⎟ − κ 0 ⎜ ⎟ b m ⎝ ⎠ w2 = f 2 ( y ) sin where κ0 and k1 are: κ0 = ⎜ + mπ 1± a λ1,′ 2,3, 4 = ± ⎞ N x m 2 π2 ⎤ ⎥ = 0 . (18) ⎟− 2 ⎠ D1 a ⎦⎥ (27) ⋅ sin ⎛ m 2 π2 mπx mπx ⎞ + f1 (0) ⎜ − ν sin ⎟=0. ⎜ a a ⎟⎠ a2 ⎝ (34) VOL. 39, No 1, 2011 ▪ 43 Taking into account (I), f1 (0) = 0, condition (II) is reduced to: C1α12 − C3 β12 = 0 . ∂2w ∂y 2 (35) −C7 β 2 sinβ 2 y + C8 β 2 cosβ 2 y ) sin C1 = C3 = 0 . (37) w1 = ( C2 shα1 y + C4 sinβ 2 y ) sin mπx a w2 = 0 y =b . (39) IV condition: =0. ( = C5α 22 chα 2 y + C6α 22 shα 2 y − C7 β 22 cosβ 2 y − ) −C8 β 22 sinβ 2 y sin ⋅ sin ⎛ m 2 π2 mπx +ν ⎜ ⎜ a2 a ⎝ mπx a −C7 β 2 sinβ 2 y + C8 β 2 cosβ 2 y ) sin C5α 22 chα 2 b + C6α 22 shα 2 b − −C7 β 22 cosβ 2 y − C8 β 22 sinβ 2 y ) When condition (III) is multiplied first by α 22 and ) (41) ) (46) ( ) ( = ( C5 chα 2b + C6 shα 2b + ) −C7 α 22 + β 22 cosβ 2b − C8 α 22 + β 22 sinβ 2b = 0 C8 = − C7 mπx +C7 cosβ 2b + C8 sinβ 2 b ) sin a f 2 (b) = 0 = C5 chα 2 b + C6 shα 2b + 44 ▪ VOL. 39, No 1, 2011 ( – III⋅ α 22 + IV: From (III) we obtain: +C7 cosβ 2b + C8 sinβ 2b = 0 (45) α 22 + β 22 ≠ 0 ⇒ C5 chα 2b + C6 shα 2b = 0 chα 2b . C6 = − C5 shα 2b mπx a mπx sin . a −C7 β 22 cosβ 2 b − C8 β 22 sinβ 2b = 0 . ( ( and from IV: (44) C5 α 22 + β 22 chα 2b + α 22 + β 22 shα 2 b = 0 = C5α 22 chα 2 y + C6α 22 shα 2 y − y =b ⎞ mπx =0. ⎟ f 2 (b) sin ⎟ a ⎠ then by β 22 , and in combination with condition (IV), by addition and subtraction we get: ∂w2 = ( C5α 2 shα 2 y + C6α 2 chα 2 y − ∂y mπx a (43) (C5α 22 chα 2b + C6α 22 shα 2b − −C7 β 22 cosβ 2b − C8 β 22 sinβ 2b ) ⋅ y =b +C7 cosβ 2 y + C8 sinβ 2 y ) sin w2 = f 2 (b) sin mπx . a Condition IV gives us: (40) w2 = ( C5 chα2 y + C6 shα2 y + ∂y mπx a Taking into account condition (III): f2 (b) = 0, condition (IV) is reduced to: mπx , we have: From the function w2 = f 2 ( y ) sin a 2 2 (38) where α1 and β1 are given with (23). The conditions (III) and (IV) at the end of plate (2) are for y = b, the deflection