371 Residual Stres 15. Residual Stress Yuri F. Kudryavtsev 15.1 Importance of Residual Stress ................ 15.1.1 Definition of Residual Stresses ....... 15.1.2 Origin of Residual Stresses ............. 15.1.3 Residual Stress Management: Measurement, Fatigue Analysis, and Beneficial Redistribution ........ 15.2 Residual Stress Measurement................. 15.2.1 Destructive Techniques for Residual Stress Measurement .... 15.2.2 Nondestructive Techniques for Residual Stress Measurement .... 15.2.3 Ultrasonic Method for Residual Stress Measurement ..................... 15.3 Residual Stress in Fatigue Analysis ......... 15.4 Residual Stress Modification .................. 15.5 Summary ............................................. References .................................................. 371 372 372 373 373 373 375 377 381 383 386 386 residual stresses published by the Society of Experimental Mechanics (SEM) in 1996 and 2005. 15.1 Importance of Residual Stress Residual stress can significantly affect the engineering properties of materials and structural components, notably fatigue life, distortion, dimensional stability, corrosion resistance, and brittle fracture [15.1]. Such effects usually lead to considerable expenditure in repairs and restoration of parts, equipment, and structures. For this reason, residual stress analysis is a compulsory stage in the design of parts and structural elements and in the estimation of their reliability under real service conditions. Systematic studies had shown that, for instance, welding residual stresses might lead to a drastic reduction in the fatigue strength of welded elements. In multicycle fatigue (N > 106 cycles), the effect of residual stresses can be comparable to the effect of stress concentration [15.2]. Even more significant are the ef- fects of residual stresses on the fatigue life of welded elements in the case of relieving harmful tensile residual stresses and introducing beneficial compressive residual stresses in the weld toe zones. The results of fatigue testing of welded specimens in the as-welded condition and after the application of ultrasonic peening shows that, in the case of non-load-carrying fillet welded joint in high-strength steel, redistribution of residual stresses resulted in approximately twofold increase in the limit stress range [15.1]. The residual stresses are therefore one of the main factors determining the engineering properties of materials, parts, and welded elements, and should be taken into account during the design and manufacturing of different products. Although certain progress has been achieved in the development of techniques for re- Part B 15 In many cases residual stresses are one of the main factors determining the engineering properties of parts and structural components. This factor plays a significant role, for example, in fatigue of welded elements. The influence of residual stresses on the multicycle fatigue life of butt and fillet welds can be compared with the effects of stress concentration. The main stages of residual stress management are considered in this chapter with the emphasis on practical application of various destructive and nondestructive techniques for residual stress measurement in materials, parts, and welded elements. Some results of testing showing the role of residual stresses in fatigue processes as well as aspects and examples of ultrasonic stress-relieving are also considered in this chapter. The presented data on residual stresses are complimentary to the detailed review of various methods of residual stress analysis considered in two handbooks on 372 Part B Contact Methods It is the first level or macroscopic (type I) residual stress that is of interest to mechanical engineers and design offices and that is considered in this paper. σres (MPa) 300 12 15.1.2 Origin of Residual Stresses x 200 12 100 0 –100 0 25 50 75 100 x (mm) Part B 15.1 Fig. 15.1 Distribution of longitudinal (oriented along the weld) residual stresses near the fillet weld in a bridge span. x is the distance from the weld toe [15.3] sidual stress management, considerable effort is still required to develop efficient and cost-effective methods of residual stress measurement and analysis as well as technologies for the beneficial redistribution of residual stresses. 15.1.1 Definition of Residual Stresses Residual stresses (RS) can be defined as those stresses that remain in a material or body after manufacture and material processing in the absence of external forces or thermal gradients. Residual stresses can also be produced by service loading, leading to inhomogeneous plastic deformation in the part or specimen. Residual stresses can be defined as either macro- or microstresses and both may be present in a component at any one time. Residual stresses can be classified as Type I: Macro residual stresses that develop in the body of a component on a scale larger than the grain size of the material Type II: Micro residual stresses that vary on the scale of an individual grain Type III: Micro residual stresses that exist within a grain, essentially as a result of the presence of dislocations and other crystalline defects Residual stresses develop during most manufacturing processes involving material deformation, heat treatment, machining or processing operations that transform the shape or change the properties of a material. They arise from a number of sources and can be present in the unprocessed raw material, introduced during manufacturing or arise from in-service loading. The origins of residual stresses in a component may be classified as • • • differential plastic flow differential cooling rates phase transformations with volume changes etc. For instance, the presence of tensile residual stresses in a part or structural element are generally harmful since they can contribute to, and are often the major cause of, fatigue failure and stress-corrosion cracking. Compressive residual stresses induced by different means in the (sub)surface layers of material are usually beneficial since they prevent origination and propagation of fatigue cracks, and increase wear and corrosion resistance. Examples of operations that produce harmful tensile stresses are welding, machining, grinding, and rod or wire drawing. Figure 15.1 shows a characteristic residual stress profile resulting from welding. The residual stresses were measured by an ultrasonic method in the main wall of a bridge span near the end of one of the welded vertical attachments [15.3]. In the vicinity of the weld the measured levels of harmful tensile residual stresses reached 240 MPa. Such high tensile residual stresses are the result of thermoplastic deformations during the welding process and are one of the main factors leading to the origination and propagation of fatigue cracks in welded elements. On the other hand, compressive residual stresses usually lead to performance benefits and can be introduced, for instance, by peening