and the moment are also equal to zero. III condition for plate (2): ∂ 2 w2 ∂ 2 w2 ∂y The function w1 is now ⎞ ⎟ ⎟ ⎠ mπx a ∂w2 = ( C5α 2 shα 2 y + C6α 2 chα 2 y − ∂y (36) C1 = −C3 = 0 ⎛ ∂ w2 ∂ w2 D2 ⎜ +ν ⎜ ∂y 2 ∂x 2 ⎝ =0 y =b +C7 cosβ 2 y + C8 sinβ 2 y ) sin Then from (I): 2 ∂x 2 w2 = ( C5 chα 2 y + C6 shα 2 y + −C1α12 − C2α12 + C1α12 + C3 β12 = 0 2 ∂2w f 2′′(b) f 0 ( x) + ν f 2 (b) f0′′( x) = 0 Multiplying by α12 , and subtracting (I) and (II): (α12 + β12 ) C3 = 0 , α12 + β12 ≠ 0 ⇒ C3 = 0 . +ν cosβ 2b . sinβ 2b (47) When introducing (46) and (47), from (41) we get ⎡ chα 2b shα 2 y + C7 cosβ 2 y − w2 = ⎢C5 shα 2 y − C5 shα 2b ⎣ −C7 (42) w2 = C5 ⎤ cosβ 2 b mπx sinβ 2 y ⎥ sin sinβ 2 b a ⎦ shα 2 ( b − y ) shα 2 b + C7 sinβ 2 ( b − y ) sinα 2b . (48) FME Transactions Now, having functions w1 (x,y) and w2 (x,y): w1 = f1 ( y ) f0 ( x) = ( C2 shα1 y + C4 sinβ 2 y ) f 0 ( x) w2 = f 2 ( y ) f0 ( x) = ⎛ chα 2 ( b − y ) sinβ 2 ( b − y ) ⎞ = ⎜ C5 + C7 ⎟ f0 ( x) . (49) shα 2b sinα 2 b ⎠ ⎝ Condition VII: Along the line of discontinuity, the moment of plate (1) is equal to the moment of plate (2), for y = η: ⎛ ∂2 w1 ⎛ ∂2 w2 ∂2 w1 ⎞ ∂2 w2 ⎞ . (56) D1 ⎜ +ν = D2 ⎜ +ν ⎟ ⎟ ⎜ ∂y 2 ⎜ ∂y 2 ∂x2 ⎟⎠ ∂x2 ⎟⎠ ⎝ ⎝ y =η y =η Now, we use the condition at y = η. Along the edge y = η, deflections between (1) and (2) are equal w1 ( x, y ) = w2 ( x, y ) y =η y =η . (50) Using (53), and notation derivatives we get: ⎡ ⎤ mπx = f1 ( y ) ⎥ sin 2 a a ⎢⎣ ⎥⎦ ⎡ ⎤ m 2 π2 mπx = ⎢ f 2′′( y ) −ν f 2 ( y ) ⎥ sin 2 a a ⎣⎢ ⎦⎥ ψ ⎢ f1′′( y ) −ν The condition (50) is reduced to: f1 ( y ) y =η = f2 ( y) y =η C2 shα1η + C4 sinβ1η = shα 2 ( b − η ) C5 shα 2 b + C7 sinβ 2 ( b − η ) sinβ 2b , (51) ⎡ −C7 shα 2 ( b − η ) sinβ 2 ( b − η ) sinβ 2b shα 2b ⎢⎣ − −ν =0. (52) ∂w1 mπx = ( C2α1 chα1 y + C4 β1 cosβ1 y ) sin ∂y a ∂y 2 3 ∂ w1 ∂y 3 ( ) mπx a ( ) mπx a = C2α12 shα1 y − C4 β12 sinβ1 y sin = C2α13 chα1 y − C4 β13 cosβ1 y sin ∂y 2 ( ) ⎛ shα2 ( b − y ) sinβ2 ( b − y ) ⎞ mπx = ⎜ C5α22 − C7 β22 ⎟ sin shα2b sinβ2b ⎠ a ⎝ ⎛ chα 2 ( b − y ) = ⎜ −C5α 23 + shα 2b ∂y3 ⎝ cosβ 2 ( b − y ) ⎞ mπx . +C7 β 23 ⎟ sin sinβ 2 b ⎠ a m 2 π2 2 ⎤ ( C2 shα1η + C4 sinβ1η )⎥ = ⎥⎦ ⎡ shα 2 ( b − η ) sinβ 2 ( b − η ) ⎤ = ⎢C5α 22 − C7 β 22 ⎥− shα 2 b sinβ 2b ⎦ ⎣ sinβ 2 ( b − η ) ⎤ m 2 π2 ⎡ shα 2 ( b − η ) −ν C − C7 ⎥ . (58) 2 ⎢ 5 sh α sinβ 2b ⎦ b a ⎣ 2 a The final form is: ch ( b − y ) cosβ2 ( b − y ) ⎞ ∂w2 ⎛ mπx = ⎜ −C5α 2 2 − C7 β2 ⎟ sin ∂y ⎝ shα 2b sinβ2b ⎠ a ∂2 w2 ∂ 3 w2 ⎛ ⎛ ⎞ m2 π2 ⎞ m2 π2 shα1η − C4ψ ⎜ β12 +ν sinβ1η ⎟ − C2ψ ⎜ α12 −ν ⎟ 2 ⎟ 2 ⎜ ⎜ ⎟ a ⎠ a ⎝ ⎝ ⎠ 2 2 ⎞ shα b − η ⎛ 2 ) m π 2( −C5 ⎜ α 2 −ν + ⎟ 2 ⎟ ⎜ a ⎠ shα 2b ⎝ ⎛ m 2 π2 ⎞ sinβ 2 ( b − η ) +C7 ⎜ β 22 + ν . (59) ⎟ ⎜ a 2 ⎟⎠ sinβ 2b ⎝ Condition VIII: Sharing forces along the contact of plate (1) and (2), for y = η must be equal: (53) ⎡ ∂ 3 w1 ∂3 w1 ⎤ + ( 2 −ν ) = D1 ⎢ ⎥ 3 ∂x 2 ∂y ⎦⎥ ⎣⎢ ∂y y =η Condition VI is: the slope of plate (1) is equal to the slope of plate (2) for y = η: ⎡ ∂ 3 w2 ∂ 3 w3 ⎤ = D2 ⎢ + ( 2 −ν ) ⎥ 3 ∂x 2 ∂y ⎦⎥ ⎣⎢ ∂y y =η ∂w1 ( x, y ) ∂y = y =η ∂w2 ( x, y ) ∂y , (54) y =η this means that using (53) we come to f1′(η ) = f 2′ (η ) , or C2α1 chα1η + C4 β1 cosβ1η + C5α 2 +C7 β 2 FME Transactions cosβ 2 ( b − η ) sinβ 2b chα 2 ( b − η ) =0. (57) ψ ⎢ α12C2 shα1η − C4 β12 sinβ1η − Condition VI: We need the derivatives of (49): ∂ 2 w1 m 2 π2 or or C2 shα1η + C4 sinβ1η − C5 D1 = ψ , and having D2 shα 2b + (55) (60) which can be written, introducing ψ, in the form ⎡ m 2 π2 ⎣⎢ a2 ψ ⎢ f1′′′( y ) − ( 2 −ν ) ⎤ mπx sin = f1′( y ) ⎥ a ⎦⎥ y =η ⎡ ⎤ m 2 π2 mπx f 2′ ( y ) ⎥ sin = ⎢ f 2′′′( y ) − ( 2 −ν ) 2 a a ⎣⎢ ⎦⎥ (61) or, using necessary derivatives (16), for (60), we obtain: VOL. 39, No 1, 2011 ▪ 45 ⎪⎧ ψ ⎨ ⎡C2α13 chα1η − C4 β13 cosβ1η ⎤ − ( 2 −ν ) ⎪⎩ ⎣ ⎦ m 2 π2 a2 ⋅ or ⎡ ψ C2 ⎢α13 − ( 2 −ν ) α1 ⎣⎢ ⎡ m 2 π2 ⎤ −ψ C4 ⎢ β13 + ( 2 −ν ) β1 ⎥ cosβ1η + a 2 ⎦⎥ ⎣⎢ ⎫⎪ mπx ⋅ [α1C2 chα1η + β1C4 cosβ1η ]⎬ sin = a ⎪⎭ ⎧⎪⎡ chα 2 ( b − η ) cosβ2 ( b − η ) ⎤ = ⎨⎢ −C5α 23 + C7 β 23 ⎥ − ( 2 −ν ) ⋅ shα 2b sinβ2b ⎦ ⎩⎪⎣ ⋅ chα 2 ( b − η ) cosβ 2 ( b − η ) ⎤ ⎫⎪ m 2 π2 ⎡ −C5α 2 − C7 β 2 ⎥⎬ ⋅ 2 ⎢ shα 2η sinβ 2 b ⎦ ⎭⎪ a ⎣ mπx ⋅ sin . (62) a Form (62) can be written ⎪⎧ ⎡ ⎩⎪ ⎣⎢ ψ ⎨C2 ⎢α13 − ( 2 −ν ) α1 m 2 π2 ⎤ ⎥ chα1η − a 2 ⎦⎥ ⎡ m 2 π2 ⎤ chα 2 ( b − η ) +C5 ⎢α 23 − ( 2 −ν ) α 2 − ⎥ a 2 ⎥⎦ shα 2b ⎢⎣ ⎡ m2 π2 ⎤ cosβ 2 ( b − η ) −C7 ⎢ β 23 + ( 2 −ν ) β 2 = 0 . (64) ⎥ a 2 ⎦⎥ sinβ 2b ⎣⎢ We have obtained 4 homogeneous algebraic equations with unknown constants C2, C4, C5 and C7. As those systems have trivial solution when all constants are equal to zero, the solution could be obtained only in the case when the determinant of the system (65) is equal to zero. 3. CONCLUSION ⎫⎪ ⎡ m 2 π2 ⎤ −C4 ⎢ β13 + ( 2 −ν ) β1 ⎥ cosβ1η ⎬ = 2 a ⎦⎥ ⎣⎢ ⎭⎪ The determinant (65) has given solutions for critical coefficient k for different ratios of a/b (Fig. 3), for 3 cases: m = 1, 2 and 3. Minimum value of buckling force is obtained for m = 1 and a/b = 0.8 using the relation ⎡ m 2 π2 ⎤ chα 2 ( b − η ) = −C5 ⎢α 23 − ( 2 −ν ) α 2 + ⎥ a 2 ⎦⎥ shα 2 b ⎣⎢ ⎡ m 2 π2 ⎤ cosβ 2 ( b − η ) +C7 ⎢ β 23 + ( 2 −ν ) β 2 ⎥ a 2 ⎦⎥ sinβ 2b ⎣⎢ m 2 π2 ⎤ ⎥ chα1η − a 2 ⎦⎥ k1 = (63) ( N x )cri b 2 (σ x )cri h1b 2 = D1 π2 D1π2 C2 C4 C5 C7 V chαη 1 sinβη 1 shα ( b−η) − 2 shα2b sinβ ( b−η) − 2 sinβ2b VI α1chαη 1 β1cosβη 1 ⎛ ⎜ ⎝ ⎛ m2π2 ⎞ m2π2 ⎞ −ψ⎜β12 +ν shαη ⎟ ⎟sinβη 1 1 ⎜ a2 ⎟⎠ a2 ⎟⎠ ⎝ ⎡ ⎡ ⎤ m2π2 ⎤ m2π2 VIII ψ ⎢α13 −α1( 2−ν ) chαη cosαη −ψ ⎢β13 −β1( 2−ν ) ⎥ 1 1 ⎥ 2 2 a ⎥⎦ a ⎢⎣ ⎢⎣ ⎥⎦ ψ ⎜α12 −ν VII α2 chα2 ( b−η) shα2b β2 (66) cosβ2 ( b−η) =0 sinβ2b ⎛ 2 m2π2 sinβ2 ( b−η) ⎞ ⎛ 2 m2π2 ⎞ shα2 ( b−η) ⎜β2 −ν 2 ⎟ ⎜α2 −ν 2 ⎟ ⎜ ⎜ sinβ2b ⎟⎠ a ⎟⎠ shα2b a ⎝ ⎝ ⎡ 3 m2π2 ⎤ chα2 ( b−η) ⎡ 3 m2π2 cosβ2 ( b−η) ⎤ −⎢β2 +β2 ( 2−ν ) ⎢α2 −α2 ( 2−ν ) 2 ⎥ ⎥ sinβ2b ⎥⎦ a ⎥⎦ shα2b a2 ⎢⎣ ⎢⎣ C2 C4 C5 C7 chαη 1 sinβη 1 −shα2 ( b−η) −sinβ2 ( b−η) α1chαη 1 β1cosβη 1 α2 chα2 ( b−η) β2 cosβ2 ( b−η) =0. (65) ⎛ ⎜ ⎝ ⎛ ⎛ ⎛ 2 m2π2 ⎞ m2π2 ⎞ m2π2 ⎞ m2π2 ⎞ shαη sinβη shα2 ( b−η) −ψ⎜β12 +ν −⎜α22 −ν ⎟ ⎟ ⎟ ⎜β2 +ν 2 ⎟sinβ2 ( b−η) 1 1 ⎜ ⎜ ⎜ a2 ⎟⎠ a2 ⎟⎠ a2 ⎟⎠ a ⎟⎠ ⎝ ⎝ ⎝ ⎡ ⎡ 3 ⎤ ⎡ 3 ⎡ 3 m2π2 ⎤ m2π2 m2π2 ⎤ m2π2 ⎤ ψ ⎢α13 −α1( 2−ν) 2 ⎥chαη 1 −ψ ⎢β1 +β1( 2−ν) 2 cosαη 1 ⎥ ⎢α2 −α2 ( 2−ν ) 2 ⎥chα2 ( b−η) −⎢β2 +β2 ( 2−ν ) 2 ⎥cosβ2 ( b−η) a ⎦⎥ a a ⎦⎥ a ⎦⎥ ⎣⎢ ⎣⎢ ⎦⎥ ⎢⎣ ⎣⎢ ψ⎜α12 −ν 46 ▪ VOL. 39, No 1, 2011 FME Transactions or the critical stress in the plate (1) D π2 k (σ x )cri = 1 1 , h1b 2 where D1 = (67) Eh13 for aluminium. 12 (1 −ν ) 80.0 1556, National Advisory Committee for Aeronautics, Washington, 1948. [3] Kollbrunner, C.F. and Meister, M: Knicken, Springer Verlag, Berlin, 1958. [4] Волмир, А.С.: Устоичивост деформируемих систем, Наука, Moscow, 1967. [5] Dunjić, M.M.: Stability of Constructiv and Material Anisotropic Plates Subjected to Thermomechanical Load, Faculty of Mechanical Engineering, University of Belgrade, Belgrade, 2010, (in Serbian). 60.0 ПРОБЛЕМ СТАБИЛНОСТИ СТЕПЕНАСТИХ ПЛОЧА У ПЛАСТИЧНОЈ ОБЛАСТИ m=3 40.0 m=2 20.0 Момчило Дуњић m=1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 a/b Figure 3. Final solution for critical force as a function of (a/b) REFERENCES [1] Илношин, А.А.: Устоичивост пластинок и оболочек за пределами упругости, Прикладнаја математика и механика, Vol. 8, No. 4, pp. 337-360, 1944. [2] Stowell, E.Z.: A Unified Theory of Plastic Buckling of Colomns and Plates, NACA Technical Note: FME Transactions У области стабилности правоугаоних степенастих плоча, у последње време, обрађени су многи проблеми у еластичној области. Та проблематика још није обрађивана у пластичној области, било у области малих еласто-пластичних деформација, било у области течења. У овом раду се говори о проблему губитка стабилности степенасте правоугаоне плоча (са две дебљине) у пластичној зони деформисања, оптерећене притискујућом силом у равни плоче која делује дуж ивица по којима се мења дебљина. VOL. 39, No 1, 2011 ▪ 47
© Copyright 2025 Paperzz