processes such as shot peening, hammer peening, laser peening, and ultrasonic peening [15.1]. Figure 15.2 shows characteristic distributions of beneficial compressive residual stress in the surface layers of material resulting from conventional and ultrasonic shot peening processes [15.4]. Residual Stress 15.1.3 Residual Stress Management: Measurement, Fatigue Analysis, and Beneficial Redistribution 15.2 Residual Stress Measurement 373 σr (MPa) 200 100 It is very important to consider the problem of residual stress as a complex problem including, at least, the stages of determination, analysis, and beneficial redistribution of residual stresses. The combined consideration of these stages of the residual stress analysis and modification gives rise to so-called the residual stress management (RSM) concept approach [15.5]. The RSM concept includes the following main stages 0 –100 –200 –300 Stage 1. Residual stress determination: • • Experimental studies Computation Stage 3. Residual stress modification (if required): • • Changes in technology of manufacturing/assembly Application of stress-relieving techniques The main stages of residual stress management are considered in this chapter with the emphasis on examples of practical application of various destructive and nondestructive techniques for residual stress measurement in materials, parts, and welded elements. Some results of testing showing the role of residual stresses in fatigue 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Depth (mm) Fig. 15.2 In-depth profile of residual stress in 2014-T6 aluminum alloy produced by conventional (CS) and ultrasonic (US) shoot peening [15.4] processes as well as beneficial modification of residual stresses directed mainly towards fatigue life improvement are also considered. New engineering tools such as a computerized ultrasonic system for residual stress measurement and a technology and corresponding compact system for ultrasonic hammer peening are also introduced. The data on residual stresses presented in this chapter are complimentary to the detailed consideration and comparison of different methods of residual stress analysis considered in [15.6] and [15.1]. 15.2 Residual Stress Measurement Over the last few decades, various quantitative and qualitative methods for residual stress analysis have been developed [15.6]. In general, a distinction is usually made between destructive and nondestructive techniques for residual stress measurement. 15.2.1 Destructive Techniques for Residual Stress Measurement The first series of methods is based on destruction of the state of equilibrium of the residual stress after sectioning of the specimen, machining, layer removal or hole drilling. The redistribution of the internal forces leads to local strains, which are measured to evaluate the residual stress field. The residual stress is deduced from the measured strain using the elastic theory through the use of an analytical approach or finite element calculations. The most usual destructive methods are: • • • • the hole-drilling method the ring core technique the bending deflection method the sectioning method The application of these destructive, or so-called partially destructive, techniques is limited mostly to laboratory samples. Hole Drilling The hole-drilling method requires drilling a small hole, typically 1–4 mm in diameter, to a depth approximately Part B 15.2 • • –500 Measurement: destructive, nondestructive Computation Stage 2. Analysis of the residual stress effects: US CS – 400 374 Part B Contact Methods Strain gauge rosette Strain gauge rosette Residual stress (MPa) 100 0 –100 –500 Hole Ring core x-ray method Hole drilling method –1000 Fig. 15.3 Schematic illustrations of the application of hole-drilling and ring core methods for residual stress measurement (after [15.6]) Part B 15.2 equal to its diameter. A specialized three-element rosette, such as that shown in Fig. 15.3, measures the surface strain relief in the material around the outside of the hole. The ring core method is similar, except that a ring hole, typically with an internal diameter of 15–150 mm, is drilled instead of a hole. The measurements of relieved strain are then made on the surface of the material remaining inside the ring, as shown in Fig. 15.3. The typical depth of the ring core is 25–150% of its internal diameter. In both methods, residual stresses existing in the material before hole/ring drilling can be calculated from the measured relieved strains. The ring core method is quite sensitive compared with the hole-drilling method because it involves almost complete relief of the surface strains. It is also insensitive to any minor diameter errors or eccentricity of the annular hole with respect to the strain gages. However, the size of the annular hole in relatively large, causing much more damage than the hole-drilling method. Also, the results are much less localized because the hole/ring diameter defines the region of residual stress measurement. Another concern with the ring core method is the need to disconnect the strain gage wires to allow ring drilling to proceed. Also, any diameter errors or eccentricity of the hole with respect to the strain gages can introduce significant errors in the residual stress calculation. Despite some shortcomings, the hole-drilling technique remains a popular means of measuring residual stress. Recent developments include the introduction 0 Phase γ (λKαMn) Phase α (λKαMn) Axial Axial Tangential 0.1 0.2 0.3 0.4 0.5 0.6 Depth (mm) Fig. 15.4 Results of residual stress measurement by incremental hole-drilling and x-ray diffraction methods in steel after shot peening (after [15.7]) of new rosette designs [15.8], the development of laser speckle interferometry [15.9], moiré interferometry [15.10], and holography [15.11] for carrying out the residual stress measurements. One result of the application of the hole-drilling technique is presented in Fig. 15.4. The residual stresses in this case were measured by using the incremental hole-drilling method in comparison with the application of x-ray diffraction method in a steel specimen after shot peening [15.7]. As can be seen, good correlation of results of residual stress measurement by the two different techniques was observed. Curvature and Layer Removal Layer-removal techniques are often used for measuring residual stress in samples with a simple geometry. The methods are generally quick and require only simple calculations to relate the curvature to the residual stresses. The curvature depends on the original stress distribution present in the layer that has been removed and on the elastic properties of the sample. By carrying out a series of curvature measurements after successive layer removals the distribution of stress in the original plate can then be deduced. Figure 15.5 presents the results of residual stress measurement using the layer-removal technique in material after shot peening. It is shown that, after shot peening, the magnitude and character of the distribution of residual stresses depends on the mechanical properties of the material. Residual Stress 100 100 0 0 –100 –100 –200 455 HV –300 –300 –400 – 400 Shot peening condition: Cast steel shot.dia. = 0.4 mm Speed of turbine: 2500 tr/min Time of treatment: 4 min Thickness of sample: 20 mm –600 –700 0.5 280 HV 365 HV 5454 aluminum alloy AISI 304 grade steel AISI 1070 grade steel –500 620 HV – 500 – 600 – 700 0.5 1 1 Depth (mm) Depth (mm) 15.2.2 Nondestructive Techniques for Residual Stress Measurement The second set of methods for residual stress measurement are based on the relationship between physical and crystallographic parameters and the residual stress and do not requires the destruction of the part or structural element; they can therefore be used for field measurements. The most well-developed nondestructive methods are: Residual stress (MPa) 100 0 –100 –200 –300 x-direction y-direction –400 –500 0 0.2 0.4 0.6 0.8 1 1.2 Depth from surface (mm) Fig. 15.6 Residual stress distribution in A572 Gr.50 steel after shot peening measured by the x-ray diffraction method combined with layer removal [15.12] • • • X-ray and neutron diffraction methods. These methods are based on the use of the lattice spacing as the strain gauge. They allow study and separation of the three kinds of residual stresses. Currently, the x-ray method is the most widely used nondestructive technique for residual stress measurements. Ultrasonic techniques. These techniques are based on variations in the velocity of ultrasonic wave propagation in materials under the action of mechanical stresses. Magnetic methods. These methods rely on the interaction between magnetization and elastic strain in ferromagnetic materials. Various magnetic properties can be studied, such as permeability, magnetostriction, hysteresis, and Barkhausen noise. X-Ray Method The x-ray method is a nondestructive technique for the measurement of residual stresses on the surface of materials. It can also be combined with some form of layer-removal technique so that a stress profile can be generated, but then the method becomes destructive. One of the major disadvantages of the x-ray method is the limitation imposed on the sample geometry for residual stress measurement. The geometry has to be such that an x-ray can both hit the measurement area and still be diffracted to the detector without hitting any obstructions. Portable diffractometers that can be taken out into the field for measurements of structures Part B 15.2 Fig. 15.5 Results of residual stress measurement by the layer-removal method in shot-peened samples, illustrating the effect of the mechanical properties of materials [15.6] –600 375 Residual stress (MPa) Residual stress (MPa) –200 15.2 Residual Stress Measurement 376 Part B Contact Methods Part B 15.2 such as pipelines, welds, and bridges are now available [15.13]. The speed of measurement depends on a number of factors, including the type of material being examined, the x-ray source, and the degree of accuracy required. With careful selection of the x-ray source and test set-up speed of measurement can be minimized. New detector technology has also greatly reduced the measurement time. x-ray diffraction has a spatial resolution of 1–2 mm down to tens of microns and a penetration depth of around 10–30 μm, depending on the material and source. Figure 15.6 shows the results of residual stress measurement by the x-ray diffraction method combined with layer removal in A572 Gr.50 steel after shoot peening [15.12]. Measurements were made at the surface and at 11 nominal depths until the residual stress decayed to zero. Stresses were obtained for both the x- and y-directions. The maximum compressive stress was −448 MPa in the x-direction and −514 in the ydirection. The depth of beneficial compressive residual stresses in this case was approximately 0.8 mm. As can be seen form Figs. 15.2 and 15.4–15.6, the depth of the beneficial compressive residual stresses after conventional and ultrasonic shoot peening is typically 0.3–0.8 mm. Deeper beneficial compressive residual stresses can be induced by using the ultrasonic impact technique or ultrasonic hammer peening (UP). The UP technique is based on the combined effect of high-frequency impacts and the induction of ultrasonic energy in the treated material [15.1]. Figure 15.7 shows Residual stress (MPa) 100 the components of residual stresses parallel and perpendicular to the direction of treatment [15.12]. In this case the x-ray diffraction method combined with layer removal was also used. The maximum compressive stress in the direction of treatment was −427 MPa, In the perpendicular direction the maximum compressive stress was −302 MPa. The depth of the compressive residual stresses induced by UP was about 1.5 mm. Neutron Diffraction Method The neutron diffraction method relies on elastic deformations within a polycrystalline material that cause changes in the spacing of the lattice planes from their stress-free condition. The advantage of the neutron diffraction method in comparison with the x-ray technique is its larger penetration depth. The neutron diffraction technique enables the measurement of residual stress at near-surface depths of around 0.2 mm down to bulk measurements of up to 100 mm in aluminum or 25 mm in steel [15.6]. With high spatial resolution, the neutron diffraction method can provide complete three-dimensional maps of the residual stresses in material. However, compared to other diffraction techniques such as x-ray diffraction, the relative cost of application of neutron diffraction method is much higher, mainly because of the equipment cost [15.14]. The neutron diffraction method was applied for the measurement of residual stresses in A572 Gr.50 steel after ultrasonic impact treatment [15.12]. The three components of residual stresses, parallel (x) and perpendicular (y) to the direction of treatment as well as Residual stress (MPa) 300 0 200 –100 100 –200 0 –300 –100 Parallel Perpendicular –400 –500 –600 –200 Sxx (parallel) Syy (perpend.) Szz (deep) –300 – 400 –500 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Depth from surface (mm) Fig. 15.7 Distribution of residual stresses as a function of the distance from the treated surface of material received by using of the x-ray diffraction method combined with layer removal [15.12] – 600 0 1 2 3 4 5 6 7 Depth from surface (mm) Fig. 15.8 Distribution of residual stresses as a function of the distance from the treated surface of material received by using of the neutron diffraction method [15.12] Residual Stress a) ΔC/C x 10–3 b) ΔC/C x 10–3 2 2 1 1 0 0 0 –1 –1 –2 –200 C sx3 C sx2 CL –100 0 100 –200 σ (MPa) –2 –200 –100 377 c) ΔC/C x 10–3 2 1 –1 15.2 Residual Stress Measurement 0 100 –200 σ (MPa) –2 –200 –100 0 100 –200 σ (MPa) Fig. 15.9a–c Changes in the ultrasonic longitudinal (CL ) and shear wave velocities with orthogonal polarization (CSX3 ; CSX2 ) depending on the mechanical stress σ in (a) steel A, (b) steel B, (c) and aluminum alloy [15.15] sive external loads in steel and aluminum alloys are presented in Fig. 15.9 [15.15]. As can be seen from Fig. 15.9, the intensity and character of these changes can be different, depending on the material properties. Different configurations of ultrasonic equipment can be used for residual stress measurements. In each case, waves are launched by a transmitting transducer, propagate through a region of the material, and are detected by a receiving transducer, as shown in Fig. 15.10 [15.6]. The technique in which the same transducer is used for excitation and receiving of ultrasonic waves is often called the pulse-echo method (Fig. 15.10a). This method is effective for the analysis of residual stresses in the interior of the material. In a) b) 15.2.3 Ultrasonic Method for Residual Stress Measurement One of the promising directions in the development of nondestructive techniques for residual stress measurement is the application of ultrasound. Ultrasonic stress measurement techniques are based on the acousticelasticity effect, according to which the velocity of elastic wave propagation in solids is dependent on the mechanical stress [15.16, 17]. The relationships between the changes of the velocities of longitudinal ultrasonic waves and shear waves with orthogonal polarization under the action of tensile and compres- c) Fig. 15.10a–c Schematic view of ultrasonic measurement configurations: (a) through-thickness pulse-echo, (b) through-thickness pitch-catch, and (c) surface pitch- catch Part B 15.2 in the depth direction (z), are shown in Fig. 15.8. It can be seen that the depth of the beneficial compressive residual stresses is 1.6–1.7 mm for all three components. The maximum surface compressive residual stresses was −458 MPa in the parallel to the treatment direction and −416 MPa in the perpendicular direction. There are various destructive and nondestructive methods to detect and quantify the residual stresses described in the technical literature. However, new industrial problems, new geometrical and material complexities related to them, combined with a general need for fast and economical residual stress measurements, create a strong demand for new and effective techniques and devices. The ideal technology must be reliable and user-friendly, i. e., it should not require guessing and intuition from the engineer/technician and it must be computerized for quick analysis. The demand for sophisticated systems is increasing dramatically. 378 Part B Contact Methods Part B 15.2 this case the through-thickness average of the residual stresses is measured. In the configuration shown in Fig. 15.10c, the residual stress in a (sub)surface layer is determined. The depth of this layer is related to the ultrasonic wavelength, often exceeding a few millimeters, and hence is much greater than that obtained by x-ray method. Other advantages of the ultrasonic technique are the facts that the instrumentation is convenient to use, quick to set up, portable, inexpensive, and free of radiation hazards. In the technique proposed in [15.15], the velocities of longitudinal ultrasonic wave and shear waves with orthogonal polarization are measured at a considered point to determine the uni- and biaxial residual stresses. The bulk waves in this approach are used to determine the stresses averaged over the thickness of the investigated elements. Surface waves are used to determine the uni- and biaxial stresses at the surface of the material. The mechanical properties of the material are represented by the proportionality coefficients, which can be calculated or determined experimentally under external loading of a sample of the considered material. In general, the change in the ultrasonic wave velocity in structural materials under mechanical stress amounts to only tenths of a percentage point. Therefore the equipment for practical application of ultrasonic technique for residual stress measurement should be of high resolution, reliable, and fully computerized. Ultrasonic Equipment and Software for Residual Stress Measurement The ultrasonic computerized complex (UCC) for residual stress analysis was developed recently based on an improved ultrasonic methodology [15.15]. The UCC includes a measurement unit with supporting software and a laptop with an advanced database and expert sys- Fig. 15.11 The ultrasonic computerized complex for the measurement of residual and applied stresses tem (ES) for the analysis of the influence of residual stresses on the fatigue life of welded components. The developed device with gages/transducers for ultrasonic residual stress measurement is presented in Fig. 15.11. The UCC allows the determination of uni- and biaxial applied and residual stresses for a wide range of materials and structures. In addition, the developed ES can be used for the calculation of the effect of the measured residual stresses on the fatigue life of welded elements, depending on the mechanical properties of the materials, the type of welded element, the parameters of cyclic loading, and other factors. The developed equipment enables the determination of the magnitudes and signs of the uni- and biaxial residual and applied stresses for a wide range of materials as well as stress, strain, and force in fasteners of various sizes. The sensors, using quartz plates measuring from 3 × 3 mm to 10 × 10 mm as ultrasonic transducers, are attached to the object under investigation by special clamping straps (Fig. 15.11) and/or electromagnets. The main technical characteristics of the measurement unit are: • • • • • • • stress can be measured in materials with thickness 2–150 mm; the error in stress determination (from an external load) is 5–10 MPa; the error in residual stress determination is 0.1 σy (yield strength) MPa; stress, strain, and force measurement in fasteners (pins) 25–1000 mm long; independent power supply (accumulator battery 12 V); the overall dimensions of the measurement device are 300 × 200 × 150 mm3 ; the weight of the unit with sensors is 6 kg. The supporting software allows the control of the measurement process, storage of the measured and other data, and calculation and plotting of the distribution of residual stresses. The software also allows easy connection with standard personal computers (PCs). An example of the residual stress measurement data, using the developed software, is shown in Fig. 15.12. The software allows the comparison of different sets of residual stress measurement data and transfer of selected data for further fatigue analysis. In Fig. 15.12, the left side of the screen displays information on the measured ultrasonic wave velocities as well as other technical information on the sample. The right-hand side of the screen displays the distribution of calculated residual stresses. Residual Stress 15.2 Residual Stress Measurement 379 Fig. 15.12 Screenshot showing the distribution of residual stresses in a low-carbon steel plate after local heating [15.15] σ (MPa) 200 the compression zone, located between the edge of the plate and the center of the heating zone, the longitudinal component of residual stress reaches −140 MPa. Examples of Residual Stress Measurements Using the Ultrasonic Method One of the main advantages of the developed technique and equipment is the possibility to measure the residual and applied stresses in samples and real structure elements. Such measurements have been performed for a wide range of materials, parts, and structures. A few examples of the practical application of the developed technique and equipment for residual stress measurement based on the ultrasonic technique are presented below. Specimen for Fatigue Testing. The residual stresses 100 0 Local heating Fatigue crack –100 0 20 40 60 80 L (mm) were measured in a 500 × 160 × 3 mm3 specimen made of an aluminum alloy (σy = 256 MPa, σu = 471 MPa) with a fatigue crack. The residual stresses were induced by local heating at a distance of 30 mm from the center of the specimen. As can be seen from Fig. 15.13, in the heating zone, both components of the residual stress are tensile. In the compression zones, the longitudinal component of residual stress reaches −130 MPa. Fig. 15.13 Distribution of residual stresses induced by local Compound Pipes and Pipes with Surfacing. Another heating in a specimen made of an aluminum alloy with a fatigue crack. L is the distance from the center of specimen [15.15] example of measuring the residual stresses by the ultrasonic method is associated with compound pipes. Compound pipes are used in various applications and Part B 15.2 In the example of residual stress measurement presented in Fig. 15.12, a plate made from lowcarbon steel, with a yield strength of 296 MPa, was heated locally, with the focal point of heating located approximately 50 mm from the left side of the plate. The distribution of both components of residual stresses in the specimen as a result of this local heating are shown on the right-hand side of Fig. 15.12. As can be seen, in the heating zone, both residual stress components are tensile and reach the yield strength of the considered material. In 380 Part B Contact Methods σ (MPa) 200 σ (MPa) 200 150 σx 100 σy 50 0 0 y –50 –200 –100 x 1000 –150 –400 0 10 20 – 30 δ (mm) + Part B 15.2 Fig. 15.14 Residual stress distribution in a compound ring with the following dimensions [15.15]. (inner ring D1 = 160 mm and D2 = 180 mm; outer ring D1 = 180 mm and D2 = 220 mm; D1 inner diameter, D2 outer diameter, width of ring 16 mm) a) σ (MPa) b) σ (MPa) 160 160 80 80 0 0 –80 0 5 – 10 15 δ (mm) + –80 0 5 – 10 15 10 δ (mm) + Fig. 15.15a,b Residual stress distribution in rings with inner surfacing [15.15]: (a) ring with D1 = 150 mm and D2 = 180 mm; (b) ring with D1 = 180 mm and D2 = 220 mm. (D1 inner diameter, D2 outer diameter, width of ring 16 mm) 500 –200 –250 36 0 100 200 300 400 500 x (mm) Fig. 15.16 Distribution of longitudinal (along the weld) and transverse components of residual stresses along a butt weld toe [15.18] are made by fitting a pipe with a certain outer diameter inside a pipe with approximately the same inner diameter under pressure. For residual stress measurement, rings were cut off from a number of compound pipes of different diameters. The width of the rings was 16 mm. Residual stresses were measured across the prepared cross-sections in three different locations at 120◦ to each other with subsequent averaging of the measurement results. Depending on the differences between the inner diameter D1 of the outer pipe and the outer diameter D2 of the inner pipe, the measurements were made at three to five points along the radius. The distribution of residual stresses as measured across the wall thickness of the compound pipe is presented in Fig. 15.14. The results of residual stress measurement using the ultrasonic method in rings cut off from a pipes with inner surfacing are presented in Fig. 15.15. Measurement of Residual Stresses in Welded Elements. The residual stresses were measured in a 1000 × 500 × 36 mm3 specimen, representing a butt-welded element of a wind tunnel. The distribution of biaxial residual stresses was investigated in the x- (along the weld) and y-directions after welding and in the process of cyclic loading of a specimen [15.18]. Figure 15.16 shows the distribution of longitudinal (along the weld) and transverse components of residual stresses along the weld toe. Both components of residual stress reached Residual Stress 15.3 Residual Stress in Fatigue Analysis 381 b) σ (MPa) a) 160 x2 σ22 x3 σ33 80 II 70 x1 σ11 III I I 0 II III 900 σ22 σ11 –80 140 –160 c) σ (MPa) 0 20 40 60 80 100 120 140 x (mm) d) x (mm) 75 120 80 Part B 15.3 σ22 σ11 40 35 σ11 σ33 0 –40 –80 0 20 40 60 80 100 0 –300 120 140 x (mm) –200 –100 0 100 200 300 σ (MPa) Fig. 15.17 (a) Welded specimen and (b) distribution of the residual stresses along the butt weld (I–I), (c) perpendicular to the weld (II–II), and (d) through the thickness near the weld (III–III) [15.5] their maximum levels in the central part of a specimen: longitudinal – 195 MPa, transverse – 110 MPa. The ultrasonic method was also applied for residual stress measurement in a 900 × 140 × 70 mm3 specimen of low-alloyed steel, representing the butt weld of a structure [15.5]. The distribution of residual stress components in the x3 (along the weld) and x2 (perpendicular to the weld) directions as well as through the thickness of the specimen near the weld (x1 ) are presented in Fig. 15.17. 15.3 Residual Stress in Fatigue Analysis Despite the fact that the residual stresses have a significant effect on the strength and reliability of parts and welded elements, their influence is not sufficiently reflected in corresponding codes and regulations. This is mainly because the influence of residual stresses on the fatigue life of parts and structural elements depends greatly not only on the level or residual stresses, but also on the mechanical properties of the materials used, the type of welded joints, the parameters of cyclic loading, and other factors [15.1, 2]. Presently elaborate, timeand labor-consuming fatigue tests of large-scale specimens are required for this type of analysis. Generally, in modern standards and codes for fatigue design, for instance, of welded elements the presented data correspond to the fatigue strength of real welded joints including the effects of welding tech- 382 Part B Contact Methods Part B 15.3 nology, type of welded element, and welding residual stresses [15.19]. Nevertheless, in many cases there is a need to consider the influence of welding residual stresses on the fatigue life of structural components in greater detail. These cases include the use of the results of fatigue testing of relatively small welded specimens without high tensile residual stresses, the analysis of the effects of factors such as overloading, spectra loading, and the application of improvement treatments. A few examples of the analysis of the effect of residual stresses on the fatigue life of welded elements based on fatigue testing and computation are described below. It is known that the tensile residual stresses induced by welding can lead to drastic reduction of the fatigue strength of welded elements [15.2]. Figure 15.18 illustrates the results of one of these studies in which butt joints in low-carbon steel were tested using a symmetric loading cycle (stress ratio R = −1). There were three types of welded specimens. Specimens of the first type were cut from a large welded plate. Measurements of the residual stresses revealed that in this case the specimens after cutting had a minimum level of residual stresses. Additional longitudinal weld beads along both sides in specimens of the second type created tensile residual stresses close to the yield strength of the base material in the central part of these specimens. These beads did not change the stress concentration of the considered butt weld in the direction of loading. In the specimens of the third type the longitudinal beads were deposited and then the specimens were bisected and re- joined by butt-welding. Due to the small length of this butt weld the residual stresses in these specimens were very small (approximately the same as in the specimens of the first type) [15.2]. Tests showed that the fatigue strength of the specimens of the first and third types (without residual stresses) was practically the same as the limit stress range 240 MPa at N = 2 × 106 cycles. The fatigue limit of specimens with high tensile residual stresses (second type) was only 150 MPa. In all specimens the fatigue cracks originated near the transverse butt joint. The reduction of the fatigue strength in this case can only be explained by the effect of welding residual stresses. These experimental studies also showed that, at the level of maximum cycle stresses close to the yield strength of the base material, the fatigue life of specimens with and without high tensile residual stresses was practically identical. With the decrease of the stress range there is a corresponding increase in the influence of the welding residual stresses on the fatigue life of the welded joint. In the multicycle region (N > 106 cycles) the effect of residual stresses can be compared with the effect of stress concentration [15.2]. The effect of residual stresses on the fatigue life of welded elements can be more significant in the case of the relief of harmful tensile residual stresses and the introduction of beneficial compressive residual stresses in the weld toe zones. Beneficial compressive residual stresses at a level close to the yield strength of material are introduced in the weld toe zones by the ultrasonic Δσ (MPa) Δσ (MPa) 3 450 400 350 400 350 300 300 250 250 200 1 2 200 150 150 log N = –3.183753 x log σ + 13.31484 10 5 10 2 3 6 N cycles 1 10 5 10 6 N cycles Fig. 15.18 Fatigue curves of a butt-welded joint in low- Fig. 15.19 Fatigue curves of non-load carrying fillet carbon steel [15.2]: 1 – without residual stresses; 2 and 3 – with high tensile residual stresses (fatigue testing and computation) welded joint in high-strength steel [15.20]: 1 – in the aswelded condition; 2, 3 – after the application of ultrasonic hammer peening (fatigue testing and computation) Residual Stress Δσ (MPa) 300 250 6 5 200 2 150 4 3 100 1 105 106 N cycles Fig. 15.20 Fatigue curves of transverse loaded butt weld at peening process. The results of fatigue testing of welded specimens in the as-welded condition and after the application of ultrasonic hammer peening (UP) are presented on Fig. 15.19. The fatigue curve of the welded element in the as-welded condition (with high tensile residual stresses) was also used as the initial fatigue data for the computation of the effect of the UP. In the case of a non-load-carrying fillet welded joint in high-strength steel (σ y = 864 MPa, σu = 897 MPa), the redistribution of residual stresses resulted in an approximately twofold increase in the limit stress range and over tenfold increase in the fatigue life of the welded elements [15.20]. The results of the computation of the effect of residual stresses correlates well with the results of fatigue testing if the relaxation of residual stress is considered during the cyclic loading of the welded elements, taking into account the effect of the stress concentration created by the shape of weld (Figs. 15.18 and 15.19). A significant increase in the fatigue strength of welded elements can be achieved by the redistribution of high tensile residual stresses [15.5]. The calculated fatigue curves for a transverse-loaded butt weld with different levels of initial residual stresses at R = 0 are shown in Fig. 15.20. The fatigue curve of the welded element will be located between lines 1 and 2 in the case of partial relief of harmful tensile residual stresses (lines 3 and 4). The decrease of the tensile residual stresses from an initial high level to 100 MPa causes, in this case, an increase of the limit stress range at N = 2 × 106 cycles from 100 MPa to 126 MPa. The relief of the residual stresses in a welded element to the level of 100 MPa can be achieved, for example, by heat treatment or overloading of this welded element at a level of external stresses equal to 0.52 σy . As a result, this fatigue class 100 welded element becomes fatigue class 125 [15.19]. After modification of the welding residual stresses, the considered welded element will have enhanced fatigue performance and, in principle, could be used instead of a transverse-loaded butt weld ground flush to plate (no. 211) or longitudinal weld (nos. 312 and 313) [15.19]. Introduction of compressive residual stresses in the weld toe zone can increase the fatigue strength of welded elements to an even greater extend (lines 5 and 6 in Fig. 15.20). 15.4 Residual Stress Modification In many cases, beneficial redistribution of residual stresses can drastically improve the engineering properties of parts and welded elements. Detrimental tensile residual stresses can be removed and beneficial compressive residual stresses introduced by the application of heat treatment, overloading, hammer peening, shot peening, laser peening, and low-plasticity burnishing. A new and promising process for the effective redistribution of residual stresses is ultrasonic (hammer) peening (UP) [15.1, 21–23]. The development of the ultrasonic peening (UP) technology was a logical continuation of work directed towards the investigation and further development of known techniques for surface plastic deformation such as hammer peening, needle peening, and conventional and ultrasonic shot peening. UP is a very effective and fast technique for the relief of harmful tensile residual stresses and the introduction of beneficial compressive residual stresses in the surface layers of parts and welded elements. Figure 15.21 shows the results of the measurement of residual stresses in a part produced by the electric discharge machining (EDM) process. Application of the x-ray technique showed that UP provided the relief of harmful tensile residual stresses and induced compressive residual 383 Part B 15.4 R = 0 [15.5]: 1 – with high tensile residual stresses; 2, 3, 4, 5, and 6 – with residual stresses of 0, 200, 100, −100, and −200 MPa, respectively 15.4 Residual Stress Modification 384 Part B Contact Methods Residual stress (MPa) 600 UP treated surface Zone C 0 0.01– 0.4 mm 400 – Application of UP Zone A 200 1–1.5 mm 0 Typical distribution of residual stresses after UP + –200 Zone B –400 –600 –800 15 mm and more 0 20 40 60 80 100 120 Treatment time (s) Fig. 15.21 Relief of harmful tensile residual stresses induced by EDM, and the introduction of beneficial compressive residual stresses in the surface layers of a material by UP [15.24] Part B 15.4 stresses equal to the yield strength of material in the surface layers of the considered part [15.24]. UP has been successfully applied to increase the fatigue life of parts and welded elements, eliminate distortions caused by welding and other technological processes, relief residual stress, and increase the hardness of materials. Fatigue testing of welded specimens has shown that UP is the most efficient improvement treatment as compared with traditional techniques such as grinding, TIG (tungsten inert gas)-dressing, heat treatment, hammer peening, shot peening etc. [15.2]. The improvement in fatigue performance is achieved mainly by the introduction of compressive residual stresses into the surface layers of metals and alloys, the decrease in stress concentration in weld toe zones, and the enhancement of the mechanical properties of the surface layer of the material. A schematic view of Distance from surface Fig. 15.22 Schematic view of the cross section of a mater- ial/part improved by ultrasonic peening [15.21] the cross section of a material/part improved by UP is shown in Fig. 15.22 and a description of the benefits of UP is presented in Table 15.1. A compact system for ultrasonic peening (UP) of materials, parts, and welded elements is shown in Fig. 15.23. The new optimized UP system (total weight 6 kg) includes: 1. A hand tool, based on a piezoelectric transducer. The weight of the tool is 2.8 kg and it is convenient for use. A number of working head types have been designed for different industrial applications. 2. Ultrasonic generator. The weight of the generator is 3.2 kg with a power consumption of only 400 W. Output frequency is ≈ 22 kHz. 3. A laptop with a software package for remote control and optimum application of ultrasonic peening. Table 15.1 Zones of material/part improved by ultrasonic peening Zone Description of zone A Zone of plastic deformation and compressive residual stresses Zone of relaxation of welding residual stresses Zone of nanocrystallization (produced under certain conditions) B C Penetration (distance from surface) (mm) 1–1.5 mm 15 mm and more 0.01–0.1 mm Improved characteristics Fatigue, corrosion, wear, distortion Distortion, crack propagation Corrosion, wear, fatigue at elevated temperature Residual Stress 15.4 Residual Stress Modification 385 Δσ (MPa) 400 350 300 250 200 150 9 7 5 100 3 1 Fig. 15.23 Application of the ultrasonic peening system for beneficial redistribution of residual stresses and fatigue-life improvement of a tubular welded joint [15.23] • • • • Determination of the maximum possible increase in the fatigue life of the welded elements by UP, depending on the mechanical properties of the material, the type of welded element, the parameters of cyclic loading, and other factors Determination of the optimum technological parameters for UP (maximum possible effect with minimum labor and power consumption) for each considered welded element Quality monitoring of the UP process Final fatigue assessment of the welded elements or structures after UP, based on detailed inspection of the UP-treated zones and computation The developed software allows the assessment of the influence of the residual stress redistribution caused by the UP process on the service life of the welded elements without having to perform time- and laborconsuming fatigue tests and to compare the results of these calculations with the effectiveness of other improvement treatments such as heat treatment, vibration treatment, and overloading. The computation results presented in Fig. 15.24 show the effect of the application of UP on the fatigue life of welded joints in steels of different strength. The data for fatigue testing of non-load-carrying fillet weld specimens in the as-welded condition (with high tensile residual stresses) were used as initial fatigue data for 106 N cycles Fig. 15.24 Fatigue curves of a non-load-carrying fillet welded joint: 1 – in the as-welded condition for all types of steel; 3, 5, 7, and 9 – after the application of UP to steels 1–4 (see text) calculating the effect of UP. These results are in agreement with the existing understanding that the fatigue strength of a certain welded element in steels of different strength in the as-welded condition is represented by a single fatigue curve [15.2, 19]. Four types of steels were considered for fatigue analysis: steel 1 (σy = 270 MPa, σu = 410 MPa), steel 2 (σy = 370 MPa, σu = 470 MPa), steel 3 (σy = 615 MPa, σu = 747 MPa), and steel 4 (σy = 864 MPa, σu = 897 MPa). Line 1 in Fig. 15.24 is the single fatigue curve of the considered welded joint for all types of steel in the as-welded condition, determined experimentally. Lines 3, 5, 7, and 9 are the calculated fatigue curves for the welded joint after the application of UP for steels 1–4, respectively. As can be seen from Fig. 15.24, the stronger the mechanical properties of the material, the higher the fatigue strength of the welded joints after the application of UP. The increase in the limit stress range at N = 2 × 106 cycles after UP for a welded joint in steels 1–4 is 42%, 64%, 83%, and 112%, respectively. These results show a strong tendency for increasing fatigue strength of welded connections after the application of UP with increasing mechanical properties of the material used. The developed computerized complex for UP was successfully applied in different applications for increasing of the fatigue life of welded elements, eliminating distortions caused by welding and other Part B 15.4 For optimum UP application, the maximum possible increase in the fatigue life of the welded elements with minimum labor and power consumption is desired. The main functions of the developed software are: 105 386 Part B Contact Methods technological processes, relieving residual stress, increasing the hardness of the surface of materials, and surface nanocrystallization. Areas/industries where UP was applied successfully include railway and highway bridges, construction equipment, shipbuilding, mining, automotive, and aerospace. 15.5 Summary Part B 15 1. Residual stresses play an important role in the operating performance of materials, parts, and structural elements. Their effect on the engineering properties of materials such as fatigue and fracture, corrosion resistance, and dimensional stability can be considerable. Residual stresses should therefore be taken into account during the design, fatigue assessment, and manufacturing of parts and structural elements. 2. Various destructive and nondestructive techniques can be efficiently used for the measurement of residual stresses in laboratory and field conditions in many applications for a wide range of materials. In many cases the residual stress analysis was successfully applied to increase the reliability and service life of parts and welded elements in the construction industry, shipbuilding, railway and highway bridges, nuclear reactors, aerospace industry, oil and gas engineering, and in other areas during manufacturing, in service inspection, and the repair of real structures. 3. Certain progress has been achieved during the past few years in the improvement of traditional tech- niques and the development of new methods for residual stress measurement. A number of new engineering tools for residual stress management such as the described ultrasonic computerized complex for residual stress measurement, technology and equipment for ultrasonic hammer penning, and software for the analysis of the effect of residual stresses on the fatigue life of welded elements and structures have recently been developed and verified for various applications. 4. The beneficial redistribution of residual stresses is an efficient way of improving the engineering properties of parts and structural elements. The application of ultrasonic hammer peening causes a remarkable improvement in the fatigue strength of parts and welded elements in various materials: the stronger the treated materials, the greater the efficiency of the application of ultrasonic peening. This allows more effective use of the advantages of high-strength materials in parts and welded elements that are subjected to fatigue loading. References 15.1 15.2 15.3 15.4 15.5 J. Lu (Ed.): Handbook on Residual Stress, Vol. 1 (SEM, Bethel 2005) p. 417 V. Trufyakov, P. Mikheev, Y. Kudryavtsev: Fatigue Strength of Welded Structures (Harwood Academic, London 1995) p. 100 Y. Kudryavtsev, J. Kleiman, O. Gushcha: Ultrasonic measurement of residual stresses in welded railway bridge, Structural Materials Technology: An NDT Conference (Technomic Publishing Co. Inc., Atlantic City 2000) pp. 213–218 J. Lu, P. Peyre, C. Oman Nonga, A. Benamar, J. Flavenot: Residual stress and mechanical surface treatments, current trends and future prospects, Proceedings of the 4th International Congress on Residual Stresses (ICRS4) (SEM, 1994) pp. 1154–1163 Y. Kudryavtsev, J. Kleiman: Residual stress management: Measurement, fatigue analysis and beneficial redistribution, X Int. Congress and Exposition on Experimental and Applied Mechanics (Costa Mesa, 2004) pp. 1–8 15.6 15.7 15.8 15.9 15.10 J. Lu (Ed.): Handbook of Measurement of Residual Stresses (SEM, Bethel 1996) p. 238 J. Lu, J.F. Flavenot: Application of the incremental hole drilling method for the measurement of residual stress distribution in shot-peened components. In: Shot Peening, Science Technology Application (DGM, Frankfurt am Main 1987) pp. 279– 288 G. Montay, A. Cherouat, J. Lu: The hole drilling technique applied on complex shapes, SEM Annual Conference and Exposition: Experimental Mechanics in Emerging Technologies (Portland, 2001) pp. 670–673 M. Pechersky, E. Estochen, C. Vikram: Improved measurement of low residual stresses by speckle correlation interferometry and local heat treating, IX Int. Congress on Experimental Mechanics (Orlando, 2000) pp. 800–804 Z. Wu, J. Lu: Residual stress by moiré interferometry and incremental hole drilling. In: Experimental Residual Stress 15.11 15.12 15.13 15.14 15.15 15.17 15.18 15.19 15.20 15.21 15.22 15.23 15.24 velopment of fracture toughness requirement for weld joints in steel structures for arctic service. VTT-MET. B-89. Espoo. (1985), pp 62– 76 Recommendations for Fatigue Design of Welded Joints and Components. IIW Doc. XIII-1965-03/XV1127-03. International Institute of Welding. (2003) p. 147 Y. Kudryavtsev, J. Kleiman, G. Prokopenko, V. Trufiakov, P. Mikheev: Ultrasonic peening of weldments: Experimental studies and computation, IX Int. Congress on Experimental Mechanics. Orlando (2000) pp. 504–507 Y. Kudryavtsev, J. Kleiman, L. Lobanov, V. Knysh, G. Prokopenko: Fatigue Life Improvement of Welded Elements by Ultrasonic Peening. International Institute of Welding. IIW Document XIII-2010-04. (2004), p. 20 Y. Kudryavtsev, J. Kleiman, A. Lugovskoy, L. Lobanov, V. Knysh, O. Voitenko, G. Prokopenko: Rehabilitation and Repair of Welded Elements and Structures by Ultrasonic Peening International Institute of Welding. IIW Document XIII-2076-05. (2005), p. 13 Y. Kudryavtsev, J. Kleiman, A. Lugovskoy, G. Prokopenko: Fatigue Life Improvement of Tubular Welded Joints by Ultrasonic Peening International Institute of Welding. IIW Document XIII-2117-06. (2006), p. 24 Y. Kudryavtsev, J. Kleiman, G. Prokopenko, V. Knysh, L. Gimbrede: Effect of ultrasonic peening on microhardness and residual stress in materials and welded elements, SEM Int. Congress and Exposition on Experimental and Applied Mechanics, Costa Mesa (2004) pp. 1–11 387 Part B 15 15.16 Mechanics, ed. by Allison (Balkema, Rotterdam 1998) pp. 1319–1324 A. Makino, D. Nelson: Measurement of biaxial residual stresses using the holographic hole drilling technique, Proc. 1993 SEM Spring Conference. Experimental Mechanics (1993) pp. 482–491 X. Cheng, J. Fisher, H. Prask, T. Gnaupel-Heroid, B. Yen, S. Roy: Residual stress modification by post-weld treatment and its beneficial effect on fatigue strength of welded structures, Int. J. Fatigue 25, 1259–1269 (2003) J. Lu, D. Retraint: A review of recent developments and applications in the field of X-ray diffraction for residual stress studies, J. Strain Anal. 33(2), 127–136 (1998) A. Allen, M. Hutchings, C. Windsor: Neutron diffraction methods for the study of residual stress fields, Adv. Phys. 34, 445–473 (1985) Y. Kudryavtsev, J. Kleiman, O. Gushcha, V. Smilenko, V. Brodovy: Ultrasonic technique and device for residual stress measurement, X Int. Congress and Exposition on Experimental and Applied Mechanics. Costa Mesa (2004) pp. 1–7 F. Belahcene, J. Lu: Study of Residual Stress Induced in Welded Steel by Surface Longitudinal Ultrasonic Method, Proceedings of the SEM Annual Conference on Theoretical, Experimental and Computational Mechanics. Cincinnati (1999) pp. 331–334 T. Leon-Salamanca, D.E. Bray: Residual stress measurements in steel plates and welds using critically refracted (LCR) waves, Res. Nondestructive Eval. 7(4), 169–184 (1996) Y. Kudryavtsev: Application of the ultrasonic method for residual stress measurement. De- References
© Copyright 2026 Paperzz